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16 Differential equations with coincident central 
dispersions of the *-th and (* + l)-th kinds 
(-=1,3) 

In this paragraph we shall be concerned with differential equations (q) whose central 
dispersions of the first and second kinds <f>v and \pv or of the third and fourth kinds 
Xp and Wp coincide (v = 0, ± 1 , ±2 , . . .; p == ± 1 , ±2,. , ,). Obvious examples of 
such differential equations are those equations (q) whose carrier a is a negative con
stant in the interval (— oo, oo). A carrier q with the property <f>v = \pv or %p = cop we 
shall call, for brevity, an F-carrier or an R-carrier respectively. 

Consider an oscillatory differential equation (q) in the intervalj = (a, b) and assume 
that q < 0 for all t ej. We denote by <f>9 %p9 %9 co the fundamental dispersions of the 
corresponding kinds; these are thus defined in the entire intervalj, 

A convenient starting point for the theory of F- and iv-carriers is provided by the 
properties of normalized polar functions (§ 6). Let d(t) = f}(t) — a(t) be a polar 
function of the carrier a, and h(a)9 —£(/?),/?(£) be the corresponding 1-, 2-, 3-normalized 
polar functions. The functions h9 —k9p are therefore defined in the interval J = 
(—GO, oo), and the following relations hold at every point t ej 

(](t) = a(t) + hoc(t), a(t) = P(t) + kp(t)9 \ 

P(t) - a(r) =pC(t% C(t) = a(0 + P(t), (16.1) 
mr < hd(t) = —kfi(t) = pC(t) <(n + 1)TT; n integral] 

I. Theory of i^-Carriers 

16.1 Characteristic properties 

First we note that from the formulae (12.2), (12.3) it follows that q is an F-carrier if 
and only if its fundamental dispersions of the 1st and 2nd kinds coincide; <f> -= \p for 
all t ej. 

In the development of the theory which follows we shall confine ourselves generally 
to the properties of the 1-normalized polar function h. We can reach the same objec
tive by making use of suitable properties of the 2- or 3-normalized polar functions 
—k9 p9 but we shall content ourselves in this respect with a few comments as oppor
tunity offers. 
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Theorem. The carrier q is an F~carHer, if and only if the l-normalized polar function 
h has period rr. 

Proof (a) Let q be an F-carrier, Then in the interval j we have <f)(t) = f(t)» Then, 
taking account of (1), 

h[a(t) + sir] = ha$(t) = p<f>(t) - a<f*(t) = fitp(t) - a$(t) 

= (p(t) + en) - (a(t) + sn) = ha(t) 

(e = sgn a' = sgn p'), 

and consequently h(a + n) = h(a) for a e (— oo, oo). 
(b) Let the polar function h have period rr, so h(a + n) = h(a) for a e ( - o o , oo). 

Then at every point t ej, 

fi<f>(t) = a<f>(t) + ha<f)(t) = a(t) + en + /I[oc(0 + CTT] = a(0 + ^ + ha(t) = /?(/) + e?r, 

and it follows that xp(t) = <j>(t). 
We have thus determined all F-carriers: 

The F-carriers are precisely those which are derived by the formula (6.29) from 
normalized polar functions h with period TT in the interval (— oo, oo) (hx > —1). 

Similarly, the F-carriers can be characterized by periodicity with period n or 27r 
of the 2- or 3-normalized polar functions — k or p. 

We have also the following result (due to M. Laitoch [41]. 

Theorem. The carrier q is an F~carrier if and only if its fundamental dispersion of 
the first kind, <f>, is linear; 

(f>(t) = ct + k (c> 0, k = const). (16.2) 

This follows immediately from the above results and (13.32). 

