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27 Structure of the set of complete solutions of the 
differential equation (Qq) 

This section is devoted to a study of the structure of the set of complete solutions of 
the differential equation (Qq); naturally, this structure depends on the character 
of the differential equations (q), (Q). In order to keep our study short, we shall 
first develop a theory applicable to the investigation of all cases, but then only study 
in full the case of general differential equations (q), (Q) of finite type (m)9 m > 2. 

We consider two differential equations (q), (Q) in the intervalsj = (a, b), J = (A, B) 
and assume that they are of the same character. From § 9.2 this means that (q), (Q) 
are both general, or are both special of the same finite type (m), m > 1, or are both 
oscillatory on one side, or finally are both oscillatory. 

This is a necessary and sufficient condition for the existence of complete solutions 
of the differential equation (Qq) (§ 26.3). 

27.1 Preliminary 

We already have the following information: 

1. If to ej, X0GJ are arbitrary directly or indirectly associated numbers, then 
there always exist complete solutions of the differential equation (Qq) which take the 
value X0 at the point /0, i.e. X(t0) = X0. 

Every such complete solution X is obtained from two directly or indirectly similar 
(first) normal phases a, A of the equations (q), (Q) with the zeros t0, X0, as a solution 
of the functional equation 

a(t) = AX(t). (27.1) 

The function X increases or decreases according as the phases a, A are directly or 
indirectly similar. 

We show further that: 

2. Let X be a complete increasing or decreasing solution of the differential equation 
(Qq). Then every two numbers r, X(t), with tej, X(t) eJ are directly or indirectly 
associated respectively. 

For, let t0 ej be arbitrary. We select a normal phase a of (q) with zero t0. Then 
there is a phase A of (Q) similar to a such that the relationship (1) holds inj The phases 
a, A are directly or indirectly similar according as Xis increasing or decreasing. From 
the fact that a(t0) = 0we have AX(t0) = 0; consequently, X(t0) is the zero of A, and 
on taking account of § 9.5, 2, we deduce that the numbers t0, X(r0) are directly or 
indirectly associated respectively. 
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From the above results 1 and 2 it follows that: 
3. For every number t ej the values X(t) of all increasing or decreasing complete 

solutions of the differential equation (Qq) form respectively the set of numbers directly 
or indirectly associated with t. 

27.2 Relations between complete solutions of the differential equation (Qq) 

Let us choose, for defrniteness, an increasing phase A of (Q). Then every complete 
solution X of the equation (Qq) is determined uniquely from a phase a of the differ­
ential equation (q) similar to A by a relation such as (1). We shall call the phase a the 
generator of X and say that X is generated by the phase a. 

Obviously we have: 

1. Two complete solutions X, X of the differential equation (Qq) coincide in the 
interval j if and only if their generators a, a coincide. 

The mean value theorem gives, for t ej, the relationship 

X(t) - X(t) = ^ - [a(0 - a(0], (27.2) 
A(F) 

in which Tis some number lying between X(t) and X(t) when X(t) -^ X(t). 
We see also that: 

2. Two complete solutions X, X of the differential equation (Qq) are such that at 
every point t e j their difference has the same sign as the difference between their 
generators a, a; that is a(t) > a(t) => X(t) > X(t) and a(t) < a(l) => X(t) < X(t). 

Moreover, 

3. If in the interval J the function A is always greater than some positive constant, 
then the difference X(t) — X(t) is bounded if a(t) — d(t) is bounded. 

If for example the equation (Q) admits of two independent bounded integrals, 
then all its integrals are bounded; consequently the amplitudes of all bases of (Q) are 
bounded and then (by (5.14)) the function A has the property described. 

27.3 The structure of the set of complete solutions of the differential equation (Qq) in 
the case of differential equations (q), (Q) of finite type (m)9 m > 2 

We assume that (q), (Q) are general differential equations of finite type (m), m > 2. 
Let M be the set of complete solutions of the differential equation (Qq). In what 
follows, we shall use the term integral curve of the differential equation (Qq) to mean 
the curve [l, X(t)] determined by a complete solution Xe M of the differential equa­
tion (Qq). 

