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VOJTECH JARNIK’S WORK IN COMBINATORIAL
OPTIMIZATION

BERNHARD KORTE and JAROSLAV NESETRIL

Abstract. We discuss two papers of Vojtéch Jarnik from 1930 and 1934 which are
devoted to the Minimal Spanning Tree Problem and the Euclidean Steiner Tree Problem.
These papers are historical milestones in combinatorial optimization.

INTRODUCTION

Jarnik’s status as one of the foremost mathematicians of his time is docu-
mented in this volume in many places. With respect to his lasting achievements
in number theory and analysis the aim of this note may seem to be very modest:
we want to discuss two lesser known papers [J], [JK] which belong to a different
area from the major part of Jarnik’s ceuvre, namely to the area which much later
became known as combinatorial or discrete optimization. These are the only pa-
pers by Jarnik related to such problems and in fact the only papers which do not
belong to the main line of his work (i.e. number theory, analysis and its founda-
tions). Perhaps this would only be enough to justify a shorter note. But there is
much more here than meets the eye. Papers [J], [JK] were overlooked for a long
time, and, as we shall demonstrate, they are even now little known. But they are
important and, as we wish to demonstrate, Jarnik deserves much more credit for
these truly pioneering works. In both of these papers Jarnik was lucky to have
dealt with problems which have since proved to be cornerstone pieces of Combi-
natorial Optimization developed in full in the fifties and sixties in the context of
Linear Programmming and Computer Science.

We thank Dr. R. von Randow for his help with the preparation of this paper.
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38 Bernhard Korte, Jaroslav Nesetril

1. ON A MINIMAL PROBLEM

Jarnik’s paper [J] is a very short one and we can include a translation of most
of it (the original two pages are given in Figs. 1 and 2).

One should see the original and look at a translation of [J]. The problem
is stated and treated with a rigour and clarity which is missing in many later
additions to this area. So we consider this as a good opportunity to present parts
of Jarnik’s paper in full (we include a translation of about two thirds of [J]). We
found no mistakes or even misprints in [J]! The paper [J] has also an interesting
form: it is written in the “first person”-form and the reason for this is explained
by its subtitle. We have tried to preserve Jarnik’s style as closely as possible. In
particular, all symbols and notations are preserved. While a longer discussion will
follow, we have included a few comments within the translation (we use square
brackets [ | for these; the translation itself is in italics).

PRACE
MORAVSKE PRIRODOVEDECKE SPOLECNOSTI

SVAZEK V1., SPIS 4. 1930 SIGNATURA: F 50
BRNO, CESKOSLOVENSKO.

ACTA SOCIETATIS SCIENTIARUM NATURALIUM MORAVICAE
Tonus v « r s Bano, e,

VOJTECH JARNIK:

O jistém problému minimalnim.
(Z dopisu panu 0. BORUVKOVL)

Zajimavou otizku, kterou jste Fedil ve své prici »O jistém
problému miniméinime (Price moravské ptirodovédecké spo-
legnosti, svazek IIL, spis 3), Ize Fediti je3té jinym a — jak se mi zdd
— jednodu3sim zpiisobem. .

Dovoluji si sdéliti Vam v nisledujicim své feseni.

Budiz dino n(=2) prvkd, jeZ oznadim G&isly 1,2,
prvki sestrojim § n(n— 1) dvoiic li. k], kdez i T k:
dvojici [k, i] povazuji za totoznou s [i,kl. Kazdé dvojici
pifazeno Sislo kladné r, , (f,, == 1, ;). Tato &islar, , 1Si<k=n)
v podtu }n(n—1) budte navzijem rizni.

Mnozstvi viech dvoijic li, k] oznatme M. Jsou-li p.q dvé phirozeni
tisla =n, p-tq, nazvu kazdou skupinu dvojic z M tvaru

n. Z téchto

m e bleyedlepuc)h- ., [c,_ucllc,ql
fetézcem (p.q). Také jedinou dvoijici [p,q] nazyvém fetdzcem
(®.9).

Cistedné mnozstvi H z mnoZstvi M nazvu kompletni asti
(znatka k&), jestlize ke ka2dé dvojici plirozenych &isel p.q. jez jsou
=n a od sebe riiznd, cxistuje v H fetézec (p, @) (1. j. Fetézec tvaru (1),
jehoz vechny dvojice patfi k H). Existuji k&; nebot M samo je k&.

Jedli

liy k). By k). . i k)
ntjaké tdsteiné mno#stvi K z mnoistvi M.') oznaime
t

3o =R(K).
=iy
i

N 77)’ ;’—(2) necht je kazdd dvojice z K napséna jen jednou.

Figure 1

. .. YoImEcH RNK: . -

Zavedeme nyni jisté cdsteSné mnozstvi J z mnozstvi M takto:
Definice mno#stvi J. Jest
J=la, ), lagal. ... la,_, 3, )
kde a,, a,, ... jsou definoviina takto:
I krok. Za a, zvolme kterskoliv z prvka 1.2,....n; a. budiz
definovano vztahem
min a1

(i)

k-ty krok. Jeli jiz definovino (5) a,,25,2;.... a5, 3 85 4
(@R=k<n), definujme a,,_,, a5, vztahem

=minr ,
fayy_1r 2y 'L)

fay 3, =

kde i probihi viechna &isla a,, a,. ..., ay_o; § vSechna ostatni z Cisel
1,2.....n. PH tom budif a,, _, jedno z Cisel (5). takZe a,, neni obsa-
Zeno mezi isly (5).

