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CHAPTER IV

UNIFORM AND PROXIMITY SPACES

(Sections 23 —25)

We have defined the concept of a uniformly continuous mapping of a semi-pseudo-
metric space into another one. In Section 23 we shall examine the most general kind
of spaces which enables one to define the concept of a uniformly continuous mapping,
namely semi-uniform spaces. Section 24 concerns a particular kind of semi-uniform
spaces, the uniform spaces, which are related to semi-uniform spaces similarly as
pseudometrics are to semi-pseudometrics. In Section 25 the properties of semi-uni-
form spaces will be developed and the so-called proximity spaces will be introduced
and studied. Particular attention is given to the Stone-Weierstrass theorem for proxi-
mity spaces, and to uniformly continuous extensions of bounded uniformly
continuous pseudometrics and functions. The results obtained will be applied later
to closure spaces.
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23. SEMI-UNIFORM SPACES

In this section, which is the first of three closely related sections, we shall be con-
cerned with defining and developing the basic properties of semi-uniform spaces
and uniformly continuous mappings. The next section investigates properties of
a particularly important class of semi-uniform spaces, the so-called uniform spaces.
The closing section of this chapter is concerned with developing the theory of the
so-called proximally coarse semi-uniformities and the related concept of a proximity.
In all three sections results concerning semi-pseudometrics, proved in 18 A—18 C,
are assumed to be known.

Here we begin with the definition of a semi-uniformity and with the description
of a semi-uniformity in terms of uniformly continuous semi-pseudometrics. This
will help the reader to understand the extent of the generalization which is obtained
by introducing the concept of a semi-uniformity instead of a collection of semi-
pseudometrics uniformly equivalent to each other. In the second subsection we
shall examine the relations between semi-uniformities and the induced closures. The
third subsection, devoted to a discussion of the concept of a uniformly continuous
mapping, is followed by an exposition of the basic constructions of new semi-uniform
spaces from given ones, namely subspaces, sums and products; here the exposition
parallels Section 17 dealing with the same constructions for closure spaces.

A. SEMI-UNIFORMITIES AND UNIFORM COLLECTIONS
OF SEMI-PSEUDOMETRICS

It should be noted that the identity relation on a class P, denoted by Jp, and the
diagonal of P x P, denoted by 4,, are different names and symbols for the same
entity, namely for the class of all pairs {x, x> such that x € P.

A relation for a set P is a subset of P x P. In this section we shall deal with rela-
tions for a set P containing the diagonal of P x P. By 12 A.2 these relations are
termed vicinities of the diagonal of P x P or vicinities on P. Given a struct 2, we
want to speak about those properties of vicinities on |#?| which depend on the struc-
ture of 2. To this end the following definition is introduced.
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23 A.1. Definition. If £ is a struct then a vicinity on £ is defined to be a vicinity
on |#|. We shall say that “Vis a vicinity of the diagonal of 2 x £ meaning that V
is a vicinity on 2, i.e. a vicinity of the diagonal of [#| x |#)|. It should be remarked
that the sentence in quotes must be treated as an indecomposable expression (whether
or not # x £ had been defined).

23 A.2. Suppose that u is a closure operation foraset P. If {U.| xeP}is a family
such that U_ is a neighborhood of x in (P, #), then the set

U=232{U,|xeP} =E{(x,y)|xeP,yeU}

is a vicinity of the diagonal on P and U[x] = U_for each x in P. Let % be the collection
of all such U.Obviously % is a filter on P x P consisting of vicinities of the diagonal
of P x Pand, for each x in P, the collection [%] [x] (of all subsets of P of the form U [x],
U e %) is the neighborhood system at x in {P, u). Conversely, if % is a filter on
P x P consisting of vicinities of the diagonal, then the collection [%] [x] is a filter
on P the intersection of which contains x for each x in P; by 14 B.10 there exists
a unique closure operation u for P such that [#] [x] is a local base at x in {P, u)
for each x in P. This closure operation will be called the closure induced by #%.
We have proved that every closure operation for P is induced by a filter on P x P
consisting of vicinities of the diagonal, and conversely, every such filter induces
a closure operation. It is to be observed that closures induced by different filters
may coincide; for example, let %, be the collection of all vicinities of the diagonal
of P x P and let %, be a subset of %, consisting of all U € %, such that U[x] = P
for all x in P excepting a finite number of x’s. Obviously both filters induce the dis-
crete closure for P but %, + %, if P is infinite. It follows that such filters define
a more restrictive structure for P than a closure operation. Now let d be a semi-
pseudometric for a set P and let us consider the collection %, of all vicinities of the
diagonal of P x P containing a set of the form E{<x, y> | d{(x, y> < rd}, r > 0.
Clearly %, is a filter on P x P consisting of vicinities, and the closure induced
by %, coincides with the closure induced by d. The filter %, has a significant property:
it has a base consisting of symmetric vicinities, that is of vicinities U such that
U =U"!; in fact, the vicinities of the form E{<(x, y> | d{x, y> <r},r > 0, are
symmetric and form a base for %,. Next it is apparent that two semi-pseudometrics d,
and d, are uniformly equivalent (in the sense of Definition 18 B.14) if and only if
U4, = U4,- Thus the notion of a uniformly continuous mapping of a semi-pseudo-
metric space into another one depends only on the corresponding filters. This
section is devoted to an investigation of “symmetric” filters on P x P, consisting of
vicinities of the diagonal of P x P, and called semi-uniformities. As it stands,
the concept of a semi-uniformity is a generalization of the concept of a semi-
pseudometric; this enables one to define the notion of a uniformly continuous
mapping in a most general situation.

23 A.3. Definition. A semi-uniformity for a set P is a filter % on P x P satisfying
the following two conditions:
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(u1) each element of % contains the diagonal of P x P, i.e. % > 4,;
(u 2)_if U e %, then U™! contains an element of %.

Since % is a filter, condition (u 2) may be replaced by the following formally
stronger condition:

(u2)if Ue%, then U ' e .

A semi-uniform space is a struct (P, %) such that P is a set ahd % is a semi-uni-
formity for P.

A base for a semi-uniformity % is a subcollection ¥~ of % such that each ele-
ment of % contains an element of ¥"; stated in other words, a base for a semi-uni-
formity % is a filter base for the filter %. A sub-base for a semi-uniformity % is
a subcollection ¥ of % such that the collection of all finite intersections of elements
of #  is a base for %; stated in other words, a sub-base for a semi-uniformity % is
a filter sub-base for the filter %.

If % is a semi-uniformity for a set P then [%] [x] = E{U[x] | U e %} is a filter
on P and x € U[x] for each x in P. By 14 B.10 there exists a unique closure u for P
such that [%] [x] is a local base at x in (P, u) for each x in P. This closure is defined
to be the closure induced by %.

23 A4. Theorem. Conditions (u1) and (u2) are necessary and sufficient for
a filter base on P x P to be a base for a semi-uniformity for P. Conditions (u 1)
and (u 2) are sufficient (but not necessary) for a filter sub-base on P x P to be
a sub-base for a semi-uniformity for P. — The proof is straightforward and may
be left to the reader.

Corollary. If {#,} is a non-void family of semi-uniformities for a set P, then
the union of {%,} is a sub-base for a semi-uniformity for the set P.

23 A.5. A collection W of sets is a sub-base for a semi-uniformity for a set P
if and only if W % 0, each element of W is a vicinity of the diagonal of P x P,
and if We W then W™ contains a finite intersection of elements of W'.

Proof. Let us consider the collection ¥~ consisting of all finite intersections of
elements of w".If #  is a sub-base for a semi-uniformity, then ¥~ is a base and there-
fore, by 23 A4, if Ve ¥ then V' = V™1 for some V' in ¥"; it follows that for each
U in # the set U~ contains a finite intersection of elements of #"; evidently #~ + 0
and each element of #" contains the diagonal. Conversely, assuming that %" % 0,
N# > Ap,and if U e# then U™ contains a finite intersection of its elements, one
can show without difficulty that ¥” is a filter base satisfying conditions (u 1) and (u 2);
now by 23 A4 ¥ is a base for a semi-uniformity and finally, by definition, %" is
a sub-base for a semi-uniformity.

23 A.6. Remarks. (a) A semi-uniformity % is a semi-uniformity for exactly
one set P, namely P = DU = EU for any U in %. Thus the relation {{P, %) —
> Y ] {P, %> semi-uniform space} is one-to-one and ranges on the class of all semi-
uniformities.
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(b) The collection of all symmetric elements of a given semi-uniformity % is a base
for %;actually,if Ue %, then U™ 'e# by (u2’) and thus(UnU ™) e#. But UnU*
is symmetric and is contained in U.

(c) Suppose that % is a semi-uniformity for a set P and u is the closure induced
by #. If ¥ is a base (a sub-base) for %, then [¥"] [x] is a local base (a local sub-base)
at x in (P, u) for each x in P. It follows that if % has a base of cardinal m, then the
local character of (P, u) is at most m.

23 A.7. Examples. (a) The collection % of all subsets of P x P containing
the diagonal is clearly a semi-uniformity for the set P. The collection consisting of
only one element, namely the diagonal of P x P, is a base for #. Clearly % is the
largest semi-uniformity for P, that is, if ¥~ is a semi-uniformity for P, then ¥~ < #.
Evidently, % induces the discrete closure. Let %, be the collection of all subsets
U = P x P of the form J{X; x X}, where {X;} is a finite cover of P. Obviously %,
is a filter base and fulfils conditions (u 1), (u 2). Thus %, is a base for some semi-
uniformity ¥~ for P. Clearly ¥~ induces the discrete closure operation for P. If P
is infinite, then the diagonal of P x P does not belong to ¥” and hence ¥~ + %.
Thus, if P is infinite, then % and ¥ are distinct semi-uniformities inducing the same
closure operation. The smallest semi-uniformity for P consists of exactly one element,
namely P x P; the induced closure is accrete and (P x P) is the only semi-uniformity
for P inducing the accrete closure for P.

(b) If d is a semi-pseudometric for a set P, then the collection of all sets of the
form U, = E{{y, x) | d{y, x) < r},r >0, is a filter base on P x P satisfying con-
ditions (u 1) and (u 2)) ((u 1) follows from-d{y, y)» = 0 and (u 2) from the symmetry
of d). By.23 A.4 this collection is a base for a semi-uniformity % which will be said
to be induced by d. The semi-pseudometric d induces a closure for P. It is almost
self-evident that these closures coincide; indeed, given an x in P, {U,[x] | r > 0}
is a local base at x with respect to the closure induced by the semi-uniformity
(23 A.6 (c)) and the same family is a local base at x with respect to the semi-pseudo-
metric closure because U,[x] is the open r-sphere about x.

() Two semi-pseudometrics are uniformly equivalent (in the sense of definition
18 B.14) if and only if they induce the same semi-uniformity.

(d) The metric {<x, y> — |x — y|} of the metric space R of reals induces a semi-
uniformity by (b). Unless the contrary is explicitly stated, if R is considered as a semi-
uniform space it is to be understood that the semi-uniformity is that just described.

23 A.8. Theorem. A semi-uniformity % is semi-pseudometrizable (i.e. induced
by a semi-pseudonietric) if and only if it has a countable base.

Proof. I. If 4% is induced by a semi-pseudometric d, and M is a set of positive
reals the infimum of which is zero, then evidently the collection of all E{<x, y>
] dlx, y> < r}, r € M, is a base for %. Since M can be taken countable, the “only if*”
part follows. — IL Conversely, let {U, | n e N} be a base for %. Without loss of genera-
lity we may and shall assume that Uy = P x P and U, = U, ! o U, ., for each n.
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Putting d{x, y> = 27" if and only if {x, y)eU, — U,,;, and d{x,y> =0
otherwise (i.e. if {x, y> e N{U,}), we obtain a semi-pseudometric d for P which
induces %.

23 A.9. Definition. A semi-pseudometric d for a semi-uniform space (P, %)
is said to be uniformly continuous if the semi-uniformity induced by d is contained
in%,ie. E{{(x, y> | d{x, y> < r} e % for each positive real r. A uniform collection
of semi-pseudometrics is the collection of all uniformly continuous pseudometrics
for a semi-uniform space.

23 A.10. Theorem. A collection .# of semi-pseudometrics is a uniform collection
of semi-pseudometrics if and only if M is non-void, all elements of M are semi-
pseudometrics for the same set, say P, and the following two conditions are ful-
filled:

(@) dye M, dye M imply d; + dy € M;

(b) if d is a semi-pseudometric for P and if for each r > O there exists a d’ in M
and an s > 0 such that d'{(x, y) < s implies d{x, y) < r,thende A.

Proof. First suppose that . is the collection of all uniformly continuous semi-
pseudometrics for a semi-uniform space (P, #). Clearly, {(x, y> -0 | {(x,y>€
€ P x P} e # and hence # + 0. Evidently every de .# is a semi-pseudometric
for P and hence all the d € # are for the same set. If d,, d, e #, d = d; + d,,
r is a positive real and 0 < s < 27! . r, then

E{(X, J’> l d<x7 y> < r}) = (E{(X, y) l d1<x: ,V> < S} n
A E{(x, p) | dolx, p) < sP)eu,

which shows that d is a uniformly continuous semi-pseudometric for {P; %), i.e.
d e #. Condition (b) is an immediate consequence of the definition of uniformly
continuous semi-pseudometrics. The second part of the proof is an immediate
consequence of the proposition which follows.

23 A.11. Let # be a non-void collection of semi-pseudometrics for a set P and
let ¥ be the set of all sets of the form E{(x, y> | d{x, y> < r},de #, r > 0. Then
¥ is a sub-base for a semi-uniformity and if M fulfils condition (a) of 23 A.10,
then ¥ is a base for a semi-uniformity. If ¥ is a base for a semi-uniformity U
and M fulfils condition (b) of 23 A10, then 4 is the set of all uniformly continuous
semi-pseudometrics for {P, U>.

Proof. Every element of ¥~ is a symmetric vicinity of the diagonal of P x P and
therefore, by 23 A4 ¥ is a sub-base for a semi-uniformity. Now suppose that
d, + d, e # whenever d,, d, e #; it will be shown that ¥ is a filter base. If
Vi, Vae¥', Vi = E{(x, p>|dx,y> <r}, i =1,2, where d;e # and r; >0,
then ¥, N V, contains the vicinity E{(x, y) |(d; + d;) <x, y> < r}, where r =
= min (ry, r,). Finally, if ¥ is a base for a semi-uniformity % and if d is a uniformly
continuous pseudometric for (P, %) then clearly d fulfils the assumptions of con-
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dition (b) of 23 A.10; thus if .# fulfils (b), then every uniformly continuous semi-
pseudometric for (P, %) belongs to .#.

23 A.12. Definition. If .# is a non-void collection of semi-pseudometrics for
a set P, then by 23 A.11 the set of all E{(x, »w | dix, y) < r}, de#, r>0is
a sub-base for a semi-uniformity which is defined to be the semi-uniformity gener-
ated by #A. '

23 A.13. Theorem. If a semi-uniformity % is generated by a non-void collection
M of semi-pseudometrics for a set P, then U € % if and only if U = P x P and there
exists a finite sequence {d; | i < n} in .M and a positive real r such that £{d; (x, y> |
| i £ n} < r implies {x,y)eU.

Proof. The set .#, of all finite sums of semi-pseudometrics from .# contains
with each d, and d, their sum d; + d,. Now the statement follows from 23 A.11.

Let % be a semi-uniformity for a set P, .# be the set of all uniformly continuous
semi-pseudometrics for (P, %) and let ¥~ be the semi-uniformity induced by .#.
Obviously ¥~ is contained in %. Now we shall prove that % = 7"

23 A4 If U is a semi-uniformity for a set P, then % is generated by the set M
of all uniformly continuous semi-pseudometrics for (P, %) which assume only two
values, 0 and 1.

Proof. If U is a symmetric element of % and if d{(x, y> = 0 for {x, y> e U and
d{x, y) = 1 otherwise, then clearly d = {{x,y) > d{x, y> | (x,y>€P x P}
is a uniformly continuous semi-pseudometric for (P, %).

As a corollary we obtain the following result which shows that a semi-uniform
space if uniquely determined by the collection of all uniformly continuous semi-
pseudometrics, and that a semi-uniformity % is the smallest semi-uniformity contain-
ing every semi-uniformity induced by a uniformly continuous semi-pseudometric
for (P, %).

23 A.15. Theorem. If (P, %) is a semi-uniform space then U e if and only
if U c P x P and there exists a uniformly continuous semi-pseudometric d for
{P, P> such that d {x, y)> < 1 implies {x, y)>eU.

B. SEMI-UNIFORM CLOSURE OPERATIONS

By definition 23 A.3, if % is a semi-uniformity for a set P and u.is the closure
inducad by %, then [#][x] is the neighborhood system at x in (P, u) for each
x € P. This subsection is concerned with various descriptions of the closure induced
by a semi-uniformity.

23 B.1. Definition.” A continuous semi-uniformity for a space (P, u) is a semi-
uniformity for P such that the closure induced by % is coarser than u. A closure
operation u will bz called semi-uniformizable if u is induced by a semi-uniformity.

26—Topological Spaces
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Recall that if P is a closure space then a semi-neighborhood of the diagonal of the
product space P x P is a neighborhood of the diagonalinind (P x P),i.e., a subset U
of P x P such that U[x] n U~ '[x] is a neighborhood of x in P for each x € P.

23B.2. If % is a continuous semi-uniformity for a closure space {P,u) then
each element of U is a semi-neighborhood of the diagonal in (P,u) x {P, u).
The set of all semi-neighborhoods of the diagonal of (P, u> x {P, u) is a continuous
semi-uniformity for (P, u).

Proof. Let v be the closure induced by %. If U € %, then U[x] is a neighborhood
of x in (P, v) for each x in P, and v being coarser than u, U[x] is also a neighbor-
hood of x in (P, u). Since U~ ! belongs to %, U~ *[x] is also a neighborhood of x
in (P, u). Thus U is a semi-neighborhood of the diagonal of (P, u) x (P, u).
Now let #” be the set of all semi-neighborhoods of the diagonal of (P, u) x {P, u).
Since #" is the neighborhood system of the diagonal in ind ({P, u) x {P, u)),
W is a filter consisting of vicinities of the diagonal, and clearly U € #” implies U~ ' €
€W ; thus #  is a semi-uniformity which is, evidently, continuous. '

Corollary. Let (P, u) be a closure space and let % be the set of all semi-neigh-
borhoods of the diagonal of (P,u) x {P,u). Then % is the largest continuous
semi-uniformity for {P,u) and the closure induced by % is the finest semi-uni-
formizable closure coarser than u. Finally, d is a continuous semi-pseudometric
Sor (P, u) if and only if d is a uniformly continuous semi-pseudometric for (P, 4.

23 B.3. Theorem. In order that a closure operation u for a set P be semi-uni-
formizable it is necessary and sufficient that x € u(y) imply y e u(x), i.e. if x
belongs to the closure of a one-point set (), then y belongs to the closure of (x).

Proof. I. Suppose that u is induced by a semi-uniformity % and let ¥~ be the set
of all symmetric elements of %. Since ¥ is a base for % (23 A.6 (b)), x € uX if and
only if V[x] n X % 0 for each Vin ¥". Now, if x € u(), then y € V[x] for each V
in ¥, and each Ve ¥ being symmetric, we obtain x € V[ y] for each V in ¥, which
means that y € u(x). — II. Conversely assume the condition and consider the largest
continuous semi-uniformity % for (P, u). We shall prove that % induces u. It is
sufficient to show that, for each x € P and each neighborhood W of x, there exists
a U in % such that U[x] = W. Choose a family {V, | y € P} such that V, is a neigh-
borhood of y in (P, u) for each y, ¥, = W, and if y ¢ u(x) then x e (P — V,). Put
vV =2x{V, | yeP}, U =Vu V' Obviously U is a semi-neighborhood of the dia-
gonal and hence U e #. It will be shown that U[x] = V, (= W) and hence that U
is the required element of #. Clearly U[x] = V,.If y e (U[x] — V,), then y e V" '[x]
(because V[x] = V,) and hence x € V[y] = V,; thus by construction y € u(x) and
by our condition x € u(y); hence ye V, because V, is a neighborhood of x. But
this contradicts our assumption y ¢ V..

Before proceeding on we shall prove an important characterization of semi-
neighborhoods of the diagonal.
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23 B.4. Theorem. Let P be a closure space. In order that a symmetric subset U
of P x P be a semi-neighborhood of the diagonal of P x P it is necessary and
sufficient that X < U[X] for each subset X of P. ‘

Proof. I. First suppose that U is a semi-neighborhood of the diagonal and let
X c P.If xe X, then U[x] n X =% @, so that y e U[x] for some y in X; U being
symmetric, we obtain x € U[y]. Thus X = U[X]. ~ II. Now suppose thatX < U[X].
for each X < P. Since U is symmetric, to show that U is a semi-neighborhood of the
diagonal it is sufficient to prove that U[x] is a neighborhood of x in P for each
xeP. But by our condition P — U[x] « U[P — U[x]] = P — (x) and . hence.
U[x] is indeed a neighborhood of x. -

Suppose that a closure u for a set P is induced by a semi-pseudometric d and let.
U, = E{<x, y) | d{x, y> < r} for r > 0. For each X < P the set U,[X] is the open
r-sphere about the set X in (P, d) and therefore uX < U,[X]. Furthermore uX =:
= N{U,[X]| r > 0} since uX is the set of all x € P which have zero distance from X..
Now we shall prove that the same formula is true for every semi-uniformity induc-'
ing the closure u.

23 B.5. Theorem. Suppose that a closure u for a set P is induced by a semi-
uniformity U, and ¥ is a base of %. Then

uX = N{U[X]|Ueu} = N{U[X]|Ue¥}

for each X = P,

Proof. Each element of % is a semi-neighborhood of the diagonal of (P, u) x_
x (P,u) (by 23B.2) and therefore, by 23 B4, uX = U[X] for each symmetric
U in % and hence each U in %; this establishes the inclusion <. If x € (P — uX),
then ¥[x] n X = @ for some Vin #7; selecting any element ¥; of ¥~ contained in
Vn V™! we obtain x ¢ V;[X] which establishes the inverse inclusion and comple-
tes the proof.

The theorem just proved gives a direct description of semi-uniform closures..
Now we shall prove an interesting and perhaps a little surprising description of the
product u x u where u is a semi-uniform closure.

23 B.6. Theorem. Suppose that a closure operation u for a set P is induced
by a semi-uniformity % and {P x P,u x u) is the product space {P,u) x (P, u).
Then

uxuw)X =N{U-X.U|Ueu}
for each subset X of P x P.

The proof is based upon the following lemma which will often be used in the’
sequel.

23 B.7. Lemma. If U and X are relations for a set P, then

(#*) UoXoU = U{U '[x] x U[y]]|<x, y> e X},

26*



404 IV. UNIFORM AND PROXIMITY SPACES

and if U is symmetric (i.e. U = U""), then

(*#+) UoX o U = Y{U[x] x U[y]| <x, y> e X}.

