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CHAPTER V

SPECIAL CASES

5.1. Introduction

This chapter contains considerably more mathematics than the previlous ones.
Here we present an analysis of Puzyna’s work Teorya funkcyj gna'lztyc;nych
[Theory of analytic functions], the content of mathematicz}l publlcatlons in the
journal Kosmos (the organ of the Natural Scientists’ Society in LVOV) as well
as problems of sessions of the Lvov Mathematical School. Ip FhlS chapter we
will also mention the figure of Lucjan Bottcher, a mathematician of the Lvov
Polytechnic School. Nowadays he is known as one of the pioneers of the modern
theory of iteration and dynamics in the complex plane.

Also, one of the aims of this chapter is to demonstrate the spectrum of
mathematical theories that were known to and used by the mathematicians
of that time.

5.2. Puzyna’s work Teorya funkcyj analitycznych:
an attempt of discussion

From the modern point of view, the two-volume monograph by J ..Puzyt.la
is an outstanding event in the history of mathematics in Lvov, in particular in
the period on which the present book is concentrated.

Juz tom pierwszy bogactwem swej tresei i samodzielnem opra-
cowaniem przedmiotu, zwrocil nwage zagranicy, wywolujac Zal, ze
dzielo napisane w niezrozumialym (1) jezyku, ,Naturae Novitates#
berlinskie w nr. 8. h. r. pisza o tem dziele na str. 278 doslownie
tak: ,Aus einem uns mit diesem umfangreichen und schin ausge-
statteten Werke zugesandten franzésischen Referate ersehen wir,
dass wir es hier mit einem gritndlich ausholenden und von grossem
Fleisse und besonderer Belesenheit zeigendem Werke des Ordinarius
der Lemberger-Universitit zu thun haben. Keine blosse Uhersetznng,
sondern vom Anfang bis zum Ende Originalarbeit. Um so bedauerli-
cher ist es, dass das Buch in einer unverstindlichen Sprache ge-
schrieben ist, so dass es fiir die Welt (?) mit Ausnahme eines ganz
kleinen Kreises einfach nicht existirt. Wird diese thertreibung )
des Nationalgefiihls nicht einmal der besseren Uberzengung weichen,
dass die Wissenschaft immer international bleiben wird und dass es
nur dem Autor selbst und seiner Nation schadet, wenn sein, noch so
verdienstvolles Werk, schon als Makulatur (1?) geboren wird“, Miejmy
nadzieje, Ze z drugim tomem pniew sie ulagodzi a mozZe i Niemcy
zapoznac si¢ zechea o tyle z jezykiem polskim, aby mogli korzystad
z dziela polskiego profesora, ktéry moze dokladniej poznal i zrozu-
mial teorye Weierstrassa, niz niejeden z uczonych rodakéw tego
mistrza. Dr. Placyd Dziwinski

A fragment of Dziwinski’s report in Kosmos.
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Let us start with a discussion of Puzyna’s work on the pages of Kosmos by
P. Dziwinski, which refers to the German reviews Naturae Novitates. The author
expresses regrets of German scholars that this work was published in Polish.

TEORYA
FUNKCY) ANALITYGZNYCH

EAERLNES

D JOZEF Exias PUZYNL,

FREFRSOR UXIWENSY TETU LWIWIIEIRES:

|& B Spmrwani e inkdvic].

LW oo,

Hiblzdem wien 7 illklen Akedsoll Unlgelneiel  Erakrais.
Gibswny gkipd w keiggern Ho Allanborys wi Lobeid.

1895,

Title page of the work.

In the literature on history of mathematics, one cannot find many publica-
tions devoted to the analysis of Puzyna’s monograph. Perhaps the most complete
one is that of A. Ptoski (Ploski 1998) in Polish. First of all, the place of Puzyna’s
monograph among the existing textbooks in analysis (at least European ones)
is characterized. Since the famous Osgood’s monograph on the function theory
was published only in 1906 and the previous books (by Cauchy, Jordan, Picard)
were rather general courses in analysis, Puzyna’s book was the pioneering work
in analysis completely devoted to the theory of analytic functions.

Puzyna’s monograph is of encyclopedic character. In the Introduction to
Vol. I, Puzyna briefly described his motivation to write such a monograph.
First of all, lecturing as a professor at the Lvov University, he realized the need
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of a book that could acquaint the reader with the theory of analytic functions,
which forms a basis for understanding of classical and modern works, on one
hand, and, on the other hand, could give a possibility of reaching to new, not yet
investigated, analytic relations. Therefore Puzyna decided to use his teaching
experience and material of the other authors working in this area and to publish
Volume I of the Theory of analytic functions.

The author decided to place in the Vol. I also the introductory material from
higher Algebra and the Function Theory. The reason for this was that some topics
of these disciplines, in particular, the set theory, symmetric functions, multi-
valued functions, eliminations, groups and the functions of regular (umiarowe
in Polish) polyhedral forms were completely rewritten by Puzyna and he did
not repeat what was published before.

Having in mind the future applications to the expositions of all contemporary
theory in two volumes, the author deals in the Vol. I only with rational functions
of one and several variables. There, characteristic properties of these functions
were developed, in particular, special attention was given to the conditions
necessary for determining these new directions of applications.

Two concluding parts were devoted to the theory of power series, which forms
the background for the whole theory of analytic functions. In the Vol. I only the
most general classification of these functions is presented: single—valued and
irrational functions. There was also a mention of functions with gaps and analytic
expressions that can be represented by different functions in different domains.

The material of Vol. I does rely neither on the integral equations nor the
differential equations. The exposition follows the method of Weierstrass and is
also related to mathematicians who worked in this direction: Stolz, Biermann,
Pringsheim, Tannery, Poincaré, Borel, Bendixon, Dautheville and others.

Let us describe briefly the content of Volume 1.

Part 1. On numbers, variable quantities and sets.

Chapter 1. “ From arithmetic’s” consists of the following topics:

Definition of real numbers, rationales irrationales, and their systematic
expansions.

Expansion of a rational numbers is infinite periodic form. Infinite non-
periodic expansions.

Definition of irrational numbers by means (view) of series of rational num-
bers tending to infinity.

Arithmetic operations with irrational numbers. Series of positive numbers,
their divergence and convergence.

Arithmetic operations for series of positive summands.

Practical conditions of convergence.

Series of positive and negative terms. Definition of unconditional conver-
gence.
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Conditional convergence. Examples.

Convergence of series with sign-charging terms.

Oscillating series.

Theorems of Abel and Dirichlet.

Infinite products with real factors. A necessary condition of their conver-
gence.

Unconditionally convergent products.

Coexistence of unconditional and absolute convergence.

Conditionally convergent products.

Expansion of real numbers into chain fraction.

Finite and infinite continuous fractions.

Systematic expansion of Strauss.

Chapter II. “On complex numbers” contains the following topics:
Definition of complex numbers by means of arithmetic operations.
Absolute value of a complex numbers.
Theorems on absolute value of the sum, difference, product and ratio.
Geometric representation of complex numbers.
Numerical plane. Geometric description of arithmetic operations.
Introduction of the symbol 1,.
Formulas of Moivre and Euler.
Computing the n-th root of a complex numbers, for n=2q .
Algebraic form that provides an approximation for arbitrary #.
The n-th root of the unit +1. Prime roots of the unit.
Two theorems on prime roots.
Cases of algebraic solutions of the equation w —1=0.
Geometric construction performed by means of straightedge and compass.
Remark on the general power (a + bi)* /.
Infinite series with positive terms. Their conditional and unconditional
convergence.
Infinite products with complex factors. Various forms of their convergence.

Chapter 111 of Volume I contains the material from the set theory. It is worth
mentioning that it was the very first exposition of the fundamentals of set theory
in Polish. (The name “teoria mnogosci” for “set theory” belongs to Puzyna;
in modern Polish terminology, “zbior” is used for “set”). Let us describe the
content of this chapter. It is important to note that the chapter contains a material
which belongs to backgrounds of general topology.

A real variable and real variables. Their bounded and unbounded domains.
Loci and neighborhoods.

Domain of one imaginary variable x.
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Different methods of bounding of the domain of one imaginary variable.
Locus of the domain. Neighborhood of the locus.