16.2 Domain of definition of F-carriers 

We now wish to determine the intervals of definition of the F-carriers. 
Let q be an F-carrier. The 1-normalized polar function h is therefore periodic with 

period TT, and formula (2) holds. From (13.31) we obtain 

c = exp 2 cot h(p) dp. (16.3) 
Jo 

Now the formula (2) gives, for the v~th central dispersion <f>v(t), v = 0, ± 1 , ± 2 , . . . . 

cv — 1 
<f>v(t) = cvt + k —— or q)v(t) + vk, (16.4) 

c — 1 

according as c =?-= 1 or c = 1. 
From the facts that <f>v(t)~~>b as v-> oo, and <f>v(t)~+a as v-> — oo, we have 

(from (4)): in the case c > 1 

b = oo, a -= —kj(c — 1), hence j = (a, oo), a finite; 
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in the case c < 1 

b = k/(l — C), a = - c o , hence j = (—00, b), h finite; 

in the case c = 1 

k > 0, a = — 00, b = 00. 

We have thus determined the intervals of definition of all F-carriers: 

The interval of definition j of the F-carrier q is unbounded on one or both sides according 

as 

cot h(p) dp Ф0 or = 0. 
0 

163 Elementary carriers 

We remind the reader that this term is applied to carriers whose first phases are 
elementary (§ 8.4). Now we show that: 

The carrier q is elementary if and only if the {-normalized polar function h has period 
TT and satisfies the following conditions 

cot h(p) dp = 0, 1 exp 2 cot h(p) dp J do = TTOCQ. I 

« = a'ta'KO)]; e = sgn < ) . J 

For, if the carrier q is elementary, then its fundamental dispersion of the 1st kind 
(f)(t) has the form (2) with c = 1, k = n. The 1-normalized polar function h has there
fore period TT, and from (13.31), (13.30) the relations (5) follow. The second part of 
the theorem is proved similarly. 

We have thus determined all elementary carriers: 

The elementary carriers q are precisely those derived by the formula (6.29) from 1-
normalized polar functions h defined in the interval (—00, 00), having period IT, and 
satisfying the conditions (5) (hx > — 1). 

Similarly, the elementary carriers may be expressed in terms of 2- or 3-normalized 
polar functions — k orp, being given explicitly by the formulae (6.36) or (6.41). 

16,4 Kinematic properties of F-carriers 

We now make use of the kinematic significance of integrals of the differential equation 
(q), described in § 1.5, as applied to an F-carrier q. 

Let q be an F-carrier. Consider two points P, P' lying on the oriented straight line 
G, whose motion is given by integrals, u, v of the differential equation (q). 

Since the differential equation (q) is oscillatory, the motion of each of these points 
consists of an oscillation about the fixed point (the origin) O of the straight line G. 
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We assume that at any instant t0 at which the point P passes through O, the point P; 

does not coincide with O and its velocity is zero. At the instant t0, therefore, the point 
P' is at a relative maximum distance from O. The times at which the point P passes 
through the origin O are obviously <f>v(t0), and those at which the point P' is at a 
maximum distance from O are fv(t0); v == . . ., — 1, 0, 1,. . .. Since q is an F-carrier, 
we have ^v(l0) = y)v(t0). 

We see therefore that: 

The oscillations of the points P, P' about the origin O are such that the point P passes 
through the origin O when the point Pf is at a relative maximum distance from O. 

II. Theory of _R-Carriers 

16.5 Characteristic properties of It-carriers 

From the formulae in § 12.4 we have, for all t ej, 

X<° = V> 0)X = & 
con = ^ n " 1 f O , CO_n = ^ " i ^ " 1 , 

(16.6) 

(/; = 1,2, . . .; </._! = ф-\ v - i = y - 1 )-

Hence, from, # = co it follows that <f> = y and xP = <*>/> f° r P = ± 1 , ± 2 , . . . . 
This gives the result: 
q is an P-carrier if and only if its fundamental dispersions of the third and fourth 

kinds coincide: x = (0 f° r t G j An P-carrier is always an F-carrier. 

