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19 Linear mapping of the integral spaces of the 
differential equations (q), (Q) on each other 

19.1 Fundamental concepts 

We consider two oscillatory differential equations (q), (Q) in the intervals j = (a9 b) 
and / = (A9 B). We denote their integral spaces by r, R while (u9 v)9 (U9 V) will be 
arbitrary bases of r, R and w9 W the Wronskians of these bases. 

Every integral y e r of (q) has determinate constant coordinates cl9 c2 with respect to 
the basis (u9 v)9 such thaty = cxu + c2v9 and the same is true of every integral Ye R of 
(Q): Y = CXU + C2V. Conversely, given any ordered pair of constants cl9 c2 or 
Cl9 C2 there corresponds precisely one Integral y e r of (q) or precisely one integral 
Ye R of (Q), with the coordinates cl9 c2 or Cl9 C2. 

We now define a linear mapping p of the integral space r onto the integral space 
R in the following manner; given an integral y e r of (q). 

y = Xu + iiv9 

we associate with this the integral Y e R of (Q) formed with the same constants A, fi: 

Y=W + /iV. 

The image Fofy under this mappings will be denoted by py9 consequently Y = py; 
it Is convenient also to write y -> Y (p)9 or more briefly y -> Y. The bases (u, t?), 
([/, V) we call the first and second bases of the linear mapping/?. Obviously u -> U(p)9 

v —• V(p). We say that the linear mapping/? is determined by the bases (u9 v)9 (U9 V) 
(in this order), and represent this by writing p = [u -> U9 v -> F]. The ratio w/IV is 
called the characteristic of the linear mapping />, and is denoted by the symbol %p. 

The linear mapping p is also determined by an arbitrary first basis (u9 v) and 
second basis (pu9pv)9 hence p = \u->pu9 v->pv]. The Wronskians of the bases 
(u9 v)(pu9 pv) differ from w9 W by the same (non-zero) multiplicative constant, so the 
characteristic of the linear mapping/* is independent of the choice of bases of p. 

In the linear mapping/?, two linearly independent integrals of the differential equa­
tion (q) are mapped onto linearly independent integrals of (Q). The images of two 
dependent integrals of the differential equation (q) are also dependent, and differ from 
each other by the same multiplicative constant as their originals. 

When speaking of two linear mappings of r onto R we say that they have the same 
or the opposite character according as their characteristics have the same sign or not. 

Let c =7-= 0 be an arbitrary number. The mapping determined by the bases (u9 v)9 

(cU9 cV) we denote by cp9 that is to say cp = [u -> cU9 v -> cV]. This linear mapping 
maps every integral y e r of (q) onto the integral c. py e R, and thus onto an integral of 
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(Q) which is linearly dependent upon py. We say that the linear mapping cp is linearly 
dependent or more briefly dependent upon/?; it is convenient to call this a variation 
of p. The characteristic of cp is (l/c2)(w/W), so %cp = (l/c2)%p. Consequently the 
linear mappings p and cp have the same character. The zeros of the images of each 
integral y e r of (q) in the linear mappings p and cp are obviously the same. 

19.2 Composition of mappings 

Alongside the linear mapping p, we now consider a linear mapping P of the integral 
space R of (Q) onto the integral space R of another differential equation (Q) in an 
interval J = (A, B). 

As the first basis of P we choose (U, V); let the second be (0, V); P = [£/-> 0, 
V-+ V]. We denote by FFthe Wronskian of (0, V), so we have %P = WjW. 

Now we show that: 
The composed mappmg P = Pp of the integral space r onto the integral space R 

is the linear mapping P = [u -> 0, v -> V]. Its characteristic is the product of %P, 
%p, thus 

%Pp = %P-%p. (19.1) 

For, let y e r be an arbitrary integral of (q) and let Y = py, Y = PY. Then with 
appropriate choice of the constants I, /u we have the following relations 

y=*Xu + fiv, Y = IU + juV, Y = W + JUV, 

and the first part of our statement follows from this. The characteristic %P is obviously 
w/W = (wlW)(W]W) which proves the second part. 