Point at infinity.

Neighborhood of a point lying in finite (domain) or infinity.

Domains of several imaginary variables.

Infinite set of removed loci. Accumulation points.

Derivative sets. Sets of the first and second type. Examples.

The set of isolated loci. Closed set. (Everywhere) dense set. Relation of the
derivatives to the given set.

Transfinite numbers. Derivative sets with transfinite coefficients.

Sets of the first cardinality or countable sets. Examples.

Sets composed of countable sets.

Sets of higher cardinalities. Sets of the second cardinality in a single domain.

Set in an n-tuple domain. Continuous domains (continua).

The first and the second (class) sets in an n-tuple domain.

Domain of the points remaining after removing a countable set.

The notion of upper and lower limit.

Stereographic projection of numerical plane onto the sphere.

As it is seen from the table of contents, in this chapter the author introduces
some fundamental notions of the set theory. The exposition does not start with the
notion of the set but with informal description of a real variable attaining all the
values from —oo to +oo. The set of values is then called a (single) unbounded domain
of this variable. Any interval (a,b) of the real line is a (single) bounded domain.

Similarly, the set of all x =u + vi, where u,v run over unbounded real domains,
is an unbounded complex (imaginary) domain. Also, the bounded complex
domains are defined as those that lie in rectangles. Also defined are real and
complex n-dimensional spaces, neighborhoods and points at infinity.

The derivative of a set in a domain is then defined. A set is of the first type
if a finite iteration of the operation of the derivative leads to the empty set.

Next, the author deals with infinite sets of arbitrary nature. The notion of
a countable set is defined (the countable sets are called the sets of the first class
in the monograph). It is explained in detail that a set is countable if is elements
can be exhausted by some counting and that not every ways of counting to
exhaust the set.

Some basic properties of countable sets are established:

— any family of segments that lie in a given segment and such that their
interiors are disjoint is countable;

— any countable set of points whose coordinates can be expressed by means
of finitely many parameters each of which runs over a countable set is
countable;

— the set of all proper fractions is countable;

— the union of countable many countable sets is again countable;
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— the union of a countable set and a finite set is countable;
— any infinite subset of a countable set is also countable.
These properties are applied to the notion of the derivative of the set. We have:
— every set of countable derivative is countable;
— suppose that some derivative of finite order of the set is empty (i.e. the set
is of finite order), then the set itself is countable.

It is proved that, for any countable set in the unit cube, there exists a point
in the cube such that every its neighborhood contains a point of the set (the so
called accumulation point). In modern terminology, this is precisely the proof
of compactness of the cube in the Euclidean space.

Proof of compactness of the unit square. As one can guess, the method of
the proof is “dividing by halves”.

The concept of cardinality is discussed in details and is supplemented with
numerous examples. It is proved, in particular, that the unit interval is not a set
of countable cardinality.

The following topological notions are also mentioned: accumulation point,
the derivative of the set, closed set, dense set, isolated point. The author does
not define compactness and uses the term “zwarty” (“compact”) in the sense of
“connected” or rather “arcwise connected”. The connected domains are considered
and it is proved that the complement in a connected domain of two variables to a
countable set is again connected. The exposition here is not strict with respect to
modern mathematical standards, since some undefined notions are used. As an
example, we present here the translation of a definition from this part of the book:

A “continuum”™ P such that from every its place (x, ...,x) to every
other its place (x,", ..., x ") one can pass only via places belonging to the same
“continuum’” is called compact or a compact domain. (See the remark above
concerning the terminology.)

Also, defined are the derivatives of the set of transfinite orders.

S s 1 2 V...
@ w-+1 w42 W+,
2w 20+1 20+2 2wt-9...
X a’,o;+1 viu;+2 w‘w;l—aﬂ..<
6;3 wg'—l—l m3.+2 wz—i.-v...
2 w? Qw241 2w-+2 2w...
1. : : : :
Vy@° 2,0+ 1 2,02 4+2 .. NCEE S
"’xw’;}"”:“’ 1&,&)3-{-.1110)-{-1 'zrzto"—}—.n',w-{-‘z - P24 1.'1w+'1'...
y@*+,:,+ ) . . aq.(u“—}—..l-li-»z"m—{—»v...
L w® @1
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The sets of the second class are then defined as the sets whose derivatives
of the infinite (but not finite) transfinite order are empty.

The following is an example of a set of the second class. Let P denote the
set consisting of the following points:

1 1
M (s)) =5+ i ;
1 1 1
@ (Sz):5+21_+sl+W;
1 1 1 1
(r) (Sr)=_+ )

—_—t——t
2 21+sl 22+s]+s2 22+51+sz .48,

where s, ...,s_tun over the set of all natural numbers, are examples of the sets of

the 1%, 2™, ..., 7" order. Then the rth derivative of the subset (s ) is 1 therefore,
the derivative of the order o is nonempty, P© = {0}. 2’

Using similar but more complicated construction from Mittag-Leffler’s ar-
ticle, Puzyna provides examples of sets P such that P©*V={0} and P©*" " V=

The following question is asked in the Chapter: What can be the cardinality
of a subset in the n-dimensional real domain? First, the author considers the
(closed) n-dimensional cube. It is interesting to note that the notation for this
set quite differs from the modern style and is the following:

(x,..,x)=(0...1,0...1,...,0...1)

Also it is also interesting to note that, in Chapter III, a proof that the n-
dimensional cube (in modern terminology) and the unit segment are of equal
cardinality is given. This question was later asked by W. Sierpinski.

In the footnotes, Puzyna mentions G. Peano’s article Sur une courbe, qui
remplit toute un aire plaine'®'. In this article Peano discusses the problem of
existence of continuous maps from the unit segment onto the square.

Some material of Puzyna’s monograph is related to the Continuum Hy-
pothesis: there is no cardinality strictly between the countable cardinality and
the continuum. To establish whether the Continuum Hypothesis is true was
one of the most attractive problems in the set theory. However, at the time of
writing the monograph, there were few mathematical publications concerning
the Continuum Hypothesis. It was only in 1940 when K. Gddel proved that the
Continuum Hypothesis is compatible with the axioms of the set theory. In 1965
P.J. Cohen proved that the Continuum Hypothesis is independent of the axioms
of the set theory (he was awarded the Fields medal for this achievement).

Thus, one can see that the Continuum Hypothesis can be solved only in the
framework of the axiomatic set theory. In the monograph, Puzyna asserts that
the cardinality P distinct of the countable cardinality (,,the first cardinality”,

4 Mathematische Annalen, 36(1890), p. 157.
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in his terminology) appears immediately after all the countable cardinalities.
(Actually, he means the ordinal numbers rather than cardinal ones.) In the
modern terminology L this is the cardinality ,.

Later, it is asserted that the cardinality P is the cardinality of the set of
all irrational numbers in the interval (0,1). This means exactly ,,the Continuum
Hypothesis”. Most probably, the author did not pay much attention to that topic.

Note that the absence of the topological notion of compactness caused a gap
in the proof of the fundamental theorem of algebra.

The chapter devoted to the set theory contains also a description of the
stereographic projection map. In modern terminology, this map is a homeo-
morphism between the plane and the punctured unit sphere. Puzyna uses the
term “pokrewienstwo” (“kinship”) for this map and speaks on a “circumference
kinship” (circumference-preserving homeomorphism) or “isogonal kinship”
(conformal map).

Parts II, III and IV of Volume 1 contain the exposition of the necessary
material from algebra.

Part I1, “On rational functions”, consists of the following chapters:

I'V: On rational entire functions of one variable.

In particular, this chapter contains the fundamental theorem of algebra. As
we already mentioned, the proof contains a gap, since it should be based on some
compactness arguments. For this proof, the author cites Cauchy, Gauss as well
as more recent publications by Gordan, Holst and Mertens. Then, it is derived
that every rational function of degree m possesses exactly m roots. The case of
multiple roots and the roots at 0 and infinity are also considered.

V. On rational fractional functions of one variable.

V1. On rational entire and fractional functions of several variables.