Proof. Formula (x*) follows immediately from (x). To prove (») it is sufficient
to observe that the left side of (x) is the set of all pairs (z, t such that {z,x) e U
and <y, t) € U for some (x, y) € X, ie. the set E{(z, 1) | ze U™ '[x], 1€ U[y] for
some {x, y) in X} which is, evidently, the set on the right side of (*)

Proof of 23 B.6. Let ¥~ be the collection of all symmetric elements of %. Thus ¥~
is a base of % and [¥7] [x] is a local base at x in {P, u) for each x € P. As a con-
sequence, the collection consisting of all sets V[x] x V[y], Ve ¥, is a local base at
{x,y> in (P x P, u x u). Since the relations V are symmetric we have (z,t) €
e V[x] x V[y] if and only if {x, y> € ¥[z] x V[{]. But <z, ) e(u x u) X if and
only if X n(V[z] x V[f]) + 0 for each Vin ¥, i.e. for each Vin ¥ there exists
a pair {x, y> in X such that (z, t) € V[x] x V[y]. By virtue of formula (**) of
23 B.7 we obtain (z, t) e(u x u)X if and only if (z,t) € Vo X o V for each Ve ¥".
Theorem 23 B.6 follows.

In concluding we shall describe semi-uniform closures in terms of uniformly
continuous semi-pseudometrics.

23 B.8. Theorem. Suppose that a closure u for a set P is induced by a semi-
uniformity % and % is generated by a collection # of semi-pseudometrics. Finally,
let A, be the set of all finite sums of semi-pseudometrics from #. Then

(a) x e uX if and only if the distance from x to X is zero in (P, d) for eachd
in A,

(b) A subset U of P is a neighborhood of x € P in {P,u) if and only if U contains
an open r-sphere about x in (P, d) for some d in 4 ,.

(c) A net {x,} converges to x in (P, u) if and only if the net {d{x,, x>} converges
to zero in R for each d in M.

Proof. Statements (a) and (b) are evident (see 23 A.12 and 23 A.13). State-
ment (c), with .# replaced by ., is also evident (e.g. one can use (b)). It remains to
notice that if the net {d(x,, x)} converges to zero in R for each d in .#, then this net
converges to zero for each d in .#,. '

Remark. In (a) and (b) one cannot replace .#, by .4.

C. UNIFORMLY CONTINUOUS MAPPINGS

By Definition 18 B.14 a mapping f of a semi-pseudometric space {P,, d,) into
another one {P,, d,) is said to be uniformly continuous if for each r > 0 there
exists an s > O such that d,{x, y> < s implies d,{fx, fy)> < r, stated in other words,
if %, is the semi-uniformity induced by d,, then for each U, in %, there exists a U,
in %, such that (x, y) e U, implies {fx, fy> € U,, i.e., that (gr /' x gr f)[U(] =
< U, holds.
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23 C.1. Definition. A mapping f of a semi-uniform space (P, %) into a semi-
uniform space (Q, ¥") is said to be uniformly continuous if for each Vin ¥~ there
exists a U in % such that (x, y> e U implies {fx, fydDe V. A semi-uniformity Y is
said to be uniformly finer than a semi-uniformity ¥~, and ¥” is said to be uniformly
coarser than %, if they are for the same set, say P, and the identity mapping of
{P, %) onto (P, ¥ ) is uniformly continuous. Finally a uniform homeomorphism
is a one-to-one mapping of a semi-uniform space (P, %) onto a semi-uniform space
{Q, %" such that both fand f~! are uniformly continuous.

Thus a mapping f: (P, d,) = {P,, d,) for semi-pseudometric spaces is uniformly
continuous (in the sense of Definition 18 B.14) if and only if f: (P, %,) —
— {(P,, %, is uniformly continuous, where %, is the semi-uniformity induced by d,.

‘Before proceeding we shall prove various characterizations of uniform continuity
which will usually be employed without any reference.

23 C.2. Theorem. Suppose that [ is a mapping of a semi-uniform space (P, U)
into a semi-uniform space {Q, ¥">, ' is a base for % and ¥’ is a sub-base for ¥".
Each of the following conditions is equivalent to the uniform continuity of f-

(a) for each Vin ¥ there exists a U in % such that (gr f x gt f)[U] < V;

(b) (erf x grf)" ' [V]e¥ for each V in ¥

(c) (erf x grf) "' [V]e% for each Vin ¥;

(d) for each Vin ¥ there exists a U in %' such that (gr f x gr f)[U] = V, i.e.
fTU[x]] = V[fx] for each x in P.

Proof. For brevity let & stand for the relation gr f x gr f. Thus Dh = P x P,
Eh = Q x Q and h{x, y> = {fx, fy). — L Since the implication ({x, y)e U=
= {fx, fy) € V) is equivalent to h[U] <= V, conditions (a) is merely a restatement of
the definition. — II. Since % is a filter on P x Pand h[U] = Vifand onlyif h™'[V]>
> U (because Dh = P x P), condition (b) is equivalent to condition (a). — III
Obviously (b) implies (c). If (c) is fulfilled and Vis an element of ¥, then there exists
a finite family {V; | i < n} in ¥ such that N{V;} = V¥; by (c) h~'[V;] € % for each i,
hence N{h~'[V;]} e % (% is a filter) and finally h~'[V] belongs to % because % is
a filter on P x P and h™'[U] > k™' [N{V:}] = N{h~'[V.]}. — IV. Clearly (a) imp-
lies (d), for if A[U] < V for some U e %, then we can choose a U’ in %’ with U’ < U;
clearly h[U'] < V). Assuming (d), if V is any element of ¥°, we can choose finite
families {V/;} in ¥” and {U;} in %’ such that N{V;} € V and h[U;] < V, for each i;
clearly U = N{U;} € % and h[U] = V, which establishes (d) = (a).

23 C.3. Theorem. A semi-uniformity ¥  is uniformly coarser than a semi-uni-
Sormity U if and only if v < %.

23 C.4. Theorem. The composite of two uniformly continuous mappings is
a uniformly continuous mapping; more precisely, if f:{(P,U) = {Q,¥") and
9:€0Q, 7> = (R, ) are uniformly continuous mappings, then g o f: (P, %) —
— {R, W) is also a uniformly continuous mapping.
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Proof. Put h=g.of If We#", then V=(grg x grg)"' [W]e¥ because
g is uniformly continuous, and U = (gr f x gr f)~' [V] € % because f is uniformly
«continuous. But clearly U = (gr h x gr h)~' [W], which establishes that h is uni-
formly continuous.

23 C.5. Theorem. The identity mapping of a semi-uniform space onto itself
is a uniform homeomorphism. If f is a uniform homeomorphism then f~! is also
a uniform homeomorphism. If f and g are uniform homeomorphisms and E*f =
= D*g, then g o f is also a uniform homeomorphism. It follows that the relation
E{(P, Q) l there exists a uniform homeomorphism of P onto Q} is an equivalence
on the class of all semi-uniform spaces.

Proof. The first two statements are obvious, and to prove the third one it is suf-
ficient to observe that (g o f)™' = f"'og~! and to apply 23 C.4 to both g o fand
flog ™t

Recall that if we say that a semi-pseudometric space (P, d) has a property for
closure spaces it is to be understood that the induced closure space (P, u) has this
property, and if a mapping f for semi-pseudometric spaces has a property defined for
closure spaces it is to be understood that f transposed (7 B.6) to a mapping for closure
spaces has this property.

23 C.6. Conventions. If we say that a semi-uniform space (P, %) has a pro-
perty defined for closure spaces it is to be understood that the induced closure space
has this property, e.g. a semi-uniform space (P, %) is discrete means that the induced
closure space is discrete. Similarly, a semi-uniformity % is finer than a semi-uniformity
¥" means that the closure induced by % is finer than the closure induced by ¥". If f
is a mapping of a semi-uniform space {P,, %, into a semi-uniform space {P,, %,),
then the mapping f: {P,, u,y — {P,, u,», where u; is the closure induced by %,,
is termed ftransposed to a mapping for closure spaces, and if we say that a mapping /'
for semi-uniform spaces has a property defined for mappings for closure spaces,
it is to be understood that f transposed to a mapping for closure spaces has this
property; e.g. f:<{Py, U,> = {P,, %,) is continuous means that f: (P, u;) —
— (P,, u,> is continuous. Finally, if we say that a semi-pseudometric space has
a property defined for semi-uniform spaces it is to be understood that the induced
semi-uniform space has this property, and a similar convention is used for mappings.

23 C.7. Theorem. Every uniformly continuous mapping is continuous and every
uniform homeomorphism is a homeomorphism.

Corollary. If a semi-uniformity % is uniformly finer than a semi-uniformity ¥,
then % is finer than ¥ .

Proof. It is sufficient to show that every uniformly continuous mapping is con-
tinuous. Suppose that f: (P, %) — {(Q,¥") is uniformly continuous; we have to
show that the mapping f: (P, u) — (P, v) is continuous, where u and v are the in-
duced closures. By the uniform continuity of f, U = (f x f)~' [V] € % for each V
in 77, but clearly U[x] = f~'[V[fx]] for each x in P. Since the sets of the form
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V[fx], Ve ¥, form a neighborhood system at x in (P, v}, and the sets U[x], U € %,
form a neighborhood system at x in {P, u) (we only need that U[x] are neighbor-
hoods), f'is continuous by 16 A.4,

If % and ¥ are distinct semi-uniformities inducing the same closure u for
a set P, then the identity mapping ] :<{P, %) — (P, ¥ ) is a homeomorphism
but either ] : (P, %) — (P, ¥") or its inverse |: (P, ¥"> — (P, %) is not uniformly
continuous. Thus a homeomorphism need not be uniformly continuous.

23 C.8. Suppose that f is a continuous mapping of a closure space (P, u) into
a closure space {Q,v>, U is the largest (= uniformly finest) continuous semi-
uniformity for {P,u) and ¥ is a continuous semi-uniformity for {Q,v). Then
fiKP, Uy - LQ,v") is uniformly continuous.

Proof. If Ve ¥, then V is a semi-neighborhood of the diagonal of {(Q,v)> x
x {Q, v) by 23 B.2, and f being continuous, (f x f)~' [U] is a semi-neighborhood
of the diagonal in (P, u)> x (P, u); hence, by 23 B.2, U belongs to %.

23 C.9. It is often rather difficult to decide whether or not two semi-uniform
spaces are uniform homeomorphs of each other. A uniform property is a pro-
perty is a property P such that if P possesszs Y then each uniform homeomorph
of P also possesses P. To show that two semi-uniform spaces are not uniformly
homemorphic it is sufficient to find a uniform property which is possessed by one
space but not by the other. For example, a semi-uniformity for a set P is said to be
uniformly discrete if it contains the diagonal of P x P. Clearly “to be uniformly
discrete” is a uniform property. Thus a uniformly discrete semi-uniform space is
uniformly homeomorphic to no semi-uniform space which is not uniformly discrete.
Next, it has already been shown (23 A.2) that a discrete semi-uniformity for an infinite
set need not be uniformly discrete. Thus there exist two discrete semi-uniformities
for an infinite set P which are not uniformly homeomorphic. A less trivial example
may be in place. A semi-uniformity % for a set P is said to be totally bounded if for
each U in % there exists a finite subset X of P such that U[X] = P. Obviously “to
be totally bounded” is a uniform property. It may be shown that R is not totally
bounded but every bounded subset of R endowed with the metric semi-uniformity
is totally bounded (25 B.16). Thus, for example, R and ]| —1, 1 [ are not uniformly
homeomorphic but they are homeomorphic (e.g. {x > x.(1 + |x|)™* | xeR} : R >
-] 1, 1] is a homeomorphism).

The following theorem describes uniform continuity in terms of uniformly con-
tinuous functions. The simple proof is left to the reader.

23 C.10. Theorem. Suppose that f is a mapping of a semi-uniform space { P, U >
into another one {P,, U,», M, is the set of all uniformly continuous semi-pseudo-
metrics for {(P;, Uy and U, is generated by a collection M, of pseudometrics. Then
each of the following two conditions is equivalent to the uniform continuity of f:

(@) if de M, then do(grfx grf)edy;

(b) ifde M, then do(gr f x grf)e H,.
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23 C.11. Definition. The class of all semi-uniformities ordered by the relation
{% is uniformly finer than ¥"} will be denoted by U. Given a set P, the ordered subset
U consisting of all semi-uniformities for P will be denoted by U(P). The set of all
uniformly continuous mappings of a semi-uniform space P into another one Q will
be denoted by U(P, Q). Occasionally we will use the letter U to denote the class of.
all semi-uniform spaces.

Remarks. (a) It may be in place to recall that C denotes the class of all closure
operations ordered by the relation {u is finer than v}, and C(P, Q), where P and Q
are closure spaces, denotes the set of all continuous mappings of P into Q. In ac-
cordance with earlier conventions, the symbol C(P, Q) is also meaningful if P and Q
are semi-uniform spaces or semi-pseudometric spaces; e.g. if (P, %) is a semi-
uniform space and {Q, d) is a semi-pseudometric space then C({P, ), {Q, d)) is
the set of all continuous mappings of (P, 2) into {(Q, d); if u is the closure induced
by % and v is the closure induced by d then E{(f, f: (P, u) > <Q, v)) | fe C({P, %>,
<Q, d))} is a one-to-one relation ranging on C({P, u), (P, v)). Similarly, U({Py, d,),
{(P,, dz)) is meaningful if d; are semi-pseudometrics; it denotes the set of all uni-
formly continuous mappings of (P, d,) into {(P,, d,). If %; is the semi-uniformity
induced by d;, then

E{<fif:1 <Py, Uy) = Py, U3)) | fe U((Py, dy), (P3, dy))}

is a one-to-one relation ranging on U({P,, %), {P,, U,)).

(b) Theorem 23 C.4 can be restated as follows: the composition of mappings is
a strongly associative partial composition on the class of all uniformly continuous
mappings.

D. SUBSPACES, SUMS AND PRODUCTS

Much of the introduction to Section 17 concerning the constructions for closure
spaces may serve as a motivation for the definitions given below; it is only necessary
to replace the expressions closure space, closure operation, continuous mapping
and ‘“‘coarser than” by the corresponding expressions for semi-uniform spaces,
that is, semi-uniform space, semi-uniformity, uniformly continuous mapping and
“uniformly coarser than”.

23 D.1. Definition. If (P, %) is a semi-uniform space and Q < P, then the col-
lection [#%] n (@ x Q) (consisting of U n(Q x Q), U e %) is obviously a semi-
uniformity for Q which is called the relativization of 4 to Q; the corresponding
semi-uniform space is said to be a subspace of {P,%). A class of semi-uniform spaces
is said to be hereditary if, with each space 2, it contains all subspaces of 2.

As in the case of closure spaces a subspace of a space is uniquely determined by the
underlying set.

23 D.2. Suppose that {Q,?") is a subspace of a semi-uniform space {P,U).
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Then
(a) The closure induced by ¥ is a relativization of the closure induced by U;

(b) ¥ is the unique uniformly coarsest (= smallest) semi-uniformity for Q which
renders the identity mapping of Q into (P, ) uniformly continuous (compare
with 17 A2).

(¢) If R = Q, then (R, # ) is a subspace of {Q, ¥") if and only if (R, W) is
a subspace of (P, U).

The proof is straightforward and therefore left to the reader.

In connection with statement (a) we shall prove the following result:

23D.3. If {(Q,v) is a subspace of a semi-uniformizable closure space (P, u)
and if a semi-uniformity ¥ induces v, then ¥ is a relativization of a semi-uniform-
ity inducing u.

Proof. Let %, be the largest continuous semi-uniformity for (P, u) (see 23 B.2)
and put % = [¥"] U [%,] (= the collection of all VL U,, Ve ¥, U, € %,). It is
easily seen that % has the required properties.

In accordance with the general description of the restriction of a mapping we intro-
duce the following definition (compare with definition 17 A.12 of the restriction of
mappings for closure spaces).

23 D.4. Definition. The restriction of a mapping f for semi-uniform spaces is
a mapping f: # — 2 such that 2 is a subspace of D*fand 2 is a subspace of E*f.

Remark. As in the case of closure spaces, the concept of a subspace was defined
in such a manner that 23 D. 6 hold. A restriction of a mapping f for semi-uniform
spaces is a mapping g for semi-uniform spaces such that the graph of g is a restriction
of the graph of f, D*g is a subspace of D*fand E*g is a subspace of E*f; if D*g =
= D*fthen g is a range-restriction, and if E¥g = E*fthen g is a domain-restriction.
In accordance with the general rule 7 B. 5, the extension of a mapping g for semi-
uniform spaces is any mapping f such that g is a restriction of f. A uniform em-
bedding is a mapping f for semi-uniform spaces ‘such that the range-restriction f:
D*f — Ef is a uniform homeomorphism (where Ef is considered as a space).

23 D.5. Every restriction of a uniformly continuous mapping is a uniformly
continuous mapping. — Obvious.

23 D.6. A mapping f of a semi-uniform space P into a semi-uniform space Q
is uniformly continuous if and only if the range-restriction of f to a mapping of P
onto the subspace Ef of Q is uniformly continuous.

Proof. “Only if” follows from 23 D.5 and “if” is obvious.

23 D.7. If g is a restriction of a mapping f for semi-uniform spaces and g, and f,
are the transposes of f and g to mappings for closure spaces, then g, is a restriction
of fi. — Obvious.
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Remark. Sometimes we shall need the following immediate consequence of the
definitions: An injective mapping of a semi-uniform space (P, %) into a semi-uniform
space {Q, ¥") is a uniform embedding if and only if f is uniformly continuous and
there exists a sub-base %’ for % such that for each U in %’ there exists a ¥V in ¥~
with (f x f)[U] = V n (Ef x Ef).

Now we proceed to sums of semi-uniform spaces.

23 D.8. Definition. The sum of a family {{(P,, U,y |ae A} of semi-uniform
spaces, denoted by Z{(P,, %,)}, is the semi-uniform space {P, %) where P = Z{P,}
and %, called the sum semi-uniformity, is the collection of all subsets of P x P con-
taining a set of the form

(%) U{(inj, x inj,) [U,] | a € 4}
where U, € %, for each a in A.

Of course we must show that % is actually a semi-uniformity, that is, that the
relations of the form () form a base of a semi-uniformity. By virtue of 23 A.4 it
is sufficient to show that each relation (*) is a vicinity, that is, contains the diagonal,
and U~ is of the form () whenever U is of that form. But this is almost self-evident.

23 D.9. Theorem. Let {P, %) be the sum of a family {(P,,, U [ ae A} of semi-
uniform spaces. Then

(@) If u, is the closure induced by %, for each a, then the sum closure T{u,}
is induced by %.

(b) The mappings inj, : {P,, %,» — {P, %) are uniform embeddings (which will
be called the canonical embeddings).

(c) % is the uniformly finest semi-uniformity for P such that all the mappings
inj, : {P,, U,y — (P, %) are uniformly continuous.

(d) A mapping f of (P, %) into a semi-uniform space {Q,¥ ) is uniformly
continuous if and only if all the mappings foinj, : (P, %> — {Q, ¥ are uni-
Jormly continuous.

Proof. Denote by P, the set inj, [P,] = (a)x P, and let %, be the relativization
of % to P,. If {U,} is a family such that U, e %, for each a and if U is the cor-
responding set (x), then U n (P, x P,) = (inj, x inj,) [U,]. It follows that inj, :
: (P, Uy — {P,, U, is a uniform homeomorphism for each a (which proves (b))
and U{P, x P.} belongs to %. Since {P,} is a disjoint family, we find that each set P,
is simultaneously open and closed in the space (P, %). It follows that the closure
induced by % coincides with the sum closure X{u,}.

Statement (c) is almost evident; indeed, if ¥” is a semi-uniformity for P such that
all mappings inj, : (P, %,) — (P, ¥") are uniformly continuous, then necessarily ¥~
contains each set of the form (), but the sets of the form () form a base for #
and hence % < . It remains to prove (d). If f is uniformly continuous then each
mapping in question is uniformly continuous as the composite of two uniformly
continuous mappings. Conversely suppose that each composite in question is uni-
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formly continuous and let ¥ be an element of ¥". Since each composite is uniformly
continuous we can choose a family {U,} such that U, e %, and

(foinj, x foinj,) [U,] = V
for each a. If U is the set (x) corresponding to {U,}, then clearly (f x f)[U] = V;
this establishes the uniform continuity of f.

Now we shall turn to products.

23 D.10. Definition. The product of a family {{(P,, %,y | a € A} of semi-uniform
spaces, denoted by II{<P,, %,» | a € A} is defined to be the semi-uniform space
(P, %) where P is the product of the family {P,} of the underlying sets, and %, called
the product semi-uniformity, is the collection of all subsets of P x P containing
a set of the form

(%) E{<x, > |<x, > eP x P,aeF = (pr,x,pr,y> e U}
where F is a finite subset of 4 and U, e %, for each a. Sets of the form () are then
called the canonical elements of the product semi-uniformity.

It must be shown that the collection of all canonical elements of % is a base for
a semi-uniformity. It is sufficient to show that the collection of all sets of the form (%)
with F one-point form a sub-base for a semi-uniformity; but this follows from the
Corollary of 23 A.4. The main properties of products are summarized in the following.

23 D.11. Theorem. Let (P, %) be the product of a family {{P,, U,y |a € A}
of semi-uniform spaces. Then

(a) The product closure is induced by %, more precisely, if u, is induced by
U, for each a, then the product closure I'I{u,,} is induced by %.

(b) Each mapping pr, : (P, UY — {P,, U,y is uniformly continuous (and called
the projection of (P, ¥ into {P,, %,)).

(c) U is the uniformly coarsest (= smallest) semi-uniformity such that all the
mappings pr, : {P, %> - {(P,, %, are uniformly continuous.

(d) A mapping f of a semi-uniform space {Q,¥") into (P, U) is uniformly
continuous if and only if all the mappings pryof:{(Q,¥"> = (P, U, a€c A, are
uniformly continuous.

(e) Fix an a in A.If the projection pr, : {P, Uy — (P, U, is surjective (in parti-
cular,if P + Q), then a mapping h of {P,, %,y into a semi-uniform space (R, #")
is uniformly continuous if and only if the composite hopr, : (P, %> - {R, W)
is uniformly continuous.

Proof. I. Statement (a) will follow from the following observation: If U, is any
subset of P, x P, and x is any point of P then the set

(++) E{y|yeP,pr,ye U[pr, x]}
coincides with the set
(#xx) (E{<x, y> | <x, y> € P x P, (pr,x, pr, y> € U}) [x] .

Indeed, given x € P, the sets (xx) with a in A and U, in %, form a local sub-base
at x in (P, I{u,}) (because [%,] [pr, x] is a neighborhood system at pr,x in
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{P,, u,)) and the sets (***) with a in A and U, in %, form a local sub-base at x in
P, u) (because the sets E{(x, y) | (x, y> € Px P, {pr, x, pr, y) € %,} form a sub-
base for %).

II. Let f, be the projection of (P, %) into {P,, %,»; we have (f, x f;)"' [U,] =
= E{{x, y> | <x, y> € P x P,{pr, x, pr, y> € U,} € % for each U, in %, and
this means that each f, is uniformly continuous and establishes statement (b). If %'
is any semi-uniformity such that all mappings pr, : (P, %') - {P,, %,), a € A, are
uniformly continuous, then necessarily every set

E{<x, y> | (x, )€ P x P, {pr,x, pr,y) € U}

with g in A and U, in %, belongs to %’; but these sets form a sub-base for % and hence
U < %'; this shows that %' is uniformly finer than % and establishes statement (c).

IIL. The proof of (d): if fis uniformly continuous, then each mapping in question
is uniformly continuous as the composite of two uniformly continuous mappings
(the projections are uniformly continuous by (b)). Conversely, suppose that all
the mappings in questioh are uniformly continuous. Let %, be the sub-base for %
consisting of all the sets

U, =E{Kx, > | (x,y>€P x P,{pr,x,pr,y> €U}, ac 4, U,e,.