The inverse mapping top, i.e. p1, of the integral space R onto the integral space r 
is the linear mapping p1 = [U-> u, V->v]. Its characteristic is the reciprocal of 
the characteristic ofp, that is 

XP~X = (W)-1 . (19.2) 

For the inverse of the mapping p, which is the mapping/?™1 of the integral space R 
to the integral space r, is so defined that/?"1/? is the identity mapping e of the integral 
space r onto itself: pxp = e. From this the first part of our statement follows. Now 
obviously e = [u->u,v-*v],%e= I, and when we use (1), withP = p1, the second 
part also follows. 

19.3 Mapping of an integral space into itself 

The above results naturally remain valid when two (or more) of the differential 
equations (q)? (Q), (Q) coincide, so that the corresponding integral spaces r, R, R 
coincide also. 

Consider in particular the case Q = Q = q, R = R = r. We are then concerned 
with a linear mapping of the integral space r of the differential equation (q) onto itself. 
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Such a linear mapping p is determined by a first and second basis (u9 v)9 (U9 V) of the 
differential equation (q) in the above sense: p = [u—> U9 v -> V]. Given two linear 
mappings p = [u-> U, v -> V], P = [f/-> U, V-+ V] of the integral space r onto 
itself, their composed mapping Pp is the linear mapping Pp = [u ~~> U9 v -> V] of 
r onto itself, and a formula such as (1) holds. The linear mapping p1 = [U->u9 

V -> v] is the linear mapping inverse to p of the integral space r onto itself, and there 
holds a formula such as (2). Moreover, pmlp = e, %e = 1. 

19,4 Determination of the linear mappings from the first phases 

Let p = [u —>-17, v -> V] be a linear mapping of the integral space r of (q) on the 
integral space R of (Q). 

We choose arbitrary first phases a, A of the bases (u9 v)9 (U, V) of the linear map­
ping^. Then from (5.26) we have 

sm a 
u = s v \w\ —=> v = e 

V|A| VW\) 

(19.3) 

in which s9 E take the values + 1 or — 1 according as the phases a, A are proper or 
not with respect to the bases (u9 v)9 (U, V). 

Let us take arbitrary coordinates X = y cos k29 fi = y sin k2 (y > 0, 0 < k2 < 2rr) 
and using these coordinates with respect to the bases (u9 v)9 (U9 V) let us form the 
integrals y = Xu + [AV (er), Y = XU + /nV (e R) of (q), (Q), Then y9 Y may be 
expressed as follows: 

sin (a + k2) eE sin (A + k2) / r T 

J = ^ _ _ ^ ^ , 7 = — : i r 7 — — (fci = fiV|wy). (19,4) 

We see that for every choice of the phases a, A of the bases (u9 v), (U9 V) of p, the 
linear mapping p is given by the formula y -> Y; here j , F always represent two 
integrals of the differential equations (q), (Q) defined by the formulae (4) with arbitrary 
constants kl9 k29 such that kx -^ 0, 0 < k2 < 2TT. We call an ordered pair (a, A) of 
phases of the bases (u, v)9 (U9 V) of the linear mapping p9 a phase basis of p. For 
every choice of the phase basis (a? A) of the linear mapping p9 any two integrals 
y e r, Y = py e R are expressible by the formulae (4) with the same constants 
kl9 k2. 

From (3) we obtain the relationship 

sgn %P = sgn a' • sgn A, (19.5) 

that is, the characteristic %p is positive if both phases a, A increase or decrease; it is 
negative if one of these increases and the other decreases. 
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We have seen (§ 19.1) that the linear mapping/? can also be determined from an 
arbitrary first basis (u, v) of (q) and the second basis (pu,pv). As first term of a phase 
basis (a, A) of the linear mapping p we can therefore choose an arbitrary phase a of 
(q); then the second term A is determined uniquely up to an integral multiple of TT. 

19.5 Phase bases of composed mappings 

Once again we consider, in addition to the linear mapping p, a linear mapping P of 
the integral space R of (Q) on to the integral space R of a further differential equation 
(Q) in an interval J = (A, B). 