Part I11 is devoted to the symmetric and multiformed functions as well as to
the rotations of polyhedra and their functions. The author defines the symmetric
functions and proves the fundamental property of symmetric functions, namely
that every symmetric function of n variables is a rational entire functions ¢, ...,
c,, where ¢, is the sum of all possible products of i variables. Every symmetric
function can be represented by means of elementary symmetric functions in
a unique manner.

A part of this chapter is devoted to the permutation group. This group is
investigated in details. A group is defined as a subgroup of the symmetric (per-
mutation) group. This definition allows us to obtain all the finite groups, because
of the Lagrange theorem. As an example, the cyclic groups are considered.

The notion of subgroup, its order and index are discussed.

The group theory is closely connected with the theory of functions of several
variables. The group of a function f{(x, ..., x, ) is defined to be the set of all
substitutions that do not change the function itself. The Galois type is also
defined. In modern language, the fundamental statement of the Galois theory is
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demonstrated for one extension of C(x,
groups of regular polygons are defined.

Thgn,
2

..., X ) . The transformation symmetry

Also, some transformation groups of spheres are considered. For a given
transformation group, the notion of fundamental domain is defined.

i

/e
L

\\(“{{W/// j
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In the picture, a fundamental domain of the action on sphere generated by
the action of the rotation group on the equator is a spherical triangle (either
black or white).

The groups of regular polyhedra are considered; in particular, it is proved
that the group of tetrahedron consists of twelve rotations.
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The groups of regular polyhedra

V4

i H.
Part IV, “On eliminations and theory of binary forms” contains the theory

of resultants and elements of the invariant theory.
IX. On eliminations of two equations. Recall that the resultant of two

polynomials P(x)=a x"+a, x"'+a x"*+...+a,
and Q(x)=b x"+b _x"'+b x"*+..+b,

is the following determinant:

p On_q QAn_o ... ag 0 0 0
0 d, p_1 ... @1 Oy 0 0
0 0 Iy C e (lo (il i 0
. 0 0 0 R Iy Oy Ap—2 Ly
R[: P! Q) N b-m lE'-mt—l b-m—? e bﬂ U U U
0 h—m b-m—l v bl bﬂ 0 0
0 0 by ... b b by 0
0 0 0 v b-m lFj-mt—l b-m—? I b() .

In the book, Sylvester’s method for forming the resultant of two functions
is presented.

It is proved that the resultant of two equations, f{x,y)=0 and g(x,»)=0 of
degrees m,n is of the degree at most mn. The number of common zero sets of
two equations of dimensions m,n and the same degrees in two variables is at
most mn.
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A special case of infinite roots is presented.

Next, the author considers the symmetric functions of all branches of an
algebraic function. It is proved here that all the symmetric functions of all the
branches of an algebraic function are rational functions of the coefficients of
the equation f{x,y) =0 and therefore the rational functions of variable x.

Also, it is shown that the resultant R(x) of two equations, f{x)=0, g(x)=0,
can be represented as a rational symmetric function of all the branches either
of the function y of the equation =0 or all the branches of the function g=0.

The case of multiple zeros of the equation of the form f{x,y) =0 is also
considered.

Determination of the equation f{x,y)=0 from the given zeros of a function fis
presented. It is remarked that every algebraic curve of degree m is, in general,

completely determined by its % . % points.

Also, some questions concerning bunches of curves of the m™ degree are
considered. In particular, the following problem is explicitly formulated: how
many ways are there to choose a ™ point (x,,y,) to given points

(x1 )y])) (xzﬂyz)a RS (xk,pyk,1)

so that it would form an exclusive system together with these points?

The answer is given by the following statement:

To any (k—1) given points one can find a k™ point that forms, together with

(m—=1)(m =2)
2

these points, an exclusive system, in ways.

Finally, the number of points of intersection of two different curves is
considered and some estimates are presented.

X. On eliminations of n equations (7> 2).

It is proved that every symmetric function of the common zeros of two
given equations f{x,y)=0, g(x,»)=0 is a rational function of the coefficients of
these two equations. A special case of equations with parameter is considered.

The case of three equations of three variables is considered here, the author
introduces the resultant for these data and provides an estimation of the common
Zeros.

Next, symmetric functions of the common zeros of three equations of three
variables are formed.

It is proved that every entire homogeneous and symmetric function of the
Z€ros (X, ¥,,2)), ..., (x,, ,z,) of degree m is a rational function of the coefficients
of all three equations, is of weight m, and its denominator is a power of the
function C and is of weight =0.

Finally, the resultant of 4 and more equations is presented. In the subsequent
sections, the resultant is presented in the form of a determinant.
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The end of this part is devoted to the H. Laurent’s interpolation formula.
The formula it allows to determine a function of several variables that attains
given values at the zeros of given equations.

XI. From the form theory.

Here, the properties of the Hesse and Jacobi determinants are presented. This
section also contains the properties of the resultants and discriminants of the
homogeneous forms. The invariants of the forms of arbitrary degree are defined
and investigated. It is proved, in particular, that the invariant J(a) of the given
form f'is always a homogeneous function of the coefficients a. The appearance
and properties of the invariant of a binary form are presented. A differential
equation for the invariant of a binary form is derived. Similarly, covariants and
semi-invariants of a binary form are introduced and investigated. The systems
of fundamental forms for a cubic and two-quadratic form are presented at the
very end of this part.

Part V, “On power series”.

XII. On power series and their convergence.

The power series are defined as formal generalizations of polynomials. The
main problem considered is that of determination of the domain in which this
series is absolutely convergent. The series are classified as those uncondition-
ally convergent on the circle () and those that do not display unconditional
convergence at any point of this circle.

In addition to these series, the author considers the series P(x) of the argu-
ment 1/x.

Also, the series of several variables, i.e. the series of the form

+00
AUV
Za/uwx yz ..

(:=0,u=0,v=0,..)

The uniform convergence of series of one and several variables is discussed.

It is proved that any series which vanishes at infinitely many points in its
domain of convergence such that this set of points has an accumulation point
is identically zero.

XIII. Arithmetic connection of power series.

Here, sums of finitely and infinitely many power series are considered. It is
proved that if the sum of countably many series is uniformly convergent then
this sum can be replaced by the sum of series of infinitely many variables.

The product and the ratio of series of one and several variables are defined
and investigated.

The Newton’s series are separately considered.
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XIV. Fractional expansions of rational functions.

It is proved that every fractional function can be expanded with respect to
increasing powers of its arguments into an inverse series. Conversely, every
such series is an expansion of a certain function.

Part VI “Carrying of power series. Definition and the most general subdivi-
sion of analytic functions.” An algebraic approach to the theory of analytic
functions can be seen from this part.

XV. Carrying of power series.

In this section, properties of power series in a complex domain are investi-
gated. The representation of a series P(x) in the form P (x—a) in its domain of
convergence is presented.

Also, the derivative and primitive series are defined and the following char-
acteristic of the power series in its disc of convergence is proved: for any c, the
series attains the value ¢ at infinitely many places if and only if it represents
a constant function.

XVI. Definitions and general properties of analytic functions as well as sums
of such functions. Here, the author mostly follows the Weierstrass approach to the
notion of the analytic function. The Cauchy integral is not used in this chapter.

First, the extensions of the series y + P(x) over its domain of convergence
is defined.

The analytic and monogenic functions of one or several complex variable
s are defined, their elements and limits are investigated.

r

o' X

'Y
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XVII. Laurent theorem. The most general subdivision of the univalent
analytic functions.

Here, the following famous Laurent theorem is proved. Any analytic function
f{x) regular inside an annulus can be expanded in a power series convergent in
this annulus.

The classification of singular points of an analytic function of one variable
is presented. It is shown that, for any univalent function f{x) which is regular in
a closest neighborhood of a point ¢ but is not regular at c, the point c is either
inessential or essential singularity. The behavior of a function in a neighborhood
of an essentially singular point is described. In particular, it is shown that any
function f{x) in a small enough neighborhood of an essential singularity ap-
proximates any chosen finite value. The special case x=o0 is also considered by
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. . 1 . .
using the transformation z — —. The author attributes the results concerning
z

the essential singularities to K. Weierstrass. Also, he quotes Holder’s paper
published in Mathematishe Annalen.

