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17 Bunch curves and Radon curves 

In our study of polar functions we have met plane curves with special centro-affine 
properties, among them the Radon curves (§ 6.1). These are curves which are always 
intersected by the straight lines of a bunch in at least two points, and such that the 
tangents at these points of intersection are parallel. This section is devoted to an 
investigation of these curves from the geometrical standpoint. It will appear that 
these curves stand in a close relationship to the F-carriers and i^-carriers, whose 
integral curves they in fact are. Our object is to determine the geometrical properties 
of these curves and to derive finite equations for them. This, as may be expected, 
involves an application of the analytical apparatus which we have derived above. 

17.1 Fundamental concepts 

We begin with the definition of the curves to be studied, which we shall call bunch 
curves. 

Let (F) be a straight line bunch with centre O. By a bunch curve with respect to (F) 
or more shortly a bunch curve we mean a plane curve g with the following property: 

The curve $ 1s m e t by each straight line of the bunch (F) in at least two distinct 
points, and is such that the tangents to the curve at each of the points of intersection 
are parallel. 

By the pole of the curve % we mean the centre O of (F). In view of the methods to 
be applied we wish to restrict ourselves to curves g which are regular (i.e. locally 
convex and without turning points). Moreover we shall assume that every curve g 
can be specified by means of parametric coordinates U, V with respect to a coordinate 
system with origin O; the functions U, V are defined in an open interval and belong 
to the class C2. 

Obvious examples of such bunch curves are ellipses and logarithmic spirals. 
Let 5 be a bunch curve with parametric coordinates U, V in the interval J. We 

notice first that from the definition of bunch curves, the functions U, V must be 
linearly independent. It follows that the functions U, V are integrals of a linear 
differential equation (a) with continuous coefficients a, b: 

Y" + aYr + bF=0. (a) 

We see further that the properties of the curve gf which have been described are 
centro-affine invariant and consequently remain valid under every transformation of 
parameter (§4.1). If we choose, in particular, the curve parameter given by the 
formula (1.1), then the differential equation (a) takes the Jacobian form (q). 

Hence, for appropriate choice of the curve parameter, the bunch curve f$f *s a n 

integral curve of a differential equation (q). We call q the carrier of the bunch curve %. 
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17.2 Determination of the carriers of the bunch curves 

We now determine the carriers q of the bunch curves. 
Since we are only considering regular bunch curves, we can assume from the start 

that q(t) ^ 0 for t ej (§ 4.6). Let (q) be a differential equation in the intervalj, q(t) ^ 0 
for t ej and R an integral curve of (q) with the parametric coordinates w(t), v(t) with 
respect to a coordinate system with origin O. Let P(t) G 51, t e j be an arbitrary point 
and r(t) the tangent to R at the point P(t). Further, let p(t) be the straight line OP(t). 

The following theorem is the foundation of further developments: 

Theorem. Two points P(tx), P(t2) e ft, tx # t2, lie on a straight line passing through 
the point O if and only if the numbers tu t2 are l-conjugate. 

Two tangents r(tx)9 r(t2) to .ft, tx ^ t2, are parallel if and only if the numbers tl9 t2 

are 2-conjugate. 
The tangent r(t2) to R and the straight line p(tx) are parallel if and only if t2 is 

3-conjugate with tx and consequently tx is 4-conjugate with t2. 

Proof Two points P(tx), P(t2) e R, tx # t29 he on a straight line passing through the 
point O if and only if u(tx)v(t2) — u(t2)v(t±) = 0, 

Two tangents r(tx)9 r(t2) to R9 tx =£ t2 are parallel if and only if uf(tx)v
f(t2) — 

u'OtdvVi) = 0-
The tangent r(t2) to R and the straight line p(tx) are parallel if and only if 

w'(t2M'i) - v(t2)u(h) = 0. 
The result now follows immediately from the above facts and the theorem of 

§3.12. 
We observe also that: 
The tangents r(tx)9 r(t2)9 (tx -^ t2), to the curve ft, at two points of intersection of 

the latter with a straight line passing through the point O are parallel if and only if 
the numbers tl9 t2 are both l-conjugate and 2-conjugate. 