Je patrno, Ze pti tomto postupu je mezi &isly (5) prave k cisel
riznych, takZe pro k <n lze k-ty krok provésti,

Resent nas( dlohy je nyni dino timto tvrzenim:
1. J jest mké.
2. Neexistuje Zddnd jind mké.
3. J se sklddd z n-1 dvojic.
Dékaz provedu indukci. Tvrzeni 3. je patrng sprivné.
1. Podle prvnf pomocné véty musi kaidi mké . obsahovati
mnozstvi .
J=la, ).
Mnoz2stvi J, jest souvislé a ma pravé dva indexy.
2. BudiZ pro jisté celé k 2=k <n) jiZ dokizino. Ze mnoZstvi
Joeslapal lagal .. (a2, ]
Je souvisld Sist s k indexy, jeZ jest obsaZena v kazdé mk&. Potom po-
dle 2. pomocné véty je také mnoZstvi
Jon = a) faa). o fay . 2y
obsaZeno v kazdé mk& a ma patrné k+ 1 indexil (nebot a,,_, pattl
k indexdm mnoZstvi Jy, a,, nikoliv). Dile jest J, ., souvisld dast;
nebot budte p,q dva rdzné indexy mnodstvi J,,,:

4

Figure 2



Vojtéch Jarnik’s Work in Combinatorial Optimization 39

Vojtéch Jarnik
On a certain minimal problem
(From a letter to O. Borivka)

In your article “On a certain minimal problem” (which appeared in “Prdce
moravské prirodovédecké spolecnosti,” vol. III, No. 3) you solved an interesting
problem. It seems to me that there is a simpler solution of this problem. Allow me
to state my solution here.

[Thus Jarnik decided to use the same title for his paper as Borivka [B1]. Bortivka was
the first to solve the Minimal Spanning Tree problem, see [GH] and comments below.]

Let n elements be given, I denote them as numbers 1,2,...,n. From these
elements I form %n(n— 1) pairs [i, k] wherei £ k, i,k =1,2,...,n. I consider the
pair [k, 1] identical with the pair [i,k]. To every pair [i, k] let there be associated
a positive number i (rix = Tk;). Let these numbers r;p (1 < i < k < n) be
pairwise different.

[It is interesting to note that Jarnik denotes the unordered pair by [¢, k], which is stan-
dard usage in graph theory today. This is also a departure from Bortuivka’s paper [Bl]
where the numbers 7; ;, are denoted by [i, k]. The fact that the numbers r; ,—i.e. in later
terminology weights of edges—are supposed to be distinct is neither discussed nor justi-
fied. It seems that both Boruvka and Jarnik were aware—as classical mathematicians—of

“perturbation arguments.” Certainly applications that they clearly had in mind suggest
this, see [B3], [B4] and the discussion of the concluding remarks of Jarnik’s paper below.]

We denote by M the set of all pairs [i, k]. For two distinct natural numbers
p,q < n, Icall a chain (p,q) any set of pairs from M of the following form:

(1) [pa Cl]?[01762]?"'7[CS—lacSL[CS?q]'

Also, a single pair [p,q] I call a chain (p,q).

[Even today the terminology is not unique—a set of the form (1) is called a path, trail,
walk; Jarnik considers (1) as a family—repetitions are allowed.]

A subset H of M I call a complete subset (k¢ in short), if for any pair of
distinct natural numbers p,q < n there exists a chain (p,q) in H (i.e. a chain of
form (1) all of whose pairs belong to H). There are k¢; M itself is a kc.

[Jarnik’s lucid Czech mathematical style became famous and standard; he may well be
a bit playful here: ké is close to Ké—an abbreviation of Czech currency (“koruna ¢eska”).]

If

(2) [i1, k1], [i2, k2], - - -, [i¢, Kt]
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is a subset K of M, we put

t
> i, = R(K).
j=1

If for a complete set K the value R(K) is smaller than or equal to the values for
all other complete sets, then I call K a minimal complete set in M (symbolically
mkc). As there exists at least one k¢ and there are only finitely many k¢, there
exists at least one mké. The problem, which you [i.e. O. Bortvka] solved in your
paper, can be formulated as follows:

Problem. Prove that there exists a unique mkc and give a formula [i.e. an
algorithm)] for its construction.

[Of course mk¢ is the unique minimum spanning tree. There is no mention of trees in
this paper.|

First Lemma. Let a; be a natural number < n with
(3) Tara, =min{re, p; k=1,2,...,n,k # a1}

Then every mké contains a pair [a1, ag).

[Summary of proof: The First Lemma is proved by a textbook argument: if K is a k¢ not
containing [a1, az], then consider a chain (a1, a2) = [a1, 1], [c1, ¢2], - - ., [ct, a2] and form
a new set K’ by removing [a1, ¢1] from K while adding [a, az]. Then K’ is again a k¢ and
R(K') < R(K).]

We introduce the following: Let K = [iy, k1], [i2, k2], ..., [it, k] be a subset of
M. An index of K I call any natural number from among i1, k1,42, ko, ..., 01, ke.
A subset K of M I call a connected subset if for any two distinct indices p, q of
K it is possible to find in K a chain (p,q) (i-e. a chain (p,q) consisting of pairs
from K only).

2. Lemma. Let S be a connected subset; let hy, ho,...,hg be all the indices
of S; let s < n.

Let ly,1s,...,l; be numbers from 1,2, ... ,n which fail to be indices of S, let
(4) Tap =min{ry, ;5 1 =1,2,...,57j=12,...,t}.

Then I claim: every mké containing S contains [a,b] as well.