The main result here is the following: If x=co is neither a regular point of
aunivalent function f{x) nor an isolated point, then it is either an infinite point or
an essential singularity. As a consequence, the following statement is obtained:
Every analytic function that contains no singular point is a constant.

And also: Any analytic function which is constant on an arbitrarily small
connected subset (even at every point of an arbitrarily small segment) is constant.

Next, the author describes characteristic properties of the rational functions.
It is proven that these functions are characterized by the one of the following
properties:

1. Possessing only one essential infinite point at x=co.

2. Possessing an essentially singular point (for a univalent function).

Any function which possesses the only essentially singular point at x=o0 is
an entire transcendental function.

IR %4

3, -
/fr‘??w«f i -
W43y f. £, Tcchiin
%W //65; A, ot
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Theory of algebraic curves. Lectures by Prof. L. Fuchs. Berlin 1884.
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The beginning of one of the lectures on algebraic curves, “The general theory of curves
of deficiency =1".

The second volume, published in 1900, contains eight parts.

Part I is devoted to the elementary functions as well as the entire transcen-
dental function without zeros. The exponential function, the trigonometric
functions and logarithms are defined, their basic properties are proved.

Part II contains the material on univalent functions with finite or infinite
number of singularities.

Here, it is shown that any univalent transcendental function with a singular-
ity at infinity with finite number of poles and zeros can be represented by the
product with one factor equal to €™ and another a rational function R(x) with
prescribed zeros and infinite values. If R(x) is entire rational, the function does
not contain infinite values and is entire transcendental.

Part I1I deals with series of several variables and algebraic function of one
variable.

Part I'V. Rational functions R(x,y) of variables (x,y) of algebraic domain.

Part V deals with Riemann surfaces. The exposition starts with the definition
of closed surface and studying topological properties of surfaces by means of
their sections by connected simple curves. However, the definition of surface
is necessarily not strict as the author avoids using charts, i.e. homeomorphisms
onto domains of euclidean spaces.

Simple connected surfaces are introduced by means of intuitive definition.
These are the surfaces that satisfy the following properties:

1) Every curve connecting two points of the surface can be transformed into
another one so that it does not leave the surface in the process of transformation.
The endpoints of the curve are either the same or change.
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2) Every connected curve contained in the surface can be shrunk to an arbitrary
point, while remaining on the surface in the process of shrinking.
3) If the surface possesses the boundary, then every simple (non-self-intersecting)
curve that connects two distinct points of the boundary divides the surface into
two separate parts.

In modern terms, the author implicitly uses the notion of homotopy (isotopy)
of continuous maps in this definition.

Then n-connected surfaces are introduced. These are the surfaces in which
one can make n—1 cuts such that the result of cutting is a simply connected
surface.

————

Examples of 2-connected surfaces are: a planar annulus, sphere with two
holes etc. The third figure is an example of a 3-connected surface.

The proofs of statements on the surfaces are based on intuitive approach.

Next, the notion of genus of surface is defined.

A figure from Puzyna’s monograph: Sphere with handles.
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Also, maps (transformations) of surfaces are described and a classification
theorem (i.e. that every (oriented) surface is homeomorphic to a sphere with
handles) for them is presented. The exposition of this proof is again based on
an intuitive approach.

A generalization of Euler’s theorem onto (triangulable) surfaces is also
given. This allows the author to consider the Euler characteristic of a surface.

The following section contains a description of the construction of the Rie-
mann surfaces, first, at a neighborhood of a branching point. This construction
is illustrated by the following pictures.

Neighborhood of a branching point
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It is proved that the algebraic notion of genus of any Riemann surface can
be also described in topological terms. Actually, the genus is a topological
invariant of a surface.
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The material also contains various information on algebraic curves. In
particular, an analysis of singularities of the algebraic curves by means of the
quadratic maps is given.

It is interesting to look on Puzyna’s book from the point of view of the unity
of mathematics. The introductory parts contain material from the set theory
and geometry, as well as algebra, in particular, group theory.

The exposition of the material is rigorous throughout the book. However
in some places the style becomes rather narrative when the author deals, e.g.,
with topology of the plane.

Note that even simply formulated and intuitively evident statement of the
planar topology can have complicated proofs, and the famous Jordan theorem
is a good example supporting this statement.

Part VI. Integrals of imaginary arguments and residues (Cauchy theory).
Periods of Abel integrals. Inversions of algebraic integral.

Part VII. Harmonic functions and their applications. In particular, the
harmonic functions on closed Riemann surfaces are considered. Among the
applications, there are those to the mappings of two simple connected domains.

Part VIII Schwarz derivative and triangle functions.

The final chapter XXIII is devoted to the modular functions and the modular
group.
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The following picture illustrates the subdivision of the upper half-plane by
means of a modular group.

Fig. 121.

In connection to the theory of automorpic functions, Puzyna mentions these
and works by Fuchs, Poincaré, Klein, Rausenberg, Hurwitz etc.

We could not find many citations of Puzyna’s book in the literature. Perhaps
the most important reason for this was that, after its publication, new mono-
graphs, which were based on completely new principles, appeared.

In the paper ,,Topological and metric properties of sets of real numbers with
conditions on their expansions in Ostrogradskii series” O. M. Baranovs’kyi,
M.V. Prats’ovytyi, and H. M. Torbin (2007)'*? considered the series of the form:

k-
LD
k 41929

That we cannot find modern citations of Puzyna’s monograph does not
diminish its importance for the development of complex analysis.

First of all, let us be aware that it has an indirect impact, in particular
through later books.

The above mentioned authors remarked that in 1911,' considered several
expansions of real numbers in series, including expansions (1) and (2). Sierpinski

142 Ukrainian Mathematical Journal, 59(2007), no. 9.
4 °'W. Sierpinski, Sur quelques algorithmes pour developper les nombres reels en series,
in: Oeuvres Choisies, vol. 1, PWN, Warsaw (1974), pp. 236-254.
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noted that an expansion of the form (1) were encountered in the monograph
Teorya Funkcyj Analitycznych (1898) by J. Puzyna.

References of the monograph deserve a special attention. The list includes
both classical books (Cours d’analyse by A. Cauchy, Cours d’analyse by
C. Jordan, Traite d ’Analyse by E. Picard), papers and books of Riemann, Abel,
Euler, Gauss, Klein, Mittag-Leffler, Schwarz, J.L. Raabe, F. Franklin, Hermite,
Weierstrass, Hilbert, Hurwitz, Gordon, Bachman, Weber, Lipschitz, Gegenbauer,
Casorati, Laguerre, Forsyth etc. etc.

Among the cited authors there are also Polish names: W. Zmurko,
K. Zorawski, W. Zajaczkowski, S. Dickstein, H. Wronski.

Some cited positions appeared few years before the publication of Puzyna’s
monograph. This definitely witnesses for the fact that Puzyna.

Summing up, we can say that Puzyna’s monograph is a clear indication of
high mathematical culture at that time in Lvov and one of the greatest scien-
tific phenomena of the period that preceded the activity of the Lvov school of
mathematics.

5.3. Mathematical articles, which appeared in Kosmos,
the magazine of the (Polish) Copernicus Society of Naturalists

The journal Kosmos was founded by the Polish Society of Naturalists in
Lvov in 1876, it led chronicle of scientific societies, occasional articles, current
news. The following mathematicians were presented in Kosmos Sprawozdanie
z polskich prac matematycznych [ The reports of the Polish mathematical works]:
S. Dickstein, S. Kepinski, Z. Krygowski, S. Zaremba, K. Zérawski, W. Burtan.
The authors of the publication were, inter alia, W. Zmurko, J. Puzyna, P. K. Ski-
binski, A. Raciborski, F. Rauch, W. Gosiewski, W. Zajaczkowski, S. Dickstein.

The number of these reports was not too large, taking into account the years

of existence of Kosmos, specifically for the following three years: 1901, 1902,

1904. Below we place the complete bibliography of mathematical works in Kosmos:

— D. Zbrozek, O Koperniku [On Copernicus], r. 1, 1876, pp. 45-54, 160-167.

— Discussion on the paper by W. Zajaczkowski from the Academy of Sciences
edition: Teoryja ogodlna rozwigzan osobliwych rownan rozniczkowych
zwyczajnych, 1(1876), p. 350 [General theory of singular solutions of
ordinary differential equations].