By 23 C.2 it is sufficient to show that (f x f)~' [U;] € ¥ for each a in A and U,
in %,. But this is almost self-evident as (f x )™ [Uz] = (pryo f X praof)™* [U,]
and pr,. f is a uniformly continuous mapping of {(Q, ¥"> into {(P,, %,).

IV. It remains to prove (e): If  is uniformly continuous then the mapping h . pr,
of (P, %) into (R, #) is uniformly continuous as the composite of two uniformly
continuous mappings (by 23 C.4), namely of the projection of (P, %) into {(P,, %,)
and h. Conversely, suppose that k = hopr,:<{P, %> — (R, # ) is uniformly
continuous and the projection f, into {P,, %, is surjective. Clearly (k x k)™' [W] =
=(f. x f)"'[(h x B)~ [W]] for each W in #". Now the proof will be accom-
plished if we show that U, = P, x P, (f, x f.)”'[U,] € % implies U, € %, provided
that f, is surjective. But this is evident.

23D.12, If {P,,} and {Q,} are families of semi-uniform spaces such that Q, is
a subspace of P, for each a, then the product of{Qa} is a subspace of the product
of {P,}. — Evident.

23 D.13. Definition. The product of a family {f,} of mappings for semi-uniform

spaces, denoted by II{f,}, is defined to be the mapping of II{D*f,} into IT{E*f,}
which assigns to each point {x,} the point {f, x,}; thus

M{f} = (Mfer £}, T{D*}, TH{EL) -

The reduced product of a family {f,} of mappings for semi-uniform spaces is defined
if and only if all £, have a common domain carrier, say P, in which case the reduced
product is that mapping of P into IT{E*f,} which assigns to each x € P the point {f,x};
thus the graph of the reduced product is the relational reduced product of the graphs.
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It is to be noted that if fis the product (reduced product) of a family {f,} of map-
pings for semi-uniform spaces and if g, is f, transposed to a mapping for closure
spaces and g is f transposed to a mapping for closure spaces, then g is the product
(reduced product) of {g,}. By 17 C.13 the product (reduced product) of conti-
nuous mappings is a continuous mapping. The same is true for mappings for semi-
uniform spaces. '

23 D.14. Theorem. The reduced product f of a family {f‘,] a € A} of mappings
for semi-uniform spaces is uniformly continuous if and only if all the mappings
fa are uniformly continuous.

Proof. Since clearly f, = {pr, . gr f, D*f,, E*f,> for each a in A, the result
follows form 23 D.11 (d).

23 D.15. Theorem. Let f be the product of a family {f, | a € A} of mappings for
semi-uniform spaces.If all the f, are uniformly continuous, then f is also uniformly
continuous. Conversely, if Df + 0 and f is uniformly continuous, then all the f,
are uniformly continuous.

Proof. I. For each a in 4 let g, denote the mapping f, o (pr, : D*f — D*f,).
Evidently f is the reduced product of the family {g, | a € A}. According to the pre-
ceding theorem the mapping f is uniformly continuous if and only if all the map-
pings g, are uniformly continuous. — II. Now if all the f, are uniformly continuous,
then all the g, are uniformly continuous as composites of uniformly continuous
mappings, and finally fis continuous by I. — III. Now let f be uniformly continuous.
By I all the g, are uniformly continuous. If in addition Df + @, then the mappings
pr, : D¥f — D*f, are surjective and the uniform continuity of £, follows from the
uniform continuity of g, by 23 D.11 (e).

23 D.16. Theorem. Let f be the product of a family of mappings {f,}. If each f,
is a uniform homeomorphism or a uniform embedding then f has the same pro-
perty. Conversely, if Df &= 0 and f is a uniform homeomorphism or a uniform
embedding then each f, has the same property.

Proof. Applying 23 D.15 to both fand f~! we obtain the statement concerning
uniform homeomorphisms. Statements concerning uniform embeddings follow
immediately from the corresponding statements for uniform homeomorphisms and
23 D.6.

Remark. Inthis connection, one may show that the operation of forming products
is commutative in a certain sense, namely if {P, | a € A} is a family of semi-uniform
spaces and ¢ is a bijective mapping of A, then II{P,} and II{P,,} are uniform ho-
meomorphs of each other.

23 D.17. Definition. In agreement with the notation for the products of closure
spaces, we shall denote the product II{P | a € A} of semi-uniform spaces by P*.

It is apparent from 23 D.16 that P4 and Q® are uniformly homeomorphic
provided that P and Q are uniformly homeomorphic and 4 and B are equipollent.
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The next theorem implies that every semi-uniform space can be uniformly embedded
into the product of semi-pseudometrizable semi-uniform spaces.

23 D.18. Theorem. Suppose that {%, l ae€ A} is a non-void family of semi-
uniformities for a set P and % is the smallest semi-uniformity containing all the %,
(thus U{%,} is a sub-base for U by the corollary to 23 A.4). For each a in A let f,
be the identity mapping of (P,%) onto {P,%,>. The reduced product f of
{f.| a € A} is an embedding (of <P, %) into II{<P, U,y | a € A}).

Corollary. Suppose that a semi-uniformity % for a set P is generated by
a collection M of semi-pseudometrics. For each d in .# let U, be the semi-uniformity
induced by d and f; be the identity mapping of {P,¥) onto {P, %;>. Then the
reduced product of the family {f, | d € #} is an embedding.

In particular, every semi-uniform space admits an embedding into the product
of a family of semi-pseudometrizable semi-uniform spaces (use 23 A.15).

Proof of 23 D.18. Obviously the mapping f is injective, and by 23 D.14 £ is uni-
formly continuous because each f; is uniformly continuous. It remains to find a sub-
base %’ for % so that each set [ f x f][U], U e %', contains a set of the form V n
n (Ef x Ef) for some element V of the semi-uniformity of E*f. Let %' = U{%,};
ifUed’', then U € %, for some a and clearly we can take

V= E{{x, y> | {x, y> € P* x P4 {pr,x, pr, y) € U}
(indeed, (f x f)[U] = Vn (Ef x Ef)).

Recall that, by 18 A.17, a pseudometric d for a closure space {P, u) is continuous
(i.e. the closure induced by d is coarser than u) if and only if the function d : (P, u) x
x (P, u) = R is continuous. The final theorem asserts a similar result for uniform
continuity.

23 D.19. Theorem. In order that a pseudometric d for a semi-uniform space
(P, %) be uniformly continuous it is necessary and sufficient that the function
d:{P, Uy x (P,%) — R be uniformly continuous.

Proof. If d:{P, %) x {P,%) — R is uniformly continuous, then for each
r > Othere exists a U in % such that {x,, x,) € U, {y;, y,> € U implies |d<x1, X, —
— d{y1, y2)| < r;in particular, if y, = y,, then {y,, y,) €U and d{yy, y,> = 0,
and hence (x,, x,)» € U implies d{x,, x,> < r which proves that d is a uniformly
continuous semi-pseudometric for {P, %). Notice that the triangle inequality was
not used. Conversely, suppose that d is a uniformly continuous pseudometric. We
must show that for each » > O there exista U in % and a V in % so that {x;, y,> € U,
(X3, 2 € V implies |d<x,, x,> — d{y;, y,»| < r. Choose a positive s such that
2s £ rand a U in % such that {z,, z,> € U implies d{(z,, z,) < 5. Now, if (x,, y1> €
€ U and <{x,, y,) € U, then (by 18 A.11)

ld<x1, y2> — d{yy, )’z>| Sdlx, 1) +dlx3, Y20 <25 = r
which establishes the uniform continuity of the function d on (P, %) x (P, %).
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Each semi-pseudometric d for a set P induces a semi-uniformity %; the collection
ofall U, = E{(x, » | dix, y> < r}, r > 0, is a base for %. If d is a pseudometric,
that is, if it fulfils the triangle inequality, then

(u 3) for each U in % there exists a Vin % such that Vo V< U.

Indeed, if U e %, then U, < U for some r > 0 and we may put V = U, where s
is any positive real less than 271 . r; in fact, by the triangle inequality, U, . U, = U,,.
In this section the scmi-uniformities % satisfying (u 3), the so-called uniformities,
will be studied. Roughly speaking, uniformities are related to semi-uniformities as
pseudometrics to semi-pseudometrics. Pseudometrics play the same part in the
theory of uniformities as semi-pseudometrics do in the theory of semi-uniformities,
e.g. every semi-uniformity is generated by the collection of all uniformly continuous
semi-pseudometrics and every uniformity is generated by the collection of all uni-
formly continuous pseudometrics. A semi-uniformity has a countable base if and only
if it is semi-pseudometrizable, and a uniformity has a countable base if and only
if it is pseudometrizable, i.e. induced by a pseudometric. We shall see that axiom
(u 3) has topological consequences. Without doubt, uniformizable closures, i.e. the
closures induced by a uniformity, form the most important class of closure opera-
tions. We know that semi-uniform spaces enable one to define uniformly continuous
mappings in the most general situation; however, uniformly continuous mappings
of ‘'uniform spaces have further important extension properties which are often
included in the intuitive content of a uniformly continuous mapping.

In subsection A we shall prove some topological conclusions of axiom (u 3), we
shall clarify the role of pseudometrics in the theory of uniform spaces (as indicated
above) and prove that the class of all uniform spaces is completely productive, here-
ditary and closed under formation of sums.

If % is a semi-uniformity then there exists a (unique) largest uniformity contained
in % which is said to be the uniform modification of %. Uniform modifications
are introduced and studied in subsection B.

If ¢ is a topological group and % is a local base at the unit element, then the
collection of all Uy = E{(x, y> | x™*.yeU},Ue®, is a base for a uniformity &
called the left uniformity of %, and the collection of all Uy = E{(x, y> | x .y * e U},
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U e %, is a base for a uniformity £ called the right uniformity of ¢. The union# v %
is a sub-base for the so-called two-sided uniformity of ¢. These uniformities are
called the group uniformities of %. It turns out that all the three group uniformities
induce the closure structure of %. Properties of group uniformities are examined
in subsection C. .

In 19 B.17 we introduced the closure of uniform convergence for the set F(&, )
of all mappings of a struct & into a commutative topological group ¢ and we
proved that a uniform limit of continuous mappings is a continuous mapping. In
subsection D we shall endow the set F(%, 2) of mappings of a struct & into a uni-
form space £ with a uniformity such that, if & is a closure space, then C(&, #) is
closed in F(&, #), i.e. the uniform limit of continuous mappings is continuous, and
if & is a uniform space, then U(¥, 2) is closed in F(&, #), i.e. the uniform limit
of uniformly continuous mappings is uniformly continuous. We shall show that the
result of 19 B.17 mentioned above is a corollary of results of subsection D.

The concluding subsection E is concerned with the description of uniformities
by means of uniform collections of covers. We shall introduce the important con-
cepts of a uniform cover of a uniform space and a uniformizable cover of a closure
space (this latter is often termed a normal cover).

A. UNIFORMITIES AND PSEUDOMETRICS

24 A.1. Definition. A uniformity for a set P is a semi-uniformity % for P satis-
fying condition (u 3) above. A uniform space is a semi-uniform space (P, %)
such that % is a uniformity. Recall that a closure operation induced by a semi-uni-
formity is said to be semi-uniformizable. Naturally, a closure operation induced
by a uniformity will be called uniformizable, and a set endowed with a uniformiz-
able closure operation will be called a uniformizable space.

Uniformizable spaces will be studied rather extensively in Section 28. Nevertheless,
to clarify the force of condition (u 3), in the proposition which follows we shall
prove several properties of uniformizable closures. It is to be noted that all of these
properties also follow immediately from the description of a uniformity in terms of
uniformly continuous pseudometrics (24 A.9), the proof of which depends essentially
upon the pseudometrization lemma (18 B.10) where the proof is rather technical;
as a result, the proofs of simple topological consequences of condition (u 3), stated
in the next proposition, may not be clear. Therefore we prefer to give a direct proof.
Let us recall that a semi-uniformizable space need not be topological, and the ele-
ments of a semi-uniformity are semi-neighborhoods of the diagonal (relative to the
product of the induced closures) and need not be neighborhoods.

24 A.2. Let % be a uniformity for a set P and let u be the closure induced by %.
Then

(a) <P, u) is a topological space (thus every uniformizable space is topological);
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(b) The collection of all closed (in (P, u)> x (P, u)) elements of U is a base
for U;

(c) The collection of all open (in {P,u) x (P, u)) elements of % is a base
Jfor %, in particular every element of % is a neighborhood of the diagonal.

Proof. (a) First let us recall that (by 23 B.5) we have uX = N[%] [X]
(= N{U[X]|Ue%})foreach X = P.FixaY < Pand a U e %. It must be shown
that uuY < U[Y]. Choose Vin % so that Vo V < U. We have uY < V[Y]and hence
uuY < uV[Y]; but uV[Y] < V[V[Y]] = V. V[Y] = U[Y]

(b) Since (P, u) is a topological space, (P, u) x (P, u) is also topological,
and consequently to prove (b) it.is sufficient to show that each element U of % con-
tains the closure of an element V of %. But if Ve % is chosen symmetric and such
that Vo Vo V < U, then the closure of V is contained in Vo Vo ¥V (by 23 B.6) and
hence in U.

(c) Since (P,u) x (P, u) is topological, to prove (c) it is sufficient to show that
the interior of any element U of % belongs to %. Choose a symmetric element V of %
such that Vo VoV < U. It will be shown that V < int U. By lemma 23 B.7 we have

VoVoV=U{I[x] x V[y]|<x,»>eV}.

1t follows that Vo Vo V, and hence U, is a neighborhood in (P, ud x (P, u) of
each point {x, y) of V.

Corollary. Every uniformizable space is locally closed, i.e., every neighborhood
of any point x of a uniformizable space contains a closed neighborhood.

The next proposition gives a necessary and sufficient condition for a semi-uni-
formity induced by a semi-pseudometric to be a uniformity. As a consequence, using
the rather profound theorem (18 B.16), we obtain a pseudometrization theorem for
semi-uniform spaces.

24 A.3. A semi-pseudometric d induces a uniformity if and only if for each
positive real r there exists a positive real s such that d{x, y) <s, d{y,z> <s
imply d{x, z> < r. In particular, a semi-uniformity induced by a pseudometric
is a uniformity.

Proof. Let d be a semi-pseudometric for a set P, and let % be the semi-uniformity
induced by d. — 1. First suppose that % is a uniformity. Given an r > 0, we can choose
a U in % such that (x, y> e U o U implies d{x, y> < r, and an s > 0 such that
d{x, y) < simplies (x, y> e U. Nowifd{x, y> < sand d{y, z) < s,then{x,z)e U
and hence d (x, z) < r, which shows that the condition is fulfilled. — II. Now suppose
that the condition is fulfilled and U is any element of %. Choose a positive r such that
d{x, y> < r implies {x, y) € U. By the condition we can find a positive s such that
d{x, y> < s, d{x, y) < s imply d{x, z) < r. Now if V is any element of ‘% such
that {x, y> € V implies d{(x, y> < s, then V.V < U; indeed, if {(x,z>eV .V,
then (x, y) €V, {(y, z) € V for some y, and hence d{x, y> < s, d{(y, z) < s; this
implies d{x, z) < r which yields {x, z) e U.

27—Topological Spaces
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24 A.4. Pseudometrization theorem. A semi-uniformity % is induced by a pseudo-
metric (i.e., is pseudometrizable) if and only if % is a uniformity with a countable
base.

Proof. It has already been shown (23 A.8) that a semi-uniformity % is induced
by a semi-pseudometric if and only if % has a countable base. Combining this with
24 A.3 we find that % is a uniformity with a countable base if and only if % is induced
by a semi-pseudometric d satisfying this condition: for each r > 0 there exists an
s > O such that d{x, y> < s, d{(y, z) < s imply d{x, z) < r. By 18 B.16, however,
this condition is necessary and sufficient for d to be uniformly equivalent to a pseudo-
metric.

The concepts of a base and a sub-base for a semi-uniformity are useful in situa-
tions such as the following. To define a semi-uniformity for a set P it is sufficient to
declare an appropriate collection of subsets of P x P to be a sub-base or a base.
To prove that a filter % on P x P is a semi-uniformity for P it is sufficient to show
that a base or a sub-base for % is a base or a sub-base for a semi-uniformity for P.
Finally, to prove that a mapping f of (P, %) into {(Q, ¥") is uniformly continuous
it is sufficient to show that (f x f)~' [V] e % for each V from a sub-base for ¥
In the first two cases it is necessary to use a sufficient condition for a collection of sets
to be a base or a sub-base for a semi-uniformity.

24 A.5. It has been shown that a filter base % on P x P is a base for a semi-uni-
formity if and only if % fulfils conditions (u 1) and (u 2). It is easy to show that
condition (u 3) is necessary and sufficient for a base % for a semi-uniformity to be
a base for a uniformity. Thus conditions (u 1), (u 2) and (u 3) are necessary and suf-
ficient for a filter base on P x P to be a base for a uniformity. Next, it has been shown
(23 A.4) that conditions (u 1) and (u 2) are sufficient for a filter sub-base on P x P
to be a sub-base for a semi-uniformity. It is clear that condition (u 3) is sufficient
for a sub-base for a semi-uniformity to be a sub-base for a uniformity. Thus con-
ditions (u 1), (u 2) and (u 3) are sufficient for a filter sub-base on P x P to be a sub-
base for a uniformity. In particular, the union of a non-void family of uniformities
for a set is a sub-base for a uniformity. We shall need a necessary and sufficient
condition for a filter sub-base on P x P to be a sub-base for a uniformity.

24 A.6. A collection W of sets is a sub-base for a uniformity if and only if W~
is a sub-base for a semi-uniformity and for each Win #  there exists a finite family
{V.} in W such that VoV < W for V.= \{V,}.

Proof. Let 7" be the set of all non-void finite intersections of sets from #". Clearly
#  is a sub-base for a uniformity if and only if ¥~ is a base for a uniformity. If #~
is a sub-base for a uniformity, then ¥~ is a base for a uniformity and therefore ¥~
fulfils (u 3), in particular, if We#” then Vo V < W for some Ve ¥". Conversely sup-
pose that %" is a sub-base for a semi-uniformity and each We #” contains a set Vo V
for some Vin #". It is to be shown that ¥~ fulfils (u3). If Ue ¥, then U =
= N{W, | a € A} for some finite family in #; if {V,} is a family in ¥" such that ¥, .
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o V, = W, for each a4, then ¥ = N\{V,} belongs to ¥ and VoV < V,0 ¥, c W, for
each a and hence Vo V= N{W,} = U.
Combining 24 A.6 with 23 A.5 we obtain the following result:

24 A.7. Theorem. A collection #~ of sets is a sub-base for a uniformity for a set P
if and only if W + 0, each element of W is a vicinity of the diagonal of P x P
and for each W in # there exist finite families {W,} and {W;} in % such that
Ve Wtand V' o V' < W where V= N{W,} and V' = N{W;}.

24 A.8. Theorem. The class of all uniform spaces is hereditary and closed under
formation of products and sums. \

Proof. If VoV U,V =(Q@x Q)uVandU =(@ x Q)nUthen V' V' <
< U’, which shows that the relativization of a uniformity is a uniformity. To prove
that the sum of a family of uniform spaces is a uniform space notice that, in the no-
tation of 23 D.8,if U = {(inj, x inj,) [U,]. V = U{(inj, x inj,) [V,]} and V, - V,=
< U, for each a, then Vo ¥V = U; now apply 24 A.5. Finally, to prove invariance
under products, notice that, in the notation of 23 D.10, the collection %, consist-
ing of all U, = {<x, y> | {pr, %, pr, y) € U,} is a uniformity for IIP, whenever %,
is a uniformity for P,, and J{#_} is a sub-base for the product semi-uniformity %.
By 24 A5 % is a uniformity if each % is a uniformity.

By 23 A.14 every semi-uniformity is generated (in the sense of 23 A.12) by the
collection of all uniformly continuous semi-pseudometrics. Now we shall prove
that a semi-uniformity is a uniformity if and only if it is generated by a collection
of pseudometrics. Thus semi-uniformities are related to uniformities as semi-pseudo-
metrics to pseudometrics.

24 A.9. Theorem. Let # be the collection of all uniformly continuous pseudo-
metrics for a semi-uniform space (P, U). The following conditions are equivalent:

(@) % is a uniformity.

(b) For eachU € % there exists a d in M such that d{x, y) < 1 implies {x, y) e U.

(¢) A generates U (in the sense of 23 A.12).

(d) A subcollection of M generates %.

(e) (P, %) admits a uniform embedding into the product of pseudometrizable
semi-uniform spaces.

Proof. Obviously (b) = (c) =>(d). The implication (d) = (e) follows from 23 D.18,
and (¢) = (a) follows from Theorem 24 A.3 asserting that a semi-uniformity induced
by a pseudometric is a uniformity and Theorem 24 A.8 asserting that every subspace
of a product of uniform spaces is a uniform space. It remains to show that (a) implies
(b). Assuming that % is a uniformity and U is an element of %, we can choose a se-
quence {U,} of symmetric elements of % such that Uy < U and U,y o U,4; = U,
for each n. By 24 A.5 the collection of all U,, is a base for a uniformity ¥~ = % which
is pseudometrizable by 24 A.4. Let d’ be any pseudometric inducing ¥". Since U € ¥,
there exists a positive real r such that d’'{x, y> < r implies {(x, y>eU. Put d =
=rt.d.

27+
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Combining 24 A.9 and 23 C.10 we obtain at once:

24 A.10. Theorem. A mapping f of a semi-uniform space {P, U) into a uniform
space {Q, ¥y is uniformly continuous if and only if d o (gr f % gr f) (= {x, y) -
- d(fx,fy)}) is a uniformly continuous pseudometric for (P, for each uniformly
continuous pseudometric d for {Q, ¥">.

Remark. Notice that Theorem 24 A.2 is a corollary of Theorem 24 A.9 (b).

24 A.11. A semi-uniform space 2 is uniform if and only if 2 admits an embed-
ding into a product of pseudometrizable uniform spaces.

B. UNIFORM MODIFICATION

Let % be a semi-uniformity for a set P. Now consider the set U consisting of all
uniformities contained in %. The set [ is non-void because (P x P) is a uniformity
contained in %. By 24 A.5 the union of U is a sub-base for a uniformity %’ which is
necessarily contained in %, and hence %’ € U. Thus %' is the largest (i.e. uniformly
finest) uniformity contained in % (i.e. uniformly coarser than %).

24 B.1. Definition. The largest uniformity %’ contained in a given semi-uniformity
4 will be called the uniform modification of %, and the elements of %’ will be called
uniform elements of %; the space (P, %) will be called the uniform modification
of {P, U).

24 B.2. Theorem. The uniform modification of a semi-uniformity of (P, U)
always exists. An element U of a semi-uniformity % is uniform if and only if there
exists a sequence {U,} in U such that Uy = U and U,,; o U,y = U, for each n.

Proof. The existence of uniform modifications has been already proved. If U
is a uniform element of a semi-uniformity %, then U belongs to the uniform modifica-
ation %’ of % and hence the required sequence {U,} can be found in %' < %. Con-
versely, if such a sequence {U,} exists and ¥V, = U, n U, !, then clearly ¥V, = V!
and V,yq 0 Vo4y < V, (if we first show that U}, c U, }, < U, ! for each n) and
Vo, = U. By virtue of 24 A.5 the collection of all V, is a base for a uniformity ¥".
Clearly ¥" = % and hence ¥" € %’'. Since U € ¥ we obtain U e #’, which shows that
U is a uniform element of %.