[We do not translate the proof but just summarize it. The Second Lemma is proved again
by a textbook argument: let K be a k¢ containing S and not containing [a, b]. Let a be
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an index of S. Then there exists in K a chain (a,b) = [co, 1], [c1,c2], - - -, [cv, Cyt1] With
co = a, cy+1 = b, v > 1. Let ¢y be the last of the numbers cp,ci,...,cy which is an
index of S. Then define subset K’ by removing [cw, ct1] and adding [a,b]. K’ is again
ké. Here Jarnik considers two cases: ¢y = a and ¢y # a. But R(K’) < R(K) and thus
K fails to be mk¢.

Jarnik does not mention that Lemma 1 is a special case of Lemma 2. Indeed, in his
setting Lemma 1 is not a special case of Lemma 2 as a single vertex does not correspond
to the index set of any ké.]

Let us now introduce a certain subset J of M [J for Jarnik?] as follows:

Definition of set J. J = [a1,a2],[as,a4)],...,[a2n—3,a2n—2] where aj,
as, ... are defined as follows:

First Step. Choose as a1 any of the elements 1,2,...,n. Let ay be defined
by the relation rq, o, =minre, ; (1=1,2,...,n; 1 # ay).

k-th Step. Having defined
(5) ar,az,as,...,a25-3,a2x—2 (2<k<n)

we define ask—1, a2k bY Tay, 1,a0, = Minm;; where i ranges over all the numbers
ai,as,...,ask_2 and j ranges over all the remaining numbers from 1,2,...,n.
Moreover, let asr—1 be one of the numbers in (5) such that asy is not among the
numbers in (5). It is evident that in this procedure exactly k of the numbers in (5)
are different, so that for k < n the k-th step can be performed.

The solution to our problem is then provided by the following

Proposition.

1. J is mke.
2. There is no other mk¢.
3. J consists of exactly n — 1 pairs.

[Summary of Proof: Proof is by induction on n. Jarnik defines J2 = [a1, ag] by the First
Lemma. Given a connected set Ji with k indices Jarnik uses the Second Lemma to define
Jk+1. He proves carefully that Jy 1 is connected. He then puts J = Jp.]

Remark. The following is a visual interpretation of the solved problem:
We are given n balls numbered 1,2, ... ,n which are joined pairwise by %n(n -1
sticks. Let rq 1, be the mass of the stick joining balls a and b. Let the sticks be bent
if necessary so that they do not touch. From this system we want to remove some
of the sticks so that the n balls hold together and the mass of the remaining sticks
is as small as possible.

In Prague, Feb. 12, 1929.
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[It is interesting to note how tempting it was for both Borivka and Jarnik to formulate
an application of the problem. Boruvka was led to the problem by his friends from the
Electric Power Company of Western Moravia in Brno, cf. [B3], and indeed published
a note in an electrotechnical journal [B2]. Jarnik added a geometric interpretation—in
Rs.]

2. JARNIK’S PAPER IN A HISTORICAL PERSPECTIVE

A noncombinatorialist may wonder why we have discussed Jarnik’s paper [J]
in such detail, and why it is worth translating. The reason is very simple as the
following problem is perhaps the central problem of combinatorial optimization
and a cradle of many key notions:

Minimal spanning tree (MST). Given a set V and a weight function

w: (‘2/) — R, find a tree (V, E) such that Y w(e) is minimal.
cEE

MST was first solved by Bortivka [B1]. Jarnik quickly realized the novelty of
this problem and immediately contributed his elegant solution [J]. Bortivka never
returned to this problem although he lectured about his solution in Paris [B3].
Also other early contributions were illustrious: by G. Choquet [CH], by K. Flo-
rek, J. Lukasiewicz, J. Perkal, H. Steinhaus, S. Zubrzycki [FLPSZ]. And after 1955
progress has been very fast and a number of general procedures and special al-
gorithms were formulated. A rich spectrum of these results and a history of the
problem is described in great detail and accuracy by R.L. Graham and P. Hell
[GH]. Let us just note that O. Borivka is quoted by both the standard early ref-
erences: J. Kruskal [K] and R. C. Prim [P]. Vojtéch Jarnik’s article only began to
be quoted later, see e.g. K. Culik, V. Dolezal, M. Fiedler [CDF], despite the fact
that his treatment was very precise (like all his mathematical work) and modern.
That should be clear from the above translation. His algorithm is identical with
the Prim algorithm [P] and his argument is a standard proving argument even
now after 65 years. Perhaps it is time to do justice to this elegant procedure and
call it the Jarnik-Prim algorithm. Jarnik returned to this topic only once more in
his second paper [JK], which we will discuss below. We believe that the geometri-
cal interpretation given in the final lines of [J] provided his definitely non-planar
motivation for [JK].
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3. ON MINIMAL GRAPHS CONTAINING 7 GIVEN POINTS

We proceed as in section 1: First we provide a translation of the key parts of
the Jarnik-Kossler paper [JK]. We have decided (mainly because of space limita-
tions), to translate only the first two sections of the Jarnik-Kossler paper. They
are devoted to general properties of “Steiner trees.” It appears that virtually all
general properties of Steiner trees have already been explicitly stated in [JK]. Even
today they are attributed to others and even today one can find in [JK] arguments
superior to those in common use (such as the local planarity of k-dimensional
Steiner trees; cf. Theorem 3(c) of [JK] and p. 77 of [HRW]). We hope to return to
this paper in the near future and give a critical version of the whole paper [JK].
We give a brief discussion below of the context and later development. Let us note
that what follows may be the first translation of the essential parts of [JK]. How-
ever, such a translation is badly needed. Even the recent papers and books (such
as [HRW]) are not aware of what a rich source of ideas is provided by [JK]. Some
of the main misquotations will be discussed below.