— Discussion on the paper by W. Zmurko, O waznosci i zastosowaniu funkcji
oskulacyjnej w rachunku przemiennosci, oraz odpowiedz na uwagi dr.
Mertensa dotyczgce tego przedmiotu, 1(1876), pp. 355-356. [The importance
and application of osculate function in calculus of commutativity, and
response to comments by dr. Mertens about this topic].



258

— W. Zmurko, O niektérych przyrzqdach wykreslajqcych, 5(1880), pp. 44— 52
[On some plotting instruments].

— P. K. Skibinski, O integratorze dra Zmurki, 9(1884), pp. 185-189 [On Dr.
Zmurko’s integrator].

— A. Raciborski, Znaczenie pojecia przestrzeni w stosunku do praw matematyki,
10(1885), pp. 493-535 [Significance of the notion of space in relation to
the laws of mathematics].

— R.P, Pojecie przestrzeni i zasady geometrii, 11(1886), pp. 530-547 [Concept
of space and principles of geometry].

— A.Raciborski, Odpowiedz na artykut Pana R. P., 12(1887), pp. 27-37
[Response to the article of Mr. R. P.].

— J. Puzyna, Prof. Wawrzyniec Zmurko, jego Zycie i dzieta. Kosmos. XIV
[Professor Wawrzyniec Zmurko, his life and works].

— F. Rauch, O podziale danego kqgta, 20(1895), pp. 71-81 [On division of
a given angle].

— S. Dickstein, O liczbach e i 7, 20(1895), pp. 359-365 [On the numbers e and 7].

—  W. Gosiewski, Wywod elementarnej metody najmniejszych kwadratow,
20(1895), pp. 366368 [Derivation of the elementary least squares method].

— S. Dickstein, O najnowszych badaniach nad podstawami matematyki,
30(1905), pp. 107-129 [On the latest research on the foundations of
mathematics].

Partial bibliography of works from the journal of mathematical Kosmos is
contained in: Polskie Towarzystwo Przyrodnikow im. Kopernika, 1875—1975.14

The subject of works connected to mathematics in the broad sense and
contained in Kosmos is popularization of mathematics at a level higher than
secondary school course. The subject is fairly broad, in the interest of the
scientific community. Some of the topics are conducive to physics, for example,
those concerning differential equations. Of some practical significance are
articles on plotting devices, integrators, or close to statistical method of least
squares. One should note the cultural significance of general topics concerning
the history of mathematics or its rules (including the rules of geometry).

In his interesting paper O liczbach e i © [On the numbers e and «t] S. Dick-
stein explains the difference between the algebraic and irrational numbers. He
remarks that the very first investigations of e and p concern irrationality of
these numbers. He also remarks that existence of transcendental numbers was
first proved by Liouville by using the properties of continuous fractions and

144 See: Kosmos, 20(1985), pp. 353-358; Polskie Towarzystwo Przyrodnikow im. Kopernika,
1875-1975, PWN, Warsaw, 1981.
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recalls an (inconstructive) proof based on ideas of G. Cantor. Namely, since
the set of all algebraic numbers is countable and the set of all real numbers is
uncountable, one can deduce that there exist transcendental numbers. However,
this reasoning does not provide any information concerning concrete numbers.

Liouville could only prove that neither e nor ¢* satisfy any quadratic
equation with rational coefficients. This proof is presented in the article.
Dickstein remarks that the method used by Liouville does not work for the
proof that neither e or e* are roots of equation of degree grater then 2 with
rational coefficients.

About two decades before Dickstein’s article, Hermite, in this famous thesis
On the exponential function, obtained a complete solution. His methods were,
however, complicated and required deep knowledge of higher analysis. Using
Hermite’s formulas Lindemann proved that there is no relationship of the from
N, +N, Zez’ =0, where N, and N, are non zero integers, real or complex
and z,z,, ..., z, are non zero roots of an algebraic equation, then e cannot be
a rational number.

Because of the famous formula

e"=-1
this proves the irrationality of 7 (here Dickstein remarks that the relationship
between the transcendentality of 7 and e was already know to Wronski.)

Finally, 1885 Weierstrass cosiderably simplified Lindemann’s proof and
obtained another one of transcendentality of 7 and e.

The article dedicated to the life and work of Prof. Zmurko by J. Puzyna
contains biographical information as well as detailed description of some of
Zmurko’s achievements

It should be emphasized that the author wrote about Zmurko with great
reliability and respect, paying tribute to his contribution to the formation of
mathematical culture. In 1864 Zmurko published the book Wyktad matematyki
na podstawie ilosci o dowolnych kierunkach [Exposition of mathematics on
the base of value in arbitrary direction], in two volumes. The book is based on
methodology developed by the author as a result of his work at the Technical
school. Zmurko came to the conclusion that fundamentals of mathematics which
follow from abstract considerations are neither natural nor reliable and therefore
they should be replaced by rules based on our three-dimensional space, our
experience. The complex plane can serve as an example. The complex numbers
are interpreted as the “measuring numbers” in plane. This approach to complex
numbers historically differs from that widely accepted, namely, the ways of
solving all quadratic equations.

Simultaneously, Zmurko considered spatial numbers.

Zmurko wrote three theses dealing with numerical equations, two of them
in German and one in Polish. These are investigations that belong to the theory
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of functions of one complex variable. As Puzyna remarks, Zmurko tried to find

spatial considerations in almost all areas of mathematics. Therefore, the equation
f)y=Au"+A u""+. .+ Au+4,=0

with either real or complex coefficients leads him, after putting  =x +yi, to the form

F(x,y)+iF'(x,y)=0.

Considering the real and imaginary parts separately he obtains two algebraic
surfaces. The geometric investigations of these surfaces are essentially investiga-
tions of the initial equation. By using this method Zmurko determines a domain
to which the roots of the equation belong. Then he shrinks the boundaries of
every root and finds it by numerical methods.

These considerations are extended later to systems of equations.

Written in German Beitrag zur Theorie ... is devoted to synthetic inves-
tigations of some types of numerical equations of higher degrees. Since the
formulas for the equations of degree 3 and 4 are known, the author looks for
the equations of higher degrees that can be reduced to those of lower degrees
and having algebraic solutions.

The results of Zmurko’s work were highly evaluated by the Academy of
Skills in Cracow and the Academy published the thesis Beitrag zur Theorie ...
as volume XLIV of its Pamietniki [Journals].

Zmurko emphasizes that “constructive solution of these equations puts the
constructive analysis on the same level with the algebraic analysis”.

Puzyna also mentions some tools for drawing algebraic curves. One of them
is the Zmurko’s ellipsograph which allows one to draw ellipses with arbitrary
ratios of axes. The integration of second-order differential equations with linear
coefficients was the subject of Zmurko’s lectures at the University. In these
investigations, Zmurko starts with research of series that are solutions of the
normal type of the mentioned equations.

In his paper Significance of the notion of space in relation to the laws of
mathematics'® the author provides a philosophical analysis of the notion of space
in geometry. The exposition contains some information concerning spherical
and hyperbolic geometry, as well as geometry of higher dimensions.

5.4. Sessions of the Mathematical Society in Lvov

The list of talks delivered on the sessions of the Mathematical Society in
Lvov witnesses that the level of mathematical knowledge as well as mathematical
culture was comparable with those of other European mathematical centres.
We provide below some comments that concern the talks.