24 B.3. Lemma. Let f be a uniformly continuous mapping of a semi-uniform
space (P, %) into another one {Q,¥ ). If V is a uniform element of ¥, then
(f x N)7' [VI*) is a uniform element of %.

Proof. If ¥ is a uniform element of ¥7, then (by 24 B.2) there exists a sequence
{V,} in ¥ suchthat V, = Vand ¥, V,,; <V, for each n.PutU = (f x f)" ' [V]
and U, = (f x f)"'[V,] for each n. Since fis uniformly continuous, the set U as well

*) Recall that we may write g instead of grg(cf. 7 B.3)
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as the sets U, belong to %. It is easily seen that Uy «c U and U, ., « U,,, € U, for
each n, By 24 B.2 U is a uniform element of %.

24 B.4. Theorem. Suppose that ' is the uniform modification of a semi-uni-
formity % for a set P. Then a mapping f of (P, ) into a uniform space {Q,¥)
is uniformly continuous if and only if the mapping f: (P, U’y - <KQ, ¥ is
uniformly continuous.

Proof. If f: (P, %’') — {Q,¥") is uniformly continuous, then f: (P, %) —
— {Q, ¥ is uniformly continuous because %' = %. Conversely suppose that f :
(P, Uy - {Q, ¥") is uniformly continuous, i.e. (f x f)~' [V] € # for each V
in ¥°. However, each element V of ¥" is a uniform element of ¥~ and consequently
each (f x f)"'[V], Ve ¥, is a uniform element of % (by 24 B.3) and hence belongs
to %'; this shows that the mapping f: (P, %') — <{Q, ¥ is uniformly conti-
nuous.

Corollary. If f is a uniformly continuous mapping of a semi-uniform space
{P,U,> into another one (P,, U,y, and U; is the uniform modification of U;,
then the mapping f: (P, U1 — (P, U5 is uniformly continuous.

Proof. If f is uniformly continuous, then clearly f: (P;, %> — (P, %) is
uniformly continuous and (by 24 B.4) the mapping f: <Py, %' — (P,, Uy is
uniformly continuous.

It is useful to observe that the property of uniform modification stated in 24 B.4
is characteristic for uniform modifications; more precisely, the following theorem
is true.

24 B.S5. Theorem. The uniform modification W of a semi-uniformity U for a set P
is the unique uniformity for P such that a mapping f of (P, %) into a uniform space
{Q, ¥"> is uniformly continuous if and only if the mapping f: (P, %> - {Q, ¥
is uniformly continuous.

Proof. By 24 B.4 the uniform modification of % fulfils the condition. To prove
uniqueness, suppose that uniformities #°;, and #°, fulfil the condition (with #
replaced by #°, and #", respectively). Since ) : (P, #"y> — (P, #",) is uniformly
continuous, by the condition for #°; the mapping ) : (P, %) — (P, #";) must be
uniformly continuous, and by the condition for #°, the mapping ] : <P, #7,) —
— (P, # ;) must be uniformly continuous, i.e., #", > # ,. The same is true with
W, and #", interchanged, i.e., #°y ¢ % ,. Thus #{ =% ,.

Remark. Recall that the topological modification tu of a closure operation u
for a set P is the finest topological closure coarser than u. By 16 B.5 a subset U of P
is a neighborhood of a point x in (P, tu) if and only if there exists a sequence {U,}
of subsets of P such that U, = U for each n, x e U, and U, is a neighborhood of
U, for each n. Compare this result with 24 B.2. Theorem 24 B.5 corresponds to
Theorem 16 B.4, which asserts that the topological modification of a closure opera-
tion u is the unique topological closure for the same set as u, say P, such that a mapping



422 IV. UNIFORM AND PROXIMITY SPACES

f of (P,u) into a topological space 2 is continuous if and only if the mapping
f:{P,tu) - 2 is continuous.

Now we shall describe the uniform modification of a semi-uniformity by means
of uniformly continuous pseudometrics.

24 B.6. Theorem. The uniform modification %' of a semi-uniformity U for
a set P is generated by the collection 4 of all uniformly continuous pseudometrics
Jor (P, U>.

Proof. Let .#’ be the collection of all uniformly continuous pseudometrics for
{P,¥". Since %' is a uniformity, according to 24 A.9 it is generated by the col-
lection .#’. Hence it is sufficient to show that .#’ = .. But this follows from 24 B.4
and the fact that a semi-uniformity induced by a pseudometric is a uniformity
(24 A3); in fact, if %, is the semi-uniformity induced by a pseudometric d, then
by 24B.4 ) : (P, %> — {P, U, is uniformly continuous if and only if J : (P, %') —
— (P, %) is uniformly continuous.

By 23 A.9 auniform collection of semi-pseudometrics is the collection of all uniformly
continuous semi-pseudometrics for a semi-uniform space. We have seen that a semi-
uniform space is completely determined by its uniform collection of semi-pseudo-
metrics and a uniform space is uniquely determined by the collection of all uniformly
continuous pseudometrics (24 A.9). In 23 A.10 a uniform collection of semi-pseudo-
metrics is described without any reference to semi-uniform spaces. Now we shall
describe the collection of all uniformly continuous pseudometrics for a uniform
space without any reference to uniform spaces. First we shall introduce some ter-
minology.

24 B.7. Definition. A uniform collection of pseudometrics is the collection of all
uniformly continuous pseudometrics for a uniform space.

24 B.8. Theorem. A collection # is a uniform collection of pseudometrics if
and only if M is non-void, all the elements of M are pseudometrics for the same set,
say P, and the following two conditions are fulfilled:

(@) ifdye # and d, € M, then d, + d, e M .

(b) if d is a pseudometric for P and if for each positive real r there exists a d’
in # and an s > 0 such that d'{x, y> < s implies d{x, y) < r, thende M.

Proof. First suppose that .# is the collection of all uniformly continuous pseudo-
metrics for a uniform space (P, ). Clearly, {{x, y> =0 [ {(x,y>eP x Ple #
and hencz A + 0.1Ifd,, d,, € A, then by 23 A10,d, + d, is a uniformly continuous
semi-pseudometric for (P, #); but d; + d, is a pseudometric and hence d, + d,
belongs to .#. Finally, it follows from 23 A.10 that condition (b) is fulfilled. The
second part of the proof is an immediate consequence of the proposition which
follows.

24 B.9. Let # be a non-void collection of pseudometrics for a set P and let ¥
be the collection of all the sets of the form E{(x, y> | d<{x,y> <r},de #,r > 0.
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Then ¥ is a sub-base for a uniformity % for P and if M fulfils condition (a) of
24B.8, then ¥ is a base for %. If ¥ is a base for % and M fulfils condition (b)
of 24 B.8, then A is the set of all uniformly continuous pseudometrics.for {P, U).
Proof. By 23 A11 the set ¥ is a sub-base for the semi-uniformity % generat-
ed by #, and, each d € # being a pseudometric, % is a uniformity by 24 A.9. The
remaining statements follow from the corresponding statements of 23A.11,

24 B.10. It may be appropriate to point out that the relation (U — M,y | U is
a uniformity}, where .#,, is the set of all uniformly continuous pseudometrics for
the uniform space (P, %) (P is uniquely determined by %) is a one-to-one relation
ranging on the class of all uniform collections of pseudometrics, and < ¥ if and
only if #, < M.

Now we shall turn to the topological conclusions of the results of this subsection.

24 B.11. Theorem. Suppose that (P, u) is a closure space. There exists a uni-
Jformly finest continuous uniformity % for the space {P,u). The uniformity %
is the uniform modification of the uniformly finest semi-uniformity ¥ for (P, u).
The closure u is uniformizable if and only if u is induced by %. The closure induced
by U is the finest uniformizable closure coarser than u.

Proof. By 23 B.2 there exists the uniformly finest continuous semi-uniformity ¥~
for (P, u). Obviously the uniform modification % of ¥” is the uniformly finest
continuous uniformity for (P, u), and the closure induced by # is the finest uni-
formizable closure coarser than u; in particular, u is uniformizable if and only if %
induces u.

24 B.12. Theorem. Suppose that % is the uniformly finest continuous uniformity
for a closure space (P, u). The set of all uniformly continuous pseudometrics
for {P, U coincides with the set of all continuous pseudometrics for (P, u). Stated

in other words, the uniformly finest uniformity for a closure space (P, u) is gener-
ated by the collection of all continuous pseudometrics for {P, u). — Obvious.

24 B.13. Definition. The uniformizable modification of a closure operation u
is the finest uniformizable closure coarse than u. If (P, u) is a closure space, then
a uniformizable neighborhood of the diagonal of {P, u) x (P, u) is defined to be
an element of the uniformly finest continuous uniformity for <P, u}.

Thus the uniformly finest uniformity for a closure space {P, u) consists of all
uniformizable neighborhoods of the diagonal of <P, u) x (P, u)>. Now we shall
give two descriptions of uniformizable neighborhoods of the diagonal.

24 B.14. Theorem. Let {P,u) be a closure space. Each of the following two
conditions is necessary and sufficient for a subset U of P x P to be a uniformizable
neighborhood of the diagonal of (P, u) x {P,u):

(a) there exists a continuous pseudometric d for (P, u) such that d{x, y) <1
implies {x, y>eU;
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(b) there exists a sequence {U,} of semi-neighborhoods of the diagonal of
(P, u) x {P,u) such that Uy c U and U,,,-U,,, < U, for each n.

Proof. Condition (a) is necessary and sufficient by 24 B.12. The necessity of (b)
follows from the fact that every element of a continuous semi-uniformity for (P, u)
is a semi-neighborhood of the diagonal of (P, u) x (P, u) (23 B.2). Finally, assume
(b), put ¥, =U, n U, ! and consider the sequence {V,}. Clearly, V, = U, ¥, = ¥V *
and V, ;.0 V.4, = V, for each n. Obviously the collection of all V, is a base for
a uniformity ¥~ for P and each element of ¥ is a semi-neighborhood of the diagonal
of (P, u) x (P, u), and consequently ¥~ is a continuous uniformity for (P, u) (by
23 B.2). Since U € ¥, U is a uniformizable neighborhood of the diagonal of (P, u) x
x (P, u).

24 B.15. Theorem. Let u be a closure operation for a set P. The uniformizable
modification of u is the unique uniformizable closure for P such that a mapping
f of (P, u) into a uniformizable space {Q, v> is continuous if and only if the
mapping [: <P, w) — {Q, v) is continuous.

Proof. I. For uniqueness, assume that uniformizable closures w, and w, fulfil
the condition. Since | = (P, w;) — (P, w,) is continuous, with the condition applied
to wy, we find that ] : (P, u) - {P, w,) is continuous; with the condition applied
to w,, we find that ) : (P, w,) — {P, w;) is continuous. Thus w; is coarser than
w,. The same argument may be applied with w; and w, interchanged, and hence w,
is coarser than w; this proves w; = w,. — II. Now let w be the uniformizable modi-
fication of u and let f be a mapping of (P, u) into a uniformizable space {(Q, v).
If f:{P,w) = (Q,v) is continuous then f is continuous because w is coarser
than u. Next, suppose that fis continuous and let % be the largest continuous semi-
uniformity for (P, u). Let #  be the uniform modification of % and ¥~ be a uniformity
inducing the closure operation v. Since f is continuous, by 23 C.8 the mapping
[P, %) - {Q,? ) is uniformly continuous, and by 24 B.4 the mapping f :
(P, %> — {(Q, ¥ is uniformly continuous; hence its transpose to f: (P, w) —
— <@, v) is continuous (by 23 C.7).

It may be appropriate to point out the crucial step in the second part of the proof
of the preceding theorem.

24 B.16. Let f be a continuous mapping of a closure space (P, u) into a closure
space {Q, v)>. If ¥ is a continuous uniformity for {Q, v) and W is the uniformly
finest (i.e. largest) continuous uniformity for {P,u), then the mapping f:{P, W ) —
— {Q, ¥") is uniformly continuous. — (23 C.8, 24 B.4).

Corollary a. Let f be a mapping of a uniformizable closure space (P, u,) into
a uniformizable closure space {P,, u,y and %; be the largest continuous uniformity
Jor (P, u;>, i =1,2. Then f is continuous if and only if f: (P, ¥y — {P;, U,)
is uniformly continuous.

Corollary b. If f is a continuous mapping of a closure space (P, u) into a closure
space {Q, v) and V is a uniformizable neighborhood of the diagonal of {Q, v) x
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x (Q,v), then (f x f)~' [V] is a uniformizable neighborhood of the diagonal of
{(P,u) x {P,u).

It is to be noted that every uniformizable neighborhood of the diagonal is actually
a neighborhood of the diagonal. The converse does not hold, see ex. 4.

C. GROUP UNIFORMITIES

Throughout this subsection, unless the contrary is explicitly stated, ¥ = (G, -, u)
will be a topological group and @ will be the neighborhood system at the unit element
denoted by 1, in 4. The definitions, conventions and results of Section 19, in particu-
lar those of 19 B, are assumed. For each U in @ put

(1) Ug = E{Kx, »> | <x, > € G x G,x.y ' eU},
U, = E{(x,y)](x,y)eG x G,x"'.yeU}
A simple calculation yields the following formulae (where ¥ and U are elements of 0):

QR UprnVa=UnV)gUnV,=(UnV),.

(3) 4g = Ug n Uy (where 4 is the diagonal of G x G).

A U=U"'=>Ug=Ug, U, =Ugt.

(5) Une Vo < (V] [VD Us Vo < (U] [V DD

24 C.1. Definition. It follows from 24 A.5 and formulae (2) —(5) that the collection
Ug(%y) of all Ug(Uy), Ue0,is a base for a uniformity % (&); this uniformity will be
called the right (left) uniformity of ¥. Again by 24 A.5 the collection Z U & is
a sub-base for a uniformity; this uniformity will be called the two-sided uniformity
of 4.

24 C.2. The collection [%Ug]  [%y] (consisting of all UgnV,, Ue0, Ve@)
is a base for the two-sided uniformity of 4. If 4 is commutative then all three
uniformities of % coincide. — Obvious.

Remark. If # = &, then ¥ need not be commutative (see ex. 17).

24 C3. Remark. Let ¢’ = (G, *,u) where * = {{x, y> > y.x|(x,y> e G x
x G}. Then evidently ¢’ is a topological group and the right (left) uniformity of ¥
coincides with the left (right) uniformity of %'. Next, a right translation {x - x.a}
of ¢ coincides with the left translation {x — a * x} of '9’. Using these facts we can
derive from each proposition about left (right) uniformities a proposition about
right (left) uniformities.

24 C.4. All three uniformities of a topological group induce the closure structure
of 4.

Proof. First let us notice that

(6) Ur[x] = x.[U], Ug[x] = [U'].x
for each U in @ and x in 4. According to 19 B.3 the collections E{x.[U]|Ue0}and
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E{[U].x|Uec®} form local bases at x in 4, and by 23 A3 the collection
E{U.[x] | U e 0} (E{Ug[x] | Ue%}) is a local base at x in the space <G, &)
(¢G, #>). Now it follows from (6) that # as well as # induces the closure structure
of 4. Since &£ U £ is a sub-base for the two-sided uniformity of % and both £ and #
induce the closure structure of ¢, we find that the two-sided uniformity of ¢ also
induces the closure structure of .

24 C.5. Theorem. The mapping {x = x~'} : {|%9|, #) — (||, &) is a uniform
homeomorphism.

Proof. Let ¢ = {x - x™* | x € G}. It is sufficient to prove that (¢ x g) [Ug] =
= U foreach Uin 0. If {x, y> € Uy, then x . y"* e U and hence x . y~' = (gx)~'.
. gy €U, which means that {gx, gy) € U, and consequently (¢ x ¢)[Ug] = U,.
Similarly (¢ x ¢)[U,] = Ug. Since g o ¢ = Jg we obtain (¢ x ¢) [Ug] = Uy.

Corollary. If % is the two-sided uniformity for 4, then the mapping {x — x~*} :
|4, %> — <|%|, =) is a uniform homeomorphism. (Use 23 C.2).

24 C.6. Theorem.; Let f be a homomorphism of a topological group %, into
a topological group 9, and let £, R, and U; be respectively the left uniformity,
the right uniformity and the two-sided uniformity of 4;. The following conditions
are equivalent:

(a) f is continuous,

() £:{| %), £1> - (||, £2) is uniformly continuous,

() £:{|%1), 2> - {|%.|.#,> is uniformly continuous,

d f: <|€41|, U,y —<|%.|, %,) is uniformly continuous.

Proof. We shall prove that (a) = (b); (b) <> (c), (c) = (d) and (d) = (a). The last
implication is obvious (the two-sided uniformity of a group induces the closure
structure of the group). Also the implication (b), (c) = (d) is evident because #; U &,
is a sub-base for %;. The equivalence of (b) and (c) follows immediately from 24 C.5.
It remains to show that (a) = (b). Let 0; be the neighborhood system at the unit
element of 4,, i = 1, 2, and suppose that O, is an element of @,; it is required
to find an element O, of @, such that (f x f)[(0,).] = (0,).. Choose O, so that
f[0.] = 0,. Now if {x, y>€(0,),, then x~'. ye 0, and hence (fx)~'.(fy) =
= f(x~1. y)ef[0,] = O, which implies that {fx, fy) € (0,),.

Remark. In the proof of the implication (a) = (b) we only needed the continuity
of fat the unit element of ¢,. Thus we obtained a new proof of the fact that a homo-
morphism is continuous provided that it is continuous at the unit element.

Now we turn to an examination of translations.

24 C.7. Theorem. If V" =R, V" = &% or ¥ = %, then the mapping

{x—>a.x.b}: %9, ¥>-> <% ¥>

is a uniform homeomorphism for each a, b € 4. Roughly speaking, the translations
are uniform homeomorphisms with respect to each of the group uniformities.
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Proof. The inverse of a translation is a translation and hence it will suffice to show
that the translations are uniformly continuous. This will be proved for ¥~ = Z.
In the case ¥ = & the proof is similar. Finally, the case 7~ = % follows readily
from the cases ¥ = % and ¥~ = &. Let U be any element of @ and let us choose
aVinOsuchthata.V.a ' c U. If (x,p>e Vg, ie. x.y 1 eV, then (a.x.b).
(a.y.b)'=a.x.y"".a"lea.V.a7' = U, and hence {a.x.b,a.y.b)e
€ Ug.

Notice that (f, x f;) [Ug] = Ug for each right translation f, = {x — x. b}.
We have proved that the inclusion < is true for each right translation. Since the inverse
of £, is the right translation f;-. we obtain the equality. Similarly (f x f) [U,] = U,
for each left translation f. On the other hand the last equality need not be true if f
is a right translation.

Recall that a semi-pseudometric d for a group {G,.) is called right (left) in-
variant if d o (f x f) = d for each right (left) translation f of <G, .).

24 C.8. Definition. A semi-uniformity % for a group (G, .) is said to be right
(left) invariant if there exists a base ¥~ for % such that (f x f)[V] = V for each
Ve ¥ and each right (left) translation f of <G, .).

It is to be noted that in 24 C.8 it is sufficient to assume that ¥ is a sub-base for %.
The main results are summarized in the following theorem.

24 C.9. Theorem. The right (left) uniformity of a topological group ¥ is
right (left) invariant. The set of all right (left) invariant pseudometrics for 4
which are uniformly continuous with respect to the right (left) uniformity of ¢
generates the right (left) uniformity of 4. If 4 is of a countable local character
then the right (left) uniformity of 4 is induced by a right (left) invariant pseudo-
metric.

Corollary. If % is of a countable local character then 4 permits a pseudo-
metrization by a right invariant as well as a left invariant pseudometric.

Theorem 24 C.9 is a particular case of more general results concerning F-in-
variant uniformities which will now be studied. (The first statement, which is elemen-
tary, has been already proved.)

24 C.10. Let P be a set and F be a collection of one-to-one relations such that
Df = Ef = P for each fin F. A semi-pseudometric d for P is said to be F-invariant
if do(f x f) = d for each f in F, and a semi-uniformity % for P is said to be F-
invariant if there exists a base 7 for % such that (f x f) [V] = Vfor each Vin 7.

Remarks. (a) If F is the set of all right (left) translations of a group ¢G, .) then
a semi-pseudometric d for G is F-invariant if and only if d is a right (left) invariant
semi-pseudometric for {G, .>. A similar result is true for semi-uniformities.

(b) A semi-pseudometric d is F-invariant if and only if the mapping f: (P, d) —
— (P, d) is distance-preserving for each fin F.

(¢) In definition 24 C.10 it is sufficient to assume that ¥ is a sub-base for #.
Indeed, if (f x f)[V] =V, i=12then (fx f)[VinV,] =V, V,
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24 C.11. Theorem. Let P be a set, F be a collection of one-to-one relations such
that Df = Ef = P for eachfin F, and let % be an F-invariant uniformity for P. The
collection of all F-invariant uniformly continuous pseudometrics for (P, %)
generates the uniformity %. If % has a countable base then % can be pseudo-
metrized by an F-invariant pseudometric.

Proof. I. First let % be an F-invariant semi-uniformity with a countable base.
Clearly there exists a decreasing sequence {U,,} of symmetric elements of % such that
the set of all U, is a base for %, U, = P x Pand (f x f)[U,] = U, foreachne N
and feF. Setting d(x, y> = 27" if {x,y>eU,,; — U,and d{x, y) =0if {x, y)> e
e N{U,} we obtain a semi-pseudometric inducing % and it is easily seen that d is
F-invariant. Now if, in addition, % is a uniformity, then d is uniformly equivalent
with a pseudometric D (by 24 A.4) which can be chosen F-invariant according to
18 B.16; this proves the second statement. — II. The first statement is an immediate
consequence of the second statement and the fact that the union of all F-invariant
uniformities with a countable base contained in % is a sub-base (even a base) for %.

24 C.12. The closure structure of a topological group % is induced by a uniform-
ity invariant under both right and left translations if and only if the collection
of all U e 0 fixed under the inner automorphisms of 4 is a local base at the unit
element.

Proof. I. First suppose that the closure structure of % is induced by a uniformity
¥ invariant under both left and right translations. Thus the collection #~ of all
the sets We ¥~ such that (x, y> € W implies {ax, ay) € W, {(xb, yb) € W for each
a and b in ¢ (in particular, {x, ) € Wimplies {axa™', aya™') € W for each a in A)
is a base for ¥". Now if O = W[1], We ¥, then clearly y € O implies aya™' € O
(because a.1.a”! =1). _

II. Now let @, be the collection of all sets O € 0 such that f[O] = O for each
inner automorphism f = {x — axa™'} of ¢, and suppose that 0, is a base for the filter
0. We shall assume that the right uniformity £ of ¢, which is always invariant under
right translations, is also invariant under left translations. Clearly the collection %~
of all the sets Uy, U € 0,, is a base for #. Fix Uy in #". First we shall show that Ug
is invariant under inner automorphisms. If (x, y>e Uz and ae %, then x.y '€
eUe 0, and hence axy 'a~'eU; but axa™'.(aya™') "'=axy~'a"'eU and
consequently (axa™!,aya !>eUg. Now let be¥; we shall show that
{x, y) € Ug = (bx, by) € Ug. Suppose (x, y)> € Ug. Since (f x f)[Ug] = Uy for
each inner automorphism f, we obtain {(bxb~!, byb~'> e Uy and since Ug =
= (f x f)[Ug] for each right translation f, we obtain (bxb~'b, byb~'b) € Uy
and hence {(bx, by) € Uy, which concludes the proof.

