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13 Properties of central dispersions

In this section we shall investigate some elementary properties of central dispersions,
particularly their behaviour, their continuity and other properties associated with the
existence of derivatives of central dispersions.

13.1 Monotonicity and continuity

1. The range of each central dispersion of any kind is the interval j.

For, if A is a central dispersion of any kind and ¢ € j an arbitrary number, then the
function A takes the value ¢ at the point A~(z).

2. Every central dispersion of any kind is an increasing function.

Proof. As every central dispersion of any kind can be constructed by composition of
the fundamental dispersion and its inverse (§ 12.4) it is sufficient to show the truth
of this statement for the fundamental dispersion. Let, therefore, § be a fundamental
dispersion of arbitrary kind. In this paragraph we shall denote the fundamental dis-
persions briefly by ¢, ¢, x, o.

Let t < x be an arbitrary number in the interval j. We have to show that §(r) <
d(x). From (12.1) we have ¢ < 6(t), x << 6(x). If 6(t) < x, then we already have
d(t) < 6(x). It will therefore be sufficient to show that the inequality ¢ << x < 6(¢)
implies the inequality 6(z) < 6(x). This we achieve by showing, on the basis of the
ordering theorems, the impossibility of the inequality t < x < d(x) << 6(¢t). The
equality relation 6(t) = d(x) is obviously impossible, because the inverse function
d-1 exists.

We therefore assume that ¢ << x << d(x) << 6(¢), and consider the four kinds of
dispersion separately.

(a) 6 = ¢. From the definition of the function ¢, the numbers ¢, 6(¢) and x, o(x)
are respectively neighbouring zeros of integrals u, v of the differential equation (q).
Obviously these integrals u, v, are independent. From the first ordering theorem
(§ 2.3) precisely one zero of the integral v lies between 7 and d(¢), which is obviously
inconsistent with the above inequalities.

(b) 6 = y. The proof proceeds on the same lines as (a), using the second ordering
theorem.

(¢) 6 = yx. From the definition of the function y, the numbers ¢, §(¢) are two neigh-
bouring zeros of an integral v of the differential equation (q) and its derivative v'.
The function v’ is consequently non-zero between ¢ and d(¢). Similarly, x, d(x) are
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two neighbouring zeros of an integral u of the differential equation (q) and its deriva-
tive #//. Obviously the integrals u, v are independent. From the fourth ordering theorem
the function v" has a zero between 7 and d(x), and so (by the above inequalities) a zero
between ¢ and d(7), which yields a contradiction.

(d) 0 = . The proof is similar to that of case (c), using the third ordering theorem,
and the proof is complete.

3. Every central dispersion of arbitrary kind is everywhere continuous.
This is an immediate consequence of the above theorems 1 and 2.

13.2 The functional equation of the central dispersions

In this paragraph we denote by ¢, v, 7, ® an arbitrary central dispersion of the first,
second, third and fourth kinds respectively. Let u, v be arbitrary independent integrals
of the differential equation (q).

From the theorem in § 3.12 we conclude that: In the interval j there hold the following
identical relationships

u()o[p()] — ulp(t)]o(t) = 0,

u' (O [p(0)] — w' ()]’ (1) = 0,
u()v' [x(0)] — u'[x(0)]o(t) = 0,
u'(v[w(t)] — ulo()]'(t) = 0.

(13.1)

These relationships are called the functional equations of the central dispersions.

We see that the ratios ufv, u/'[v" of the integrals u, v and their derivatives ', v" are
invariant in the interval j with respect to composition of central dispersions, in the
sense of the following formulae:

W) ulp®]  w(6) W [y(0)]
ot)  lg()] V@) OTp(]
u(t) _wx(0]  w(t) _ ulo()]
ot) VIO 0@) vlo@)]

(13.2)

13.3 Derivatives of central dispersions

Again let ¢, , x, w denote arbitrary central dispersions of the first, second, third
and fourth kinds.
We now prove the following theorem:

(1) All central dispersions of any kind have at each point tej continuous (first)
derivatives. These can be represented in terms of arbitrary independent integrals
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u, v of the differential equation (q) and their derivatives u', v' by the following
formulae:

' (1) vlp()] — ulp()] (1),

PO = = O] = T )
S0 = — A0 O VO] = O] o0),
g1 o/ (@) olp()] = ()] 0 () 133
) — L O 0] = )0,
O] ult) olx()] — ulx()] (1)
, u(t) v[ow(t)] — u[w(t)] v(t)
@) = =40 - N )] =[] 1)

Proof. We shall confine ourselves to the case of the central dispersion ¢. Let u, v be

two linearly independent integrals of the differential equation (q). We consider the
basis function

F(t, x) = u(t)v(x) — u(x)ov(t).

