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23 Transformation properties of solutions of the
differential equation (Qq)

23.1 Relations between solutions of the differential equations (Qq), (qQ), (qq), (QQ)

We are only interested in regular solutions of these differential equations, that is to
say in solutions X € C; with non-vanishing derivative X’. If therefore X is such a
solution of one of these differential equations in a partial interval k of j or J, and
K = X(k) is its range, then in this interval K there exists the inverse function x € Cy of
X. This has a derivative X which is always non-zero in this interval. The range of x
is naturally the interval k; x(K) = k. We use the term homologous (with respect to the
relevant differential equation) to describe any two numbers ¢ € k, T'€ K which are
linked by the relationships 7' = X(¢), t = x(T).

1. Let X(¢), t€i (<= j) be a solution of the differential equation (Qq). Then the
function inverse to X, x(T'), T € I (= X(i) = J)is a solution of the differential equation

qQ).

Proof. Let t € i, T € I be two homologous numbers. Since X is a solution of (Qq), at
the point ¢ we have the relation

{X f} q(f)

(23.1)

From this, taking account of formulae (1.10), (1.6) we have

BTy o) ¢ = gos

and further
—{x, T} + q(x)x* = Q(T).

This completes the proof.

2. Let X, x be inverse solutions of the differential equations (Qq), (qQ) with inter-
vals of definition i (= j), I (= J). Then at any two homologous points tci, Tel
there hold the symmetric relations

1{X,t l x, T
ornx— 3 B0 = g - ST, @32)
X+ () =aes + 1(1)" (3.3
XNX+ 4 \x) =99+ 1(; '
To see this, we start from the formula (1); from this and (1.6) it follows that
L{X, 1) _ 1{X, 1}
’ - — 23.4
QX)X = 5757 = 45 + 575 (23.4)
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and thence, using (1.10), we get the relation (2). Formula (3) is obtained from (4)
and (1.16).

3. We continue to employ the symbols X, x with the above meaning. Let f, F be
two functions constructed in the intervals 7, I with arbitrary constants a,, ¢, ; Ao, 4, as
follows

X
1) = a0 + art + + f [ — (D100 i,

4 X' (r)
z(T) (23.5)
FT)=A,+ A4 T+ - 4(—1:5 + f [T — X(H)lq(H) dH ;
where t, € i, Ty € I denote arbitrarily chosen homologous numbers.
Then, at any two homologous points ¢ € i, T € I we have the relationship
[1(@) = F(T), (23.6)

the proof of which follows from (3) above.
In order to formulate the following theorems more simply, we shall denote the

functions Q, g by Q;, Q. and the differential equations (QQ), (Qq), (qQ), (qq) respec-
tively by (Q11), (Q12), (Q21), (Qz2)-

4. Let X, Y be arbitrary solutions of the differential equations (Q,), (Q;,) (o, B, v =
1,2). Let i, k be the intervals of existence of the functions X, Y and let I, K be the
ranges of the latter. Moreover let i N K # &, so that the composite function Z = XY
is defined in a certain interval k (< k).

We can show that the function Z is a solution of the equation (Q,,) in the interval
k. For, by our assumptions, in the interval k we have:

—{Y. 1} + QY)Y = Q,(1),
—{X, Y} + Q(Z2)X"(Y) = Qy(Y),

and at the same time from (1.17) we have
{Z,t} ={X, Y}Y"?(t) + {Y, t}.
From these relationships it follows that
—{Z, 1} + Q2)Z" = 0,(1),

and the proof is complete.

23.2 Reciprocal transformations of integrals of the differential equations (q), (Q)

We now return to the situation considered in §22.2 and concern ourselves with the
question of how far the transformations of the equation (Q) into the equation (q)
are determined by the solutions of the equation (Qq).
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Let X be a solution of (Qq) with the interval of definition i (< j). We know that
the function x inverse to X, with the definition interval (X(i) =) I (< J), satisfies the
differential equation (qQ) (§ 23.1).

We choose an arbitrary number #, € i, and denote the values of the functions X,
X', X" at the point #, by X,, X, (++ 0), X ; analogously, x,, X, (# 0), X, denote the
values of x, X, X at the point 7, € I homologous to t,. The numbers X,, X, X are
inter-related, since X, = T,, x, = t,, and the formulae (1.6) hold.

