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29 A survey of recent results in transformation 
theory 

In this section we shall survey recent developments in the field of Jacobian differential 
equations which have reference to the theory of transformations. We shall be particu­
larly concerned with the theory of dispersions and its applications, especially in the 
field of central dispersions, and with the generalization of parts of the theory of 
transformations. 

29.1 General dispersions 

The theory of general dispersions of two differential equations (q), (Q) has been 
extended in connection with the study of the phase group © (§ 10 and §20.7). In 
particular a new characterization of such dispersions has been discovered, and all the 
general dispersions common to two pairs of differential equations (qx), (Qx) and (q2), 
(Q2) determined. 

We denote by I(Qq) the subset of © comprising all general dispersions of (q), (Q). 
Then, as we know, I(qq) and I(Q0 are the subgroups conjugate with © with respect 
to arbitrary phases a, A of (q), (Q) respectively. The fresh information relating to the 
characterization of general dispersions of (q), (Q) lies in the theorem that the elements 
| e I(Qq) are characterized by the relationship i~1I(QQ)i = I(qq)> [2*] 

With regard to common general dispersions of the above-mentioned pairs o 
equations, such common dispersions have been shown to exist if and only if all phases 
of the differential equations (Q i2), (qi2) are contained in one and the same element 
of the smallest common covering of the two partitions ©/jCc, ©/r(£; the carriers Q12, 
q12 are determined by the fact that their phases include the functions A-A2 S otxa2

 x 

formed from arbitrary phases a-., Al9 a2, A2 of ql9 Ql9 q2, Q2. [3*] 
Further problems involving general dispersions arise in connection with properties 

of the structure of the phase group ffi, and are discussed in [4*] and [5*], In particular, 
it has been shown that different concepts from the theory of general dispersions, 
apparently remote from each other, are related to the centre 3 of the subgroup of (£ 
comprising the increasing elements of ®. For instance, the subgroup § of the 
elementary phases (§ 10.4) is the normalizer of 3 in ©. [5*] 

A comparison theorem for general dispersions was given in [39*]. 

29.2 Dispersions of the 1st and 2nd kinds 

New advances have been made in [8*] in the theory of dispersions of the 1st and 2nd 
kinds. The subgroup S$ (c: I(qq)) comprising the increasing dispersions of I(qq) is 
the union of three disjoint subsets Dl9 D2 and D3. The first of these, Dl9 consists of 
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the single dispersion i(t) == t (tej = ( -00 , 00)) which, of course, is a dispersion for 
every oscillatory differential equation (q). The set D2 comprises those dispersions for 
which i(t) =£ t (t ej), and the final set, D3) comprises all other dispersions f. The 
properties of these functions in the various cases are examined; a particular problem 
studied is to find the conditions under which a dispersion f determines the carrier q 
uniquely, It transpires that this is the case if and only if the dispersion belongs to 
DQ. Another question considered is the extent to which the subgroup generated 
by certain dispersions of *p serves to determine the carrier q. This involves complicated 
study and can only be answered in special cases; for instance, a continuous one-
parameter subgroup in fy essentially determines q uniquely. These researches can be 
extended to cover dispersions of the 2nd kind. New problems arise if we consider 
simultaneous dispersions of the 1st and 2nd kinds; complicated relations occur among 
these. The only such result to be mentioned here is that the differential equation (q) 
is determined uniquely <sin the general case'' by its fundamental dispersions of the 
1st and 2nd kinds, 

29.3 Central dispersions 

In the topic of central dispersions, attention has been directed mainly to central dis­
persions of the first kind in connection with problems of a different sort. The applic­
ability of central dispersions of all four kinds rests on the fact that, in the first place, 
they admit of clear geometrical and analytical interpretations, and in the second place 
that they connect the values taken by integrals and their derivatives (of the relevant 
Jacobian differential equations) at conjugate and hence distant points; this makes it 
possible to treat problems of a global character. 

This paragraph describes (A) some boundary value problems (B) asymptotic 
behaviour (particularly boundedness) of integrals and (C) some geometrical studies. 

(A) Boundary value problems 

(i) Consider an oscillatory differential equation y" = q(t3 A)y, with q(t9 A) e C0, 
I ej = (— 00, 00) for every A > 0. For such an equation every value A0 of A represents 
the n-th eigenvalue of the problem 

v(h, Ao) = yO£n(to, h% A0) = 0; (t0 ej) 

here, of course, <̂ „(t, y) denotes the w-th central dispersion of the first kind (n = 
1,2, . . . ) . [15*] 

In the following cases 

q(t, A) = lq(t% q(t) < 0, 

q(t, A) - q(t) + A, q(t) < 0, 

and in particular for periodic functions q, it has been possible to find bounds for the 
elements occurring in the boundary value problem, these bounds being partly of a 
novel structure. [10*], [14*] 
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(ii) Using phase theory as the basic tool, in [17*] a necessary and sufficient condi­
tion is obtained for the existence of a complete generalized Liouville transformation, 
which takes solutions of 

Y = (XR(T) + Q(T)) Y on (A, B) 

into solutions of 

/ = (Xr(t) + q(t))y on (a, b) 

over their whole domains of definition. 
As a special case of this theory, a study is made in [18*] of differential equations 

Y = XR(T) Y and y" = (q(t) + X)y, with periodic carriers, in t e (— oo, oo). 