(see §2.6; O = ¢q).

Let 7, = j be arbitrary and x, = ¢(¢,) the corresponding value of ¢. Then we have
F(to, xo) = 0. (§3.12). From §2.6 there is precisely one continuous function x(t)
defined in a neighbourhood i (< j) of #,, which takes the value x, at the point #, and
satisfies the equation F[¢, x(¢)] = 0 in the interval i. This function x possesses, in the
interval i, the continuous derivative

_ w(@) vlx()] — ulx(0)] v'(1)
u() v'[x(t)] — o' [x(2)] v(t)

But the function ¢ is defined and continuous in the interval j, and consequently
also in the interval i, and satisfies the above equation F[t, ¢(¢)] = 0 in i; consequently
x(t) = ¢(¢) for t € i. The existence of ¢'(#,) follows, and hence, taking account of (4),
the first formula (3).

2. The derivatives of central dispersions may be represented as follows in terms of an
integral u of the differential equation (q) and its derivative u' :—

xX'(t) =

(13.4)

u?[$(1)] )
(1) for u(t) # 0,

P'(t) = (13.5)

u'(t) .
u’z[qS(t)j for u(t) = 0;

() Iyl :
. f O
, P ONEE0) or  u'(t) #0,

o (13.6)
gty w@) for  w'(t) =0;

gly(t)] w?[y(2)]
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(1 [y
— - — for u(t) # 0,
£() = qlx(1)] u Q) (13.7)
—_ 1 LM 0 for u(t) = 0;
qlx()] w?[x(0)] '
( 2
—q(1) . uu[’czu((tt))] for u'(t) #0,
o'(t) = (1) (13.8)
u o
—q(t) . (] for  u(1)=0.

Proof. We shall restrict ourselves to the proof of (5); essentially it is obtained by a
transformation of the first formula (3).

In the case u(¢) # 0 we multiply the numerator and denominator of the first formula
of (3) by u(z) and in the numerator make use of the relationship u(t)o[$(1)] =
ul$(t)lo(t); then we proceed analogously in the denominator, multiplying by u[¢(¢)]
and making use of the same relationship. After division by the Wronskian w(s) =
wlé(1)] of u, v we obtain the first formula (5).

In the case u(t) = 0 we have u'(r) u'[¢(¢)] # 0. We multiply, as above, the numer-
ator and denominator by «'(¢), then by u'[¢(7)] and so obtain the second formula (5).

3. The derivatives of the central dispersions can be represented as follows by means
of the first or second amplitudes r, s of an arbitrary basis (u, v) of the differential equation

(Q:—

NG 1.0) N IR 0]
q'l) (t) - rz(t) Y (t) q[w(t)] Sz(f) ([39)
20 = — — SO oy gy o)

gz (1) s%(1)

Proof. We give the proof of the first formula as an example.

Let (u, v) be a basis of the differential equation (q) and r, s the corresponding first
and second amplitudes. Let 7 €j be arbitrary. At least one of the two numbers u(z),
v(t) is non-zero; let us assume, for definiteness, that it is u(¢). Considering the function
A = v[u we have (from (2)) A(r) = A[¢(7)], and consequently

Sy = CBO1_ L RO PO)_ o)
u¥(t) 1+ 2[p0)]  ri) r¥(r)
which is the first formula of (9).

13.4 Higher derivatives

We see from the above results that

If the carrier q of the differential equation (q) is continuous in the interval j, all central
dispersions of the first kind have continuous derivatives of the third order in that interval
and all other central dispersions have continuous derivatives of the first order.
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More precisely we have

If the carrier q of the differential equation (q) belongs to the class Cy, (k = 0,1, ...)
then all central dispersions of the first kind € Cy.4 and all other central dispersions
€ Ck +1-

13.5 The connection between central dispersions and the transformation problem

The formulae (5)-(8) have an impartant bearing on the transformation problem (§ 11).
Let ¢y, 9y, %o @, =0, £1,...; p= +£1,...) be arbitrary central dispersions
of the first, second, third and fourth kinds, and let u be an arbitrary integral of (q).
Then the above formulae (5)~(8) hold for these central dispersions.
Now, on taking account of the ordering theorems, (§ 2.3), these formulae give the
following relationships for all 7 € j:

(—1y .