The set M obviously separates into classes Ml9M-x where Mx is formed from the 
increasing and Af-i from the decreasing functions. We shall for simplicity concern 
ourselves only with the set Ml9 since the situation in the set M-x is analogous. 
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1. The region covered by the integral curves of the differential equation (Qq). 
We set 

Ju = = *A? # - m + n + l)? Jv
 = = W - m + v + l? #v + l)> 

JM = \AU, i>_ m + u + i), Jv = (i>__ m + v + i? Av + 1); 

X = 1,. . . , m — 1; fx = 0, . . ., m — 1; v = 0, . . ., /w — 2; 

a0 = a, b0 = b; ^ 0 = ,4, 5 0 = B. 

Theorem. All integral curves [i, X(t)], Xe Mx pass through the 2(m •— 1) points 
P(aA,AA), P(b^A,B„A) and their union covers simply and completely the region D± 

formed by the union of the open rectangular regions j u X J^jv X Jv. 
All integral curves [t, X(t)], Xe Af_-_ pass through the 2(m — 1) points P(aA, B_A), 

P(b^A, AA) and cover simply and completely the region D^± formed by the union of the 
rectangular open regionsjM x / m - t f - i , ; j x J^v.2. 
Proof We restrict ourselves to the proof of the first part of this theorem. 

Let Xe Mi. From § 27.1, 2, X(aA) is a number directly associated with aA, that is 
X(aA) = AA. Let P(t0, X0) e Dl9 so that l0 ejU9 X0 ej^, say. Then the numbers t0, X0 

are directly associated and not singular. Consequently (from § 26.4) there exists 
precisely one complete solution of the differential equation (Qq) whose value at the 
point t0 1s precisely X0. This completes the proof. 

2. Normalization of the generators. 
Let (u, v) (uvf — u'v < 0) be a principal basis of th, lifferential equation (q) and 

(U, V) (UV — U'V < 0) a principal basis of (Q). We asst ne that u and v respectively 
are left and right 1-fundamental integrals of (q) and that U and V are respectively 
such integrals of (Q). 

We choose a number r ( = 1,. . ., m — 1) and further choose a normal phase A of 
the basis (U, V) with the zero Ar and another normal phase A with the zero i?_r. The 
boundary characteristic of A is (Ar; — r77, (m — r —• |)7r) and that of A is (L?„r, 
— (m — r — |)TT, m). 

Let P(ar) be the phase bunch (§7.10) formed by those normal phases which vanish 
at the point ar of the 1-parameter basis system (pu, v) of (q) with p ^ 0 . 

For every number p (=£ 0) we shall denote by ap the normal phase of the basis 
(pu, v) which is included in the phase bunch P(ar). We know that P(ar) breaks up into 
two sub-bunches, one of which, Pi(ar), consists of increasing phases and the other, 
P„i(ar), of decreasing phases. 

Every normal phase ap e Pe(ar) has the boundary characteristic (ar; — r7rE, 
(m — r — l)rre) (e = ±1) ; consequently the phase ap is directly similar to A in the 
case e = 1 and indirectly similar to A in the case s = —-1. Conversely, every phase 
of the differential equation (q) which is directly similar to A or indirectly similar to A 
has the above boundary characteristic; we deduce that it is included in the sub-
bunch Pi(ar) or P~i(ar) respectively. 

Hence the phases of the differential equation (q) which are directly similar to A 
are precisely the elements of the sub-bunch Pi(ar); the phases of (q) which are in­
directly similar to A are precisely the elements of the sub-bunch P_i(ar). 

It follows that the increasing complete solutions of the differential equation (Qq) 
are (for the above choice of the phase A) generated by the elements in the sub-bunch 
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Pi(ttr) while the decreasing complete solutions of (Qq) are (for the above choice of the 
phase A) generated by the elements of the sub-bunch P^x(ar). 