(iii) The two-parameter boundary value problem of F. M. Arscott: 

/ + [q(t;X3 p) + r(t)]y - 0, y(a) = y(b) = y(c) = 0 

and the special case 

f + [h(t) + MO + r(t)]y = 0, y(a) = y(b) = y(c) = 0, 

with q(t; A, fi) e C 0 and q(i) e C0 respectively, for t e [a, c) and b e (a, c], was exam­
ined in [9*]. For given positive integers « l5 n2 with % < n2, there exist (under fairly 
general conditions) eigenvalues of A, /i such that b is the nx-th and c the #i2-th zero 
of j ( t) subsequent to a. 

(B) Behaviour of integrals 

We consider an oscillatory differential equation (q), y" = q(t)y, t e (a, b). Using the 
theory of central dispersions a study has been made of the connection between, on 
the one hand, the distribution of zeros of solutions as t->b— and, on the other 
hand, the boundedness or the asymptotic behaviour of these solutions. 

(i) Let <f>, <}> be respectively the fundamental dispersions of the first kind of (q) and 
(q) and let <̂ n be the n-th iterate of<f>(n — 1,2,...). The following results have been 
obtained: 

Every solution of (q) is bounded on [t0, b) if and only if <f>f

n(t) is bounded on [f0, <f>(t0)] 
for all positive integers n. [58], [19*] 

Every solution of (q) belongs to L2[l0, b) (i.e. is such that y2(a) da < oo) if and 

only if [21*] 
oo Ѓф(t0) 

n = 0 JtQ 

) da < oo. 

If (j>'(t) is bounded above on [t0, b) away from 1, i.e. ^ ' (0 ^ k < 1, where k is a 
constant, then b < oo and every solution y of (q) tends to zero as t -> b—; every such 

solution also belongs to Lp[t0, b) for every/? > 0 (i.e. | |y(cr)|p da\ < oo. [19*] ÍV(<7)f dCГ 
.Jt0 

If ^ ' (0 < 1 on [t09 b) then every solution of (q) is bounded on [t03 b). [19*] 
If ^f(t) = 1 on [t0, b) then b = oo and every solution of (q) is periodic. [20*] 
If < '̂(t) :> constant > 1 on [t0, b), then b = co and every non-trivial solution of 

(q) is unbounded on [t0, b). [19*] 
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(ii) Now let (q) and (q) have the same dispersion <f>. Then if any of the following 
statements is true for (q), the same is true for (q): 

(a) every solution is bounded on [t0, b), 
(b) every solution is periodic on [t0, b). 
(c) every solution belongs to L2[r0, b). 
(d) one non-trivial solution belongs to L2[t0, b) but every non-trivial solution which 

is not a constant multiple of this solution does not belong to L2[l0, b). 
(e) no non-trivial solution belongs to L2[/0, b). 

Moreover, if (d) holds, then every solution of both (q) and (q) belonging to L2[t0, b) 
has the same zeros [19*] and [21*]. 

In the papers quoted above there are generalizations of these results to Lp classes 
and also some comparison theorems. 

(hi) In [22*], [56] the theory of phases and central dispersions Is used to construct 
all stable periodic differential equations (q), qe C0, t e (— oo, oo). 

Differential equations (q), qe C0, t e (— oo, oo) with only periodic solutions are 
shown in [20*] to be characterized by the relation <f>n(t) — t + constant. A criterion 
for the periodicity of all solutions of (q) is given in [57] and an explicit form for all 
such differential equations can be found in [23*]. In [5*] there is an explicit formula 
for all differential equations (q) with (f>n(t) = t + mn, m, n positive integers. 