The multiplication {(x, y> — x . y} need not be a uniformly continuous mapping,
more precisely, the mapping {(x, y> » x.y} : <|¥9| x |9], ¥ x ¥) > (|9, 7>
need not be uniformly continuous if ¥ is a left uniformity, right uniformity or
two-sided uniformity of 4. On the other hand, if ¢ is commutative, then all three
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uniformities of ¥ coincide and the multiplication is uniformly continuous. More
precisely,
24 C.13. Theorem. If ¥ is a commutative topological group, then the mapping

{Kay> > x. v} |9 < |9 % x @) > |9]. %)

where U is the uniformity of %, is uniformly continuous.

Proof. Fix a neighborhood U of the unit element and choose a neighborhood V
of the unit element such that [V].[V] = U. Now if x,.y; eV, x,.y; eV
then (x;%,).(yyy2)"' = (x1-»1)"" - (x2.y:")e[V].[V] = U which establishes
the uniform continuity of the mapping in question.

Corollary. The addition of R is uniformly continuous.

D. UNIFORM PRODUCT

The purpose of this subsection is to prove that, roughly speaking, the limit of
a uniformly convergent net of continuous (uniformly continuous) mappings into
a uniform space is a continuous (uniformly continuous) mapping. This result was
proved for mappings into a commutative topological group in 19 B.16a. We begin
with a remark concerned with the box-product of semi-uniform spaces.

24 D.1. The box-product. Let (P, %) be the product of a family {(P,,, U,y | ae
€ A} of semi-uniform spaces. By definition the collection of all the sets of the form

(%) CE{(x, )| (x,y>eP x P,ae F=(pr,x,pr,y>eU,},
where F is a finite subset of 4 and U, € %, is a base for %. The elements of % are
relations for P, i.e., subsets of P x P, and the elements of each %, are relations
for P,. Notice that the set () can be written in the form

(++) O {V.|aeAd}

where V, = U,ifae Fand V, = P, x P, otherwise (thus always V, € %,,).

Here the symbol II,, denotes the relational product introduced in 5 C.2. If
{P, u) is the product of a family {(Pa, Uy ] ae A} of closure spaces, then the cano-
nical neighborhoods of a point x € P in (P, u) are sets of the form

(k) I{v, | ae A}
where each V, is a neighborhood of pr, x in (P, u,» and V, = P, except for a finite
number of a’s. In 17 ex. 2 we introduced the box-product <P, w) of {<P,, u,>}
by requiring that, for each x in P, the collection of all sets (##x), where V, is a neigh-
borhood of pr, x in {P,, u,) for each a, be a local base at x in (P, w). Similarly,
we can define the box-product (P, #") of a family {{P,, %,>} of semi-uniform
spaces by requiring that the collection of all the sets (#x), where V, € %, for each a,
be a base for #°. It turns out that the box-product of semi-uniform spaces is not too
important and therefore we leave the discussion of its properties to the exercises.
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The box-product is mentioned here because the box-product semi-uniformity
is the largest semi-uniformity having a base consisting of sets of the form (##); it is
to be noted that the product semi-uniformity is the smallest semi-uniformity having
a base consisting of sets of the form (x*) and such that all the projections are uni-
formly continuous.

Now we turn to the subject proper of this subsection. Recall that, by 23 D.17, the
product of a family {.@ | a € A} of semi-uniform spaces is denoted by #4. The product
of a family {% | a € A} of topological groups is denoted by ¥4, and the uniform
product of {¥ | a € A} is denoted by unif ¥*. Now we shall introduce the product
unif 24 for semi-uniform spaces.

24 D.2. Definition. Suppose that A4 is a set and # = (P, %) is a semi-uniform
space. The uniform product of the family {? | a € A}, denoted by unif 24, is the
semi-uniform space (P, ¥") where ¥~ is the semi-uniformity having as its base the
collection of all sets of the form I {U|ae 4} = E{<x, y> | (x, y> € P4 x P4,
a€A={pr,x,pr, y> e U} where Ue .

Of course we must show that the collection in question is indeed a base for a semi-
uniformity. Before doing this we shall introduce an abbreviated notation. The product
TI{X | ae A} can be written as X4, and similarly the relational product I, {U | a € 4}
can be written as U™'4, which will be abbreviated, if no confusion is likely to result,
to U4. Next, in accordance with the general rule, the collection consisting of all
U™'4, U e %, can be denoted by [#]*'4, or simply by [#]%. To prove that [#]* is
a base for a semi-uniformity it is sufficient to notice that

UAnVH) =UnV)A > Jpa and (U4 = (U
for each U and Vin %. Next, it is clear that (U . V)* = U4, V4 for each U and V
and consequently, if £ is a uniform space then unif 24 is also a uniform space.
Finally, if %’ is a base for %, then clearly [#']* is a base for ¥"; in particular, if %

has a countable base then ¥~ also has a countable base. As a consequence if £ is
pseudometrizable, then unif %4 is also pseudometrizable. Thus we have proved

24 D.3. If 2 is a uniform space then unif 24 is a uniform space for each set A.
If P is pseudometrizable, then P* is also pseudometrizable.

24 D.4. Example. Let (P, d)> be a semi-pseudometric space and A a non-void
set. Consider the relation

D = {<x, y) — sup {d{pr, x, pr, y) | a € 4} | {x, y> € P* x P4}.

If d is not bounded, then D{x, y)> may be co for some {x, y), but if d is bounded, then
(a) D is a semi-pseudometric for P4;
(b) the semi-uniformity induced by D is the uniform structure of the uniform
product unif (P, %)4, where % is the semi-uniformity induced by d;
(c) if d is a pseudometric, then D is a pseudometric; and
(d) if d is a semi-metric, then D is also a semi-metric.
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In 19 B.14 we introduced the uniform product unif %4, where ¢ is a commutative
group and 4 is a set. If ¢ is a commutative group, then the left, the right and the
two-sided uniformities coincide and we usually speak about the uniformity of ¥.

24 D.5. Theorem. Suppose that % is a commutative topological group and A
is a set. Then the uniformity of the group unif 44 coincides with the uniform
structure of unif(lgl, U4 where U is the uniformity of the group 4.

Remark. If for each commutative group # the symbol o(s#) denotes the uniform
space of 5, that is, the uniform space {|#|, %) where % is the uniformity of 5#,
then Theorem 24 D.5 can be stated as follows: For each commutative topological
group ¢ and each set A,

unif (6(%))* = o(unif ¥4).

Proof. Let ¥ = (G, -, u) and let O be the neighborhood system at the unit in ¥.
By definition 19 B.14 the collection [0]* (consisting of all 04, O € 0) is a local base
at the unit in unif %4. Next, the collection of all the sets of the form

(*) E{<x, y> | (x, y> € G* x G4, x. y~* € 04} (in unif ¥*)
where O € 0, is a base for the uniform structure of unif %, and the collection of all
the sets of the form .

(+x) E{(x, y> | (x, y) € G2 x G4, (pr, x) . (pr, y) "' € O foreach ae A},
where O € @, is a base for the uniform structure of unif (G, %)4. Clearly, x . y~
(in unif ¥4) = {(pr, x) . (pr, ») ' (in ¥) | a e 4}, and consequently, the sets (x)
and () coincide. The proof is complete.

In 19B.17, given a commutative group % and a comprisable struct & we intro-
duced the topological group F(&, %) of mappings of & into & by requiring the map-
ping

1

{f— grf}: unif (&, %) - unif g!¥
to be a topological group-isomorphism.

24 D.6. Definition. If % is a comprisable struct and £ is a semi-uniform space,
then the symbol unif F(&, ) will denote the set F(&, ) endowed with a semi-
uniformity such that the mapping

{f— grf}: unif F(&, #) - unif 217

is a uniform homeomorphism.

Thus a symbol of the form unif F(S”, #) has two meanings: if £ is a semi-uni-
form space, then unif F($, 2) is a certain semi-uniform space and if & is a topo-
logical group, then unif F(, #) is a certain topological group; in addition, if &2
is a topological ring, then unif F(&, ) denotes a certain topological ring. Never-
theless, in all cases a certain semi-uniformity of unif F(&, #) is uniquely determined,
in the former case the uniformity of (perhaps better the uniform structure of) the
uniform space unif F(%, %) and in the latter case the uniformity of the topological
group unif F(&, 2).
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Now we proceed to the formulation of the main results:

24 D.7. Theorem. Let {P, %) be a uniform space, and A be a set. Then

(@) Ifv is a closure operation for the set A and C is the set of all fe P4 such that
the mapping f: {A, v> — (P, %) is continuous, then C is a closed subset of
unif (P, %>

(b) If ¥ is a semi-uniformity for A and C is the set of all fe P4 such that the
mapping f:{A, V"> — (P, %) is uniformly continuous, then the set C is closed
in unif (P, %)

Obviously the theorem can bz restated as follows:

24 D.7'. Theorem. Let & be a uniform space. If 2 is a closure space then the set
C(2, ) of all continuous mappings of 2 into P is closed in the space unif F(2, 2),
and if 2 is a semi-uniform space then the set U(2, 2) of all uniformly continuous
mappings of 2 into P is closed in the space unif F(2, 2).

Remark. According to 24 D.5, Theorem 24 D.7 is a generalization of a similar
theorem (19 B.17) for topological groups, more precisely, combining 24 D.5 and
24 D.7 we obtain 19 B.17.

Proof of 24 D.7 (a). It is sufficient to show that the complement of C is open
in the space unif (P, %)%, Given an fin P* — C we must find a neighborhood G of f
in the space (P, #)>* such that no mapping g : {4, u) = (P, %), g€ G, is con-
tinuous. There exists a point a € A such that f: {4, u) — (P, %) is not continuous
at o. It follows that there exists a U in % such that f ~'[U[ fa]] is not a neighborhood
of ain {4, u). Choose a symmetric element W of % such that W. W. W = U. We
shall prove that no mapping g : {4, u) - (P, %) with g in G = WA[(f)] is con-
tinuous at the point a. It is sufficient to prove that '

g~ '[Wlgall = £~ [ULf],

because the set on the right side is not a neighborhood of « in {4, u). Suppose that
aeg '[W[ga]], ie., {ga, ga) € W; we must show that {fx, fad e U. By our as-
sumption {fx, ga) € W, {ga, fay e W™' = W, and consequently {f&, gad e W, W;
finally (fa, fa) e Wo Wo W < U, which concludes the proof.

Proof of 24 D.7 (b). We shall prove that the complement of C is open in
unif (P, %>4. Given an fin P4 — C, we must find a neighborhood G of fsuch that no
mapping g : (4, ¥" ) = (P, %), g € G, is uniformly continuous. Since f: {4, V") —
— (P, %) is not uniformly continuous, there exists a U in % so that (f x f)~' [U]
does not belong to ¥". Choose a symmetric element Win % suchthat Wo. W W < U.
We shall prove that (g x g) ~'[W] belongs to ¥ for no g from G = WA[(f)]; this
implies that no mapping g : (4, ¥"> —» {P, %), g € G, is uniformly continuous. It
is sufficient to show that

(g xg)" ' [Wl=(fx )" U]

for each g € G. The straightforward verification of this inclusion is left to the reader.
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24 D.8. A net N of mappings of a given struct .% into a given semi-uniform space 2
is said to bz uniformly convergent to a mapping f of & into 2 if N converges to
fin the space unif F(&, ). Utilizing this terminology theorem 25 D.7 can be restated
as follows: the limit of a uniformly convergent net of continuous (uniformly con-
tinuous) mappings into a uniform space is a continuous (uniformly continuous)
mapping, or simply, the uniform limit of continuous (uniformly continuous) map-
pings into a uniform space is continuous (uniformly continuous); and this is the
result announced at the beginning of the subsection. _

Remark. It turns out that the assumption that # = (P, %) bz a uniform space
is essential in theorem 24 D.7 and 24 D.7’ (ex. 9).

The next theorem shows that the closure operation induced by the uniformity of
unif (P, )4 depends essentially on %.

24 D.9. Theorem. Suppose that %, and U, are two semi-uniformities for a set P.
Then the mapping

(*) ) <P, Uy — (P, Us»

is uniformly continuous (i.e., %, > %,) if and only if the mapping
(#*) ) : unif <P, %,)* — unif (P, %,)°

is continuous at the point Jp (= {{x, x) | x € P}).

Proof. The result follows immediately from the following formula which holds
for each subset U of P x P:

U [(Jp)] = E{fIfe P, f < U}

Corollary. Under the assumption of 24 D.9, the mapping (*) is uniformly con-
tinuous if and only if the mapping (%) is continuous. In particular U, = U, if
and only if (%*) is a homeomorphism.

Remark. Of course, the theorem remains true if the exponents P in (#x) are re-
placed by any set whose cardinal is at least the cardinal of P.

Recall that a net {f,} of mappings of a struct & into a closure space 2 is said
to be pointwise convergent to a mapping f of & into & if for each x in & the net
{f.x} converges to fx in 2. Thus {f,} converges to f pointwise if and only if {f,}
converges to fin the set F(, 2) endowed with a closure operation such that the
bijective mapping {f—> grf}:: K&, 2) - o
is a homeomorphism. We have seen that the pointwise limit of continuous mappings
need not be continuous while the uniform limit of continuous mappings is always
continuous. The theorem which follows is intended to clarify the difference between
pointwise and uniform convergence. '

24 D.10. Theorem. Let 2 be a closure space, # a uniform space and unif C(2, 2)
the subspace of unif F(2, #) with the underlying set C(2, #) (= the set of
all continuous mappings of 2 into P). Finally, let € be the closure space induced

28—Topological Spaces
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by unif C(2, ). Then the mapping
{fx)>fx}:€x2>P

is continuous.

Corollary. If a net {ﬁ,} of continuous mappings of a closure space 2 into a uni-
Jorm space P converges uniformly to f, then the net {f,,x,,} converges to fx in P
provided that {x,,} converges to x in 2.

Proof. Write 2 = (P, ). Fix {f, x> € ¢ x 2 and let G be a neighborhood of fx
in Z. We must find a neighborhood H,; of fin % and a neighborhood H, of x in 2
so that ge H,, ye H, = gye G. Choose a U in # with U[fx] = G, and then
a symmetric element Ve % such that V. V < U.

Since fis continuous we can choose a neighborhood H, of x in 2 so that f[H,]| =
< V[ fx]. Finally, put

H, = E{gIgefg,ye|2|=(f)’,QJ’>€V}'

By definiuon, H, is a neighborhood of fin €. Now, if g € H,, then clearly

glH.] = VI/[H.]] « V[V[/x]] = (V- V) [/x] = ULfx] = G
which shows that H, and H, have the required properties.

E. UNIFORM COLLECTIONS OF COVERS

We shall introduce the concepts of a uniform cover and a semi-uniform cover of
a semi-uniform space, and the concepts of a uniformizable cover and a semi-uniform-
izable cover of a closure space. In later developments only uniformizable covers
will play an essential part (Sections 29 and 30). It is to be noted that semi-uniform-
izable covers (mainly of topological spaces) are often important in questions related
to paracompactness (30 C) and metrization (30 B); however, particular attention will
not be paid to these questions and semi-uniformizable covers will not be considered.
For the sake of completeness we shall show that every uniform space is completely
determined by the collection of all uniform covers. It is to be noted that a uniformity
for a set P is often defined as a collection of covers of P subject to certain conditions.
On the other hand, a semi-uniform space is not uniquely determined by the collection
of all semi-uniform covers.

By 12 A.1 a cover of a set P is a collection or a family of sets the union of which
is P. A cover of a struct & is defined as a cover of the underlying class of &. We
have considered, e.g., interior covers of a closure space; recall that an interior cover
of a closure space is a cover & of P such that the interiors of elements of Z or mem-
bers of 2 (according as whether & is a family or a collection of sets) cover P.

24 E.1. Definition. A semi-uniform cover (uniform cover) of a semi-uniform space
(P, %) is a cover of P which is refined by some cover {U[x] | x eP} where U is an ele-
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ment (uniform element) of %. A semi-uniformizable (uniformizable) cover of a clo-
sure space (P, u) is a cover of P which is a semi-uniform (uniform) cover for some
semi-uniform space (P, %) such that % is a continuous semi-uniformity for (P, u).

24 E.2. Every uniform cover of a semi-uniform space & is a semi-uniform cover
of P and every semi-uniform cover of a uniform space 2 is a uniform cover of 2.
If 2 is a uniform modification of a semi-uniform space 2, then uniform covers of
P and 2 coincide.

Proof. The first statement is evident and the second follows from the fact that
the uniform structure of £ consists of all uniform elements of the uniform structure
of 2.

24 E.3. Every uniformizable cover of a closure space 2 is a semi-uniformizable
cover of P and every semi-uniformizable cover of 2 is an interior cover of P.
If U is the uniformly finest continuous semi-uniformity for a closure space (P, u),
then & is a semi-uniformizable (uniformizable) cover of (P, u) if and only if ¥
is a semi-uniform (uniform) cover of {P, %). — Evident.

24 E.4. Let P be a closure space. If Z is an interior cover of P then the closure
of any subset X of P is contained in the star of X with respect to I (see Definition
12A6). A cover & = {X,|ae A} of P is semi-uniformizable if and only if
there exists a mapping fof|9’| into A such that X, is a neighborhood of x for each
x €|?| and

X c U{Xfx|xEX}
Jor each X c 2.

Proof. The first statement is evident. We shall prove the second one. Let U be
a semi-uniformizable vicinity of the diagonal of 2 x 2,1.e. U is a neighborhood of the
diagonal of ind (2 x 2) such that {U[x] | x € ||} refines %, and let f assign to each
x € |2| an index a in 4 such that U[x] = X,. By 23 B.4 we have X < U[X] for
each X = |#2| and hence X = U[X] = U{X, | x € X}. Conversely, given f, put
V=2%{X;|xe?}, U= Vn V' Since {U[x] | x € 2} refines X, it is enough to
show that U is semi-uniformizable, or by 23 B.4, that X < U[X] for each X = 2.
Clearly X = U{X.| xe X} = V[X], and as X/, is a neighborhood of x, it results
that X < V™'[X]. '

24 E.5. Remarks. (a) An interior cover need not be semi-uniformizable. For
example, let 2 be the ordered space of countable ordinals and let us consider & =
= {X, | x €|2|}, where X, is the set of all ordinals less than x. Clearly Z is an open
cover of 2 and hence an interior cover of #. We shall prove that £ is not semi-
uniformizable. Assuming that & is semi-uniformizable we can choose a mapping f°
of |#2| into itself such that the formula of 24 E.4 holds for each X < |2|; clearly
there exists a sequence {x,} in £ such that x,., ¢ X, for each n. Clearly {x,} is an
increasing sequence and therefore {x,} converges to x = sup {x,} (remember that 2
contains no countable cofinal sets). Thus x belongs to the closure of the set X of all

28*
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x,. On the other hand, evidently x ¢ U{X ,, | x € X}, which contradicts our assumption
and proves that & is not semi-uniformizable.

(6) In ex. 5 we shall show that every interior cover of a pseudometrizable space
is uniformizable. It should be noted that regular topological spaces with this propsrty
are termed paracompact and will be studied in 30 C.

(c)*A semi-uniformizable cover need not be uniformizable (sce ex. 4).

24 E6. If & is an interior cover of a closure space P then the cover st & (see
Definition 12 A.6) is semi-uniformizable.

Proof. If U is the sum of stZ (ie. U = Z{st(Z, x) | x e |2|}) then U[x] =
= st (&, x) is a neighborhood of x for each x e |.@| and clearly U is symmetric; thus U
is a semi-neighborhood of the diagonal in 2 x 2. Since {U[x]|x € ||} refines
st Z, the cover st & is semi-uniformizable.

Remark. It is to be noted that the szt U of the proof is a neighborhood of the
diagonal of 2 x 2. Indeed, U = U{X x X | X eZ} if Z is a collection and U =
=X, x X,|aed} if ¥ ={X,|aecA}

Now we proceed to semi-uniform and uniform covers. We begin with a definition.

24 E.']. Definition. A semi-pseudometric d is said to be subordinated to a cover &
if the collection of all open 1-spheres refines .

24 E.8. In order that a cover & of a semi-uniform space P be semi-uniform
it is necessary and sufficient that some uniformly continuous semi-pseudometric
Jor P be subordinated to . — Obvious, see 23 A.15.

Recall that, by Definition 12 A.2, for each cover & the symbol V& denotes the
vicinity associated with Z, i.e. the set (£Z). (XZ)~ ' which coincides with the set
U{X x X | X eZ}if & is a collection and U{X, x X,} if Z is a family {X,}; thus
V& is the vicinity considered in the remark following 24 E.6. We shall use the for-
mula V& . V& = VstZ of 12A.7.

24 E.9. Theorem. Each of the following two conditions is necessary and suf-
ficient for a cover Z of a semi-uniform space & to be a uniform cover:

(_a) Some uniformly continuous pseudometric for P is subordinated to Z.

(b) There exists a sequence {Z,} of semi-uniform covers of P such that &,
refines & and each &, is a star-refinement of ¥, (i.e. each st %, refines ¥,
see Definition 12 A12),

Proof. I. If % is a uniform cover then there exists a uniform element U such that
{U[x] | x € |2|} refines &, and by 24 A.9 there exists a uniformly continuous pseudo-
metric d for £ such that d{x, y> < 1 implies {x, y) € U; clearly d is subordinated
to Z. — 1L If a uniformly continuous pseudometric d for 2 is subordinated to & and
%, consists of all open 27 "-spheres, then the sequence {52" o} has the properties of (b)
and hence (a) implies (b). — IIL It remains to show that (b) is sufficient. Assuming
{(b) let U, be the vicinity associated with &, for each n. It is easily seen that each
U, is an element of the semi-uniform structure of 2, {Uy[x] | x € ||} refines Z and
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Uyi10Upsq1 € U, for each n. Thus Uy is a uniform element of the semi-uniform
structure of 2 and & is a uniform cover.
Now we shall prove that a uniformity is uniquely determined by uniform covers.

24 E.10. Theorem. Let # = (P, %) be a semi-uniform space. A vicinity U of the
diagonal of P x P is a uniform element of % if and only if there exists a uniform
cover & for P such that the vicinity associated with & is contained in U. A pseudo-
metric d for P is uniformly continuous if and only if the cover of & consisting of
all open r-spheres is a uniform cover of 2 for each positive real r.

Proof. If U contains the vicinity V& associated with a uniform cover & and V.
is a uniform element of # such that {V[x] | x € P} refines &, then clearly V[x]
< st(%, x) = (V&) [x] = U[x] for each x € P; hence ¥ < U so that U is a uni-
form element of %. Conversely, let U be a uniform element of % and choose a sym-
metric uniform element ¥ of % such that Vo V = U. If & = {V[x] | x € P} then &
is a uniform cover of & (by definition) and evidently the vicinity associated with &'
is contained in U. The proof of the statement concerning pseudometrics is left to the
reader.

Combining theorems 24 E.9 and 24 E.10 with 24 E.3 we obtain without difficulty
the corresponding relations between uniformizable vicinities, uniformizable covers
and continuous pseudometrics for a closure space.

24 E.11. Theorem. Each of the following two conditions is necessary and suf-'
ficient for a cover & of a closure space P to be uniformizable:

(a) Some continuous pseudometric for P is subordinated to .
(b) There exists a sequence {5‘%’,,} of interior covers of P such that &, refines &
and each st &, ., refines Z,.

Proof. If {Z,} is the sequence of (b), then each &, is a semi-uniformizable cover
by 24 E.6. The result then follows from 24 E.3 and 24 E.9.