—1 p—— v ) 13.10
u(t) vqs;(,)"[¢ (1] (13.10)
W) _ (=) dip@]
Vi—g(t)  Vylt) V—qlp,0)]
(=1 w[y(0)]
(t) = , (13.12)

") Vo) V—qly(0)]

w(e) _ (=1
VZgy Vo)

(13.11)

u[ew,(1)]. (13.13)

By formula (10), therefore, the ordered pair [(——1)”/\@3?(?), ¢,(1)] represents a
transformation (§ 11.2) of the differential equation (q) into itself in which every
integral u of (q) is transformed into itself.

Similarly the formulae (11)-(13) show that if we assume that the function ¢ (<< 0) €
C, then the differential equation (q) admits of the associated differential equation
(41). We know (§ 1.9) that the function u,(¢) = u'(t)/1/(—¢(?)) represents an integral
of the differential equation (§,), namely the integral associated with u.

The ordered pair [(—1)*/4/yi(t), w,(t)] obviously represents a transformation of
the associated differential equation (q,) into itself, in which every integral u; of (q,)
is transformed into itself.

The ordered pair [(—1)/4/%,(t), x,(t)] represents a transformation of (g,) into
(q). In this transformation every integral u; of the differential equation (q,) is trans-
formed into the associated integral u of (q).

The ordered pair [(—1)"/4/w(t), w,(t)] represents a transformation of (q) into
(4.). In this transformation every integral u of the differential equation (q) is trans-
formed into the associated integral u, of (g;,).

To sum up; the central dispersions of oscillatory differential equations (q) are particu-
lar solutions of the Kummer transformation problem for the differential equation (q)
and its associated differential equation (4,).
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13.6 Relations between derivatives of the central dispersions and the values of the
carrier q

1. Let now ¢, v, x, w be the fundamental dispersions of the first, second, third and
fourth kinds. We have the following result:

Theorem. The first derivatives of the fundamental dispersions at every point t € j may
be expressed as ratios of appropriate values taken by the carrier q, as follows

i _ (1) (1) = q(1) ‘](14)’
ro = q(ts) v = qlp(1)lg(t2)
o A0 )
7 = g7 ® q(ts)’

in which t,, ty, t;, ty denote appropriate numbers ordered as follows
t<t; < x(t) <tg<Pt); t<ty<o(t) <<ty <pt).

Proof. For every integral u of the differential equation (q) and arbitrary numbers ¢,
x € j we have obviously the formula

W3A(x) — u'¥(t) = fz q(0)[u(0)] do, (13.14)

which provides the basis for our proof.
(a) Let u be any integral of the differential equation (q), which vanishes at the
point ¢, so that u(t) = u'[x(¢)] = 0. In formula (14) we set x = (¢), so obtaining

x(t)
—u'(1) = ft q(0)[u?(0)]' do.

Now, in the interval (¢, x(¢)) the function uu’ and consequently also the function (u?)’
is positive. By the mean value theorem we have

x(t
[ 4@ vy ao = gyt
where t << t; < x(t). The last two formulae give
—u'(t) = q(t)u*[2(1)],

and consequently, using (7),

’ q(tl)
(1) =
qlx(®)]
(b) Now let u be any integral of the differential equation (q), whose derivative 4’
vanishes at the point ¢: 4'(f) = u[w(s)] = 0.
In formula (14) we set x = w(¢) giving

(r < 1, < 2(2)).

u*la(t)] = f " ()] do.
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In the interval (¢, o(t)) the function uu’, and consequently also (u?) is negative.
By the mean value theorem we have

w(t)
[ aar ds = —gtean
t
in which ¢t < t, < (). So
u?[o(t)] = —q(t2)u*(1),
from which, using (8) we obtain
q(1)
q(t,)
(c) From the identical relationship
B(1) = ofx(0)]

we obtain, on applying the above results,

o'(t) = (t < 1y < o(1).

gy gqt) _ q(t)
qts)  qlx(D]  q(ts)

in which y(r) < t3 << ¢(t). Consequently we have

P'(t) = o' [x(O]y' (1) =

q(t,)
q(ta)

(d) Similarly, we obtain from the identity
w(t) = ylo()]

$'(1) = (x(t) < ta < $(1)).

the formula

iy < 40 q(ts)
=4 v

2. The above formulae apply, as we have said, to the fundamental dispersions of
appropriate kinds. More generally, for n = 1, 2, ... we have the following relations.