145 A. Raciborski, Znaczenie pojecia przestrzeni w stosunku do praw matematyki, (10)1885,
pp. 493-535.
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List of meetings of the Mathematical Society in Lvov:

1. 1917

Dr H. Steinhaus, Solved and unsolved problems in the theory of Fourier series
Prof. I. Grabowski, The harmonic analyzer of Henrici”

. 1918

Prof. J. Puzyna, On the zero traces of power series

Dr A. Maksymowicz, On Cesaro’s series

Prof. Z. Krygowski, On Tschirnhausen maps in algebra

Prof. W. Sierpinski, Recent studies on measurable functions

Dr H. Steinhaus, On linear and continuous operations in a function field
Prof. W. Sierpinski ,,On the continuum conjecture

Prof. W. Sierpinski,Definition of the Lebesgue integral without the measure
theory

Dr H. Steinhaus, Power series in the disk of convergence

. 1919

Dr A. Lomnicki, On the operations of completeness axiom
Dr S. Ruziewicz, On functions that have equal derivatives everywhere, but
not differing by a constant quantity

. 1920

January 22 S. Ruziewicz, Obituary of late Prof. Jozef Puzyna

February 5 Dr H. Steinhaus, About life and merits of late dr. Zygmunt
Janiszewski

Dr S. Ruziewicz, Some examples of functions with equal derivatives
everywhere whose difference is not constant

February 26 Dr H. Steinhaus, More recent results in the field of orthogonal
functions and Fourier series

Talk: E. Zylinski, One result of the group theory

March 11 Prof. Zylinski,nOn the principles of the theory of ideals

May 20 Dr A. Maksymowicz, Research in the field of harmonic functions
Dr S. Ruziewicz, communicates Sierpinski’s proof of the theorem that there
are infinitely many primes of the form 44+ 1.

— June 10 Prof. Dr Ernst, Sundman’s research on the problem of three bodies.

Without claiming completeness, below we present brief information that will
enable the reader to understand the subjects of reports of the Society.
An ideal (more precisely, a two-sided ideal) is a subset / of a ring R if (1, +) is
a subgroup of (R, +) and for all x in / and for all 7 in R, the elements x - 7 and 7 - x
are in /. The notion of ideal allows us to construct the quotient rings.
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Fourier series
Fourier series were introduced in 1807 by J. Fourier (1768—1830). In order to
find a trigonometric expansion

f(x)=a, + z (a, cosnx + b, sin nx)

P
for a given 2p-periodic function f{x), one has to find the coefficients

a,a,,...,a b . Ifthe function f(x) is integrable on <-p, p >, in both proper or improper
sense (in the case of improper integrability it should also be assumed that the function
is absolutely integrable) we obtain the following Euler-Fourier formulas for the

coefficients:

1 i

a, :%:[[f(x)dx

a, _1 _[f(x)cosnxdx (n=1,2,3,..)
7[—7!

b, :l If(x)sinmxdx (n: 1,2, 3,---)
7[—71

These coefficients are called the Fourier coefficients, and the series created
with their help is called the trigonometric Fourier series (see Fichtenholtz, 1974,
p- 349). The Fourier series was one of the areas of Steinhaus’s research. In the
years 1913—1930, he published the following works in this area:

1. O rozwinigciu na szereg Fouriera iloczynu dwoch funkcji [Sur de
développement du produit de deux fonctions en une série de Fourier], Bulletin
International de I’Academie des Sciences de Cracovie (1913), pp. 113—116.

2. O niejednostajnej zbieznosci szeregow Fouriera [Sur la convergence non-
uniforme des séries de Fourier], ibidem, pp. 145-160.

3. O pewnej szczegolnej funkcji, ktorqg mozna przedstawic¢ w postaci szeregu
Fouriera [Sur une fonction remarquable répreséntée par une série de Fourier],
ibidem, pp. 291-304.

4. Niektore wlasnosci szeregow trygonometrycznych i szeregow Fouriera,
Rozprawy Akademii Umiejetnosci (1916), pp. 176-225.

5. On Fourier’s coefficients of bounded functions, Proceedings of the London
Mathematical Society, Series 2, 20(1922), pp. 273-275.

6. Sur quelques propriétés des séries trigonométriques et de celles de Fourier,
Rozprawy Akademii Umiejetnosci 56(1925), pp. 175-225

7. Szeregi Fouriera, Lvov 1930, Komisja Senatu Akademickiego U. J. K., p. 1384,

146 Wiadomos$ci Matematyczne, 17(1973), list of publications by H. Steinhaus.
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Cesaro series

The divergence of the product of two convergent series leads to the question
whether or not you can not sum up the divergent series. It turns out that this is
possible, and one such method is the method of Cesaro, called the method of
arithmetic averages. Briefly, it can be summarized as follows:

Consider the series:

Ya,=ay+a, +a,+..+a,+..
n=0
Define the sequence of partial sums for it:
A,=a,A,=a,ta,..,A=a,ta+...+a,.
For the sequence of partial sums, we form the consequent arithmetic averages:
A, + 4, Ay + A +...+ A4,
= o9 =—--— — =" .
2 9ty n n 5 eaey
If the obtained sequence has the limit 4 provided n—oo, then A is called the

generalized sum (in the sense of Cesaro) of the given series [See: Fichtenholtz,
1974].

0!0:140, a,

Power series are the series of the form:

0
1 2 3 n _ n
ao +a1x +a2x +a3x +...+anx +...= E anx
n=0 .

Harmonic analyser of Henrici. In 1894, Olaus Henrici (1840—-1918) invented
a tool to determine the fundamental and harmonic components for a complex
sound wave. It is worth mentioning that nowadays this topic is also investigated
[See: Leszczynski 2005].

Tschirnhausen’s metod.

Tschirnhausen’s transformation takes a polynomial P(x) with roots x, ..., x_into
the polynomial Q(x) with roots ¢(x, ), ..., ¢(x,), where ¢(x) is also a polynomial.
The coefficients of O can be expressed in terms of the coefficients of P and
@(x), which can be used to solve the equations of the third and fourth degree
and simplify the general form of equations of higher degree.

Examples of functions that have equal derivatives and whose difference is
a constant; Most probably, Ruziewicz means here the example from his article
Sur les fonctions qui ont la meme dérivée et dont la difference n'est pas constante
published in the first volume of Fundamenta Mathematicae.
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Sur les fonctions qui ont la méme dérivée et dont
la différence n’est pas constante.

Par

Stanistaw Ruziewicz (Lwéw),

M. Hahn a donné un exemple d'une infinité de fonctions
qui ont la méme dérivée (non partout finie) en tous les points
d’un intervalle et dont la différence n’est pas cependant con-
stante dans cet intervalle 1). Le but de cette Note est de donner
un exemple trés gimple de méme nature.

Actually, in this paper Ruziewicz speaks about a family of functions of cardi-
nality continuum such that these functions have the same derivative and the
difference of two distinct elements of this family is not a constant.

Harmonic functions are the functions f: R” — R satistying the Laplace equation
Af=0. For a function defined in a domain of the Euclidean space, the Laplace

operator in the cartesian coordinates has the form:
2 2 2
A=V? =a—2+a—2+...+a—2
Ox;  Ox; Ox,

Continuum hypothesis. In 1884, G. Cantor formulated the following continuum
hypothesis (conjecture):
There is no cardinal number o, such that X < a < ¢, where X denotes the
countable cardinality and c denotes the cardinality of continuum (of the segment
[0,1] or the real line). In 1940, K. Gddel published a paper, where he proved that
the continuum hypothesis is consistent with the axioms of the set theory, and
in 1963 P.J. Cohen proved that the continuum hypothesis is independent of the
axioms of the set theory.

The three-body problem is the problem of taking an initial set of data that
specifies the positions, masses, and velocities of three bodies in space, for some
particular point in time, and then using that set of data to determine the motions
of the three bodies, and to find their positions at other times, in accordance with
Newton’s laws of universal gravitation. Karl Frithiof Sundman (1873—1949) was
a Finnish mathematician who used analytic methods to prove the existence of
a convergent infinite series solution to the three-body problem in 1906 and 1909.
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Recall that a function (a map) between measurable spaces is said to be measur-
able if the reimage of each measurable set is measurable. One can conjecture
that the mentioned above talk by Sierpinski contained the result which was later
published in his paper in the first issue of Fundamenta Mathematicae

Sur les fonctions convexes mesurables.

Par
Waclaw Sierpifiski (Warszawa).

TUne fonction f(x) de variable réelle est dite convere dans
un intervalle {a,b>, lorsqu’elle satisfait & D'inégalité

2;(?.1—;&)gf(ml)+f{m2) pour a<<z, <b et a<a, b

The main result of the paper claims that any convex measurable function
on an interval is continuous.

Two talks are devoted to algebra. In particular, to the group theory and the
ring theory. Recall that a (right) ideal of a ring R is a subset / of R such that /
is an abelian subgroup of R and »/ ={ri | i is an element of I} is a subset of 1.

