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12 Introduction to the theory of central dispersions

We now wish to study certain functions of an independent variable which we shall
call central dispersions of the first, second, third and fourth kinds. The central dis-
persion of the «-th kind (« = 1,2, 3,4) occur only in differential equations with
k-conjugate numbers. In order to simplify our study we shall for the rest of this Chapter
A always assume that the differential equation (q) under consideration has conjugate
numbers of all four kinds; we shall also assume that the carrier ¢ is always negative
in its interval of definition: g <C 0. This assumption is not necessary when considering
conjugate numbers of the first kind.

12.1 Some preliminaries

We consider a differential equation (q), f € j = (a, b). According to our assumption
the differential equation (q) admits of conjugate numbers of all four kinds, and we
havegq < Oforall 7 €. According to § 3.11, for each kind « (= 1, 2, 3, 4), the numbers
t €j which possess a »-th left or right x-conjugate number form an open interval
Iy OF fvs v =1,2,. ... These intervals i, ,, j., were fully described in that para-
graph. We know that each interval i, ,, j., is a sub-interval of j, and we recall the
following property: if the differential equation (q) is left or right oscillatory, then all
the intervals i, , or j., respectively coincide with j; if the differential equation (q) is
oscillatory then all the intervals i ,, j, , coincide with j (« = 1,2,3,4;v =1,2,...).

12.2 Definition of the central dispersions

Let « be one of the numbers 1, 2, 3, 4 and, let n, (= n) be a positive integer; we assume
that in the interval j there are numbers for which the n-th right or left x-conjugate
number exists; such numbers consequently make up the interval j, , or i, ,. If, for
instance, the differential equation (q) is of finite type (m), m > 2, then we have n; << m.

1. Let « = 1. In the interval j; (i, ,) we define the function ¢, (¢_,) as follows:
For tej, , (teiy,) let ¢, (1) (b_,(¢)) be the n-th right (left) number conjugate of the
first kind with 7. ¢,(1) ($-.(7)) is therefore the n-th zero, lying to the right (left) of
t, of any integral of the differential equation (q) which vanishes at the point ¢.

We call the function ¢, (¢ _,) the n-th (—n-th) central dispersion of the first kind or
the 1-central dispersion with the index n (—n). In the particular case n = 1 we speak
of the fundamental dispersion of the first kind. The fundamental dispersion of the first
kind, ¢,, is therefore defined in the interval j, ; and its value ¢,(r) represents the
first zero after 1 of every integral of the differential equation (q) which vanishes at the
point ¢.
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2. Let « = 2. In the interval j, , (iy,) we define the function y, (y_,) as follows:
For t €y, (t € iy.p) let p,(t) (y-.(¢)) be the n-th right (left) number conjugate of the
second kind with £. 9,(¢) (_,(¢)) is therefore the n-th zero lying to the right (left) of
t of the derivative of any integral of the differential equation (q) whose derivative
vanishes at the point ¢.

We call the function v, (y_,) the n-th (—n-th) central dispersion of the second kind
or the 2-central dispersion with the index n (—n). For n = 1 we speak of the fundamental
dispersion of the second kind. The fundamental dispersion of the second kind, v, is
therefore defined in the interval j, ;, and its value y,(¢) represents the first zero follow-
ing 7 of the derivative of every integral of the differential equation (q) whose derivative
vanishes at the point r.

We see that if the differential equation (q) has the associated differential equation (§,)
then the 2-central dispersions of (q) coincide with the 1-central dispersions of (q).

3. Let « = 3. In the interval js , (i3,,) we define the functions y, (x-,) as follows:
For tej, , (teiy,) let x,(t) (x-.(1)) be the n-th right (left) conjugate number of the
third kind with 7. y.(t) () -.(¢)) is therefore the n-th zero to the right (left) of 7 of the
derivative of any integral of the differential equation (q) which vanishes at the point ¢.

We call the function y, (y-,) the n-th (—n-th) central dispersion of the third kind
or the 3-central dispersion with the index n (—n). For n = 1 we speak of the funda-
mental dispersion of the third kind. The fundamental dispersion of the third kind, x,
is therefore defined in the interval j; , and its value y,(r) represents the first zero
occurring after fof the derivative of every integral of the differential equation (q) which
vanishes at the point 7.