[JK] is a paper with 13 pages, numbered 223-235. We include a translation of
p- 223-229. The first and third pages are reproduced in Figs. 3, 4.

CASOPIS PRO PESTOVANI MATEMATIKY A FYSIKY s
¥ tkopooupnas s bemetnt el R
CAST MATEMATICKA P e oheanibend — mlbot Sistbaon ‘posioup:
nowt Gy, G, tak, 86 existujt limity lim X¢» = X (i 1, 2,0, 2).

Oznadme znakem G, soudet onboh Gsetek X/X; (1< <! 2),

O minimélnich grafech, obsahujicich n danych
bodu.
Vojedeh Jarnik & Milod Kassler.
(Dodlo 10. unors 134.)

V tomto &linku zabyvime se touto ilobou: je dino n bodd

Cy, Cy, ..., Ca; hledime souvislé mnoistvi. slotené z konedného

podtu usecek a obsahujici body C,, C,,. . ., Cs tak. nbv .celkova

délka* tohoto mnostvi h\lu o nejmenif (pro a = 2 jest oviem

touto . no)kntll lpo]mcl uneékl ;poju;m body C,, C,). V § 2 do-

grafu*, v § 3 zabyvime

se pHpadem, kdy body C,, C,, .. .. Cu tvol vrcholv pravidelného
a-ihelnika.

Charakter tohoto ¢linku je zcela elementirni; mimo to nékters

body dikazu jsou zcela béiné ivahy a proto je providime strudné.

§L

Budif Ry (k 2 1) & klidovek prostor.
bodové mnoistvi ¢ ( Ranazveme grafem v Ry, ma-li tyto viastnosti:
1. @ je souvislé; 2. bud se G sklida z jediného bodu nebo je G
soudtem konedného poStu uzavienych isedek.!) Je-li P ¢ G a existu-
je-li pravé n (nikoliv véak n 4 1) Gsedek, leticich v grafu 7, majicich
P za bod koncovy, z nichi 14dné dvé nemaji kromé bodu P spo-
leénych bodd, budeme Fkati, Ze P je bodem a-tého tidu grafu G.%)

1) OzusBeni: A (B znadf: A ,- Shant Ms. A ¢B anadl: A jo
prvkem mnotstvi B; .4 . B je pruni sz.uk.mﬁmmm
usavienou dsedk (t. j. vietnd k.uumyen wo) © koncovych bodech M, N;
N matt polopapreek o koncovém bodé M, jent obsshuje bod V (vietnd
bodu ). Znaky o(MN), (XN, W ¥N), madi mnotatvi viech bodd uses.
ky N » vyloudenim hodu .\f, resp. bodu .V, reep. obou bodd 1, V a pod.
Uhel & dvou useek PM, PN, majicich jediny spoleiny bod P, béteme vidy
v intervalu 0 < x S 7. Znak ATV bude nékdy maditi téf orientovanou
iisedku (zaditetni bod M, koncovy V); ndkdy bude JIN maiti téd délku
této isetky; nedorozuméni neni tfeba se obdvati

”) :ﬁdu @ existujo bod nultého du tebdy a jen tehdy, je-li @ jedno-

Casople pro platovéal metematiky s fyaiky. Rotaik 6. 16

Figure 3

pro nét ag = 1.") Zrejmé jest G, ¢ M a plati
UG',) = 3, aaXEr X,
1(Gy) 5 Yqﬁ =lim @) = d,

jak bylo dokizati.

Dikaz tvrzen{ 4 Budii G ¢ graf takovy', fe neplati G ¢ K.
Potom existuje nadrovina § [(k — 1)-rozmérni) takovi, Ze viechny
body zikladni leZi po jedné strand nadroviny S a po druhé strané
této nadroviny ledi jisté neprizdni Sist G* grafu G. Bestrojme
graf G, tim, te v grafu G nahradime st G' rnvouhlou projekei

rano#stvi G’ na nadrovinu 8; ziejmé je G, ¢ M a G,) < U(G), jak
bylo dolinu
vni snadno dokifeme nisledujici vétu 3, kterd podrobnéji
populue -tnllmu-u minimélnich grafi.

Vita 8. Budii G minimdlni graf v R.(kz 1) mlllaian k bo-
dim C,.C, 0.(-22) Palamnnthla

i beahujiciho body

n
) G je strom, nemajici ani volnych koncit ani volnych rohi.
c) Maji-li dvé strany grafu G spoleiny bod, jest sihel téchto stran
nejméné roven §x. .

d) Kaidy rozvétvovaci bod
grafu G je trettho Fadu. T4 stra-
ny grafu. vychdzejici = tohoto
bodu, lezi v jedné roviné (dvoj-
rozmérmné) a kaidé dvé z mich
sviraji kel §x.

Dikaz véty 3: Viastnost
a) plyne z tvrzeni 4. K dikazu
viastnosti b) mueme phdpo

klédati (nisledkem
" a), e k 2 3 (kdvby bvlo L <l
vnofili bychom Ry do prostoru
y R,); potom viak vlastnost b)
plyne z tvrzen{ 1a 2. Viastnost
Obr. 1. c) dokiZeme takto: budii G e
N a budte PAL, PN dvé strany

%) Nakteré z tichto ,uselek" oviem mohou degenerovati v body.