24 E.12. Theorem. Let & be a closure space. A vicinity U of the diagonal of
P x P isauniformizable neighborhood of the diagonal of ? x 2 if and only if U
contains the vicinity associated with a uniformizable cover of P. A pseudometric
Jor P is continuous if and only if the cover consisting of all open r-spheres is uni-
formizable for each positive real r .— 24 E.3, 24 E10.

Remark. It is to be noted that a uniformizable cover of a closure spacé P is
often said to be a normal cover of £, and a sequence {Z,} of 24 E.11 (b) is said to be
a normal sequence of covers of 2.

24 E.13. Definition. The uniform collection of covers associated with a semi-
uniform space 2 is the set of all those uniform covers of 2 which are collections.
Notice that a uniform collection of covers consists of only those which are col-.
lections; families are excluded, as we want a uniform collection of covers to be a set.

From 24 E.9 and 24 E.10 we obtain immediately the following result.
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24 E.14. Theorem. The relation which assigns to each uniform space P the uni-
Jorm collection of covers associated with P is one-to-one.

Now we shall give a necessary and sufficient condition for a collection of covers
to be a uniform collection of covers.

24 E.15. Theorem. A class U of covers of a set P & @ is a uniform collection of
covers if and only if the following conditions are fulfilled:

(a) each element of U is a collection;

(b) if a collection & of subsets of P is refined by a cover of U, then X belongs
to U,

(¢) if %, and %, belong to U, then some X € U refines both &, and % ;

(d) every & e U has a star-refinement in .

Proof. Evidently every uniform collection of covers has properties (a)—(d).
Conversely, assuming (a) —(d) let us consider the set ¥~ consisting of all the vicinities
associated with covers of U. First we shall show that ¥ is a base for a uniformity %.
Evidently each element of ¥ is symmetric, and if Z refines &}, i = 1, 2, then VZ is
contained in both VZ'; and hence in VZ'; n VZ,. If st¥ refines Z,then (V& o V&)
< VZ by 12A7.

It remains to show that U is the uniform collection of covers of (P, %). Let ¥ € U.
Choose a % in M such that the star of & refines Z. Clearly, if V is the vicinity asso-
ciated with @, then {V[x] | x € P} refines & and therefore & is a uniform cover of
{P, ). Conversely, let a collection Z be a uniform cover of (P, %). To prove
Z e U it is sufficient to show that & is refined by some % € U (according to (b)). By
our assumption there exists a U in % such that {U[x] | x € P} refines %, and by the
definition of % we can choose a % in M such that the vicinity associated with & is
contained in U. It is easily seen that % refines %

Remark. Let B be the set of all covers of a set P which are the collections ordered
by the relation {# — % | Z is a refinement of #}. Then a class U of covers of P has
the properties (a)—(c) if and only if Ul is a right filter in M. Thus a class of covers
of a set P is a uniform collection of covers if and only if U is a right filter in W satis-
fying condition (d).

In conclusion for the sake of completeness we shall state two theorems, leaving
their simple proof to the reader.

24 E.16. Let f be a uniformly continuous mapping of a semi-uniform space P
into another one 2. If ¥ is a semi-uniform (uniform) cover of 2, then the inverse
image ¥ of & under f is a semi-uniform (uniform) cover of P.

24 E.17. Let f be a continuous mapping of a closure space 2 into another one 2.
If Z is a semi-uniformizable (uniformizable) cover of 2, then the inverse image
of & under f is a semi-uniformizable (uniformizable) cover of 2.
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25. PROXIMITY SPACES

Let % be a semi-uniformity for a set Pand let us consider the relation p for exp P
such that <X, Y) € p if and only if U[X] n Y + @ for each U in %. We shall write
X p Yinstead of (X, Y) € p, and X non p Yinstead of <X, Y> € ((exp P x exp P) — p).
The following assertions will be proved:

(prox 1) Pnon p P

(prox 2) pis symmetric,i.e. XpY=YpX

(prox3) X <« P, Yc P, XNnY+0=>XpY

(prox4) If X, « P, X, = P then(X, uX,)pYif andonlyif X, pYor X, p Y.

Statement (prox 1) is obvious. If U = P x P is symmetric, then U[X] n Y # 0
if and only if U[Y] n X + 0; since the symmetric elements of % form a base for %,
the symmetry of p follows. Statement (prox 3) follows from the fact that each element
of % contains the diagonal of P x P, and hence U[X] o X for each X < P and
Ue%.XfP>Z>XandX pY,thenZ p Ybecause U[Z] > U[X] for each U;con-
sequently, if X, p Y or X, p Y, then also (X, u Xz) p Y. It remains to show that
X;nonpY,i=1,2, implies (X; UX,)nonpY. Now, if X,nonpY, then we can
choose U; in % such that U,[X]]nY=+0; U=U, nU, belongs to % and
UX;uX,]nY=0 because U[X,uX,|=U[X,]uU[X,] and U[X] <
< U;[X;], i = 1,2, and hence, by definition of p, (X; U X,)nonp Y.

Next, notice that if u is the closure operation induced by %, then uX =
= E{x | (x) pX} for each X < P.

Given a set P, a relation for exp P satisfying conditions (prox 1) —(prox 4) will be
called a proximity relation or a proximity for the set P.

In a closure space (P, u) we shall say that a point x is proximal to X in {P, u) if
and only if x € uX; the closure of a set X consists of all points proximal to X. One
might say that, given a neighborhood U of x, the points of U are U-proximal to x;
then x is proximal to X if and only if, for each U, X contains a point U-proximal to x.
In a semi-uniform space (P, %) we might define two points to be U-proximal, where
Ue,if {x,y) e U, and two sets X and Y to be U-proximal if some xe Xand ye Y
are U-proximal. Finally, we might define two sets to be proximal if they are U-
proximal for each U in 4. The resulting relation is just the proximity induced by %.
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In the rather elementary first subsection the basic concepts related to proximities
will be introduced (e.g. a proximally continuous mapping, continuous proximity,
proximally continuous semi-uniformity, relativization of a proximity) and the basic
properties will be derived.

In the second subsection the relation between semi-uniformities and proxim-
ities will be studied. It will be shown that every proximity p is induced by a semi-
uniformity % (in the sense described above, i.e., X pY <> U[X] n Y % 0 for each
U in %), and that among all semij-uniformities inducing a given proximity p there
exists a unique smallest one, which will be termed proximally coarse; if p is induced by
a uniformity, i.e., if p is uniformizable, then the proximally coarse semi-uniformity
inducing p is a uniformity. It turns out that the study of proximities is equivalent to
the study of proximally coarse semi-uniformities. It is to be noted that proximally
coarse uniformities coincide with totally bounded uniformities, i.e., uniformities such
that for each element U of the uniformity there exists a finite set such that U[A] is
the whole underlying set of the corresponding space.

Subsection 25 C is concerned with developing the properties of uniformizable pro-
ximities. It is shown that a uniformizable proximity is uniquely determined by the
set of all bounded proximally continuous functions. The important concept of the
uniformizable modification g of a proximity p (for a set P) is introduced; it is shown
that g is the unique uniformizable proximity for P such that a mapping f of (P, p)
into a uniformizable proximity space Q is proximally continuous if and only if the
mapping f : {P, g> — Q is proximally continuous.

In the next two subsections, 25 D and 25 E, the set of all bounded proximally con-
tinuous functions is investigated. The main result of 25 D which asserts that the set
of all bounded proximally continuous functions on a proximity space £ is a closed
sub-lattice-algebra of the topological lattice-algebra unif F¥(#,R) of all bounded
mappings of 2 into R. The subject of 25 E is the famous Stone-Weierstrass theorem
adapted for proximity spaces.

A. PROXIMITIES AND PROXIMALLY CONTINUOUS MAPPINGS

25 A.1. Definition. A proximity for a set P is a relation for exp P satisfying the con-
ditions (prox 1) —(prox 4). A proximity space is a struct (P, p) such that P is a set
and p is a proximity for P.If (P, p) is a proximity space and X p Y, then X and Y are
said to be proximal in (P, p) or under p; the relation (exp P x exp P) — pis denoted
by non p; if X non pY, then X and Y are said to be distant or non-proximal in
(P, p>. If % is a semi-uniformity for a set P, then

p=E{X,Y)|X<P,YcP,Ueu=UX]nY=+0}

is a proximity for P which is said to be induced by %.1f p is a proximity for a set P,
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then the relation
{X > E{x|(x) pX} | X = P}

is a closure operation for P which is said to be induced by p.

25 A.2. Let % be a semi-uniformity for a set P, p the proximity induced by %
and u the closure induced by p. Then u is induced by %.

Proof. By definition x € uX if and only if the sets (x) and X are proximal, which
means, by the definition of induced proximities, that U[(x)] n X =+ @ for each Uin %.
It follows that, for each x € P, the collection [#] [(x)] is a local base at x in (P, u).
By the definition of semi-uniform closure the closure u is induced by %.

Remarks. (a) A proximity for a set P is a subset of exp P x exp P. — (b) Given
a proximity p, there exists a unique set P such that p is a proximity for P, namely
P = Dp.

We shall often need the following simple proposition:

25 A.3. Suppose that p is a proximity for a set P. Then

@) X<cYcP, XpZ=>YpZ

(b) If {X;} and {Y}} are finite families in exp P such that (U{X;}) p (U{Y}}), then
X;pY; for some i and j.

Proof. I. Statement (a) follows from (prox 4); X pZ, Y < Pimply (X v Y) pZ by
(prox 4), and X < Yimplies X = X u Y. — IL By induction it follows from (prox 4)
that, for each finite family {X,}, (U{X,}) pY implies X p Y for some i, and by (prox 2)
(symmetry), Y p(U{X}) implies X p Y for some i. Hence if {X,} and {Y;} are finite
families such that (U{X;}) p(U{Y;}), then (U{X}) p Y; for some j and this implies
X,;pY, for some i.

25 A4. Examples. (a) Let d be a semi-psecudometric for a set P, % the semi-
uniformity induced by d and p the proximity induced by #. It is almost self-evi-
dent that

p = E{KX, Y) | dist(X, Y) = 0}.

This proximity will be said to be induced by d. — (b) Let P be the set consisting of all
positive integers and let us consider the following two semi-pseudometrics d; and d,
for P:if x & y then d,<{x, y> = x~* + y~ 1 and d,{x, y) = 1. Clearly both d; and
d, induce the discrete closure for P. On the other hand d, and d, induce distinct
proximities. If p; is the proximity induced by d;, then Xp,Y<>X < P, Y P,
XnY=+0, but Xp,Yif and onlyif X < P, Y = P and either X n Y % @ or both
X and Y are infinite. Let % be the uniformity such that the sets of the form
U{X; x X.}, {X,} being a finite cover of P,form a base for #. Clearly % induces p,.
On the other hand, p, is induced by the uniformity induced by d, which differs
from %. Thus distinct uniformities may induce the same proximity.

It turns out that a proximity may be described by means of proximal neighborhoods
which will be introduced in the definition which follows. The concept of a proximal
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neighborhood is an adaptation of the concept of a neighborhood in a closure space
to proximity spaces.

25 A.5. A proximal neighborhood of a set X — P in a proximity space (P, p)
is a set Y < P such that X non p (P — Y), that is, the complement of Yis distant to X
in (P, p>.

Let p be a proximity for a set P and let 5 be the relation consisting of all pairs
{X,Y) such that Yis a p-proximal neighborhood of X, i.e., (X, Y) € 5 if and only
if X = Pand Xnonp(P — Y). On the other hand, clearly X non p Y if and only if
Y < Pand (X,P — Y) en. Thus a proximity is uniquely determined by the pro-
ximal neighborhoods. It is to be noted that some authors define a proximity as the
relation 5. One can easily formulate the corresponding conditions (see ex. 8).

25 A.6. Let (P, p> be a proximity space and let u be the closure induced by p.
Every subset of P is a proximal neighborhood of the empty set. If X < P is non-void,
then the collection of all proximal neighborhoods of X is a proper filter on P the
intersection of which contains X. If Yis a proximal neighborhood of X in (P, p),
then Yis a neighborhood of X in P, u), but the converse need not be true. On the
other hand, every neighborhood of a singleton (x) is a proximal neighborhood of (x),
more precisely, if x € P and Y'is a neighborhood of (x) in (P, u),then Yis a proximal
neighborhood of (x) in (P, p). The symmetry of a proximity implies that Y is a
proximal neighborhood of X if and only if P — X is a proximal neighborhood of
P —Y If p is induced by a semi-uniformity % and X # 0, then [#%][X]
(=E{U[X] | U e }) is a base for the filter of all proximal neighborhoods of X in
P, p> (moreover, [%] [X] coincides with this filter).

The proof is simple and therefore is left to the reader.

25. A.7. Definition. A mapping f of a proximity space {(Py, p,) into a proximity
space (P, p,) is said to be proximally continuous if X p, Y implies f[X ] p, f[Y],
i.c., if the relation {X — f[X] | X =P,} is a “homomorphism relation under p, and
pP2”. A proximal homeomorphism is a one-to-one mapping of a proximity space
(P,, p;)> onto a proximity space {P,, p,> such that f as well as its inverse f ! is
proximally continuous. Finally, a proximity p, is said to be proximally finer than
a proximity p,,and p, is said to be proximally coarser than p,,if p; as well as p,
is for the same set, say P, and the identity mapping of (P, p,)> onto (P, p,>
is proximally continuous. A proximity space £ is a proximal homeomorph of a
proximity space 2 if there exists a proximal homeomorphism of 2 onto #.

25 A.8. Theorem. The composite of two proximally continuous mappings is a
proximally continuous mapping; more precisely, if f and g are proximally con-
tinuous mappings and E*f = D*g, then g o f is a proximally continuous mapping.
The identity mapping of a proximity space onto itself is a proximal homeomorphism,
if f is a proximal homeomorphism then so is f~1, and finally, if f and g are
proximal homeomorphisms and E*f = D%*g, then gof is also a proximal
homeomorphism.
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Corollary. The relation E{(p, q) | p is proximally finer than q} is an order on
the class of all proximities, and the relation E{{2, _"2)| 2 is a proximal homeo-
morph of P} is an equivalence on the class of all proximity spaces.

Proof. Let f and g be proximally continuous and suppose that the composite
h = g o f exists; then h[X;] = g[f[X,]], and if X, and X, are proximal in D*f,
then f[X,] and f[X,] are proximal in E*f(= D*g) by the proximal continuity of f,
and finally h[X,] and h[X,] are proximal in E*g = E*h by the proximal continuity
of g, which establishes the proximal continuity of g o f. The proof of the other state-
ments follows the proof of similar results for a closure space or a semi-uniform space.

The next theorem describes proximal continuity by means of proximal neighbor-
hoods of sets in the same way as continuity is described by neighborhoods of points.

25 A.9. Theorem. A mapping f of a proximity space & into a proximity space 2
is proximally continuous if and only if the following condition is fulfilled: if Y is
a proximal neighborhood of X in 2, then f~'[Y] is a proximal neighborhood of
[TX]in2.

Proof. Write Z = (P, p), 2 = {(Q, g). 1. Assuming f to be proximally continuous,
given a proximal neighborhood Yof X in 2 we must prove that f ~![ Y] is a proximal
neighborhood of f~![X] in 2, i.e. f~![X] non p(P — f~![Y]). Assuming the con-
trary, we obtain (f[f~'[X]]) ¢ (f[P — f~'[Y]]); but f[f~'[X]] = (Ef) n X and
fI[P = f7'Y]] = (Ef) n (@ — Y), and consequently X g (Q — Y), which contra-
dicts our assumption that Yis a proximal neighborhood of X in 2. — II. Now suppose
that the condition is fullfilled and X p Y; we have to show that f[X ]| g f[ Y]. Assuming
the contrary we find that Q — f[Y] is a proximal neighborhood of f[X] in 2, and
by the condition, f~'[Q — f[Y]](= P — f~'[f[Y]]) is a proximal neighborhood
of f~'[f[X]], and hence f~![f[X]] non pf~![f[Y]], which contradicts our as-
sumption X p ¥ because f “'[f[X]] = X and f~![f[Y]] 2 Y.

Corollary. A mapping f of a proximity space 2 into another one 2 is proximally
continuous if and only if for each subset X of 2 and each proximal neighborhood U
of f[X] in 2 there exists a proximal neighborhood V of X in 2 such that f[V] < U.

Remark. One might define 2 mapping f of a proximity space £ into a proximity
space 2 to be proximally continuous about a subset X = @ of |2| if for each pro-
ximal neighborhood U of f[X] in 2 there exists a proximal neighborhood V of X
in 2 such that f[V] = U. Then f is proximally continuous if and only if f is proximally
continuous about each non-void subset of |#|. Next, f is proximally continuous about
a singleton (x) if and only if f is continuous at x with respect to the induced closure.

25 A.10. Let f be a mapping of a proximity space {P;, p,)> into a proximity space
(P, p2)-1f p;is induced by a semi-uniformity %, and the mapping f: {(Py, %> —
- (P,, U,) is uniformly continuous, then the mapping f:{P;, p1> = {P2, P2y
is proximally continuous. If u; is the closure induced by p; and f:{Py, p> =
— (P,, py) is proximally continuous, then f:{P,, u;> — (P,, u,) is continuous.
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Proof. 1. Suppose that f:{Py, %,) = {P3, %,) is uniformly continuous and
X p, Y. If f[X]non p, f[Y], then U,[f[X]] nf[Y] =0 for some U, in %,, and
consequently U;[X]n Y =0, where U, =(f x )" [U,]; but U, e % by the
uniform continuity of f, and hence X non p, X which contradicts our assumption and
establishes the proximal continuity of f. — II. Now let f: {P,, p;) — {P,, p,) be
proximally continuous. If x € u,X, then (x) p, X and hence (fx) p, f[X] by the
proximal continuity, which yields fx € u, f[X] and establishes the continuity of f.

Corollary. If f is a Lipschitz continuous mapping of a semi-pseudometric space
{P,, d) into another one {P,, d,) and if p; is the proximity induced by d;,i = 1, 2,
then the mapping f:{Py, p,> — {P,, p;) is proximally continuous.

Propositions 25 A.2, 25 A.4 (a) and 25 A.10 enable us to extend our conventions.
Let us recall that we have agreed to consider every semi-uniform space {P, %) as
a closure space {P, u) where u is the closure induced by %; more precisely, if we say
that (P, %) has a property defined for closure spaces it is to be understood that
{P, u) has this property. Similar conventions were made for mappings for semi-
uniform spaces; roughly speaking, we agreed to speak about a mapping f for semi-
uniform spaces as about its transpose to a mapping for closure spaces.

25 A.11. Definition and convention. The transpose of a mapping f for semi-
uniform spaces to a mapping for proximity spaces is the mapping f : # — 2 where #
and 2 are the proximity spaces induced by the semi-uniform spaces D*f and E*f
respectively. The transpose of a mapping f for proximity spaces to a mapping
for closure spaces is the mapping f: % — 2 where Z and 2 are the closure spaces
induced by D*f and E*f respectively.

If we say that a semij-uniform space (proximity space) has a property defined for
proximity spaces (closure spaces) it is to be understood that the induced proximity
space (closure space) has this property. The same conventions are made for mappings,
i.e., if we say that 2 mapping f for semi-uniform spaces has a property defined for
mappings for proximity spaces, e.g. that fis proximally continuous, it is to be under-
stood that the transpose of f to a mapping for proximity spaces has this property, and
if we say that a mapping f for proximity spaces has a property defined for closure
spaces, e.g. f is continuous, it is to be understood that the transpose of f to a map-
ping for closure spaces has this property.

Now proposition 25 A.10 and its corollary can be restated as follows:

25 A.12. Theorem. Every Lipschitz continuous mapping and every uniformly
continuous mapping is proximally continuous. Every proximally continuous map-
ping is continuous.

25 A.13. Corollary. Every uniform homeomorphism (uniform embedding) is
a proximal homeomorphism (proximal embedding). Every uniformly continuous
pseudometric is a proximally continuous pseudometric.

We recall that a uniformly continuous mapping for semi-pseudometric spaces
need not be Lipschitz continuous, a proximally continuous mapping for semi-uniform
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'spaces need not be uniformly continuous (25 A.4) and a continuous mapping for
proximity spaces need not be proximally continuous (25 A.4). There are two im-
portant theorems asserting that, under certain assumptions, a proximally continuous
mapping is uniformly continuous. One of these will be proved now while a second
one, which requires the concept of proximally coarse semi-uniformity, will be given
in subsection 25 B.

25 A.14. Theorem. A proximally continuous mapping of a pseudometrizable
uniform space into a pseudometrizable uniform space is uniformly continuous.

Proof. Suppose that f is a proximally continuous but not uniformly continuous
mapping of a pseudometric space {P’, d) into another one (P, d); we have to derive
a contradiction. The mapping f is not uniformly continuous and therefore there
exists a positive real r and sequences {£,} and {r,} in P’ such that the sequence
{d'{&,, n.p} converges to zero but d{f¢&,, fn,> = r for each n. If n; is an unbounded
sequence in N, then the distance from E{¢, } to E{n, } is zero in {(P’, d) and con-
sequently, f being proximally continuous, the distance from f[E{¢,}] (= E{f¢,})
to f[E{n,}]1(= E{fn,})in (P, d) is zero. '

Write x, = f&,, y, = fn, so that

(a) d{xy, yo» 2 r > 0 for each n in N, and

(b) the distancé from E{x, | ne M} to E{y, | n e M} is zero for each infinite subset
M of N.

We shall derive a contradiction.

L If the net {d(x,, X, | {n,m) e N x N} converges to zero where N x N is
endowed with the product order, then a contradiction is obtained as follows. Choose
n, in N such that n = n,, m = n, implies d{x,, x,,> < 3r. The distance from
E{x, | k = no} to the set E{y, | k = nyo} is zero and therefore, by (b), we can choose
m = n, and n = ny such that d<{x,, y,» < ir. Now d{x,, yn> < d(xpm X,> +
+ d{Xn, Ymy < ¥r + 4r = r which contradicts our assumption (a).

IL. If there exists an infinite subset M of N such that the net {d{x,, x,, | {(n,m)e
€ M x M} converges to zero, then a contradiction is obtained as in I.

III. If there exists an infinite subset M of N such that the net {d{y,, ym) | {(n,m)e
€ M x M} converges to zero, then a contradiction is obtained by applying the argu-
ment of I with x, and y, interchanged.

IV. In the remaining case there exists no infinite subset M of N such that the net
{d<xp Xy | <n, m) e M x M} or the net {d<{y,, ¥ | {n, m> e M x M} converges
to zero. Consequently, there exists a positive real s and an infinite subset M of N
such that (see 18 ex. 11)

(€) %> Xp) Z 8, A Vs Yy 2 5
for each ne M, m € M, n & m. Choose a positive real t such that t £ 4sand t < r. Itis

easily seen that there exists an infinite subset L of M such that the distance from x,
to E{y, | ke L} as well as the distance from y, to E{x, | ke L} is less than ¢ for each
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n € L. Indeed, assuming the contrary we can construct an infinite subset K of M such
that the distance from E{x, | n € K} to the set E{y, | n € K} is at least s, which contra-
dicts our assumption (b). Let ¢ be the relation consisting of all {n, m) € L x Lsuch
that d(x,, y,» < t. We have g[n] + @ + ¢~ '[n] for each n. It follows from (c) that
the relations ¢ and ¢~ ! are single-valued. Indeed, if d{x,, y;> < t, d{%m yx> < 1,
neL, meL, keL then d{x, x,) < d{x,, ;> + d{xp,, y»> <2t £s which
contradicts (c) and proves that ¢~ ! is single-valued. The same argument with x and y
interchanged yields that g is single-valued. Thus ¢ : L— Lis a bijective mapping. If
nelL, then ne N and hence d{x,, y,> = r = t (by (a)) which shows that gn # n
for each n. Now it is easily seen that there exists an infinite subset K of Lsuch that
o[K] nK = 0. (Take a maximal element K of the ordered subset of {exp L, =)
consisting of all H such that H n ¢[H] = @ and show that K is infinite.) Evidently
the distance from E{x, | n € K} to the set E{y,|n e K} is at most s, which contra-
dicts our assumption (b). The proof is complete.