(w(t) <ty < y(2)).

Q(tl) . ‘]_(_1‘52 ‘I(f«;n—a)'
q(ts) q(t) """ q(tan-1)’
q(t,) Z(’_s) q(tan-7) .q(t«m«a);
9(’3) q(tv) T q(t4n-5) q[xn(t)]
Pu1(t) < ty_5< x,(t) < tg-1<¢t); p=12,...,n

ilt) = g(_t)_q@ . .q(t4n_4)_ 1) .

" q(ts) q(te) " g(tsn-2) qlwn(?)]
CI(t) . CI(H) q(t4n_4).
q(ts) qte) """ qtan-2)’
Puoa(t) <tay_s < 0,(t) <ty <p(t); p=12,..,n

Pu(t) =

1n(t) =

o(t) =
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, _q(t_y) 'f](t-s) q(1 - an-3)).
#oall) = gt_3) qt-7) "~ .q(tﬂ(‘ln—l))’
q(t-1) _q(t~5) ‘](t—(4n~7)) -‘I(t—mn—s)).
9= gt )" gt n-s) qlr-A0]
bou(t) <t_an-1) < x-u(t) <t_au-g)<b_,1(t); p=12,...,n
_‘qﬂ'q_(f_—i) 7(1—(411—4))_ q(t_4n) .
gt-2) q(—0) " qlt_an-2) qly-n(]
q(t) .q(t-4) gt _an-a)).
q(t-2) q(t_o) "’ .‘](f-(qnf:n),
Yo,(t) <t_g <o_ (1) <t_gu-o <W_,1(t); p=12,...,n

A-n(t) =

yoat) =

o' (1) =

These formulae for ¢, %, y,, ©, are easily proved by induction, using the relations
(12.7) and the above formulae for ¢', ¥, v', »'.

Moreover, from the relations ¢é_,(t) = 1, pyp_,(t) = ¢, and the formulae for
¢', v’ there follow the further relations

q(t-1) — q(1) ) q(t_4) .
q(t—a), q(t-2) qly-1(1)]
in which ¢_(1) <t s<y_ () <t_,<t; p ()<t ,<ow_(t)<t_y<t

The formulae for ¢’ , x_,, v_,, o’ are easily proved by induction, making use of
the relations (12.7), (13.15), and the formulae for y', '

¢_.(1) = p_ (1) (13.15)

13.7 Relations between central dispersions and phases

Let «, B be respectively a first and second phase of the basis (, v) of the differential
equation (q). We assume, for definiteness, that these phases are adjacent in the mixed
phase system of the basis (u, v) (§ 5.14); that is to say, one of the relations 0 < § — «
<@, —7 < f — o <0 is satisfied in the interval j. By virtue of our assumption
that ¢ << 0 we have sgn o’ = sgn ' (= ¢). In what follows ¢, v, y,  denote funda-
mental dispersions of the four kinds.

Let x € be an arbitrary number.

First we consider an integral y of the differential equation (q), which vanishes at
the point x. From (5.27) we have

W) = k- r(t) - sin [ofr) — a(x)],
V(1) = £k - s(t) - sin [B(1) — a(x)],

where naturally k (# 0) is an appropriate constant.

For simplicity, let us set A(f) = a(r) — a(x). Obviously, we have A(x) = 0. In
the interval j the function A4 tends monotonically to 4-c0 or — o according as & = 1
or ¢ = —1. Consequently, there is a number x; (> x), for which the function 4
takes the value em. From (16), however, x; is the first zero of the integral y to the right
of x; we have therefore x; = ¢(x) and moreover

ah(x) = a(x) + em. (13.17)

(13.16)
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Now we consider the function B(t) = f(t) — «(x). This function also tends mono-
tonically in the interval j to 4o or —oo, according as ¢ = 1 or ¢ = —1. Conse-
quently there is a number x5 (> x), for which the function B takes the value (¢ 4+ 1)
or §(¢ — 1), according as 0 < f(x) — a(x) <= or —7 < f(x) — a(x) < 0. From
(16), however, x; is the first zero of the function y’ to the right of x. We have therefore
x3 = x(x) and moreover

Pr(x) = a(x) + %(s + Dmr if 0<B(x) — alx) < 7;
. (13.18)

fr(x) = a(x) + %(s — Dr if —7 < f(x) — alx) < O.

In the second place we consider an integral y of the differential equation (q) whose
derivative y’ vanishes at the point x. From (5.27) we have

Y(t) = k- r(t) - sin [o(t) — ()],
Y1) = &k - s(t) - sin [B() — B()].