4. Finally let « = 4. In the interval j, , (i;,,) we define the function m, (w_,) as
follows: For t € j, , (t € i4.,) let m,(2) (o _,(¢)) be the n-th right (left) conjugate number
of the fourth kind with 7. w,(t) (w_,(7)) is therefore the n-th zero lying to the right
(left) of ¢ of every integral of the differential equation (q) whose derivative vanishes at
the point .

We call the function o, (w_,) the n-th (—n-th) central dispersion of the fourth kind
or the 4-central dispersion with the index n (—n). For n = 1 we speak of the funda-
mental dispersion of the fourth kind. The fundamental dispersion of the fourth kind,
oy, is therefore defined in the interval j, ; and its value w,(r) represents the first zero
after ¢ of each integral of the differential equation (q) whose derivative vanishes at the
point .

The terminology used for central dispersions is intended as a reminder of the distri-
bution or dispersion of the zeros of integrals of the differential equation (q) and their
derivatives. The adjective “central’ refers to certain properties of central dispersions
of the first and second kinds which are related to the group-theoretical concept of
the “centre” (§ 21.6, 4, §21.7).

12.3 Central dispersions of oscillatory differential equations (q)

The central dispersions which we have just defined exist in various different intervals,
according to the kind and index, these intervals generally being proper sub-intervals
of j. If the differential equation (q) is oscillatory then the interval of definition of every
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central dispersion coincides with j. Because of this simplification we shall concern
ourselves in what follows with oscillatory differential equations only. We shall there-
fore assume that the differential equation (q) is oscillatory in its interval of definition
j = (a,b), also that g < O for all 7 €.

In this case the integrals of the differential equation (q) have infinitely many zeros
which cluster towards a and b. Moreover in the interval j there exist four countable
systems of central dispersions, namely the central dispersions of the first, second,
third and fourth kinds, ¢,, v,, %, ®,: v = £1, £2,.... It is convenient also to
introduce the zero-th central dispersions of the first and second kinds by setting
do(t) = t, po(t) = t for all t €.

By the above definitions, the values of the central dispersions at an arbitrary point
1 € j represent the zeros of integrals of the differential equation (q) or of their deriva-
tives; specifically, of integrals which either vanish or have their derivatives vanishing
at the point . See Fig. 3.
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Figure 3

12.4 Relations between central dispersions

Obviously, for every point ¢ € j we have the following relations

S gealt) < poa(t) < g <8< gat) < ) < patt) < } (12.1)
o _y(t) < (1) < o (1) <t < og(t) < pi(t) < wy(t) < - '
From now on we shall often employ the following notation: For two functions f; g
defined in the interval j, we shall denote the composite function f[g(¢)], by fg. Also,
/=1 will denote the inverse function to f, when this exists. If » is an integer, then f*
denotes the »-th or —»-th iterated function f or f~*, according as v > 0 or » < 0;

ffoof NS

that is “—— or ~—_——". Finally we set f° = 1.
4 —
Moreover let @, ¥, X, Q denote respectively the set of all central dispersions
of the first, second, third, fourth kinds and I' the union of all these sets:
Fr=0u¥YuxuQ
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Between central dispersions of the same kind and those of different kinds there exist
various relationships resulting from the composition of these functions. We set out
these relationships schematically in the following “multiplication table”:—

D W X Q
D P — — Q
N _ ¥ X —
X X e - v
Q - Q D —_

The significance of this table is as follows: Composition of two central dispersions
ac A, be B (A, B each denoting one of the sets ®©, 'V, X, Q) either gives a function
which is not a central dispersion or gives a central dispersion ab from the set C
which stands at the intersection of the 4 row and B column;i.e. ab e C.

Now we give these relationships more precisely.

Let u, » and p # 0, o # 0 be arbitrary integers.