3. Properties of the structure of the set Me. 
Let h and /_2 be the intervals comprising all positive and all negative numbers 

respectively, and let / = Ix u / _ i . 
Corresponding to every number p e / we denote by Xp the complete solution of the 

differential equation (Qq) which is generated by the normal phase a0 e Px(ar) using 
the phase A, or by the normal phase a0 eP^x(ar) using the phase A. 

Let K be the mapping p -> Xp of / on M. Obviously, the mapping K maps the inter­
val Ie on the set Me (s = ±1). 

The mapping K is simple; this follows from § 27.2, 1 and § 7.12, 2. 
For />, pe Ie and /> < />, in the interval^ orj^ respectively we have the relations 

Xp < X- or Xp > X-p. 

This follows from § 27.2, 2 and § 7.12, 3. 
The set Me admits of the following ordering relation -< : for X, X e Mej we have 

X -< X if and only if, in every intervaljw orf the relation X < X or X > X, respec­
tively, holds. 

The mapping K is order-preserving with respect to this ordering. 
We assume that the values of the function A lie between positive bounds A, A; 

X < A < A (A, A > 0). 

Then we have (from (2)) the following relationship holding in the interval j for 
every two elements XPJ X? e Me 

l\Xp ~~ XT\ < ap - opl > A\XP - JTj-I. 

From the first inequality and (7.32) it follows that the difference Xp — XT) is 
bounded. 

In the set Me we define a metric, d, by means of the formula 

d(Xp,X,)^sup\X0(t)-~X,(t)\. 
t€j 

In the interval /e we take the Euclidean metric. We now show that: 
The mapping K is homeomorphic. 

Proof. From (2) and the relations (7.33), (7.34) we have 

d(X„ X,) < I - ^ L 

І P ~ P І < tan [Л • ĄX0, XJ]. 
l+PP 

The first relation shows that K is continuous at every point pele; the second 
relationship shows the continuity of the mapping K"1 at every point X- e Mff, which 
completes the proof. 
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27.4 Canonical forms of the differential equation (q) 

W e now make use of the theory of complete t ransformations to express the differential 
equat ion (q) in certain canonical forms. For simplicity we shall call a function X(t), 
t e j = (a, b ) a canonical phase function if, th roughou t the interval j , X e C3 and X' > 0 
a n d when, moreover , the numbers C = lim X, D = lim X are as set out in one of 
the following five cases: e~*a+ l~*b~ 

I. (a) C = 0, D = (m — §)TT, m > 1, integral; 

(b) C = 0, D = m7r, m > 1, integral; 

II. (a) C = 0, D= oo; 

(b) C= - o o , D = 0 ; 

(c) C = —00, D = 00. 

Theorem. The carrier q of every differential equation (q),j = (a, b) carl be represented 
by means of one of the canonical phase functions X defined in the intervalj, in the form 

q{t) = -{X, t} - X'\t). (27.3) 

According as the differential equation (q) is of the following types 

I. of finite type (m), m > 1 and 
(a) general or 

(b) special, 

or 

I I . (a) r/ghl oscillatory or 
(b) /eft oscillatory or 
(c) oscillatory, 

then the function X has the corresponding property 1. (a)-II. (c). 

Proof We shall confine ourselves, as an example, to the proof in the case I. (a). 
Let (q) be a general differential equation of finite type (m), m > 1. The differential 

equation (Q) with Q = — 1 in the interval / = (0, (m — §)7r) is also general of finite 
type (m). For the function A(T) = T(TeJ) is obviously a first phase of the differential 
equation (Q) and its boundary values are C = 0, D = (m — \)TT. We have therefore 
0(A\J) = (m — §)TT and our statement follows (§ 7.16). 

We see that the differential equations (q), (Q) are of the same character. It follows 
that there exists a first phase a of the differential equation (q) which is directly similar 
to A. For this phase, we have lim a(t) = 0, lim a(t) = (m — §)7T. Clearly, a is a 

t~*a+ t~*b~ 

canonical phase function with the proper ty I. (a). Now, the solution X(t) of the 
functional equat ion A(X) = a ( l ) , i.e. the function a ( / ) , is a complete solution of 
the differential equat ion (Qq) , so a satisfies the condit ion (3), and this completes the 
proof. 
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