Let (a, A) be a phase basis of p and (A, A) a phase basis of P. We let s, E, E have 
their usual significance in respect of the phases a, A, A. 

It is easy to verify that: 
The composed linear mapping Pp of the integral space r on the integral space R 

admits of the phase basis (a, A) and for any two integrals y e r, Y = Ppy e R we have 
the formulae 

sin (a + k2) sE sin (A + k2) 
v = ki—•— > Y = — 7 T = = = = = ki — — — — (19.6) 

vV| V\xp\-\XP\ V|XN 
The mapping/r1 (inverse to the mappings) of the integral space R onto the integral 

space r admits of the phase basis (A, a) and for any two integrals Ye i ? , j = p1 Ye r, 
we have 

sin(A + k2) E ^ / | — i t sin(a + k2) 
Y=k± — - -, y = eE V\xp\ kx — — = (19.7) 

V |A| V |a ' | 

Every phase basis of the identity mapping e of the integral space r onto itself is 
obviously of the form (a, a + mr), where n is an integer and a is an arbitrary phase 
of the differential equation (q). 

19.6 Determination of a mapping from arbitrary phases 

In the above work we have associated with every linear mapping p of the integral 
space r onto the integral space R an ordered pair of phases a, A of the equations (q), 
(Q), namely the phase basis of p, and this association has been done in such a way that 
it allows us to represent every integral yer and its image Y = py e R by means of the 
formulae (4). 

Conversely, it follows from the formulae (3), (4) that: 
Arbitrary phases a, A of the differential equations (q), (Q) form a phase basis 

(a, A) of infinitely many linearly dependent mappings cp (c 7̂  0), each mapping the 
integral space r onto the integral space R. We obtain the bases (u, v), (U, V) of a 
linear mapping p of this system by means of the formulae (3) with arbitrary choice of 
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the constants e9 E = ±l;w, W(^ 0), and for every integral yer and its image Y = 
py e R there hold formulae such as (4). 

19,7 Normalized linear mappings 

We shall continue to use the above notation. 
Let p = [u -> U9 v -> V], P = [U-> U9 V-> V] be arbitrary linear mappings of 

the integral space r of (q) onto the integral space R of (Q) and of the integral space 
R onto the integral space R of (Q). Moreover, let (a, A), (A, A) be any phase bases 
of these linear mappings p, P. 

Let z ej, Z e / be arbitrary numbers. 
We call the linear mapping p normalized with respect to the numbers z, Z (in this 

order) if it maps every integral y e r of (q) which vanishes at the point z onto an 
integral YeR of (Q) which vanishes at the point Z; that is to say, when y(z) = 
0 ^ P J ( Z ) = 0. 

Obviously, the linear mapping p is normalized with respect to the numbers z, Z if 
it maps a single integral y e r of (q) which vanishes at the point z onto an integral 
Y e R of (Q) which vanishes at the point Z. If therefore y e r is an arbitrary integral of 
(q) and Ye i? its image under the linear mapping p, then the linear mapping p is 
normalized with respect to every zero of y and every zero of Y. If, moreover, the 
linear mapping p is normalized with respect to the numbers z, Z then every mapping 
cp (c ^z 0) which is dependent upon p has the same property. 

We now have the important theorem: 

Theorem. The linear mapping p is normalized with respect to the numbers z, Z if and 
only if the values ot(z), A(Z) of the terms of (a, A) at the points z, Z differ by an integral 
multiple ofrr, that is oc(z) — A(Z) = mr3 n integral. 

Proof Let y e r be an integral of (q) which vanishes at the point z, and Y = py e R 
its image under the linear mapping p. There hold therefore formulae such as (4) 
formed with appropriate constants kl9 k2 and the number a(z) + k2 is an integral 
multiple of TT. 

If the linear mappings is normalized with respect to the numbers z, Z, then Y(Z) = 
0. Then the number A(Z) + k2 is an integral multiple of w9 and the same is obviously 
true also of oc(z) — A(Z). 