1. ¢.¢, = ¢, .. From this relation, it follows that

d)()(/)v = (ﬁv(ﬁo = ‘}Sv, ¢v¢—v = ‘1)0 (= t)’ } (]2 2)
¢’1‘?5v = ¢)v¢‘l = (/)\Hl’ (f)" = (/)I

2. Q/)"q/)v = ’(/}u+v. HenCC
Yoy = PyYPo = Py, Y-y = wtv) (=1 } (12.3)
PiPy = PP = Py Vv =Y

w,., forp>0,v>—p+Tlandforp <0,v = —p—1;
3. pw,={ w,,,_1forp>0,v<—p;

Wy pp1forp <0, v 2= —p.

Yvrp forp>0,v>—p+landforp <0,v = —p—1;
4. pyxp = { Avip-1 forp >0, < —p;

Avips1 fOr p <0, v = —p.

Yorv forp>0,»> —p+landforp <0,v < —p—1;
5. %%y = { Zosv-1 for p=>0, v < —p;

Yprver1 fOr p <0, v = —p.

w,,y forp>0,v>—p+1landforp<0,v=—p—1;
6. 0, = { ©,,,_1forp>0,v < —p;

Wypyer for p <0, v = —p.
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Wpis forp>0,0<0andforp<0,0c>0;
T. 2p®s={ Ppss-1 forp>0,0>0;
Wprgs1 0T p <0, 0 <0.
In particular, for 0 = —p
Lp®_p = o (=1). (12.4)
bp1o forp>0,0<0andforp<0,0>0;
8. wye={p1s-1 forp>0,0>0;
bpios1 fOr p << 0,0 <0,
In particular, for 0 = —p
Wp¥-p = o (= 1). (12.5)
From the above relations we have the following corollaries:
b =1, py_, =1 y0_,=1 0y ,=1, (12.6)
and moreover
‘f)n = ‘{[’14’71‘1, Yo = P1¥n-1, In = X1¢n~1, Wy = O1YPp -1, (]2.7
brn=¢ b ni1, Vr=Y-a¥Ponit, A= fabony O =01,
bu = $1, Ya =L = 0T =i,
Wy = oy}t = ¢ oy,
bon=¢"y, Yo=Yl L= gt =y, (12.8)

o) ]

n-1 _ fAn-1
a=o_ptt=¢" o,

n=12..)).

The formulae 6 show that to every central dispersion there corresponds another
central dispersion which is its inverse, and more precisely the following central dis-
persions are pairs of inverses: ¢y, ¢_,; Yo, Y-y} Xy ©_,; 0, % -, From (8) it follows
that every central dispersion can be obtained by composition of the fundamental
dispersions and their inverses.

12.5 Algebraic structure of the set of central dispersions

Inthe set I' = ® UWY U X U Q we introduce a binary operation (multiplication) by
defining the product of two elements as their composition. It is clear from the above
table that certain ordered pairs of central dispersions a € A, b € B (A, B each repre-
senting one of the sets @, 'V, X, Q) have a product ab = c € I, while other ordered
pairs of central dispersions do not possess any product in the set I'. The set I' under
this operation forms an algebraic structure, a so-called semi-groupoid.

From the formulae (6), (8) we see that the set @, under the multiplication con-
sidered, forms an infinite cyclic group generated by the element ¢,. The unit element
1 of the group @ is the element ¢, (= 7). For every integer », the central dispersions
¢, and ¢ _, are inverse elements of the group ®.



The theory of central dispersions 117

The structure of the set W' is similar; it forms an infinite cyclic group generated by
the element ;. The unit element 1 of the group ¥ is ¢, (= ) and so coincides with
that of the group ®@. For every integer », v, and y_, are inverse elements of the group
. The groups @, 1" consequently have the unit element I in common.

Further, formula (6) shows that each of the two sets X, { consists of elements
which are the inverses of elements of the other. Any two elements y, € X and w_, €
are inverse to each other; that is, their product gives the unit element: y,w_, =
_,y, = 1. Obviously the sets X, Q have no element in common with the groups ®,t".

To sum up: the semi-groupoid I' is formed from two infinite cyclic groups @, 'V,
which have the unit element 1 = ¢ in common, and also from two countable sets X,
Q, disjoint from the former two, whose elements are inverses of each other in pairs.
Moreover, multiplication in the semi-groupoid is given by the formulae of § 12.4.
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