Theorem. The carrier q is an R-carrier if and only if the {-normalized polar function 
h satisfies the following relation in the interval J = (—oo, oo): 

hoL + A [a + ha - mr] = (2ti + 1)TT. (16.7) 

Proof If (7) is satisfied, then on applying it at the point a + hoc — /I?r, there follows 
the 7r-periodicity of h: 

h(a + TT) = ha. (16.8) 

We shall now give the proof first for the case n = 0. We then have 0 < /? — a < TT, 
so the corresponding Abel functional equations (13.18), (13.20) hold, 

(a) Let q be an i?»carrier, so that x = <*>• Then, in the interval j , we have 

(hit) = aZ(0 + ha^(t) 

and further, from (13.18), (13.20), 

a( í ) + ,7 = /?(.•) + A AO + ^ - l ^ 
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Since however q is an F-carrier, the function h has period 77, and on taking account 
of (1) the last relationship gives the formula (7) for the case n = 0. 

(b) Now let the relation (7) be satisfied when n = 0; then, from (8), the function 
h is 7r-periodic From (1) and (13.20), we have 

ßco(t) = aco(t) + haæ(t) = ß(t) + - (є — ì)тт + h £(,-) + I (-_!).-• 

a(ť) + - (є + \)тт - тr + ha(t) + h a(ť) + ha(t) + - (є — ì)тт 

Since the function h satisfies (7) and has period TT, the last expression, in view of 
(13.18), equal to (i%(t). We have, therefore % = co for t ej\ 

The extension of the proof to the general case, in which n is any integer, is simple. 
We set 

ha = h0a + mr. (16.9) 

Then h0 is a 1-normalized polar function of the carrier a with the property 0 < h0 < TT. 
If q is an i?-carrier, then from (a) the function h0 satisfies the condition 

h0a + h0[a + h0a] = TT; (16.10) 

and from this and (9) the relation (7) follows. 
If, conversely, the condition (7) is satisfied, then (10) holds; from that we deduce 

(using (b)) that q is an F-carrier. This completes the proof. 
We have thus determined all the jR~carriers; 

The R-carriers are precisely those derived by theformxda (6.29) from the I-normalized 
polar functions h defined in the interval (— oo, oo) and satisfying (7) (hN > — 1). 

Similarly, the i?-carriers can be determined by means of 2- or 3-normalized polar 
functions satisfying the conditions 

kp + k[0 + kfi + HIT] = -(2w + 1)TT (16.11) 

and 

pl+p(l + 7T) = (2n+ 1)TT, (16.12) 

being given by the formulae (6.36) and (6.41). 

16.6 Further properties of i?-carriers 

The following study takes us further into the properties of i?-carriers. 
Let q be an i?-carrier in the interval j ( = (a, b)). 
We consider an integral curve R of the differential equation (q) with the parametric 

co-ordinates u(t)9 v(t) in which, for precision, we take the Wronskian w = uv! — 
u'v < 0. We denote the origin of the coordinate system by O. 

Let P, PeR be points determined by the parameters t, %(t) where t ej is arbitrary. 
Our interest will centre upon the area A of the triangle POP. 
Obviously 

2A = r(t) • r%(t) • sin 6(t); (16.13) 
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where r(t)3 r%(t) are the lengths of the vectors OP, OP and 6(t) is the angle formed by 
the latter. 

Let a be a proper first phase of the basis (u, v). Since — w > 0 we have a > 0; 
we also have %(t) > t, consequently a%(t) > a(t) and since 0 < d(t) < 2TT, 

0(t) = a%(t) - a(t) + 2wr, 0 > n integral (16.14) 

Moreover, let ft be the proper second phase of (u, v) neighbouring to oc, so that 
0 < /? - a < IT. 

We write the relation (14) as follows 

0(t) = [a%(t) - p(t)] + W(t) - a(/)] + 2n7T 

and apply the formulae (13.20). Since e = 1 and 0 < j8 — a < v9 we have 

0(0 = /9(0 - a(/), (16.15) 

so 6 is that polar function of the basis (u, v) generated by a and lying between 0 and ir. 
To help on the development of this study, it is convenient to quote here the follow

ing formulae: 

0x=^e+7r, a' = (3'%*%\ p' = *'x-x' [(13.18), (13.20)] (16.16) 

r% • r'x = -rr' [(16) and (6.8)] (16.17) 