If, conversely, oc(z) — A(Z) is an integral multiple of TT, then this is also true for 
A(Z) + k2, hence Y(Z) = 0. This completes the proof. 

We can also show that: If the linear mapping p is normalized with respect to the 
numbers z, Z then it is also normalized with respect to every two numbers z ej, 
Z ej, such that z and Z are 1 -conjugate with z and Z respectively. Conversely, let 
p be normalized with respect to z, Z and also with respect to two other numbers z ej, 
Zej, where either z is conjugate with z or Z is conjugate with Z; then both these 
conjugacies hold, i.e. z is conjugate with z and Z with Z. 

Proof Let the linear mapping p be normalized with respect to the numbers z, Z, so 
that oc(z) — A(Z) = rm9 n being an integer. 
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(a) Let z ej, Z e J be arbitrary numbers, with z conjugate to z and Z to Z. We have 
therefore z = <f>v(z), Z = <E>JV(Z), in which <j>v, <&N are appropriate central dispersions 
of the differential equations (q) and (Q). Now the Abel functional equation (13.21) 
gives 

a(z) = a(z) + VTT • sgn a', A(2) = A(Z) + Nrr • sgn A, 

and we see that the number a(z) — A(Z) is an integral multiple of TT. 
(b) Let p be normalized with respect to the numbers f, Z and, for definiteness, 

assume that z is conjugate with z. Then a(z) — A(Z) is an integral multiple of TT, and 
from the Abel functional equation it follows that the same is true for the number 
a(z) — a(z). We have therefore A(Z) — A(Z) = mir9 m an integer, and when we take 
account of the Abel functional equation, this gives Z = O M ( Z ) with M = m sgn A. 
This completes the proof. 

It is easy to verify the following statements:— 

(i) Let the linear mappings/?, P be normalized with respect to z, Z and Z, Z respec­
tively, then the composed linear mapping Pp is normalized with respect to z, Z. 

(ii) If the linear mapping p is normalized with respect to z, Z then the inverse 
linear mapping/r1 is normalized with respect to Z, z. 

(iii) If the identity mapping e of the linear space r on itself is normalized with 
respect to the numbers z, Z then these are conjugate. 

19.8 Canonical phase bases 

We now show that:— 

If the linear mapping p of the integral space r of (q) onto the integral space R of 
(Q) is normalized with respect to the numbers z Gj, Z e J, then it possesses a phase 
basis (a, A) whose terms vanish at the point z and Z respectively, i.e. a(z) = 0, 
A(Z) = 0. 

Proof Assume that p is normalized with respect to the numbers z, Z. 
We know that it is possible to choose an arbitrary phase of (q) as first term of a 

phase basis of/*, whereupon the second term is uniquely determined up to an integral 
multiple of TT. Let us therefore choose as first term of a phase basis (a, A0) of/? any 
phase a of (q) which vanishes at the point z: a(z) = 0. Then, since p is normalized 
with respect to z, Z, we have A0(Z) = nrr, n being an integer. If we now replace the 
phase A0 of (Q) by A = A0 — mr, then the phases a, A form a phase basis of p with 
the desired property. 

We call a phase basis (a, A) of a linear mapping/? which is normalized with respect 
to the numbers z, Z a canonical phase basis with respect to the numbers z, Z, if its 
terms a, A vanish at the points z, Z, i.e. a(z) = 0, A(Z) = 0. 

The following facts are easily seen: 
Let (a, A), (A, A) be canonical phase bases of the linear mappings p9 P with respect 

to the numbers z, Z and Z, Z respectively. Then (a, A) is a canonical phase basis of 
the linear mapping Pp with respect to the numbers z, Z. 
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If (a, A) is a canonical phase basis of the linear mapping p with respect to the 
numbers z, Z then (A, a) is a canonical phase basis of the inverse linear mapping 
j?"1 with respect to the numbers Z, z. 

Every canonical phase basis of the identity mapping e of the integral space r on 
itself with respect to the numbers z, (f>v(z) has the form (a, a<^_v), in which a is a phase 
of the differential equation (q) which vanishes at the point z: a(z) = 0. 
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