Figure 4
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On minimal graphs containing n given points
Vojtech Jarnik and Milos Kossler
(received Feb. 10, 1954)

In this paper we consider the following problem: given n points Cq,Co, ...,
C,, we want to find a connected set consisting of finitely many segments, which
contains the points C1,Cs, ..., C,, so that “the total length” of this set is the least
possible (of course forn = 2 such a “shortest connection” is a line segment joining
points Cy and C3). In §2 we prove the existence of such a “minimal graph,” and
in §3 we consider the case when the points C1,Cs,...,Cy, form the vertices of
a regular n-gon.

The nature of this article is completely elementary. Also some of the steps in
the proof are routinely known and thus we are brief there.

[The reader should bear in mind that this paper was published before e.g. Konig’s book
[Ko] and no references are given.]

§1.

Let Ry (k > 1) be the k-dimensional Euclidean space.

[So already this first line violates the common belief that, while Jarnik-Késsler pioneered
the Euclidean Steiner problem for the plane, the k-dimensional case was considered only
by Gilbert and Pollack in [GP]. In fact the whole paper [JK] is written for k£ dimensions.]

A nonempty point set G < Ry, is called a graph in Ry if it has the following
properties:

1. G is connected,
2. either G contains one point only or G is a sum of finitely many closed seg-
ments.

[From now on we use the word union instead of sum. Now a footnote follows where Jarnik
in his characteristic style clearly defines all used symbols starting with A € B and ending
with o(MN), (MN)g, o(MN)g for half-open and open line segments; M N denotes a line
segment, an oriented line segment or the length of this segment; “one need not be afraid
of a misunderstanding.”|

If P € G and there exist exactly n (and not n+1) segments of G for which P
is an end-vertex and which do not have common points except for P, then we say
that P is a point of n-th order [or degree| of G. The points of order one are called
endpoints, points of higher order are called branching points (in every graph there
are finitely many of both types of points). If P is a point of n-th order in G, then
we put V(P) = n — 2, and we further put V(G) = Y V(P). V(P) is called the
weight of point P.
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A cycle is a graph which is a closed, simple, continuous curve. A graph, no
part of which is a cycle, is called a tree. Now the following well-known theorem
holds:

Theorem 1. If G is a tree, then V(G) = —2.

[A note is added, stating that any tree with at least 2 points has at least 2 end-vertices.
A typical proof by induction on the number of vertices is given. The authors take care
in defining vertices of G.]

§2.

Let n (n > 2) points C1,Cy,...,C, in the space Ry (k = 1) be given.
These points are called basic points. Let G be a graph in Ry containing points
C1,Cs,...,C,.

[Recall that a graph is defined as a topological realization of a “graph” and that it is
always connected.]

By a “vertex of graph G” we shall understand:

1. basic points
2. all points of G of order > 2
3. all points of G of order 2 in which two noncollinear line segments meet.

A segment MN C G is called a “side of graph G” [i.e. an edge] if (M Ng
does not contain a verter and both M and N are vertices. The graph G is then
the union of its sides. Obviously there are only finitely many vertices and sides in
a graph; if two sides have a common point, then this point is the endpoint of both
sides. The sum of all side-lengths is called the length of G and denoted I(G).

Let # denote the set of all graphs in Ry containing Ci,...,C,. In what
follows let us fiz a lower bound d for all graph lengths in A . If I(G) = d, then G
is called a “minimal graph in Ry with respect to the points C1,...,Cy”. First we
prove

Theorem 2. Let C1,C5,...,C, be points of Ry (k > 1, n > 2). Then there
exists at least one minimal graph in Ry with respect to the points Cy,Cs, ..., C,.

We first introduce some notation. Let G € M . A free end of G is an endpoint
of G which is not a basic point. A free corner of G is a vertex of order 2 which is
not a basic point. Let A be the set of all G € .# which are trees and which have
no free ends. Let & be the set of all G € A which have no free corners. First we
prove the following statements:
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Proposition 1. Let G € .# — .. Then there exists G; € .4 such that
(Gy) < U(G).

Proposition 2. Let k > 3 and G € A4 — 2. Then there exists G; € & such
that I(G1) < I(G).

Proposition 3. Let di be a lower bound for all lengths of graphs G € 2.
Then there exists at least one graph G, € .# with I(G,) < dj.

Proposition 4. If G is a minimal graph in Ry with respect to the points
C1,Cs,...,C,, and if K is the smallest convex set in Ry containing Cy,Cs, ..., Cy,
then G C K [i.e. the convex hull contains all the Steiner points].

Theorem 2 follows from Propositions 1—4 as follows:

A) If k > 3, then Propositions 1 and 2 yield dy = d and Theorem 2 follows from
Proposition 3.

B) If k < 2, then we embed Ry in Rs. From A) we get a minimal graph G in R3
with respect to the points C1,Cs,...,C,. But Proposition 4 implies G C Ry.

Thus it suffices to prove Propositions 1—4.
[Note again that for Jarnik the k-dimensional case is essential.]
Proof of Proposition 1 is by deleting endpoints together with the corre-

sponding sides. The proofs of the remaining Propositions are elegant and more
interesting, and we outline the Jarnik-Ko&ssler arguments in a greater detail:

Proof of Proposition 2. Letk >3 and G € N/ — P, i.e. G € M is a tree
without free ends containing at least one free corner My in which two non-collinear

stdes My Ms and MiMs meet. My is not a basic point. We prove: there exists
a graph G' € N with less free corners satisfying l(G') < I(G).

[It now follows that by repeating this argument one obtains Proposition 2.]