. 25 A.15. Corollary. Two pseudometrics are uniformly equivalent if and only if
they are proximally equivalent; stated in other words, if d, and d, are pseudo-
metrics for a set P, U; is the uniformity induced by d; and p; is the proximity in-
duced by d;, i = 1,2, then %, = %U, if and only if p, = p,.

Proof. Any uniform homeomorphism is a proximal homeomorphism (by 25 A.13)
and therefore %, = %, implies p; = p,. It follows immediately from 25 A.14 that
p; = p, implies %, = %,.

25 A.16. Definition. The class of all proximities ordered by the relation E{(p, g | 4
is proximally finer than ¢} will be denoted by P, and, given a set P, the ordered subset
of P consisting of all proximities for P will be denoted by P(P). The set of all proxi-
mally continuous mappings of a proximity space £ into another one 2 will be de-
noted by P(Z, 2).

If # and 2 are semi-uniform spaces, then U(2, 2) denotes the set of all uniformly
continuous mappings of £ into 2; in accordance with 25 A.11, the symbol P(2, 2)
will denote the set of all proximally continuous mappings of & into 2. Similarly, if
# and 2 are proximity spaces, then C(2, 2) will denote the set of all continuous
mappings of 2 into 2. Our earlier results can now be restated as follows:

(*) C(?, .@) > P(2, .@) o U(‘@, .@)
for all semi-uniform spaces & and 2; the first inclusion holds for all proximity
spaces 2 and 2 whereas U(2, 2) is not always defined. Roughly speaking, inclusions
(¥) are true whenever the symbols are defined. Theorem 25 A.14 asserts that
P(2, 2) = U(2, 2) for all pseudometric spaces # and 2. Earlier, we have intro-
duced the concepts of a continuous semi-uniformity and a continuous semi-pseudo-
metric for a closure space, and of a uniformly continuous semi-pseudometric for a
semi-uniform space. In a similar way we shall define a continuous proximity for a
closure space, and a proximally continuous semi-uniformity and a proximally
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continuous semi-pseudometric for a proximity space. Although the definitions are
evident we give the precise formulations.

25 A.17. Definition. A continuous proximity for a closure space (P, u) is a pro-
ximity for P such that the closure induced by p is coarser than u, i.e., the identity
mapping of (P, u) onto (P, p) is continuous. A proximally continuous semi-
pseudometric (a proximally continuous semi-uniformity) for a proximity space
(P, p) is a pseudometric (semi-uniformity) £ for P such that the proximity induced
by £ is proximally coarser than p, i.e., the identity mapping of {P, p) onto (P, &> is
proximally continuous.

It is to be noted that, according to earlier results, if d is a proximally continuous
semi-pseudometric for a proximity space 2 and if % is the semi-uniformity induced
by d, then % is a proximally continuous semi-uniformity for £, and similarly for con-
tinuous semi-pseudometrics, semi-uniformities and proximities for a closure space.

25 A.18. Examples. Suppose that P is a closure space.
(a) The relation

p={XY|XcP,YcP,(XnY)u(XnY)+0}

is the proximally finest continuous proximity for P.It is to be noted that two subsets X
and Y of P are distant in {|P|, p,) if and only if they are semi-separated (20 A.1),
ie., X non p, Yif and only if X and Y are semi-separated in P. Verification of the
conditions (prox i)is simple and therefore is omitted (one can use properties of non p;
proved in 20 A). If p is any continuous proximity for P and X p, Y, thenX N Y+ 0
or X nY # 0;but X n Y % Qimplies y € X for some y € Y, and p being a continuous
proximity, we obtain (y) pX and hence Y pX and thus also X p Y. Similarly X n Y
yields X p Y. Thus always X p Y whenever X p, Y, which shows that p, is proximally
finer than p. On the other hand, if x € X then clearly (x) p, X, which means that p,
is a continuous proximity for the closure space P.

(b) The relation p, = {<X, Y>|X p, Yor both X and Yare infinite} is a continuous
proximity for P, and if some proximity induces the closure structure of P, then p,
is the proximally coarsest proximity inducing the closure structure of P.

() The relations p, = {(X, Y)|X = P, Y = P, X and Y are not separated in P}
and p, = {<X, Y>| X n Y % 0} are continuous proximities. It is to be noted that
the relation non p; was studied in 20 A and the relation p,, which will be called the
Wallman proximity of P, will be studied in Section 29 devoted to normal spaces.

(d) The relation ps = E{(X, Y) | if f is a continuous function on P, then f[X]
N f[?] # 0} is a continuous proximity for P, which is called the Cech proximity of P
and will be studied in Section 28 devoted to uniformizable spaces.

Now we shall turn to the definition of a subspace of a proximity space and the sum
of a family of proximity spaces. The product will be studied in Section 38.
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25 A.19. Definition. If (P, p) is a proximity space and Q < P, then ¢q =
= pn(exp Q@ x exp Q) is a proximity for Q which will be called the relativization
of p to Q, and the space {Q, q) will be called a subspace of (P, p).

The verification of the fact that g is actually a proximity for Q is left to the reader.
One can prove that g is the proximally coarsest proximity for Q such that the mapping
J:<Q, g> = (P, p> is proximally continuous. Now we have the following result:

25 A.20. Let Q be a subset of a set P. If ¥~ is the relativization to Q of a semi-
uniformity % for P, then the proximity induced by ¥ is the relativization of the
proximity induced by %. If q is the relativization to Q of a proximity p for P, then
the closure induced by q is the relativization of that induced by p. — Evidznt.

25 A.21. Definition. A restriction of a mapping f for proximity spaces is a map-
ping g = f:2 — 2 where 2 is a subspace of D*f and 2 is a subspace of E*f; if
2 = D*f, then g is a range-restriction of f, and if 2 = E*f, then g is a domain-
restriction. A proximal embedding is a mapping f such that the range-restriction
of f to the subspace Ef of E*f is a proximal homeomorphism.

Obviously, if 2 is a subspace of a proximity space £, then the mapping J: 2 - £
is a proximal embedding, which is said to be the identity embedding of 2 into 2.

25 A.22. Theorem. The restriction of a proximally continuous mapping is proxi-
mally continuous. A mapping f for proximity spaces is proximally continuous
if the range-restriction of f to the subspace Ef of E*f is proximally continuous. —
Evident.

25 A.23. Definition. The sum of a family {{P,, p,> | a € A} of proximity spaces,
denoted by Z{(P,, p,> | a € A}, is the proximity space (P, p) where P = £{P,} and
XpYifand only if X = P, Y < Pand X, p, Y, for some « where X = £{X,}, Y =
= Z{Y,}. The proximity p is termed the sum of the family {p,} and denoted by
2{pa}-

The straightforward verification of the fact that p is actually a proximity is left
to the reader. Next, it is to be observed that the sets inj, [ P,] and inj, [ P,] are distant
in (P, p)> for each a + b. The basic properties are summarized in the theorem which
follows. The simple proof is left to the reader as a convenient exercise.

25 A.24. Theorem. Let (P, p) be the sum of a family {{P,, p,> | a € A} of pro-
ximity spaces. Then

(a) If{%,,} is a family of semi-uniform spaces such that %, induces p, for each a,
then the sum semi-uniformity X{%,} induces p.

(b) If u, is the closure induced by p,, a € A, then the sum closure £{u,} is induced
by p.

(c) The mapping inj, : {P,, p,> = {P, p) is a proximal embedding for each a
in A (which will be called the canonical embedding).

(d) The proximity pisthe proximally finest proximity for P such that all mappings
inj, : {(P,, p.> = {P, p) are proximally continuous.
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(¢) A mapping f of (P, p) into a proximity space 2 is proximally continuous
if and only if the mapping foinj, : (P,, p.y — 2 is proximally continuous for
each a in A.

B. PROXIMALLY COARSE SEMI-UNIFORMITIES

We shall show that every proximity is induced by a semi-uniformity, and that among
all uniformities inducing a given proximity there exists a uniformly coarsest (= small-
est) one which will be called the proximally coarse semi-uniformity of (P, p). It
turns out that this semi-uniformity is a uniformity if and only if p is induced by a
uniformity.

25 B.1. Definition. A proximity induced by a uniformity will be called uniformiz-
able.

Uniformizable proximities permit the following simple characterization:

25 B.2. Theorem. The following condition is necessary and sufficient for a pro-
ximity p for a set P to be uniformizable:

(prox 5) If X non pY, then there exist X, « PandY, < PsuchthatX; nY, = 0,
(P —X;)non pX and (P — Y;)non pY.

Evidently, condition (prox 5) can be restated as follows:

(prox 5') If X non pY, then there exist proximal neighborhoods X, of X and Y,
of Y such that X, nY, = 0.

Proof. I. Necessity. Suppose that p is induced by a uniformity % and X non p Y.
By the definition of induced proximities there exists a U in % such that U[X] n Y = 0.
Choose a symmetric element ¥ of % so that Vo V< U and put X, = V[X],
Y, = V[Y]. By definition, X, and Y, are proximal neighborhoods of X and Y and
it remains to show that X; n Y, = §. Assuming the contrary we obtain Vo V[X] n
N Y+ 0 which implies U[X]n Y # 0, and this contradicts our assumption
UX]nY=9.

II. To prove the sufficiency we must construct a uniformity inducing p. The con-
struction is not too simple. Three lemmas will be given, concerning the construction
of the uniformly coarsest semi-uniformity inducing a given proximity p which will
be proved (in 25 B.6) to be a uniformity if p fulfils the condition (prox 5). Thus suf-
ficiency will follow from 25 B.6.

If a proximity p for a set P is induced by a semi-uniformity % and if X p Y, then
U[X] N Y + 0 for each U in %. Therefore, given p, if we want to find a semi-uniformity
inducing p it is natural to consider the collection % of all vicinities U of the diagonal
of P x P such that U[X]n Y=+ 0 whenever X p Y. It is easily seen that Ue %, Uc
V< P x Pimplies U"! e % and Ve %. On the other hand, the intersection of
two elements of % need not belong to %, as will be shown in example 25 B.10, and
therefore % need not be a semi-uniformity. It turns out that the collection %’ of all
the elements ¥V of % of the form U{X; x X}, where {X} is a finite cover of P, pos-

29—Topological Spaces
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sesses the following two properties: (1) if U e % and U’ € %', then U n U’ € %, and
(2) if 2 semi-uniformity ¥~ induces p, then %’ <= ¥". It will follow from (1) that ' is
a base for a proximally continuous semi-uniformity for (P, p); it turns out that this
semi-uniformity induces p, and if p fulfils (prox 5), then this semi-uniformity is
a uniformity. For convenience we shall introduce some terminology.f.

25 B.3. Definition. A finite square vicinity of the diagonal of P x P is a vicinity
of the form U{X; x X;} whers {X,} is a finite cover of P. If {P, p) is a proximity
space then a proximal vicinity of the diagonal of (P, p)> x (P, p), or a p-proximal
vicinity of the diagonal of P x P, is a subset U of P x P such that X p Y implies
UX]nY=+0.

Remarks. (a) A subset U of P x P is a symmetric vicinity of the diagonal of
P x P if and only if U is a union of squares X x X. “If” is obvious and to prove
“only if”” notice that V.= U{((x, y) x (x, y)) | <x, ¥ € V'} provided that Vis a sym-
metric vicinity of the diagonal. — (b) Every proximal vicinity U of the diagonal of
{P, p> x (P, p)> is a vicinity of the diagonal of P x P; indeed, if x € P, then
(x) p(x) (by (prox 3)) and hence U[(x)] n (x) + 0, i.e. {x,x) e U.

For convenience, the main result, Lemma 25 B.6, will be preceded by two prepar-
atory lemmas which are also important by themselves.

25B.4. Let P be a set. Every finite square vicinity of the diagonal of P x P is
an intersection of a finite family of vicinities of the form (X x X) u (Y x Y).

Proof. Suppose thai U = U{X; x X;|i £ n}, ne N, is a vicinity of the diagonal
of P x P, ie., {X;} is a cover of P. Assuming that {x, y>e(P x P) — U let us
consider the union X of all X; such that x € X;, and the union Y of all the remaining
sets X;. Since y¢ X we have {(x, y>¢X x X and since x¢ Y we have (x, y) ¢
¢Yx Y Thus Uc((X x X)u(Yx Y)) (P x P)—({x, y>). This concludes
the proof.

25 B.5. Suppose that (P, p) is a proximity space. Each of the following two
conditions is necessary and sufficient for a set V= ((X, x X;) v(X, x X,))
< P x P to be a proximal vicinity of the diagonal:

(@) (P — X )non p (P — X,) (and hence X, U X, = P);

(b)if XpY, then (X, nX)p(X;nY)or (X,nX)p(X;NnY)

Proof. First notice that P — X, =X, — X, and P-X, =X, — X, if
X, U X, =P.

L. Condition (a) is necessary because V[X,—X,] = X, and X, n(X;—X,) = 0.

II. Condition (b) is sufficient, for (X;nX)p(X;NnY) implies X;nX % 0,
X;nY=+0, and hence V[X]|n Yo V[XinX]n(X;nY)=X,n(X;nY)=
= Xi (@) Y =|'-' 0.

III. 1t remains to show that (a) implies (b). Assuming (a) suppose X p Y and con-
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sider the following decompositions of X and Y:
X=((X, - X)) nX)u(X;nX;)nX) U (X, — X;)n X)

The sets X and Y being proximal, by 25 A.3 at least one of the sets of the decom-
position of X must be proximal to a set from the decomposition of Y. But
(X, — X;)non p(X, — X,) and hence also (X n (X, — X,))nonp(Yn (X, — X)),
(YN (X, — Xy))non p(X n(X; — X,)). It follows that both of the proximal sets
in question must be contained in X or in X,; this concludes the proof.

25 B.6. Lemma. Suppose that (P, p> is a proximity space, ¥  is the set of all
finite square proximal vicinities (of the diagonal of (P, p> x (P, p)) and #" is
the set of all elements of ¥ of the form (X x X) u (Y x Y). Obviously ¥ is a sub-
base for a semi-uniformity % for P. The following assertions hold:

(a) ¥~ consists of finite intersections of elements of W and hence W is a sub-base
for %.

(b) If We# and U is any proximal vicinity, then W n U is also a proximal
vicinity.

(¢) ¥ is multiplicative, hence a base for %. Thus every element of % is a proxim-
al vicinity and hence % is a proximally continuous semi-uniformity for {P, p).

(d) % induces p.

(e) If a semi-uniformity %, induces p, then % < %U,.

(f) If p fulfils the condition (prox 5), then % is a uniformity.

Proof. I. Statement (a) follows from 25 B.4 and the definition of a sub-base for
a semi-uniformity.

II. To prove (b) let W= (X; x X;) U (X, x X,)e# , and let U be any
proximal vicinity. Assuming X p Y we must show that (U n W)[X] n Y #+ 0. By
25B.5 we obtain that (X; n X) p(X; n Y) for some i = 1,2. Since U is a proxi-
mal vicinity we have U[X; n X] n(X;n Y) & 0. However (U n W) [X;nX] =
= X; nU[X; n X], and consequently (Un W)[X]n Yo (Un W) [X;n X] n
NYo> X, nU[X;nX]nY 0.

III. Statement (c) follows immediately from (a) and (b) (by induction).

IV. For (d) it remains to show that if X non p Y then U[X] n Y = 0 for some U
in . Put X, =P — X and Y, = P — Y. It follows from 25B.5 (a) that U =
=(X; x X,)u(Yy x Y;) is a proximal vicinity and hence Ue# < %. But
clearly U[X] =Y, =P — Y.

V. To prove (e), suppose that a semi-uniformity %, induces p. To prove that % is
contained in %, it is sufficient to show that the sub-base #” of % is contained in %;.
Let W=(X xX)u(Yx Y) be any element of %. By 25B.5 we obtain
(P — X) non p(P — Y). By our assumption there exists a U in %, such that

(*) UP-X]n(P-Y)=0.

29+
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Without any loss of generality we may and shall assume that U is symmetric, i.e.
U = U~!. Now the proof will be accomplished if we show that U < W; and this
inclusion will be derived from () as follows.

It is sufficient to show that U[x] = W[x] for each x in P. It follows from (x) that
U[P — X] = Y; but clearly W[P — X] = Y and hence U[x] = W[x] for cach x
in P — X. Since U is symmetric, we obtain from () that U[P — Y] n (P — X) =0
and the same argument as above gives U[x] = W[x] for each x in P — Y. It re-
mains to consider the case when xe P — (P — X) U (P — Y)) = X n Y. However
if xe(X NY), then W[x] = (X U Y)=P and therefore U[x]| = P = W[x].

VI. We must now prove assertion (f). Suppose that p fulfils condition (prox 5)
of 25 B.2. According to 24 A.6, to prove that % is a uniformity it is sufficient to show
that for each element W of the sub-base #” for % there exists an element V of ¥~ such
that Vo V = W. Suppose that W= (X x X)u (Y x Y))e# (see fig. 1).

Fig. 1.

Since (P — X) non p(P — Y) there exists a proximal neighborhood Y; of P — X
and X, of P~ Y such that X, nY, =0. Put V=(X; x X,))u((X nY) x
x (X nY))u (Y, x Y;). Now Ve ¥ because Vis the intersection of two elements
of #°, namely (X; x X;)U(Y x Y) and (¥; x ¥;) U(X x X), use 25B.5 (a). It
will be shown that Vo V = W. By 23 B.7 we have V. ¥V = U{V[x] x V[x]|x€P}.
If x € Xy, then V[x] = X and hence (V[x] x V[x]) =« X x X =« W.If xeP — X,,
then V[x] = Y and hence (V[x] x V[x]) = Y x Y W.

It is to be pointed out that Lemma 25 B.6 accomplishes the proof of Theorem
25B.2. If p is a proximity for a set P then by 25B.6 the set of all finite square
p-proximal vicinities of the diagonal of P x P is a base for a semi-uniformity % for
P, which is the smallest semi-uniformity inducing the proximity p. If %’ is any semi-
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uniformity inducing p such that the set ¥ of all finite square vicinities from %’ is
a base for %', then necessarily % = %’; but ¥’ = %, and ¥’ being a base for %',
we obtain %’ < % and hence %’ = %. Thus we have proved

25 B.7. Suppose that a semi-uniformity % induces a proximity p. Then % is the
uniformly coarsest (i.e. smallest) semi-uniformity inducing p if and only if the
finite square elements of % form a base for %.

25 B.8. Definition. A semi-uniformity % will be called proximally coarse if finite
square elements of % form a base for %, i.e. by 25 B.7, if a semi-uniformity %’ induces
the same proximity as %, then % < %’ (i.e. % is uniformly coarser than %").

25 B.9. Theorem. Every proximity is induced by a semi-uniformity. Among all
the semi-uniformities inducing a given proximity p there exists a unique proximally
coarse semi-uniformity %, the set of all finite square p-proximal vicinities is a base
Jor U and U is a uniformity if and only if p is uniformizable. — (25B.2, 25B.6
and 25 B.7).

25 B.10. We shall construct some discrete proximities for a given infinite set P and
we shall describe the corresponding proximal vicinities and proximal coarse semi-
uniformities. We shall show that the intersection of two proximal vicinities need not
be a proximal vicinity and the sum of two proximally continuous pseudometrics
need not be proximally continuous.

According to Convention 25 A.11 a proximity p is said to be discrete if the closure
induced by p is discrete. A proximity p will be called proximally discrete if every
proximity proximally finer than p coincides with p, i.e. p = E{KX, Y) ]X c P,
Y < P, X nY % 0} for some set P. A proximity space {P, p) will be called discrete
or proximally discrete if p is discrete or proximally discrete. In what follows let P
be an infinite set.

(a) Let p be the proximally discrete proximity for P. Let d be the pseudometric
for P which is 1 outside the diagonal of P x P (thus d is a metric). Evidently d
induces p and the uniformity % induced by d is the uniformly finest uniformity
Jor P. Thus % is the uniformly finest semi-uniformity inducing p and % consists
of all proximal vicinities, i.e. of all vicinities of the diagonal. By 25 B.9 the finite
square elements of % form a base for the proximally coarse semi-uniformity ¥~
of (P, p> which is a uniformity (by 25B.9) because p is uniformizable. On the
other hand, {P, % is metrizable and hence (P, p)> is metrizable, but {P,"¥ ) is not
pseudometrizable. Indeed, assuming that ¥~ is pseudometrizable we obtain that
% =¥ because any two proximally equivalent pseudometrizable uniformities
coincide (by 25 A.15); but clearly % + ¥ .

(b) Suppose that { is a free proper filter of sets on P, i.e. each element of { is
non-void and (Y { = 0. It is easily seen that the relation

p=E(X,Y)|XcP, YcP,XnY+0 or (Ze{=ZnX+0+ZNnY)}
is a discrete proximity for the set P. Next, p is proximally discrete if and only if
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X n'Y = Qimplies that there exists a Z in { such that either X nZ =QorYnZ =
= 0. It is almost self-evident that this condition is equivalent with the statement
that { is an ultrafilter. Thus p is proximally discrete if and only if { is an ultra-
filter. Clearly each set ), U (Z x Z), Z € {, is a proximal vicinity. If U = (X x X)u
U (Y x Y) is a proximal vicinity, then the sets P — X and P — Y are proximally
distant and hence, being disjoint, there exists a Z in { such that Z n (P — X) =
=0=Zn(P—Y) and hence Z x Z < U. As a consequence, each proximal
finite square vicinity contains a set of the form Z x Z, Z € {. We have proved that
a finite square vicinity U of the diagonal of P x P is a proximal vicinity if and
oﬁly if U contains a set of the form Z x Z, Z € {. Stated in other words, a finite
square vicinity U{X; x X} is proximal if and only if { n E{X;} * . It is in-
teresting to notice that the proximity p is a relativization of the Wallman proximity ¢
of a closure space {Q, v) (that is, g = E{<X, YD |vX nvY = 0}). Let Q consist of
all points of P and a single further point x, and let v be the closure for Q such that P
is an open isolated subset of {Q, v) and [{] U (x) = E{Z U (x) | Z e {} is the neigh-
borhood] system at x. It is easily seen that p is the relativization of the Wallman
proximity of (Q, v).

(c) Let {;, i = 1,2, be proper filters on P and let p; be proximities for P defined
asin(b),i.e. X p;Yifandonly if X «c P,Yc Pandeither XnY+QorXnZ; %
* 0+ Yn Z, for each Z,e ;. Let us consider the filter { on P x P having the
collection [{,] x [(;] = E{Z, x Z,|Z;e{;} for a base, and the proximity p
defined asin (b), i.e. X pYifandonlyif X c P x P,Y< P x Pandeither X nY *
*QorXnZ+0+YnNZforeach Z in {. Let ny and n, denote the projections
{<x, y> > x| <x,y>€P x P} and {{x, y) > y|<x,y) € P x P}. We shall prove
that the projectionsn;: (P X P, p> - (P, p;), i = 1,2, are proximally continuous.
Suppose X p Y. If X nY + 0, then =,[X] n =,[Y] & 0 and hence n,[X] p; n,[Y].
Let XnY=0 and Z;e{;. Since Z =Z, x Z, belongs to {, we have Zn X +
+0+ZnY and hence n[Z] nn[X] 0+ n[Z]nn[Y] i=1,2 Howe-
ver, m,[Z] = Z; and hence =n[X]p; n[Y].