^ = ^ / ? P' = ^ x ' [(16) and (5.14), (5.23)] (16.18) 

s2% r2% 

Logarithmic differentiation of (13) shows that 

A' r' r'y 
A r r% 

and the formulae (6.8), (5.14) and then (17), (18) give 

1 1 r' r'y r' 
cot 0 • 0' = - - rr'(pF - a') = - - rr' • 0' - - = - — %' - - -

w w r r% r 
Consequently A' -= 0, and we have the result: 

Theorem. The area A of the triangle POP is constant throughout the curve 5i 

16.7 Connection between j?«carriers and Radon curves 

From the relationships [(16) and (5.28)] 

rs • sin d = — w, r%- s%* sin 0 = —w (16.19) 

there follows, when we take account of (13), 

2 A — W , , , , -mx 

rx = z^s> sx==JKr- (16-20) 
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Moreover we have from (13.20) and (18) 

Wot£ = W/?, WPX = Woe ± 77, (16.21) 

in which the sign + or — must be taken according as 0 < Woe < rr or TT < Woe < 2rr. 
We now apply to the integral curve R the transformation R (§ 6.1) which consists 

of the inversion JSTV^A, followed by a quarter rotation about O in the positive sense. 

The curve R is then transformed into a curve R: the point P e Sk goes over into the 
point P e R, while the corresponding amplitudes f, s and angles Woe, W/5; oe, ft are 
transformed as follows [(6.5)] 

2A 
f = _ Sj 5 = W £ ^ = W a ± 7Tj (16.22) 

*— w 

in which we take the sign + or — according as 0 < Woe < TT or TT < Woe < 2TT. 
Comparing this with (20), (21), gives 

r = rX, oe = Wa^, ft = W/%. (16.23) 

Clearly, the transformation i? takes the curve 5* into itself, so 
The integral curves of an R-carrier are Radon curves. 

16.8 Connection between R- and F-carriers 

The second formula (18), taken together with (5.23) gives the following formula 
holding in the interval j 

X ___ 1 

and moreover, using (20), 

r2x s2 (16.24) 

X=-d2q [d=~^j- (16.25) 

This formula is due to E. Barvinek ([2]). It follows that for t0, t ej, 

X(t) = x(to)-d2ftq(o)do. (16.26) 
Jtn 

Similarly the first formula (18) and (5.14) show that 

ť = - - ) - , - ; 06.27) 
d 2qx 

thus for t0, t ej, 

do 

m(a) * ) - zOJ-^£p Ь ; - 06Я) 
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From (25) and (27) we see that the product of the values of the ^-carrier q at any 
two points t, %(t) ej is constant: 

q(t)qx(0 = ji- (16.29) 

From the formula (26) we have 

rx(t0) rx(t) 
XX(t) = X(Q ~ d2 q(a) da - d2 q(a) da. 

Jt0 Jx(to) 

If the last integral is transformed by means of the substitution a = %(T) and we 
apply formulae (25) and (29) then we obtain 

(Kt) = ) XX(t) = t + k (16.30) 

with a determinate constant k ( > 0). Since %% = <f>, this formula shows that every 
R-carrier belongs to the set of F-carriers defined in the interval] = (—-oo, oo), (§ 16.2, 
c==l) . 

16.9 Kinematic properties of J?-carriers 

Let q be an P-carrier. 
We consider two points P, P' lying on the oriented straight line G9 whose motions 

follow the integrals u9 v of the differential equation (q). Let the positions of the points 
P, P' at an instant t0 be such that the point P passes through the origin O when P' is at 
a relative maximum distance from O. Since q is an P-carrier, and consequently also 
an F-carrier, we have the situation described in § 16.4. Now the instants at which the 
point P is at its greatest distance from O are %p(t0) and those at which the point Pf 

passes through the origin O are cop(t0): p = . . ., — 1 , 1 , . . . . But since q is an i?» 
carrier, we have ^(to) = a>P(t0). Thus: 

The oscillations of the points P, P' about the origin O are such that each of these passes 
through the origin at the instant when the other is at a relative maximum distance from 
the origin. 
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