Unfortunately, we have no data about the contents of Steinhaus’s report at
a meeting of the Society. His articles on the subject were published much later.
We believe that if the text of the report was available, it would have added more
information about the history of functional analysis, especially of its initial stages.

Analyzing the subject of reports in its generality we come to the conclusion
that in general it reflected the development of a large part of the contemporary
mathematics. The scientists of the city followed the mathematical innovations
and this had an inevitable influence on the subjects of research of the Lvov
mathematical school.

5.5. A forgotten mathematician

Lucyan Bottcher (1872—-1937)

Bottcher is forgotten as a mathematician, which is a great pity for the history
of mathematics in Poland. Bottcher was an interesting personality, related to
Lvov, but not to the Lvov Mathematical School. Most probably, this circumstance
explains why is he considerably less known than the other mathematicians
from Lvov.



266
Cooprisadame titue.

é}a a/éwm Aows s Sopeddcher &y
| Vijraiondss a. 9 MICCCLXXIT
oéfe nensrt Tpnnants 24 Vo0e0 Hatocs, Joly ittt
Feulom SR am 2 1y o ode ﬁm@x T ritcre-
WHOR Ay fechon fregwen{ndi of ndtsli 4.2,
MPclcxel
Dust aniod ot L7755 40ds 109 4 CGrater] Aoetey
A Chttno Sfevarerts matarsfadss /%/fﬁfﬁ%“ﬁ‘
Clnidito dgmds wonds //ﬂm
droeeds nepdsS 17 Pegno 79 »émeo/f%/%éia W
A Caslbmtions YA ally Coosmpeme Tlimes on-
ol Lpstn (GEld, U olens LR etprats cotiater A
1Ep Rt Zx plreotsm Womety 4.9 M ICCCXCIY
U4 covm 10501 Bl oo ients Ry oddsiosie 4 Ch-
74 14 fowoA e Hedipto?: ity T~
O sty lner? L2021 0pnss Selynibe cverses M I
CCALY Cioda, Velegadrd, dsfnty i Otsetrc,
w57 mﬁ;v d‘(‘ﬁﬂ/éWW oy, %ﬁé&hymg
(;4&?@ LiAls 100 IRt H R 202ty Cotr-

(et
W/Mm ohses Lo,

WZW%&M ™ Lyl 13 el e, et
/%f,

MJ; Bloone (dod Gie LiGalTer ot ere)
ATy e v /%%Jﬁ Hrge ctoods H77 Hra—
Ay ot £500r Volh L0t o s aen SorL, 1t
L5 1 o oiders 4’%‘77/2 Lpetw 4.
Dient nur als Queilennacnwais:

Qecht der Varvialfaltigung oder
Verdffemi Hals ha

Umwr”ztz‘bhfc}nv
Leipzig

Signatur:

AL, Pl Fal. Prow, 214 29

L. Bottcher was born on January 21, 1872 in Warsaw. In his CV, which
supplemented his PhD thesis in Leipzig, he indicated that he belonged to the
Evangelical-Lutheran church. In Warsaw he finished a so-called real school and
in 1893 he graduated from the gymnasium in Lomza. Then Béttcher started his
studies at the university in Warsaw, which was then a Russian university called
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Tsar’s University. Because of his participation in demonstrations dedicated to
J. Kilinski, Bottcher was forced to leave Warsaw and entered the Department
of Machine Construction at the Polytechnical School in Lvov. Two years later,
he interrupted his studies in Lwow and moved to the Leipzig University. In
Leipzig, he also attended lectures of Professors: Lie [Theory of differential
invariants, Theory of differential equations, Theory of continuous transformation
groups; seminars Theory of integral invariants and Differential equations],
Mayer [Higher analytical mechanics], Engel [ Differential equations, Algebraic
equations, Non-Euclidean geometry], F. Hausdorff [Similarity maps].

In 1898, Bottcher was awarded doctoral degree for his thesis Beitrdige zur
Theorie der Iterationsrechnung.

...Signatur:

Ll Quagled

L

L. Bottcher complied with the procedure of obtaining the doctoral degree in Leipzig
in 1897-1898.

His results of this period were connected with the theory of transformation
groups. The following is the opinion of one of the most outstanding mathemati-
cians in this area, S. Lie, written in 1898. It clearly shows that in some way
Bottcher participated in the creation of the theory of Lie groups:

[ consider it to be understood that Mr. Scheibner, as the situation indicates,
after much speculation comes to the conclusion that he does not want to give
any official paper. But I think that his not clear enough attention to prof. Engel
is more striking. The thing!



268

S Cor Bk i i, i e, g ey
4 :
e A Y ST R S A

%7/;’7/2/74/%7'—"‘7‘ S M‘éﬂ(

7 e
~ Vs otor oilosn g - /Z_ﬁ/;_h'“/
z ! Z,
__W/ZMMf%L//AW o=

. MP—/ e »/i. e e /—/ .
B e B e S DO L %’77 /_ A W(Q/—s

w”}//f . /%/a; W’V/A-w 7 Pty
W@/ ERAl 4, e

72%;2‘_ — — L
— %‘ LR, %t : X ———————

o= Wﬂé s A %‘2‘4"‘

lj W’V/W WM/( WW Ve

“"M%v Ao e F M ==
/’___{}/;QM ‘);y T, s :
[ s i ikt e

%,Mﬂ'—w A 'V/z/‘;—?//»\ %/

Y Ay - W‘“V:H.A// ;/4%—1., A W ;

Fragment of S. Lie’s opinion regarding Boéttcher’s dissertation
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If both the author and Mr. Scheibner indicate the relationship of the sub-
mitted work to my concept of groups of unitary transformations, I agree in
part with these comments. The relationship, however, lies a little deeper. In
1874, I thought that every finite transformation of a finite continuous group is
contained in a unitary subgroup. In 1883, I formulated the question whether this
fundamental theorem also applies to the infinite continuous groups. However,
since this issue does exceed not only my strength, but also the strength of the
current analysis, I restricted myself mainly to show, only for specific examples,
that this question can be answered in the affirmative.

Various authors, as well as Mr. Bottcher, considered the same issue for
a particularly important group, namely the group of all point transformations.
However, I cannot recognize that the author has managed to definitively
substantiate significant new results. Despite all of this, his considerations,
which testify to the carefulness and talent, have their value. The historical
side of his hearing seems to be particularly valuable personally to me, although
1 regret that he disregarded the chronology. So it is not indifferent to me, for
example, that he cites my work of teaching, instead of my ten or even twenty
years older works of authorship.

In any case, I (as well as Mr. Scheibner) agree that this attempt be accepted
as a thesis and we also agree regarding the evaluation II. I choose such good
score, because Mr Béttcher himself chose his topic and developed it indepen-
dently. Further, I formulate the following proposals:

1) Mr. Vice-Dean will ask Mr. Mayer to undertake the second communica-
tion. I hope he will agree with my and Mr. Scheibner’s opinion.

2) Mr. Vice-Dean will tell the candidate that he must take care that his work
be printed in correct German. Otherwise, he will not receive a diploma. I hope
Mr. Meyer, together with me, will be in control, as necessary, of this and other
development, and that he will then communicate with Mr. Vice-Dean.

3) Before printing the dissertation, the candidate must report to me (or
possibly to Mr. Mayer) to obtain information about various changes in content.
Finally I mention that I saw the first draft in January. Under the conditions
mentioned above, I support the acceptance of the dissertation with evaluation

11, and admission to the oral exam.
S. Lie

In the same year Bottcher returned to Lvov and started his activity at the
Polytechnical School, initially as an Assistant Professor of the Chair of Mechani-
cal Technology and, in the next year, of the renewed Chair of Mathematics. In
1910, he occupied an Associate Professor position and in 1912 a Privatdozent
position at the Polytechnical School.
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That is what a short biography of Bottcher could look like. However, some
new materials from archives in Lwow and Leipzig open up for us other pos-
sibilities of critical analysis of his activity. We know from Béttcher’s CV that
he attended lectures of famous Russian professors Sonin and Anisimov.