We shall distinguish two cases:

CASE 1. Both My and M3 are basic points. Then the set G — [o(MyM;) +
(M1 M3)] is the union of two disjoint trees Go, G3, My € Gao, M3 € Gs. The
segment My Ms contains at least one point of Gy (e.g. Ms) and at least one point
of G3 (e.g. M3). Thus let Py, P3 be points of the segment My Mj such that Py € G,
P3 € G5 and no point of the segment o(PyPs)o belongs to either Gy or G3. Then
the graph G' = {G — [o((MaM7) + ((M1Ms)o]} + P2 Ps is in A and has less free

corners than G.
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[This is justified in detail.]

Obviously I(G") < I(Q).

CASE 2. One of the points Mo, M3—say Ms—is not a basic point. Let S be
a [(k — 1)-dimensional] hyperplane containing My but not Ms. If M) is any point
of S, then we denote by G(MY}) the graph obtained from G by replacing all sides
M; My of G by segments M; M. Put MaMy + My Ms — MaMs =a > 0. It is clear
that there exists § > 0 such that every graph G(M3) for which My My < § satisfies:

L U(G(M))) < UG) + a, MM, + MMz — MiM;s > La,
2. the graph G(M}) has the same vertices (of the same order) and the same

sides as G with the exception that instead of the vertex Ms and sides MsM;
we have M5 and MjM,;.

[This may be seen as follows:]

Let us consider all lines through M3 and some other point of G. These lines
intersect S in a set X which consists of finitely many points, segments and half-
lines. As k > 3 [and thus S is at least 2-dimensional] there exists at least one
M} € S—X such that Ma M}, < 6. This graph then has properties 1 and 2. Moreover,
the graph G(MY) has the following property: no point of G(MJ) belongs to the
segment o(M4Ms)o.

[This is justified in a detailed footnote.]

Now define graph G' = {G(M}) — [MiMy + My Ms)} + MiM;. Clearly G' €
N, G' has less free corners than G, and finally from Condition 1 it follows that
(G < U(G).

Proof of Proposition 3. This is a routine limit argument. Let G1,Ga, ... be
a sequence of graphs from &2 and let Tli_r(r)lcl(Gr) =d;.

[We preserve as before all the notation of the paper [JK].]

As C1 € Gy, all graphs G, lie in a closed ball with centre Cy and diameter
equal to the upper bound of the numbers l(G,.) (r = 1,2,...). All vertices of the
graph G, are basic or branching points. By Theorem 1 it follows that V(G,) = —2.
As all the endpoints (with weight —1) are basic points, we have at most n of them.
Thus the number of branching points (with weight at least 1) is at most n — 2
and the graph G, has at most 2n — 2 points. Hence there ezists a subsequence

1WGh, ... of G1,Ga,. .. such that all G!. have the same number of vertices. We
denote the vertices of G, by X7, X5, ..., X" such that X] = C; for 1 <i < n. For
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graph G.. define the matriz

' r

0 ajy afs ay,
T s

az; 0 ajs Qg
r T

azg; azp 0 as,

r r r

azy %) Q.3 0

where al; =1 or 0 according to whether or not X X[ is a side of the graph Gi..

[So this is the adjacency matrix of G7..]

As there are only finitely many such matrices, there is a subsequence G ,

G.,,... such that the same matriz
0 a12 aiz ... Q1z
a1 0 ags Az
Gz1  Gz2 (23 0

corresponds to every graph of the subsequence. Finally, as the sequences X}, X?,

X2, ... (i=1,2,...,2) are bounded, we can find a subsequence G} , G ,... such

that all the limits lim Xfp =X, (i=1,2,...,2) exist. Let Gy denote the union of
p=00

segments X; X; (1 <1 <1< 2) for which a; = 1.

[Footnote: Of course some of these segments may degenerate to points.]

Obviously G, € A and the following holds:

(G )= Y. aaX" X",
1<i<i<z
T — 1 ry
I(Go) < E ay X; X = Ph:rgol(th) =di.

1<i<i<z

This completes the proof.

[This is a word for word, symbol-preserving translation. And even today the most elegant
argument!|

Proof of Proposition 4. Let G € .4 be a graph which violates G C K. Then
there exists a hyperplane S [(k — 1)-dimensional] such that all basic points lie on
one side of S and a nonempty subset G' of G lies on the other side of S. Define
a graph Gy by replacing the subset G' by an orthogonal projection of G’ onto the
hyperplane S. Obviously Gy € # and I(G1) < I(G), which completes the proof.
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[k dimensions are essential again.|

Now we can easily prove Theorem 8 which describes the structure of minimal
graphs in a greater detail.

Theorem 3. Let G be a minimal graph in Ry (k > 1) with respect to points
C1,Cq,...,Cp (n > 2). Then G has the following properties:
a) G is a subset of the smallest convex set containing C1,Cs....,Cp.
b

)
c¢) If two sides of G have a common point, then their angle is at least %TE.
d)

(G is a tree without free ends and free corners.

Every branching point of G has degree 3. The three sides of the graph incident
to a branching point lie in a (2-dimensional) plane and any two have angle

2
3T

[Here as elsewhere k dimensions are essential. We have not found d) in later literature.
This yields a better and stronger argument than e.g. in [HRW] p. 77.]

Proof of Theorem 3. Property a) follows from Proposition 4. To prove b)
we can assume (by a)) that k > 3 (if k < 3 then we can embed Ry into Rs).
Then b) follows from Propositions 1 and 2. The property c) we prove as follows:
let G € .# and let PM, PN be two sides of G with angle o < %TE. We construct
a point M’ in the interior of side PM and a point N’ in the interior of side PN
such that PM’ = PN = h. Then we have (see Fig. 1)

1
MW =NW = M’W— —hsin — a
\/> f
_ 1 1 t
PW =PX —WX =hcos—a — —hsin —«
2 V3 2

and thus

1 1 I
MW + N'W + PW = h(\/ﬁsm 50+ cos 504) < 2h = P + PN".