By an analogous method to that used above, we deduce from formula (17) the
relationship

By(x) = p(x) + em, (13.19)

and then

an(x) = f(x) + %(é — D if 0<px) — alx) <m,
] (13.20)
am(x) = f(x) + 5(8 + Dm if —7 < f(x) — a(x) < 0.

The formulae (17), (18), (19), (20) are known as the Abel functional equations for
the fundamental dispersions.

If one combines these relations with the relations (12.8), one obtains the general
Abel functional equations for the central dispersions, or more briefly the Abel functional
equations

aby(x) = a(x) + ev,
Pri) = ) + ) (1321
Further, in the case 0 < f(x) — a(x) < 7, we have
1
Bru(x) = ox) + 5 (@p — sgn p)e + D,
(13.22)

1
%0,(x) = fx) + 5 (@u — sgn e — Dy



Properties of central dispersions 127

and, in the case —m < f(x) — a(x) < 0,
1
Pl = a(x) + 3 (@ — sgn e — D,

am,(x) = f(x) + %((2/1 — sgn w)e + 1),

(xej; e=sgna’ =sgnf’; »=0,41,4+2,...; pu=+£1,4£2,..)).
(13.23)

13.8 Representation of central dispersions and their derivatives by means of phases

The Abel functional equations for the central dispersions obviously give a representa-
tion, in the interval j, of the central dispersions in terms of the phases «, f3.

The representation of the central dispersions of the first and second kinds is obtained
from the formulae (21), and is

$u(1) = o Mar) +vmesgnal, (1) = FUAW) + v sgn B
(=0, %1, 42,...). (13.24)

A similar representation is obviously possible for the central dispersions of the
third and fourth kinds, y,, , (u = 41, &2, ...), and this is obtained by application
of the formulae (22) and (23); an explicit statement of the corresponding formulae is,
however, not needed here. These representations have, as immediate consequences, the
properties 1-3 of central dispersions given in § 13.1 as well as the continuous differen-
tiability of all central dispersions. For, every first or second phase takes all real values,
is continuously increasing or decreasing, and belongs to the class Cs or C.

By differentiation of the Abel functional equations we obtain the following repre-
sentations, in the iniervalj, of the derivatives of central dispersions

NERA () oy — PO
PO =Cmar PO T B
0 PN () (13.25)
0= gror 0= ol

(r»=0,%1,42,...; p=+1,42,...).

13.9 Structure of the Abel functional equations

Every Abel functional equation for the central dispersions obviously has the form

7(X) = 7(1); (13.26)

in which each of the symbols y, ¥ represents a first or second phase of the arbitrary
basis (u, v) of the differential equation (q) and X is a central dispersion.
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If, conversely, we choose a first or second phase y of the basis (#, v) and allow j to
run through all the phases of the first or second phase system of the basis (u, v) then
the function

X(0) =y p(0)] (13.27)

runs through all central dispersions of a particular kind « (=1, 2, 3,4). If y is a first
(second) phase and 7 runs through the first or second phase system, then X runs
through the central dispersions of the first or fourth (third or second) kinds.

13.10 Representation of the central dispersions by normalized polar functions

For simplicity, we shall restrict ourselves to the representation of the fundamental
dispersions, which we again here denote by ¢, ¢, x, w. The extension to central dis-
persions with arbitrary index presents no difficulty.

I Representation of the fundamental dispersions ¢, o by 1-normalized polar functions

Let /() be a 1-normalized polar function of the differential equation (q), and a(t),
p(t) the corresponding phases. We have therefore f = o + h(e) at every point € j.
Because of the oscillatory character of the differential equation (q) the definition
interval of i coincides with the interval (— oo, oo0) and, by (6.30), we have in this
interval

1. he Cy;
2. nm < h < (n + )z (n integral)

3. i~ > —1.