(iv) The first formula (5.5) can be used to construct all differential equations (q) 
with </>n(t) = t + constant, even for carriers which are defined as generalized deriva­
tives of one-sided continuous functions [14*]. The methods used can be extended to 
the case of linear differential equations of the n-th order [13*]. The geometrical sig­
nificance of r(t) can be applied to characterize periodic solutions of y" + p(t)y — cy~3 

= 0 by means of the Liapunov resolvent of y" + p(t)y = 0 [12*]. 
(v) Oscillatory differential equations (q) in which the derivative qf(t) is a monotonic 

function of order n, (i.e. ( - l )% ( 1 + 1)(t) > 0, i = 0, 1, . . . , n; n > 1; t > 0) are 
studied in [37*], [38*], For a differential equation of this kind the zeros tk of an integral 
form, a monotonic sequence of order n (i.e. (— l) fA l + 1tfc > 0, k = 0, 1, 2,...). 
Theorems have been discovered governing connections between zeros of the integrals 
of such differential equations and their derivatives, some of which have applications 
to Bessel functions. 

(C) Geometric studies 

In [20*] a study Is made of the close connection between differential equations (q), 
qeC0, ie (—00,00) with <f>n(t) = t + constant, and closed (but not necessarily 
simple closed) curves. This paper also introduces a generalization of the (centro) 
affine length of the arc of a curve u between the points with parameters t0 and tt; the 
formula is 

or 

•л!;(U) = s g „ [ ц , „ - i £ ' | í ^ Ł Љ 

c^(u)-[hSgnlU''U"]'l[U'>U"rda 
*At°(u)-Jt0 l ín,!*!-1 
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where [u9 u
f] = uj^u^a) — u[(a)u2(a)9 etc. These formulae generalize the formulae 

of W. Blaschke, O, Boruvka and L. A. Santalo, for which the parameter c takes the 
particular values c = | , c = | , c = 1 respectively. 

Using Integral inequalities for coefficients of differential equations (q) with periodic 
solutions, derived In [24*] and [25*], the following generalization of the isoperimetric 
theorem of W. Blaschke and L. A. Santalo was obtained In [25*]: 

Let u be a closed plane curve of class C2 with index n. Let there exist a straight line 
p through the origin which intersects u In two points symmetrically located with res­
pect to the origin. Let the areas bounded by all simple arcs of u and the line/? be the 
same. Let cA(u) or | A(u) denote the length of u and let V(u) be the area enclosed by u 
(the index of u being taken into account). Then 

2e cA(u) = |A(u) < 2[V(u)]^2c(mr) 

for c E (0, 1], If c, V(u) and the Index of u are fixed, the maximum length is attained 
precisely for ellipses with centre at the origin, these being considered as curves of 
index n. 

Further results in centroaffine geometry of plane curves can be found in [6*] and 
[20*]; results on periodic curvature and closed curves are in [26*], and the impossibility 
of extending L. A. Santalo's theorem to general simple closed curves is shown in 
[27*]. A survey of these and further results on differential equations and plane curves 
is to be found in the lecture notes [28*]. 

A theorem of W. Blaschke states that a C2 closed curve has at least three distinct 
pairs of points with parallel tangents and equal radii of curvature. In connection with 
this, the following theorem was proved in [15*]:— 

Let the central dispersion <f>2 of (q) be linear and of the form <f>2(t) = t + T (hence 
q(t + T) = q(t))3 te (—00,00). Further, let f(t) be continuous in an interval 
[T, <I>2(T)]. If/0") =/(^2(T))? a n d for every integral y of (q) the property 

í <ЫT> 

f{a)y{o) da = 0 

holds, then in the interval [T, $(T)) there exist at least three distinct values tt (i = 1, 2, 3) 
such that 

If ^(t) = t + T and hence $2(t) = t + 2T, then this relation implies the existence 
of at least three distinct values t{ £(T,T + T) for which f(tt) = / ( t t + T). 

We have also the further result: let the functions / ( t ) , ^(t) be continuous for 
te (—00, 00), ^(t) > 0, and periodic with period T, where T<,^2(T% <f>2 being 
the (general) central dispersion of (q). Also, let every integral y of (q) satisfy the 
condition 

£+Г/ИKtf) do = |T + Гg(ф((т) da = 0. 

Then the function/(t)/g(t) has at least four relative extrema in the interval [r, r + T). 
A geometrical interpretation of the result of § 15.6 is given in [10*]. 
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29.4 Generalizations 

In [14*], [15*] some results from transformation theory of Jacobian differential 
equations (q) are generalized to differential equations of the form y" + Q'(t)y = 0, 
t e [a, b], where Q' is the generalized derivative of a function Q in the sense of 
distributions. 

The integrals of a differential equation (q) form a two-dimensional linear space R 
of continuous functions. Consequently the Kummer transformation can be regarded 
as a transformation of one space Rt into another space R2. The theory developed in 
[29*]~[36*] includes the question of how far the transformation theory of differential 
equations (q) can be taken over to two-dimensional spaces of continuous functions, 

A study of the concept and the properties of central dispersions in an abstract 
group is to be found in [1*]. 
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