The tangents r(tx), r(t2) to the curve R and the straight lines P(ti)? P(t2) passing 
through the point O and their points of contact P(ti), P(t2) with the curve R are 
parallel if and only if each number tl9 t2 is both 3- and 4-conjugate with the other. 

Now let q be a carrier of the bunch curve 5 and q # 0 for t ej. 
Let t! ej be arbitrary and P(tx) e 3f the corresponding point of gf. From the 

definition of a bunch curve we know that the straight line OP(tx) passing through the 
point O must have at least one point P(t2) (¥" P(h)) where it meets the curve 3f. 
Obviously, t2 =£ ti, and by the above theorem t2 is l-conjugate to tx. Consequently, 
every number ti e j has l-conjugate numbers, so we conclude that every integral of 
(q) vanishes at least twice in the interval/ 

We note that the differential equation (q) is either of finite type (m\ m > 3, or of 
infinite type. It follows, in the first place, that q < 0 for t ej and further that the 
differential equation (q) admits of fundamental dispersions of the first and second 
kinds <f>, y>. These are defined in appropriate intervals i c: j9 /' cz j \ 

Now let t e i be arbitrary. Since ^(t) is l-conjugate with t, the points P(t), P(j>(t) lie 
on a straight line through the point O. Since, moreover, 5 is a bunch curve, the 
tangents r(t), r<f>(t) are parallel. Taking account of the above theorem, we conclude 
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that < (̂t) is 2-conjugate with t, so <f>(t) = t/jv(t) for some integer v, v > 1. There is 
therefore an integral y of (q), whose derivative y' vanishes at the points t, (f>(t) and 
possibly also at further points xl9. . ., xv_t lying between t and < (̂t). Now since the 
function q < 0 inj, every interval (t, xi), . . ., (A:V_15 <f>(t)) contains precisely one zero 
of y, so that between t and <f>(t) there are precisely v zeros. Hence v = 1, and cf)(t) = 
ip(t); that is to say i <=• V and <̂ >(t) = y(t) for t e i. 

Now we show that the opposite relation /'<=: / also holds, and tp(tr) = (f)(tf) for 
t' e /'. For let us suppose, if possible, that V e /' but f $ i. Then the number i such 
that (f <) i = yj(tf) (ej) is defined, but there exists no number which is 1-conjugate 
with t' on the right. We know that the straight line OP(i) cuts the curve g at least 
twice, whence follows the existence of numbers </>v(i) (ej), v integral, which are 1-
conjugate with t. Since there is no number which is 1-conjugate with tf on the right, 
and consequently none 1-conjugate with i(> tf), we must have v < 0, so the number 
<r*-i(t) ( = t) exists. But the tangents to the curve at the points P(i), P(t) e g are 
parallel, which shows that t is 2-conjugate with i. We have therefore </>_i(t) = y)-n(i), 
for some n > 1, and from this we find, as above, that <j>^x(i) = y-i( t) ( = t'). We 
have therefore f = ̂ - i( t) , hence t = <j>(tf); this contradicts the above assumption 
that t' $ i, and so establishes the desired result. 

To sum up: the carrier q of the bunch curve g 1s always < 0; moreover the differ
ential equation (q) is of finite type (m), m > 3, or of infinite type, and its fundamental 
dispersions of the first and second kinds, <f>, ip, coincide. 

We leave it to the reader to convince himself of the validity of the converse state
ment: every continuous function q with these properties is the carrier of a bunch curve. 

From this we have: 

Theorem. The carriers of bunch curves are partial functions of F-carriers. 
The carrier a of a bunch curve can for instance be represented in the form (6.29), 

in which h is an arbitrary function, defined in an interval / of length > 277, with the 
following properties: 

1. heC<, 

2. rnr < h < (n + 1W, n integral; 
6 } (17.1) 

3. 1I(OL + Tr) = /?(oc) for a, a + IT e J; 

4. /ix(a) > — 1 for a e J. 

17.3 Centro-affine length of arcs of bunch curves 

Let g be a bunch curve with the parametric coordinates w(t), v(t), t ej. We shall 
continue to employ the notation used above. 