We now choose a number #, € and set oy, = a(t,), o' = «'(f;). Then (6.28) shows
that at two homologous points a(7) = o and a~(a) = 7 € j we have the formula

t=ty,+ ]—, (exp 2f cot /i(p) dp) do. (13.28)

%y Jag o

We apply this formula at the point ¢(¢) and make use of the Abel functional equation
alp(t)] = o(t) + em (¢ = sgn o). Then, for two homologous numbers ¢, o, we have

1 o+ e a
(1) =ty + — (cxp 2f cot h(p) dp) do, (13.29)
oo

0 voo

which can obviously be written

H(t) =1+ —]-; " (exp 2f cot h(p) dp) do. (13.30)
0(0 og

o

From this we have, by differentiation

$(t) = exp?2 f T ot hp) dp, (13.31)
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and further

0 _ ) — Yk :
) = 2aug[cot h(a + em) — cot h(x)] exp( 2J;000t h(p) dp) (13.32)

Similarly, formula (28) gives, for two homologous numbers #, «

1 at+h()—nr—3(1-¢e)mwr o
w(t) =t + = (epo f cot h(p) dp) do. (13.33)

o Yo

2 Representation of the fundamental dispersions vy, y by 2-normalized polar functions

Now let —k(p) be a 2-normalized polar function of the differential equation (q),
and o(f), B(t) the corresponding phases; we have therefore « = f + k(B) at every
point # € . Because of the oscillatory character of the differential equation (q) the
interval of definition of —k coincides with the interval (— 0o, c0) and we have in this
interval (from (6.37))

1. —keC;;
2. nm < —k < (n+ )m (nintegral);
3. -k < L.
We choose an arbitrary number #,€j and put f, = f(t,), oy = o'(f,). Then (by

(6.35)) at any two homologous points (t) = f and f~1(f) = t € j we have

t=ty+ — "0+ k\(0)]-exp (—2 f [1 + & \(p)] cot k(p) dp) do. (13.34)
0 Bo

1
OLO B
We apply this formula at the point () and make use of the Abel functional equation
Bly(t)] = B(t) + em (¢ = sgn o’ = sgn f’) and so obtain, for any two homologous
points 7,

1 B+em a

p(t) =t + &—,f [1 4 k(o)) exp (—ZJ‘ [1 + &p)] cot k(p) dp) do.
0 vBo Bo
(13.35)

This may obviously also be written

1 B+em o
W) =1+ ZZL [1 + & (0)] exp (—2 fB 0 [1 4 k™ (p)] cot k(p) dp) do,
(13.36)

and there follows, by differentiation, the result

14+ k(B +em)

B+ e
P (t) = AT exp (—-ZJ‘; [1+ kNp)] cot k(p) dp)» (13.37)
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Similarly, formula (34) gives, for any two homologous numbers ¢, 3, the following
formula

x(t) =
1 B+k(B)+nm+ é(l"f(i)ﬂ'

t+— [l + k*(0)] exp (—2 L "1 + K (p)] cot k(p) dp) do.

Ay JB

(13.38)

13.11 Differential equations of the central dispersions

The central dispersions of the first kind of the differential equation (q) satisfy a non-
linear differential equation of the third order; the same is true for central dispersions
of all higher kinds when the carrier g € C,. These non-linear differential equations of
the third order are, as we shall see, special cases of the Kummer differential equation
(11.1), whose significance is fundamental for the theory of transformations. We now
wish to derive these third order differential equations from the Abel functional
equation.

Let X be a central dispersion of the kind « (=1, 2, 3, 4). We choose an arbitrary
basis (u, v) of the differential equation (q). Then, as we have seen in (26), we have the
Abel functional equation

y(X) = 7(1), (13.39)

holding in the interval j for appropriate first or second phases y, 7 of the basis (u, v).
When « = 1 or 2 respectively this equation holds if both y, 7 are first phases or if
both are second phases of the basis (4, v); in the cases k = 3 or4 it holds if y isa second
and 7 a first phase, or y is a first and  a second phase respectively.
From formula (39) it follows that for all ¢ € j, apart from the singular points where

the functions p(X), 7(¢) are odd multiples of g,

tan y(X) = tan $(¢). (13.40)

If the central dispersion X is of class Cj, then at every non-singular point f € j we
can take the Schwarzian derivative of this relation. When we take account of (1.17),
this gives

—{X,t} — {tany, X} X'%(t) = —{tan j, t}.

Now, from (5.18), (5.24), we have
—f{tany, 1} =q(t) or  —{tany, 1} = §:(7),

according as y is a first or second phase of the basis (1, v) and an analogous formula
for tan 7, the right-hand side of (40). Here, ¢, denotes of course the carrier of the first
associated differential equation (4,) of (q):

N 1\
() = 40) + VIO (T/E—(—t—)“l) - (13.41)
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We come thus to the following theorem:

Theorem. All the central dispersions ¢ of the first kind, with arbitrary indices, satisfy
in the interval j the non-linear third order differential equation

—{¢, 1} + q(#) - $"(t) = q(2). (q

Moreover, if the carrier q € Cy all the central dispersions v, y, o of the second, third
and fourth kinds, with arbitrary indices, satisfy in the interval j the equations:

—{y, t} + 4:(v) - 1/’/2(’) = §(?). (4:4,)
—{x 1} + 4:(0) - x%(t) = q(), (GI))
—{o, 1} + g(®) - ©"(t) = §1(2). (944

These are the so-called non-linear third order differential equations for central dis-
persions; more precisely for central dispersions of the first, second, third and fourth
kinds.