Summing up, we see that Bottcher worked for about 37 years (until his
retirement in 1935) for the Polytechnical School. He taught applied mathematics
(solving and discussing mathematical problems important for technical applica-
tions), vector theory (the course contained fundamental facts on vectors and
operations on them as well as applications of vectors in geometry and mechan-
ics), differential equations, concepts and methods of elementary mathematics.

About 1912, Bottcher got interested in spiritism and metapsychology
(whatever this term means), as well as occultism. One may speculate whether
this direction of Bottcher’s interests caused his lack of contact with other Lvov
mathematicians working at the beginning of the 20" century and later with the
members of the famus Lvov mathematical school.

Evidently, these interests also affected the style of Bottcher’s mathematical
life: unlike his active participation in different mathematical events (e.g. conven-
tions of Polish Physicians and Naturalists: Cracow, July, 1899, the title of his
talk was Substitutional functional equations, Lvov, July, 1907, talk From the
theory of functional equations; Cracow, 1900, session of Academy of Skills talk
Fundamental properties of grevians), before this period, no similar activity can
be noticed in the following years. In addition to presenting mathematical talks,
Bottcher paid a lot of attention to the didactics of mathematics; this is witnessed
by his numerous articles in Polish periodicals devoted to teaching mathematics.

In 1901, he first applied for admission to habilitation at the Lvov University.
Note also that had to make a nostrification (official recognition) of his doctorate
diploma from Leipzig.
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Boéttcher’s application was considered by a commission (Profs L. Finkel,
the Dean, J. Puzyna, J. Rajewski, M. Smoluchowski). The decision was to
postpone the habilitation to the time of publication of the Thesis Fundamentals
of iteration calculus. Part I1I. The meeting of the commission was held on
January 13, 1902, on February 6, 1902, the commission presented its unanimous
decision concerning Bottcher s habilitation. The commission recommended to
the Council of the Faculty not to admit dr Bottcher's habilitation. The reasons
for such a decision were the following:

— Bottcher’s thesis was only a small contribution to studying properties of
a Wronskian (however, the commission considers the results as correct ones);

— As for the second thesis, An application of the convergence and iteration to
solving elementary equations, the commission‘s opinion was that the author
restricts himself with only one particular case.

— In addition, it was asserted that Bottcher usually exposes investigations
of other authors (among them there are Greve, Koning e.a.) and pays less
attention to his own results.

Also, the commission concluded that Bottcher‘s investigations were only
a formal contribution to the problem of solving of functional equations. Finally,
the iteration theory was hardly a very developed part of mathematics. However,
the results of Bottcher were not sufficient for habilitation. The commision also
remarks that Bottcher did not publish his results in other fields of mathematics.

The decision was signed, in particular, by Puzyna and Smoluchowski.
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It looks that already in 1903 Boéttcher asked for admitting to habilitation at
the University of Lvov. The commission confirmed the decision of the previous
commission. In the decision of the commission (in 1918) one can find strong
enough negative formulations that concerned Béottcher’s results and publica-
tions: “the investigations do not bring anything new to the development of
mathematics”, “there are particular mistakes in the papers” etc. The commission
analysed Bottcher’s results in details and, as we already told, the decision was

again unanimous: do not admit the applicant to the next stages of habilitation.
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However, Bottcher did not agree. The following letter is dated on May 1, 1919.
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In it, Bottcher asked again to admit him to habilitation at the University.
Note that, at that time, he was already a docent (associate professor, since 1912)
at the Polytechnical School in Lvov.
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Béttcher’s results are widely cited in contemporary publications'®’. Béttcher’s
name is today mainly related to the so called Bottcher functional equation which
plays an important role in iteration theory of polynomials and rational functions
in the complex domain. This equation already appears in Bottcher’s doctoral
thesis in Leipzig , and it expresses the fact that a local analytic function f;

f(2)=a,;z" +...d >2,a, #0, z‘<p

is locally and analytically conjugate to the polynomial p(z)=a z°. Since this
part of iteration theory started around 1920 with the work of Fatou and Julia
and was systematically developed only much later (1970-1980), it seems that
Bottcher’s ideas were neglected for a rather long time. Also his other contribu-
tions to iteration theory, like his papers'*® were not taken up immediately by his
contemporarians, but deserve a systematic reinvestigation, although Bottcher
could not give to his ideas the full precision and complete treatment which is
possible and necessary today. The list of publications and talks shows his interest
in various classes of functional equations, long before a systematic study and
presentation of this topic was undertaken by Janos Aczél and Marek Kuczma. In
particular, Bottcher showed an interest in what he calls “substitutional functional
equations®, nowadays called functional equations of iterative type. These are
the most difficult functional equations problems, and are studied now in detail
by many authors. It is interesting to see that the famous Bottcher equation,
mentioned above, and certain generalizations'* are today an important tool
in these more recent efforts, e.g. in the theory of generalized Dhombres equa-
tions (Reich, 2004) and in the (purely algebraic) theory of the substitutional
decomposition of polynomials [Dorfer et al.]. The remarkable is Bottcher’s
interest in Gréve determinants, today after called Casarati determinants, which
are a kind of substitute of Wronskians when dealing with linear dependence of
functions without differentiability, and are frequently used today.
Summarizing, it seems that the very interesting mathematician L.E. Bottcher
worked rather independently and lost connection with scientists in his neighbor-

147F. Balibrea, L. Reich, J. Smital, Iteration theory: dynamical systems and functional

equations, International Journal of Bifurcation and Chaos 13(2003), no 7, pp. 1627-1647.

W. Bergweiler, lteration of meromorphic functions, Bull. Amer. Math. Soc. 29(1993), no 2,
pp. 151-188.

O. Jones, Multivariate Béttcher equations for polynomials with nonnegative coefficients,
Math. Research Report No. MRR 99.014

P. Poggi-Corradini, Canonical conjugations at fixed points other than the Denjoy-Wolff
point, Annales Academiae Scientiarum Fennicae Mathematica 25(2000), pp. 487—499.

L. Reich, Generalized Béttcher equations in the complex domain, Symp. On Complex Dif-
ferential and Functional Equations, University Joensuu Dept. Math. Rep. 6(2004), pp. 135-137.

8 The principal laws of convergence of iterates and their application to analysis [in
Russian], Bulletin Kasan Mathematical Society 14,1904, pp. 155-234.

4 1., Reich, Generalized Bottcher equations in the complex domain,
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hood, but was able to create ideas which became influential in later research,
up to the present day. As D. Gronau showed in Gottlob Frege, A Pioneer in
Iteration Theory . Frege has to be considered as an early pioneer of iteration
theory, but the same is true for L.E. Bottcher.

In the book Dynamics of one complex variable by John Milnor, one can find
the name of Bottcher in the list of founders of complex dynamics.

Following is a list of some of the founders of the field of complex dy-
namnuics.

Ernst Schroder 1341-1902
Hermann Amandus Schwarz 1843-1921
Henri Poincaré 1854-1912
Gabriel Koenigs 1858-1931
Léopold Leau 1868-1940(7)
Lucjan Emil Bittcher 1872- 7
Samuel Lattés 1873-1918
Constantin Carathéodory 1873-1950
Paul Montel 1876-1975
Pierre Fatou 1878-1929
Paul Koebe 1882-1945
Arnaud Denjoy 1884-1974
(MPoaatom Tuhia TROG3-197TR

One section of the Milnor’s book is devoted to Béttcher’s theorem. The
following terms used in the book witness for the importance of Bottcher’s
contribution in the theory: Bottcher coordinate, Bottcher domain, Bottcher
isomorphism, Bottcher map. These notions are also used in another publications
in this direction'' .

Boéttcher died on May 29, 1937 in Lvov.

130D, Gronau, Gottlob Frege, A Pioneer in Iteration Theory, in: Iteration Theory
(ECIT 94), Proceedings of the European Conference on Iteration Theory, Opava Grazer
mathematische Berichte 334(1997), pp. 105-119, see: http://www.math.slu.cz/Konference/
ECIT/PDF/105-119.pdf.

51 E.g., Dynamics on the Riemann sphere: a Bodil Branner festschrift
by Bodil Branner, Poul Hjorth,Carsten Lun de Petersen; in this book one can
find also the term Bottcher potential)
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