First we recall that the centro-affine oriented arc of the curve 5 determined by 
the points P(t±), P(t2) e g is given by the formula (4.14). Its length 8(ti|t2) is therefore 

s(ЛІ!2)= ľ2V-q(a)da. (17.2) 
Jн 
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We now make use of the formulae (6.29) and (13.31) to obtain, for t e i, 

-qMf)W\t) = -q(t) 

and thus, taking account of (2), 

< ^ i ) i ^ t 2 ) ) = s(tiiy. (17.3) 

We know that the points P(ti), P^i) lie on a straight line passing through the 
point O (§ 17.2); the same holds for P(l2), P<j>(t2). 

The arcs P(t1)P(t2) and P^(t^)P(f)(t2) of the bunch curve g, cut off by two arbitrary 
lines OP(li), OP(t2) of the bunch F, have the same centro-affine length. 

17.4 Finite equations of bunch curves 

In this paragraph we shall derive finite equations for bunch curves. Since the bunch 
curve carriers are partial functions of the F-carriers, we shall confine ourselves to 
bunch curves of F-carriers. We shall also assume that the differential equations (q) 
of the bunch curves under consideration are oscillatory and consequently defined in 
the intervals given in § 16.2. 

Let 5 be a bunch curve and q its carrier in the interval j = (a, oo) or (—oo, b) or 
(—oo, oo) where a, b are finite. Moreover, let u, v be parametric coordinates of the 
curve Qf with respect to a coordinate system with origin O; we assume for definiteness 
that (w = ) uv' — u'v < 0. 

Let r(t) be the amplitude, a(t) be a first phase (t ej) and h(a) (a e (— oo, oo)) one 
of the 1-normalized polar functions of the basis (u, v) generated by the phase a. The 
function h has the above properties l°-4° and without loss of generality we assume 
that n = 0. 

We now start from the formula (6.25), taking a0 = 0: 

r(t) = r0 • exp cot h(p) dp. (17.4) 

Jo 

From (4) and the fact that sgn (—w) = sgn a' = 1. we have in the interval j 

ra + ir 

r<f)(t) = r0 • exp cot h(p) dp 
Jo 

and moreover, 
4(t) = Vc-r(t); 

in this c ( > 0) is the coefficient of t in the fundamental dispersion <f>(t) = ct + k of 
the differential equation (q), and the formula (16.3) holds. 

We now see that the following function, which is defined for t ej, 

g(t) = c^aW (17.5) 
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is transformed by the substitution t —• <f>(t) in the same manner as the function r(t). 
Consequently, the function 

fit) = r(t)lg{t) (17.6) 

is invariant under this substitution, i.e. 

m) --/(/). (I?.?) 

From (5), (6) it follows that 

r(t) = C a ( 0 -f{t) le = c 2 A (17.8) 

Let F(a) ( > 0) be the function defined in the interval (—oo, ooj by means of the 
relationship 

f(t) = F(a); 

in this, t = a""1^) ej and a = a(t) e (—• oo, oo) are two homologous values. 
If we compare the formulae (4) and (8), we obtain 

F(a) = r0 • C " a • exp cot 
Jo 

h(p) dp. 

Clearly, the function F belongs to the class C2 and has period IT. We have moreover 

h = arcot ( — + log CJ, (17.9) 

>•"•*- f + ^ + fiogcy <17-10> 

where the symbol arccot denotes the branch of the above function lying between 0 
and 77-. 

The function F has therefore the following properties in its interval of definition 

( - 0 0 , 0 0 ) 

1. F > 0 , 

2. FeC2, 
3. F(a + TT) = F(a), ) (17.11) 

J P W f\2 /p\ \2 
4 ~T<fT+ ' — + l o g C ' + L ( T + Юgc) 

Clearly, the equation of the bunch curve 5 1n polar coordinates is 

r = Ca-F(oc), (17.12) 

where C ( > 0) is a constant and F is a function defined in the interval (— oo, oo) 
with the properties (11). 

Conversely, it can be shown without difficulty that: if we construct a function h 
according to the formula (9) using an arbitrary constant C ( > 0) and a function 
F defined in the interval (— oo, oo) with the properties (11), then this function 
h represents a 1-normalized polar function of an F-carrier q, satisfying the 
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relations (1). Moreover, this carrier is specified by means of a formula such as 
(6.29). 