1. If Y is an integral of the differential equation (Q), then the function j, defined
in the interval i by means of the formula

Y[X()]

= Vv

(23.7)

satisfies the differential equation (q), and this solution j is that portion lying in the
interval i of the integral y of (q) which is determined by the Cauchy initial conditions

Y(X,)
tO = —
1) VXl
) (23.8)
, Y(X,) , 1 Y(X,) Xg
V(te) = e i coPL)

Proof. Clearly, the function j is everywhere twice differentiable in the interval i, and
it is easy to verify that the following formulae hold:

) Y(X) Ly
BD=—— X"+ Y |—)>
Y0 = g X+ X )(vm)
Y(X) Yo (23.9)
5" = ——, X’z _— . X, .
7'(t) \/I——Xll \/lX’l {X, t}

Since the functions Y, X satisfy respectively the differential equations (Q) and (Qq),
at every point ¢ € i we have

¥(X) = 0(X) Y(X),
—{X, 1} = —Q(X) X" + ¢(1).
We have therefore

_ Y(X) Y(X)
"(t) = —= Q(X)X"? + —= [-0(X)X"?
PO = 5 QUOX* o+ Zg [ QNI +()
and consequently
y'(t) = q(1)y-

so the function j is a solution of the equation (q). The values j(z,), 7'(t,) are given
from (7) and (9) by means of (8).
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2. Let Y, y be the integrals of the differential equations (Q), (q) considered in
Theorem 1 above. Then the portion ¥ of Y defined in the interval I is given by the
inverse formula to (7), namely

_ YD)

T) = ——== (23.10)
VIX(T)
and the Cauchy initial values Y(T,), Y'(T,) are
Y(x0)
Y(T,) = >
()*wm
o) ) & (23.11)
Y(T0)=y o - PWXo) o

— . Xg — — . -
\/]J'c0| °2 \/lxol Xo
Proof. Since y is an integral of (q) and x a solution of (qQ), the theorem above shows
that the function
~ T
() = 22D
VIX(T)]

is a solution of the differential equation (Q) in the interval 1.
Now, at two homologous points T € I, t € i there hold the relations

(O N (2. ()

(T) = - = Y(T) = ¥(T).
VIXT)|  VIHT) - X'(1)] ) )

Consequently, ¥ is the portion Y of the integral Y defined in 7. From formula (8)
the Cauchy initial conditions for Y are given by the formulae (11).
The above study thus yields the following theorem.

Theorem. The ordered pair of functions, w(t) = k[+/|X'(t)|, X(t) constructed with
an arbitrary constant k (5 0), represents a transformation [w, X] of the differential
equation (Q) into the differential equation (q). At the same time, the ordered pair of
Sfunctions W(T) = k=[+/|X(T)|, x(T) represents a transformation of the differential
equation (q) into (Q).

Every integral Y of the differential equation (Q) is transformed by means of the trans-
Sformation [w, X] into its image

_ Y[X()]
VX
which forms a portion of the image integral y of Y determined by the initial values
Y(Xo)
Wto) = k ——
vVixi|

(23.13)

Yo =k | e X 5 U

n%>x_1nn)m]
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At the same time, the integral y of the differential equation (q) is transformed by
means of the transformation [W, x] into its image

oo 1 y[x(T)]

r)=-—= (23.14)
kVIX(T)|
which forms a portion of the image integral Y of y determined by the initial values
1 y(xo)
YTy =+ —F——
1 k,(\/l;“' e s (23.15)
, V' (x0) . Y(xo) Xo
Y(T =—|:——_:.X —*—:'—]
OV T2 VR

3. Let Y, y be the integrals of the differential equations (Q), (q), considered in the
above theorem. Then at every two homologous points T € I, ¢ € i there hold the rela-
tions

VIXT)[ - kY(T) = V]X'(0)] - y(1),
i(T)

k . 1 £
E— T -Y7N). — | = —/———
V|xX(T)] [Y( IS RCE X(T)J V]X'(1)]

v

(23.16)

1
0+ 150

with & = sgn X = sgn x,.

These relations can be obtained from the formulae (12), (14) and their derivatives,
by application of (1.6).

4. The image integrals u, v of two independent integrals U, V of the differential
equation (Q) formed by the transformation [w, X] are independent, and an analogous
statement holds for the transformation [W, x]. This follows immediately from the
formulae (13) and (195).

23.3 Transformations of the derivatives of integrals of the differential equations (q), (Q)

The above results can be used to determine transformations of the integrals (or of
their first derivatives) of one of the differential equations (q), (Q) into portions of
integrals (or their derivatives) of the other equation.

We assume that the carriers ¢, Q of the equations (q), (Q) € C, and are always
non-zero in their intervals of definition j, J. Then the differential equations (q), (Q)
admit of associated differential equations (q;), (Q,), as in § 1.9. Their carriers §,, 01
are determined by means of (1.18) and (1.20) while the relation between the derivatives
y', Y of the integrals y, Y of the differential equations (q), (Q) and the integrals y;, Y,
of (4y), (Q,) is that of (1.21).

When we apply the above results to the differential equations (4,), (Q) and (4,),
(Q,) we obtain information about transformations of integrals y, Y of the differential



206 Linear differential transformations of the second order

equations (q), (Q) and their derivatives ), Y. The transformations corresponding to
the relations (12), (14) are

YIX(0] - 1 1 v [x:(T)]
(T) = - & ,
} X Ol k /gl (D] V(1)

I ORI R 70) R, J oT) | y'lxa1)].
y ) V ol Xz(f)I\/|Xz(t)[ "O=1 e V]zeo(T))|

7(t) =k Vig()] lq(r)l

(23.17)

X1, x; here represent mutually inverse solutions of the differential equations (Qq,),
(4:Q) and X, x, are mutually inverse solutions of (Q,q,), (4,Q,).