[This step is justified in a detailed and characteristic footnote: We have &(\/5 sinz +
cosx) = V3cosx—sinz = cosz(v3—tanz) >0 for 0 < z < %n and thus /3sinz+cosx
is an increasing function for 0 < x < %n, hence we have for 0 < x < %n:

V3sinz + cosx < v/3sin %TC-I— cos %n = 2.}

Define graph G, = [G — (M'P + N'P)| + M'W + N'W + PW. Obviously
Gy e A, 1(G1) <U(G) and thus G is not a minimal graph.

The property d) follows immediately from c): three line segments incident in
a point and which do not lie in a plane form angles whose sum is less than 2.
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Remark. From Theorem 3 we obtain the following for the minimal graph G:
if P is a branching point, then V' (P) = 1, whereas V(P) = —1 for every endpoint
P. From V(P) = —2 it follows that the number of branching points equals the
number of endpoints —2.

This is the end of the first two sections of the Jarnik-Kossler paper. This is
a remarkable text both in its clarity and contents. This part deals with general
properties of Steiner trees, and these properties are generally attributed to later
contributors although they are explicitly stated in the Jarnik-Kossler paper. Here is
a sample of such instances, mostly taken from a recent monograph [HRW]| devoted
to the “Steiner Tree Problem.”

The fact that for a Steiner tree all branching points are of degree 3, as well
as the angle condition, the number of branching points, the convex hull result
(i.e. Theorem 1.1, Theorem 1.2 of [HRW]) are attributed to Courant and Rob-
bins [CR], Corollary 1.1, Corollary 1.5 of [HRW] are attributed to Gilbert and
Pollak [GP]. These results are all explicitly contained in [JK] as various parts of
Propositions 1-4 and Theorems 2-3.

Moreover, the generalization to k dimensions treated in [HRW], section 6.1 is
not only mentioned but instrumental to [JK]. In fact the whole paper is written
in k£ dimensions. And the complicated argument on [HRW], p. 77 is replaced by
the pleasant Jarnik-Kossler argument that three sides incident with a branching
point are coplanar.

After all these years the Jarnik-Kossler paper precisely in its general part
(i.e. sections 1 and 2) is an example of clear style and elegance, and it is worth
studying even today. The clarity of the introduction to the problem is not shared
by many later texts.

No wonder, the “Steiner problem” is due to Jarnik and Kossler and was elab-
orated by them to a degree surpassed only 30 years later. Comparing [J] and [JK]
we see that what we have here is Jarnik’s problem.

The Jarnik-Kossler paper [JK] continues with the treatment of regular n-gons.
They solve the cases n = 3,4,5 explicitly and carefully with all details (without
referring to any earlier work for n = 3) and remark that for n = 6 they prove
that the situation is entirely different: the solution is given by 5 sides of a regular
hexagon. They prove this by an elegant argument for all n > 13. They leave
it open for 7 < n < 12 and remark that this is a finite problem which could be
directly solved with a certain amount of effort. Indeed, their method of solution for
n = 3,4, 5 suggests that they were aware of the finiteness of the problem (proved
much later by Melzak [M]).
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4. JARNIK-KOSSLER’S PAPER IN A HISTORICAL PERSPECTIVE

The problem of finding a shortest connection between n given points in the
plane has a long history. Indeed, it is one of the oldest optimization problems
and it was, and is, frequently used as an example of maximality (and minimality)
arguments. However, for most of the time in the long history of the problem, only
the case n = 3 was considered. This goes back to a question posed by Fermat, was
considered by Mersenne and solved by Torricelli and Cavalieri. The elegant solution
of this problem of elementary geometry of course attracted many researchers such
as Simpson and Steiner who also considered a generalization of the 3-point problem
in a different direction: given n points in the plane, find a single vertex with the
smallest sum of distances.

The history is involved and there are several sources available, such as [Ku] and
[Z], and also early industrial applications such as the book [W] and the thorough
mathematical treatment in [St].

However, prior to 1934 the problem of the shortest connection of n points was
not considered (Ron Graham [G] informed us that Gauss formulated the n-point
problem in one of his letters). It was first considered by Jarnik and Kossler [JK],
with a clarity and rigour which we hope is clear from the translation of the first
two sections of [JK].

It is difficult to speculate why the authors considered this problem. In Jarnik’s
ceuvre the papers [J] and [JK] present the only singularity. As a possible solution
to this puzzle one could perhaps stress the fact that Jarnik instantly recognized
the novelty of Bortivka’s problem and saw it as an n-point minimization problem.
His interpretation of the minimal spanning tree problem given at the end of [J]
(section 1 of this paper contains a translation of this) may suggest how naturally
he may have arrived at the problem considered in [JK]. That could also suggest
why Jarnik considered essentially the k-dimensional problem. He didn’t arrive at
it from the geometry of the plane but from spatial geometry (see again the Remark
at the end of [J], translated in section 1).

Like Borivka, Jarnik never returned to this problem again.

The 3-point problem was a classical optimization problem and it found its
way into the Courant-Robbins book [CR]| where the problem for n =3 (i.e. the
Fermat-Torricelli-Cavalieri-Simpson-Steiner problem) is called the Steiner prob-
lem and the problem of the nearest point to a given set of points (i.e. the problem
considered by Steiner) is called a “mathematically sterile generalization.” The
problem of the shortest interconnection between n points is called the general-
ized Steiner problem [CR]. This is clearly Jarnik’s problem or the Jarnik-Kossler
problem.
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These attributions (and some stylistic expressions) suggest that Courant and
Robbins were motivated by [St] and [Z].