We have thus proved the following theorem: 

Theorem. All hunch curves with F-carriers are given in polar coordinates by the 
equation (12), in which C ( > 0) is a constant and F is a function defined in the interval 
(~-oo? oo) with the properties (11). 

17.5 Radon curves 

Let q be the carrier of a bunch curve $ in an interval j ; moreover let O be the pole of 
2r and (F) the bunch of straight lines with the centre 0 . We shall use the symbols 
P(t)9 p(t)9 r(t) (t ej) in the same sense as in § 17.2. 

The curve g determines a simple mapping F of the bunch (F) into itself which is 
defined as follows: corresponding to every straight line p e (F)9 Fp e (F) is the line 
parallel to the tangents to the curve at their points of intersection with p. 

We call 2? a Radon curve when this mapping F is involutory, that is when the com
bined mapping FF is the identity which maps (F) onto itself. 

Every Radon curve therefore has the ellipse property (§6.1): from p' = Fp it 
follows that Fp' = p. 

Now let 91 be a Radon curve. Then the fundamental dispersions of the first and 
second kinds, <j>9 ip of the differential equation (q) are defined in some interval / <=: j 
and from this we deduce that the fundamental dispersions of the third and fourth 
kinds of (q), % and co9 also exist in certain intervals k9 k' c /. Clearly, t < %(t) < <f>(t) 
for t e k and / < co(t) < ip(t) ( = <f>(t)) for t e k!. 

We show first that k = k' and %(t) = co(t) for t e k. 
Let t E k be arbitrary. Since %(t) is 3-conjugate with t, the tangent to the curve 

r%(t) is parallel to the linej?(t). Since 91 is a Radon curve, r(t) is parallel to p%(t); 
consequently (§ 17.2) t is 3-conjugate with %(t) and also %(t) is 4-eonjugate with t. 
We have therefore %(t) = cop(t)9 p being an integer. From %(t) > t it follows that 
p > 1; if p > 2, then t < %(t) < <f>(t) < cop(t)9 but this is impossible. Consequently 
p = 1, so %(t) = co(t), thus k c k' and %(t) = co(t) for t e k. In a similar manner, we 
find that k' <=• k and co(l) = %(t) for ? e k'. This completes the proof. 

We leave it to the reader to convince himself of the truth of the converse theorem : 
every bunch curve carrier q with the property % = m is the carrier of a Radon curve. 

We thus have the following result: 

Theorem. The carriers of Radon curves are partial functions of R-carriers. 
In what follows, we shall consider only Radon curves with i?-carriers. 
Let 5R be a Radon curve with the i?-carrier q. From § 16.8 the function q is defined 

in the interval j = (—oo, oo) and the fundamental dispersion <j> of the first kind of 
(q) is given by the formula <f>(t) = t + k (c = 1; (16.30)). 

From (12) there follows the equation of the curve 91 in polar coordinates: 

r = F(a); (17.13) 

where Pis a function defined in the interval (—oo, oo) with the properties (11). 



Bunch curves and Radon curves 163 

Since the function F is, from (11), 3°, periodic with period n and every two points 
P(a), P(a + 7r) E 9? lie on the same straight line passing through O, we have: 

The curve 31 is closed and has central symmetry. 

We know (§ 16.7) that the function h defined by means of the formula (9), (with 
C = 1), which we may assume to lie in the interval (0,77), satisfies the relation 
hen + h[a + ha] = rr. 

It follows that 

I74 

FOL 

—- + — 
F<x 

F V 
a + arccot —— 

Fa 
Fxa" 

a + arccot  
Fa 

(17.14) 

The equation of the Radon curve % in polar coordinates has therefore the form 
(13); F is a function defined in the interval (—00, 00) with the properties (11) and 
(14), taking C = L 

Conversely, it can easily be shown that if any function h is constructed by means of 
(9) using a function F defined in the interval (— 00, 00) with the above properties, then 
this function h represents a 1-normalized polar function of an K-carrier, satisfying 
the conditions (1) and (16.7) with n = 0, and this carrier is specified by means of a 
formula such as (6.29). 

To sum up: 

Theorem. All Radon curves with R-carriers are given in polar coordinates by the 
equation (13) in which F denotes a function defined in the interval (—00, 00) with the 
properties (11) and (14). 
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