23.4 Relations between solutions of the differential equation (Qq) and first phases of
the differential equations (q), (Q)

The phases of the differential equations (q), (Q) considered in this paragraph are
always first phases so we shall speak in what follows simply of phases instead of first
phases.

We continue to use the symbols X, x, etc. as in § 23.2.

1. Let A be a phase of the differential equation (Q). Then the function & defined in
the interval i by means of the formula

a(t) = A[X(1)] (23.18)

is a portion of a phase o of the differential equation (q) and this phase « is determined
by the Cauchy initial conditions

alty) = A(Xy);  o'(t)) = A(Xo)X);  a'(to) = A(X)X[> + A(Xp)X.. (23.19)

Obviously, the phases «, A are linked (§ 9.2).

Proof. The phase A is contained in the phase system of a basis (U, V') of the differential
equation (Q), (§ 5.6). Consequently, we have the relation tan A = U/V holding in
the interval J, except at the zeros of V.

We consider the transformation w(t) = 1/4/|X"(r)|, X(¢) of the differential equation
(Q) into the differential equation (q). Let u, v be the image integrals of U, ¥ under this
transformation [w, X]. From §23.2, 4 (u, v) is a basis of (q); let «, be a phase of this
basis. Then we have, for ¢ € i (apart from the singular points),

ut) _ UIX(0)]
o)~ VIX@)]

and hence o,(t) + mm = A[X(t)], m being an appropriate integer. Now, the function
o = oo -+ mm represents a phase of the basis (v, v) and & is the portion of « defined
in i. By differentiating (18) we obtain the initial values «'(,), a"(f,) as stated in (19).
This completes the proof.

tan oo(t) = = tan A[X(2)],
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Naturally, the solution x inverse to X of the differential equation (qQ) transforms
the phase « into a portion A of A:

A(T) = a[x(T)] (Tel= X(i)). (23.20)
2. Let o, A be arbitrary linked phases of the differential equations (q), (Q) and let
L=a(j)NnA(J); k=aoaYL), K=AYL). (23.21)

Then corresponding to every number f € k or T € K there is precisely one number
Z(t) € K or z(T) € k satisfying respectively the equation

w(t) = A[Z(t)]  or  oz(T)] = A(T). (23.22)

The functions Z(t) = A~ 'a(t), z(T) = o *A(T), which are defined by (22) in the
intervals k, K and are obviously inverse functions, belong to the class C; and represent
regular solutions of the differential equations (Qq), (qQ) respectively. The curves
defined by the functions Z, z go from boundary to boundary of the rectangular region
(a, b) x (4, B).

Proof. (a) Let tek be arbitrary. Then oa(f) € L = A(K), and since A increases or
decreases, there is precisely one number Z(¢) € K satisfying the first equation (22).
A similar result holds for the second equation (22).

(b) From Z(t) = A ta(t), z(T) = o *A(T) it follows that the functions Z, z
belong to the class C; and their derivatives Z’, Z are always non-zero. If we take the
Schwarzian derivative of (22) it is clear that the functions Z, z satisfy the differential
equations (Qq), (qQ).

(c) The validity of the last statement follows from the result of §9.2 relating to
the intervals k, K. This completes the proof.

We call Z, z the solutions of the differential equations (Qq), (qQ) generated by the
phases o, A.

The solution X of the differential equation (Qq) considered in 1 above is obviously
that portion with domain of definition i of the solution Z of the differential equation
(Qq) generated by the phases o, A.

23.5 Reciprocal transformations of first and second phases of the differential equations

@, (Q

From §23.4, 1, a solution X of the differential equation (Qq) transforms each first
phase A of the equation (Q) into a portion & of a first phase « of the equation (q),
according to the formula (18). An analogous statement holds for a solution x of the
equation (qQ) and each first phase o of (q): the function x similarly transforms the
phase « into a portion A of a first phase of (Q). From § 23.4, 2 any two linked first
phases «, A of the equations (q), (Q) generate inverse solutions of the equations (Qq),
(qQ).

Now we assume that the functions ¢, Q € C, and are always non-zero in their
intervals of definition /, J, so that the differential equations (q), (Q) admit of associated
differential equations (§,), (Q.). Then every first phase «; of (§,) represents a second
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phase B of (q), and similarly every first phase A; of (Q,) represents a second phase
Bof (Q): o; = f8, A; = B. If we apply the results of § 23.4, 1 and 2, to the differential
equations (q,), (Q) and (q,), (Q,), we obtain results relating to transformations of
first and second phases «, A or 3, B of the differential equations (q), (Q) into each
other. The transformation formulae corresponding to the relations (18), (20) are

B(r) = ALX,(0)];  A(T) = Blx(D)];

B(t) = B[Xx(1)];  B(T) = BlxoT)];

in which X, x,, represent mutually inverse solutions of the equations (Q4,), (4:Q)
and X, x, are similarly mutually inverse solutions of (Q.41), G:9Q)).
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