13.12 Solutions of the Abel functional equations with unknown phase functions o,

The problem of determining the differential equation (q) from a knowledge of its
central dispersions leads us to consider the Abel functional equations for the central
dispersions with unknown phase functions «, .

Let ¢, or p, be a central dispersion of the first or second kind of the differential
equation (q). A phase function a, $ (§ 5.7) of class C; or C, respectively, which satis-
fies the Abel functional equation (21) in the interval j, represents a first or second phase
of a differential equation (§), whose »-th central dispersion of the first or second kind
coincides with the function ¢, or y,. The carrier § is thus determined, respectively, in
these two cases by (5.16) or by means of a certain solution of a non-linear second order
differential equation (§ 5.12).

Now let y, or w, be a central dispersion of the third or fourth kind of a differential
equation (q). If we have two phase functions «, € C, C; respectively, which are
related in the interval j by a formula such as (5.34), and satisfy the Abel functional
equation (22), say, then these represent a first and second phase of the same basis of a
differential equation (q), whose u-th central dispersion of the third or fourth kind
coincides with the function y, or w,. The carrier ¢ is determined uniquely from the
phase o, by the formula (5.16).

We shall restrict ourselves from now on to the solution of the Abel functional
equation by phase functions, of class Cj, of a given fundamental dispersion of the
first kind.

First we observe that by (12.1) and §§ 13.1, 13.3, 13.4 the fundamental dispersion of
the first kind ¢ of every differential equation (q) has the following properties in the
interval j = (a, b).

1. ¢(r) > ¢,
2. lim ¢(t) =a, lim ¢(t) = b,

tat t-b- (13.42)
3. ¢ C,,

4. ¢'(1) > 0.
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Now we have the following result due to E. Barvinek [2].

Theorem. Corresponding to every function ¢ defined in the interval j and with proper-
ties 1 to 4 above, there exist infinitely many phase functions «.€ Cy which are solutions
of the Abel functional equation

o) = at) + 7 - sgn o’ (13.43)

and which may, moreover, be obtained constructively.

Proof. Let ¢ be a function defined in the interval j with the above properties 1-4. We
shall, as an illustration, construct an increasing solution o € C; of (43).

We select a number 7, €j and put t, = ¢*(t,) for » =0, £1, +2,.... Then the
interval j separates into sub-intervals j, = [t,, #,,1).

Now in the interval j, we choose any function fe C; with a continuous positive
derivative f’, which has the following behaviour in a left neighbourhood of #,:

lim () = f{to) + m,

t->ty—

Jim 70 =L,

o A0

Jm 0= s ( T0) )to ’

ey = L L (O
SO = S [¢'(t)(4>’(t)) ]

Here, the + symbol indicates a right derivative so that, for instance, f”*(t,) is
the right derivative of f at the point #,.

By means of this function f, we can now define in the interval j the function « as
follows

f@t) for tej,,
w(t) = {a[p" ()] + 7= for tej, »>0,
a[p(t)] == for tej, »<O.

This function « is obviously an increasing phase function € C3 and satisfies the
Abel functional equation (43), so the proof is complete.

We know that when a first phase o of the differential equation (q) is given, the
carrier ¢ is uniquely determined by the formula (5.16). From this fact and the above
result we expect that to every function ¢ defined in the interval j with the properties
(42) there will correspond in general infinitely many oscillatory differential equations
(q) having the function ¢ as fundamental dispersion of the first kind. Later, (§ 15.10),
we shall show that the power of the set of all differential equations (q) in the interval
(— o0, ) with the same fundamental dispersion of the first kind ¢ is independent of
the choice of the latter and is equal to the power ¥ of the continuum.