In the thirties Jarnik was an internationally famous mathematician (a speaker
at both the Ziirich 1932 and the Oslo 1936 Congress of the International Math-
ematical Union) and thus the main reason for the omission probably was that
Courant and Robbins did not know about his work outside number theory and
analysis. The “Steiner” problem was then dormant for another 20 years until it
was revived by Melzak [M], Gilbert and Pollack [GP] and others with the vigour
and confidence of newly developing fields of combinatorial (discrete) optimization
and the theory of algorithms. The problem is hard both theoretically [GGJ] and
practically, and for its direct applications in VLSI [KPS|] and other fields (see
e.g. [HRW)) it is still intensively studied. And it is far from being solved.

Summarizing, let us just say that with these combinatorial papers [J], [JK]
Jarnik was very lucky. Single handedly (with the help of Bortvka and Kossler)
he started important branches of fields which were in his time not yet born. The
style and rigour of his contributions have lasting value. Jarnik’s contribution is
widely unrecognized (e.g. neither the recent Handbook of Combinatorics nor the
Handbook of Computational Geometry mention him).

It is not a marginal contribution by a passerby. It is rather an important
contribution by a major mathematician. Combinatorics was gaining strength while
slowly emerging from the “slums of topology,” through the expertise and brilliance
of mathematicians from other fields. From number theory these were Erdds and
Turan and Jarnik.

References

[J] V. Jarnik: O jistém problému minimalnim. Prace Mor. Pfirodovéd. Spol. v Brné
(Acta Societ. Scient. Natur. Moravicae) 6 (1930), 57-63.
[JK] V. Jarnik, M. Kdssler: O minimélnich grafech obsahujicich n danych bodd.
Casopis Pést. Mat. 63 (1934), 223-235.

Historical References

[B1] O. Bordvka: O jistém problému minimalnim. Prace Mor. Pfirodvéd. Spol.
v Brné (Acta Societ. Scient. Natur. Moravicae) 3 (1926), 37-58.

[B2] O. Borivka: Piispévek k FeSeni otdzky ekonomické stavby elektrovodnich siti.
Elektrotechnicky obzor 15 (1926), 153-154.

[B3] O. Borivka: Nékolik vzpominek na matematicky zivot v Brné. Pokroky Mat.
Fyz. a Astr. 22 (1977), 91-99.

[B4] O. Boruvka: Personal communication to the second author.

[CH] G. Choguet: Etude de certeins réseaux de routes. Comptes Rendus Acad. Sci.
206 (1938), 310-313.



[FLPSZ]

[St]

(Ko
[CR]

(W]
2]

[HRW]

[KPS]

Vojtéch Jarnik’s Work in Combinatorial Optimization 53

K. Florek, J. Lukaszewicz, J. Perkal, H. Steinhaus, S. Zubrzycki: Sur la liaison
et la division des points d’un ensemble fini. Colloq. Math. 2 (1951), 282-285,
319.

R. Sturm: Maxima und Minima in der elementaren Geometrie. Teubner.
Leipzig. 1910.

D. Koénig: Graphentheorie. Teubner. Leipzig, 1936.

R. Courant, H. Robins: What is Mathematics? Oxford Univ. Press. New York,
1941.

A. Weber: Uber Standort der Industrien. Tiibingen, 1909.

M. Zacharias: Elementargeometrie und elementare nicht-euklidische Geometrie
in synthetischer Behandlung. Enzyklopddie der mathematischen Wissenschaf-
ten. Dritter Band — IIIAB9. Geometrie (W. Fr. Meyer, H. Mohrmann, ed.).
Teubner. Leipzig, 1914-1931.

Other References

H. W. Kuhn: Steiner’s problem revisited. Studies in Optimization, Studies in
Math. 10 (G. B. Dantzig and B. C. Eaves, eds.). Math. Assoc. Amer., 1975,
pp- 53-70.

Z. A. Melzak: On the problem of Steiner. Cand. Math. Bull. 4 (1961), 143-148.
E. N. Gilbert, H. O. Pollack: Steiner minimal trees. STAM J. Appl. Math. 16
(1968), 1-29.

M. R. Garey, R. L. Graham, D. S. Johnson: The complexity of computing
Steiner minimal trees. STAM J. Appl. Math. 82 (1977), 835-859.

K. Culik, V. Dolezal, M. Fiedler: Kombinatorickd analyza v praxi. STNL.
Prague, 1967.

R. L. Graham: Personal communication.

R. C. Prim: Shortest connection networks and some generalizations. Bell Syst.
Tech. J. 86 (1957), 1389-1401.

J. B. Kruskal: On the shortest spanning tree of a graph and the traveling
salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48-50.

R. L. Graham, P. Hell: On the history of the Minimum Spanning Tree Problem.
Ann. History of Computing 7.1 (1985), 43-57.

M. W. Bern, R. L. Graham: The Shortest Network Problem. Scientific Amer-
ican (Jan. 1989), 66-71.

F. K. Hwang, D. S. Richards, P. Winter: The Steiner Tree Problem. North
Holland, Ann. Discr. Math. 58 (1992).

B. Korte, H. J. Promel, A. Steger: Steiner trees in VLSI-Layout. Paths, Flows,
ans VLSI-Layout (B. Korte, H. Lovész, H. J. Promel, Schrijver, eds.). Springer
Verlag, 1990, pp. 185-214.






