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Theory of central dispersions 

In the theory of central dispersions we make contact for the first time in this book 
with transformations of linear differential equations of the second order (§ 13.5). 
For this reason we begin by setting out the transformation problem itself, which may 
appear rather isolated at this point but as our studies continue will come more and 
more into the foreground. 

11 The transformation problem 

11.1 Historical background 

The transformation problem for ordinary linear differential equations of the second 
order originated with the German mathematician E. E. Kummer and so can con
veniently be referred to as the Kummer Transformation Problem. 

In his exposition "De generali quadam aequatione differentiali tertii ordinis", which 
was first given in the year 1834 in the programme of the Evangelical Royal and State 
Gymnasium in Liegnitz and later, in the year 1887, was re-issued in the J. fur die 
reine und angewandte Math. (Vol. 100), Kummer considered the non-linear third 
order differential equation 
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It may perhaps be interesting to reproduce (in translation) the starting point of 
Kummer's study, 

"We first notice that our equation, which is of the third order, can be reduced to 
two linear equations of the second order 
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in which p and q are functions of the variable x, P and Q functions of the variable z. 
However, we shall grasp this inherently difficult problem more clearly, if we derive 
instead the equation (1) from the equations (2) and (3). To achieve this, let us consider 
z as a function of the variable x and assume that the variable y = wv9 where w is a 
given function of the variable x, satisfies equation (2). Then by differentiation it 
follows, when we hold the differential dx constant, that 

y = wv3 
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and when we substitute these values in the equation (2) we obtain 
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This is a second order linear equation in the variable v, and must be identical with 
equation (3) which has the same form; this will be the case if we set 
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From these equations (5) and (6) there follows by elimination of the variable w 
and its derivatives the third order equation: 
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(11.7) 
which for 

2 ^ + / j 2-4o = Z; Q = U2^ + P2-z\, (11.8) 

2±+p,.4q_X., q_H2±+f-X) (H.9) 

goes over into our equation. 
We find, therefore, that equation (1) gives the relationship necessary between the 

variables z and x in order that y = wv should be an integral of equation (2), in the 
case when the variables y and v are determined by means of equations (2) and (3) 
and q and Q by equations (8) and (9). 

Moreover, the quantity w, which we shall call the multiplier, is obtained from 
equation (5); when we divide the latter by w dzjdx, thus separating the three variables 
w, z and x, and integrate, it gives the formula 
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w2 = c*e5 • e J •—; (11.10) 
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in this, e denotes the base of natural logarithms and c an arbitrary constant". 

11.2 Formulation of the transformation problem 

The transformation problem which we wish to consider is as follows: 
Let two linear differential equations of the second order be given, namely 

y" = q(t)y, (q) 
r=Q(T)Y (Q) 
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in the (open) bounded or unbounded intervals/ = (a, b), J = (A, B). We assume that 
the carriers a, Q of these differential equations are continuous in their intervals of 
definition j , / . 

By a transformation of the differential equation (Q) into the differential equation (q) 
we mean an ordered pair [w, X] of functions w(t)9 X(t)9 defined in an open interval / 
(/ c= j)9 such that for every integral Y of the differential equation (Q) the function 

y(t) = w(t) • Y[X(t)} (11.11) 

is a solution of the differential equation (q). 
We make the following assumptions regarding the functions w, X: 

1. weC29 XeC3; 

2. wXf ^ O f o r a l l / e / ; 

3. X(i) a J. 

The function X we call the transformation function of the differential equations (q), 
(Q) (note the order), or more shortly the transformation; we also conveniently call it 
the kernel of the transformation [w9 X]. The function w we shall call the multiplier 
of the transformation [w, X]. Naturally, these definitions comprise also the concept 
of transformation of the differential equation (q) into (Q). 

The transformation problem which we have described above in an introductory 
fashion can now be formulated as follows: 

To determine all reciprocal transformations of the differential equations (q), (Q) and 
to describe their properties. 

Let [w, X] be a transformation of (Q) into (q) and Y an integral of (Q), then we 
shall designate the solution of (q) defined in the interval / <= j by means of formula (11) 
as the image and the integral of the differential equation (q) including this image as the 
image integral of Y under the transformation [w, X]. More briefly we call these 
simply the image and image integral of Y. 

Turning back to the above study by E. E. Kummer, we take formulae (7) and (10) 
with p = P = 0 and write /, T9 -~q9 — Q in place of x, z, q9 Q; this then yields the 
following result: 

Every transformation function X of the differential equations (q), (Q) is, in its definition 
interval /, a solution of the non-linear third order differential equation 

-{X, /} + Q(X)X'2 = q(t). (Qq) 

The multiplier w of each transformation [w, X] of the differential equations (q), (Q), 
is determined uniquely by means of its kernel X up to a multiplicative constant k =£ 0: 

wit) = - ^ = - (11.12) 
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