For the solution of the Abel functional equations, by means of phase functions
€ Cy, with given fundamental dispersions of the second, third or fourth kinds, we
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refer to the papers by J. Chrasitna [38] and F. Neuman [54]. In general, the situation
is as follows:

Let A(¢) be a function defined in the interval j = (a, b) with the following properties

1. A(t) > ¢,
2. lim A(t) =a, lim A(t) = b,
toa+ t—b= (13.49)
3. ey,
4. V() > 0.

(a) There are in the interval j infinitely many oscillatory differential equations (q)
with ¢ << 0, whose fundamental dispersion of the second kind ¢ coincides with 4;
p(t) = At) for t €.

(b) Let #,€j be an arbitrary number. There are in the interval [fo, b) infinitely
many right oscillatory differential equations (q) with ¢ < 0, whose fundamental dis-
persion y of the third kind coincides with A: x(¢) = A(¢) for ¢ € [t,, b).

(c) Let t5€j be an arbitrary number. There are in the interval (a, #,] infinitely
many left oscillatory differential equations (q) with ¢ << 0, whose fundamental dis-
persion o of the fourth kind coincides with A in the interval (a, 171(¢))]: w(t) = A(¢)
for t € (a, A~ (to)].

It should be noted that problems of this kind are associated with the solutions
of appropriate non-linear differential equations of the second order with delayed
argument.

13.13 Consequences of the above results

Now we derive some consequences of the above theory.

2. Monotonic character of the differences. ¢,(t) — t, p,(t) — t, x.,(t) — t, w,(t) — ¢.
Consider the differences

¢n(t) -1, %(1) — 1, xn(t) -1, wn([) — 1, (1345)
qs—-n(t) -1 w—n(t) — 1, X—-n(t) — 1, w—n(t) -t (1346)
(n=1,2,...)

in the interval j.
From the formulae in § 13.6 we deduce that if the carrier ¢ is a non-increasing or
a decreasing function in the interval j, then the quantities

¢:;(t) - 1’ 'P;(f) - 1’ X;(f) - 1! (D;(t) -1

are respectively << 0 or < 0, and the quantities

(l’:n(t) - 1’ 'P’-n(t) - 1’ X'-n(f) - 1’ Q):n(t) -1

are > 0 or > 0 respectively.
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Hence

If the carrier q is a non-increasing or a decreasing function in the interval j, then the
same is true of all the differences (45), while the differences (46) are non-decreasing or
increasing functions.

Similarly we show that

If the carrier q is a non-decreasing or an increasing function in the interval j, then the
same is true of the differences (45), while the differences (46) are non-increasing or
decreasing functions.

Corollary. Let
R AP I N N A

be the sequence of zeros of any integral of the differential equation (q) and let
o gy <<y <ty g <Mgp<<-'+ (mM=1) (13.47)

be a subsequence of it.

If the carrier ¢ in the interval j is non-increasing or if it is decreasing, then (47)
denotes respectively a concave or a strictly concave sequence. If the carrier ¢ in the
interval j is non-decreasing or increasing then (47) is a convex or a strictly convex
sequence. For the case m = 1 this gives a result of Sturm-Szegd.

An analogous result holds for the sequence of zeros of the derivative of an arbitrary
integral of the differential equation (q).

2. Derivatives of composite functions. According to a classical result, the composition
of two or more functions of a class C;, (k = 0, 1, ...) is a function of the same class.
It can happen, however, that the function arising from such composition belongs to a
higher class than the original functions. Our results on derivatives of central dispersions
lead to many situations of this kind. We shall content ourselves with a few remarks on
this topic, since a deeper investigation would be beyond the scope of this book.

We shall show that:

Let g be a negative continuous function in the interval j = (a, b), such that the differ-
ential equation (q) is oscillatory. Then there are in the interval j two functions X, Y
satisfying the inequality t << X(t) << Y(t), such that the function q[ X(t)]/q[ Y(¢)] belongs
to the class Cs. If the function q is strictly monotonic, then there are continuous functions
X, Y with the property quoted.

For we obtain functions X, Y of the kind described if we evaluate X(z), Y(¢) at
every point 7 €j according to the theorem of §13.6, taking X(¢) = t,, Y(t) = t;;
t < t; < tz. The function g[X(?)]/q[ Y(¢)] (= ¢'(¢)) has at the point ¢ a continuous
derivative of the second order, as we know from § 13.4. If the function q is strictly
monotonic, then it follows from the result in § 13.6 and the relationship wy = ¢ that

X(t) =q Y [qlxO]- ¥ ®);  Y() = q glx(®)]: o' [x(D]],

where naturally ¢~* denotes the inverse function of ¢. It follows from these formulae
that the functions X, Y are continuous in the interval j.
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