(d) Under the assumptions of (c) let {; be ultrafilters. Then, by (b), p; are pro-
ximally discrete, i.e. X p; Y implies that X n Y # @, in particular p, = p,. On the
other hand, { need not be an ultrafilter and therefore the proximity p need not be
proximally discrete. E.g., if {, + {, and {; contains a countable set then { is not
an ultrafilter by 12 C13.

(¢) Let p be a proximity for P x P which is not proximally discrete and assume
that the mappings «; : (P X P, p> — (P, q¢) are proximally continuous, where ¢ is the
proximally discrete proximity for P (such a p exists by (c) and (d)). If d is any
proximally continuous pseudom:tric for (P, ¢) (and hence, by (a), if d is any
pseudom:tric for P), then d;, = d o (m; x m;), i = 1,2, are proximally continuous
pseudomstrics bzcause the mapping J : (P x P, p> —» (P x P, d;) is proximally
continuous as the composite of two proximally continuous mappings, namely 7;:
{P x P,p)— (P,q)> and }: (P, q> - {P,d). In particular, if d is the pseudo-
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mztric for P which is 1 outside the diagonal of P x P, then d, and d, are proximally
continuous pseudometrics for (P x P, p); however their sum D = d; + d, is not
proximally continuous because D{{x, 1, (X3, y2)) = d<{x1, X5) + d{yy, yo =1
whenever (x;, y,> # {(x,, y»), and hence D induces the proximally finest proximity
for P x P, which is, by our assumption, strictly proximally finer than p. Thus the
sum of two proximally continuous pseudometrics need not be proximally continuous.
From this fact it follows at once that the intersection of two proximal vicinities
need not be a proximal vicinity.

25 B.11. Definition. A semi-uniformity % for a set P is said to be totally bounded
if for each U in % there exists a finite subset X of P such that U [X] = P.

25 B.12. Every proximally coarse semi-uniformity is totally bounded and every
totally bounded uniformity is proximally coarse.

Proof. I. Let % be a proximally coarse semi-uniformity for a set P and let 7~ be
the collection of all finite square elements of %; thus ¥~ is a base for . If U € %,
then ¥ < U for some V = Y{X; x X;} € ¥, where {X,} is a finite cover of P; now
if X is a finite set intersecting each X, then clearly V[X] = U{X;} = P and hence
U[x] =P

II. Suppose that % is a totally bounded uniformity for a set P and U is any element
of %. We must find a finite square element Win % contained in U. Choose a symmetric
element Vin % such that Vo Vo Vo ¥V < U and a finite subset X of P with V[X] = P,
and put

W={V-V)[x] x (Vo V}[x] | x € X]}.
Since (Vo ¥)o (Vo V) = U, the set Wis contained in U by Lemma 23 B.7. To prove
that We %, we shall show that W > V. Given any y in P choose an x in X with

y € V[x]. We have
Viy] = V[V[x]] = (V. V) [x] = W[y].
Corollary. A uniformity is proximally coarse if and only if it is totally bounded.

Remark. A totally bounded semi-uniformity need not be proximally coarse. For
example, consider an infinite set P, choose a point x in P and let us consider the pro-
ximity p for Psuch that X pYifandonlyif X n Y3+ QorX + 0+ YandxeX v Y.
If u is the closure induced by p, then u(y) = (x, y) if y € (P — (x)) and u(x) = P.
Thus P is the only neighborhood of x in (P, u) and consequently, if % is a con-
tinuous semi-uniformity for P, then U[x] = P for each U in %; this shows that
evety continuous semi-uniformity for (P, u) is totally bounded. Let % be the lar-
gest continuous semi-uniformity for (P, u}). Clearly the set U = 4, U ((x) x P)u
U (P x (x)) forms a base for % and % induces p. On the other hand % is not
proximally coarse because the set U contains no finite square element of % (P is
infinite).

25 B.13. By our convention that every uniform concept applies to semi-pseudo-
metrics, a semi-pseudometric is said to be totally bounded if the induced semi-
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uniformity is totally bounded. It is evident that a semi-pseudometric d for a set P is
totally bounded if and only if, for each positive real #, there exists a finite subset X of P
such that the distance from each y € P to X is less than r.

25 B.14. Theorem. The class of all proximally coarse semi-uniformities is
hereditary and closed under finite sums and arbitrary products.

Proof. If Q = P and U is a finite square vicinity of the diagonal of P x P, then
(Q x Q) n U is a finite square vicinity of the diagonal of @ x @ and therefore every
relativization of a proximally coarse semi-uniformity is proximally coarse. If (P, %)
is the sum of a finite family {{P,, %, | a € A} of proximally coarse semi-uniformities,
and U, € %, is finite square, then | {(inj, x inj,) [U,]} is also finite square; this shows
that % is proximally coarse. Finally, if (P, %) is the product of a family {(P,, %,>}
and U, € %, is finite square, then {<x, y)> | <pr, x, pr, y) € U,} is finite square and
hence finite square elements form a sub-base for %; this shows that % is proximally
coarse.

25 B.15. Theorem. Suppose that there exists a uniformly continuous mapping
of a semi-uniform space P onto another one 2. If 2 is totally bounded, then 2 is
also totally bounded. If P is totally bounded, in particular if @ is proximally
coarse, and if 2 is a uniform space, then 2 is proximally coarse.

Proof. The first statement is an immediate consequence of the corresponding de-
finition and the second one follows from the first and 25 B.12.

Remark. It is to be noted that there exists a uniformly continuous mapping of
a proximally coarse uniform space onto a semi-uniform space which is not
proximally coarse. For example, take an infinite set P, fix a point x in P and con-
sider the proximally coarse uniformity % inducing the proximity p = E{(X, Y>|
X cP,Yc P,X nY + 0} (see 25 B.10). Next, fix a point x in P and consider
the proximity ¢ = E{<X,Y)|X cP, Yc P, XnY+0 or X+0+Y and
x €(X v Y)}. The proximity g is induced by the semi-uniformity ¥~ which consists
of all V.= P x P containing a set of the form U u ((x) x P)u (P x (x)), U e «.
Clearly, ) : (P, %) — (P, ¥ ) is uniformly continuous but ¥ is not proximally
coarse because the proximally coarse semi-uniformity of (P, g> has for a base the
set of all finite square vicinities U{X; x X} such that xe N} {X }.

25 B.16. A subspace Q of the uniform space of reals is proximally coarse if and
only if Q is contained in a bounded interval in R.

Proof. L. If Q is contained in no bounded interv'al, then one can easily construct
a sequence {x,} in Q such that |x, — x,| = 1 for n + m. Now if {y,} is a sequence
in Q such that |x, — y,| < 27%, then 1 < |x, — x| < %0 — yu| + |V0 — V| +
+ |Xm — Ym| <1 + |ys — v whenever n % m, and hence |y, — y,| > 0forn + m.
But this implies that {y,} is a one-to-one sequence. Consequently (see 25 B.13), Q is
not totally bounded and hence Q is not proximally coarse (by 25 B.12).

I1. Now let Q be contained in a bounded interval J = [ —r, r |. But, according to
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Theorem 25 B.14 it is sufficient to show that J is proximally coarse; by 25 B.12 this
will follow if the interval J is totally bounded. Given a positive s, let S be the set of all
the points s.n, ne N or —ne N. Clearly S n [ —r, r ] is finite and if x € J, then
|x — y| < s for some y in S. The proof is complete.

By 25 A.10 every uniformly continuous mapping is proximally continuous but
a proximally continuous mapping for semi-uniform spaces need not be uniformly
continuous (it is sufficient to take two different proximally equivalent semi-uniform-
ities). On the other hand one has the following

25 B.17. Theorem. If 2 is a proximally coarse semi-uniform space, then every
proximally continuous mapping of a semi-uniform space into 2 is uniformly con-
tinuous.

Proof. Suppose that f is a proximally continuous mapping of a semi-uniform space
{P,, %) into a proximally coarse semi-uniform space (P, %). To prove that f is
uniformly continuous it is merely necessary to find a sub-base #" for % such that
(f x f)"'[W] €%, for each Win #". Of course for #" we take the sub-base for #
described in lemma 25B.6, i.e. the collection of all sets W of the form W =
= (X x X) u (Y x Y) such that (P — X) non p (P — Y), where p is the proximity
induced by %. Since f is proximally continuous we obtain (P; — X,) non p, (P, — Y;)
where X; = f~'[X], Y; = f~'[Y] and p, is the proximity induced by #,. Thus,
from 25B.5, W, = (X, x X,) u(Y; x Y;) is a p;-proximal vicinity of the
diagonal of P, x P,, and consequently, by 25B.6, W, e %,. But clearly W, =
—(f x )" [W].

Remark. It is to be noted that the property of proximally coarse semi-uniformities
stated in 25 B.17 is characteristic for proximally coarse semi-uniformities, more pre-
cisely, a semi-uniform space £ is proximally coarse if and only if every proximally
continuous mapping of a semi-uniform space into £ is uniformly continuous. “Only
if*” is proved in 25 B.17, and to prove *“if”’ we need only take, for a given semi-uni-
formity % for a set P, the proximally coarse semi-uniformity ¥~ which is proxi-
mally equivalent to % and to consider the identity mapping of (P, %) onto {P,¥ )
which is a proximal homeomorphism but which is not uniformly continuous if
U+ V.

25 B.18. Theorem. Suppose that {P, %) is the product of a non-void family
{(Pa, U, | a € A} of proximally coarse semi-uniform spaces. The proximity p
induced by % is the proximally coarsest proximity for P such that all mappings
pra: (P, p> = (P,, U,y are proximally continuous.

Proof. All the mappings in question are proximally continuous because all the
mappings pr, : {P, %) —» {P,, %,) are uniformly continuous and every uniformly
continuous mapping is proximally continuous. Let g be any proximity for P such
that all mappings pr, : (P, g) — {(P,, %,y are proximally continuous and let ¥~ be
a semi-uniformity inducing g. Since %, are proximally coarse, by 25 B.17 all mappings
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pr, : {P,¥"> = (P,, %,y are uniformly continuous and consequently, by the de-
finition of the product semi-uniformity, ¥~ > %; but this implies that g is proximally
finer than p, which completes the proof.

Remark. One can prove that the last theorem remains true if all the %, except one
are proximally coarse (ex. 18). If two semi-uniformities are not proximally coarse, then
the conclusion need not be true as will be shown by the example which follows.

25B.19. Example. Let g be the proximally discrete proximity (see 25 B.10) for
an infinite set P, let % be the proximally coarse semi-uniformity of (P, ¢) and let v~
be the largest semi-uniformity for P. Clearly ¥~ induces q. We shall prove that

(a) the product semi-uniformities (indeed, uniformities) # x %, ¥ x % and
9 x ¢ induce the same proximity p for P x P;

(b) p is not proximally discrete;
(¢) ¥ x ¥ induces the proximally discrete proximity for P.

By 25 B.18 the proximity p, induced by # x %, is the proximally coarsest proximity
for P x P such that the projections {(x,y) — x}:<P x P,p) —» (P, %) and
{<x, y> = y} : (P x P, p) > (P, %) are proximally continuous. By example 25 B.10
(d) there exists a proximity for P x P which is not proximally discrete and such that
the projections onto (P, %) are proximally continuous. Thus (b) is true. Statement (c)
is almost evident, since the product of two largest semi-uniformities is a largest semi-
uniformity. The proof of (a) follows readily from lemma 25 B.6 (b).

25 B.20. Theorem. The proximally coarse semi-uniformity ¥  proximally equi-
valent with a given semi-uniformity % for a set P is the unique semi-uniformity for P
with the following property:

A mapping f of (P, %) into a proximally coarse semi-uniform space 2 is uni-
formly continuous if and only if the mapping f: (P,¥"> — 2 is uniformly con-
tinuous.

Proof. I. Let f be a uniformly continuous mapping of (P, %) into a proximally
coarse semi-uniform space {Q, ¥ ) and let ¥~ be the proximally coarse semi-
uniformity which is proximally equivalent to %. The collection # of all finite
square elements of %" is a base for #7, and the set ¥™ of all (f x f)~' [W], We#”
consists of finite square elements of %.On the other hand, the finite square elements
of % form a base for ¥~ and therefore ¥~ < ¥". Since #" is a base for #~, the map-
ping f: (P,¥> = {Q, %> is uniformly continuous. Conversely, if f: (P, ¥ > —
— {Q,#"> is uniformly continuous, then f : (P, %) — {(Q, ) is uniformly con-
tinuous because # is uniformly finer than ¥". Thus ¥~ fulfils the condition. —
II. The uniqueness of ¥~ is evident.

In concluding we shall collect and complete some results concerning functions
and pseudometrics. The set of all bounded functions of P(£, R) will be denoted by
P*(2, R).
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25 B.21. Theorem. Let % be a semi-uniformity for a set P, p the proximity
induced by U, and ¥ the proximally coarse semi-uniformity inducing p (that is,
¥ is the unique proximally coarse semi-uniformity which is proximally equivalent
to %). Then

(a) A pseudometric d for Pis auniformly continuous pseudometric for (P, V") if
and only if d is a totally bounded uniformly continuous pseudometric for {P, U).

(b) 4 function f on {(P,¥") is uniformly continuous if and only if the function
f:{P,U) — R is bounded and uniformly continuous.

(c) If a function fon (P, U is uniformly continuous, then f is proximally con-
tinuous, in symbols, U((P, %), R) = P({P, %), R).

(d) A function fon (P, ¥") is uniformly continuous if and only if f is a bounded
proximally continuous function, in symbols,

U((P, 7>, R) = P¥KP,¥"), R).

Proof. I. A totally bounded pseudometric is proximally coarse by 25 B.12, and
therefore, by 25 B.20, a totally bounded pseudometric for P is uniformly continuous
for (P, ¥") if and only if it is uniformly continuous for (P, %). Thus to prove state-
ment (a) it remains to show that every uniformly continuous pseudometric for a pro-
ximally coarse semi-uniform space is totally bounded, and this follows from 25 B.15.
— II. If f is a bounded function on P, then the subspace Ef of R is proximally coarse
(by 25 B.16) and therefore, by 25 B.20, the function f : (P, %) — R is uniformly con-
tinuous if and only if the function f : {P, ¥")> — R is uniformly continuous. It remains
to show that every uniformly continuous function f on a proximally coarse semi-
uniform space is bounded. By 25 B.15 the subspace Ef of E*f is proximally coarse and
therefore, by 25 B.16, Ef is a bounded subset of R. — IIL Statement (c) is a particular
case of the fact that every uniformly continuous mapping is proximally continuous. —
IV. Statements (b) and (c) imply the inclusion < in (d). Conversely, if f : (P, ¥") - R
is a bounded proximally continuous function, then f is uniformly continuous by
25 B.17 because Ef is a proximally coarse subspace of R.

25 B.22. Theorem. Let % be a uniformity and let p be the proximity induced
by %. Every uniformly continuous pseudometric for (P, %> is a proximally con-
tinuous pseudometric for (P, p). If every proximally continuous pseudometric for
(P, p) is a uniformly continuous pseudometric for {P, U, then % is the uniformly
finest (i.e. largest) uniformity inducing p. Finally, if % is the uniformly finest
uniformity inducing p, then every proximally continuous pseudometric for {P, p)
is uniformly continuous for (P, U>.

Proof. The first statement is a particular case of the fact that every uniformly
continuous mapping is proximally continuous. If every proximally continuous
pseudometric for (P, p) is uniformly continuous for {P, %) and #" is any proximally
continuous uniformity for (P, p), then every uniformly continuous pseudometric
for (P, #") is proximally continuous for {P, p), and hence uniformly continuous
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for {P, %); this implies that % is uniformly finer than #" and establishes the second
statement. The last statement follows from the following result:

25B.23. If d, and d, are proximally continuous pseudometrics for a proximity
space {P, p) and d, is totally bounded, then d, + d, is proximally continuous.

Indeed, if d is any proximally continuous pseudometric for (P, p), then all totally
bounded proximally continuous pseudometrics for (P, p) together with d generate
a proximally continuous uniformity #" for (P, p) (by 25 B.23) which evidently in-
duces p, and hence #” < %. Thus d is a uniformly continuous pseudometric for
{P,U>.

Proof of 25 B.23. Let ¥~ be the proximally coarse semi-uniformity which induces p
and let %;, i = 1, 2, be the uniformity induced by d;. Since %, is proximally coarse
and proximally continuous, by 25 B.15 the identity mapping of (P, ¥") into (P, %)
is uniformly continuous and hence %, < #". By lemma 25B.6, [¥"] n [#%,] consists
of p-proximal vicinities and hence [#%,] n [%,] consists of p-proximal vicinities.
Since [#,] n [#%,] is a base for the uniformity induced by d; + d,, the pseudo-
metric d; + d, is proximally continuous for (P, p).

Remark. Remember that the sum of two proximally continuous pseudometrics
need not be proximally continuous (25 B.10) and hence a uniformly finest proximally
continuous uniformity for a given proximity space need not exist.

25 B.24. Let p be a proximity for a set P induced by a pseudometric d and let U
be the uniformity induced by d. Then % is the uniformly finest proximity which
induces p.

Proof. If D is a proximally continuous pseudometric for (P, p)>, then the mapping
] : (P, d> - (P, D) is proximally continuous and hence, by 25 A.14, uniformly con-
tinuous. Thus every proximally continuous pseudometric is a uniformly continuous
pseudometric for (P, %). By the preceding theorem % has the property in question.

25 B.25. Corollary. If d is a totally bounded pseudometric, then the uniformity %
induced by d is the unique uniformity inducing the same proximity p as d.

Proof. Since % is proximally coarse, % is the smallest uniformity among all the
uniformities inducing p. By 25 B.24, % is the largest among these uniformities.

'C. UNIFORMIZABLE PROXIMITIES

By Definition 25 B.1 a proximity is uniformizable if it is induced by a uniformity,
and by Theorem 25 B.2 a proximity is uniformizable if and only if it fulfils condition
(prox 5). Here we shall describe uniformizable proximities by means of proximally
continuous pseudometrics and functions and we shall introduce the concept of the
uniformizable modification of a proximity.

25 C.1. Definition. The uniformizable modification of a proximity p is the proxi-
mally finest uniformizable proximity coarser than p.
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25 C.2. Theorem. The uniformizable modification q of a proximity p is indu-
ced by the uniform modification of any semi-uniformity inducing p. The proxi-
mally coarse semi-uniformity of the uniformizable modification 2 of a proximity
space P is the uniforin modification of the proximally coarse semi-uniformity of 2.

Proof. Let ¥~ be the uniform modification of the proximally coarse semi-uniform-
ity % of {P, p). I. First we shall show that the proximity g induced by 7~ is the
uniformizable modification of p. It is clear that g is a uniformizable proximity proxi-
mally coarser than p. If g’ is a uniformizable proximity proximally coarser than p,
then the proximally coarse semi-uniformity 7~ of (P, q'> is a uniformity contained
in % and hence in ¥~ because ¥~ is the largest uniformity contained in %. As a con-
sequence, ¢’ is proximally coarser than g. — II. Now let %, be any semi-uniformity
inducing p, and ¥”, the uniform modification of %,. The proximity g; induced by
¥, is proximally coarser than p, and g being uniformizable, by I it is also proximally
coarser than g. On the other hand, since < %,, we have ¥" < ¥7; and consequently
q is proximally coarser than g,. Thus g = g,.

25 C.3. Theorem. The uniformizable modification q of a proximity p for a set P
is the unique uniformizable proximity for P satisfying the following condition:

A mapping f of (P, p) into a uniformizable proximity space & is proximally
continuous if and only if the mapping f: <P, q) — R is proximally continuous.

Proof. I. Let % be the proximally coarse semi-uniformity of <P, p> and let ¥~
be the uniform modification of %. By 25 C.2 the uniformizable modification g of p
is induced by ¥". To prove that g fulfils the condition, suppose that f is any mapping
of (P, p) into a uniformizable proximity space £ and let us consider the proximally
coarse semi-uniformity #~ of #. By 25B.6, #" is a uniformity. Thus by 24 B.4 the
mapping f : (P, %) — {|%|, #" is uniformly continuous if and only if the mapping
f:{P,¥") - {|%|,#) is uniformly continuous. Since # is proximally coarse,
proximal continuity is equivalent to uniform continuity (by 25 B.17) which shows
that the condition indeed obtains.

II. Uniqueness can be derived from 24 B.4 but a direct proof is simpler. Assuming
the condition for uniformizable proximities g, and g,, we find that ] : (P, p) —
— (P, q,) is proximally continuous, because ] : (P, q,> = {P, q,) has this property,
and therefore | : (P, q,> - (P, g, is proximally continuous; the same is true if
g, and g, aie interchanged, and consequently q; = g,.

III. It might be appropriate to give a more direct proof than I of the fact that the
uniformizable modification g of p fulfils the indicated condition. Since g is proxi-
mally coarser than p, if f: (P, q) = £ is proximally continuous then necessarily
J:<{P, p)> - # is proximally continuous. Conversely, let f: (P, p> — £ be proximally
continuous. Clearly, it is sufficient to find a uniformizable proximity g, proximally
coarser than p such that f: (P, g, — £ is proximally continuous (because then g, is
proximally coarser than g). Let r be the proximity structure of # and put ¢q, =
= E{{X,Y)|X « P,Yc P, f[X] r f[Y]}. It is easily seen that g, is a proximity
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satisfying (prox 5) (because r fulfils (prox 5)) and hence g, is uniformizable. The
remaining properties are almost self-evident.

25 C.4. Corollary. A pseudometric d is a proximally continuous pseudometric
for a proximity space 2 if and only if it is a proximally continuous pseudometric
for the uniformizable modification of 2.

Proof. The proximity induced by a pseudometric is uniformizable. — It is to be
noted that 25 C.4 is also a corollary of 25 C.2 because the semi-uniformity induced
by a pseudometric is a uniformity.

25 C.5. Theorem. Each of the following three conditions is necessary and suf-
ficient for a proximity space (P, p) to be uniformizable:

(@) X p Y provided that X = P, Y c P and the distance from X to Y is zero for
each totally bounded proximally continuous pseudometric for (P, p);

(b) X pY provided that X < P, Y < P and the distance from X toY is zero for
each proximally continuous pseudometric for {P, p);

(¢) if X non pY then there exists a bounded proximally continuous function f
on {P, p> which is0on X and 1 on Y.

Proof. I. First we shall show that conditions (a), (b) and (c) are equivalent to
each other. It is sufficient to prove (a) = (b) = (c) = (a). Clearly (a) = (b), and to
prove (b) = (c) assume (b) and let X non p Y; by (b) we can take a proximally con-
tinuous pseudometric d for (P, p) such that the distance from X to Yin (P, d) is
positive, say r; now consider the function g = {x — dist (X, (x))} on (P, p) and put
f={x->mn(,r".gx)}:(P,p>—> R. Clearly 0 < f < 1and fis 0 on X and
1 on Y. Next, g : {P,d)> — R is a Lipschitz mapping, hence uniformly continuous
and thus proximally continuous. Since g is proximally continuous, f is also proxi-
mally continuous. It is to be noted that it is easy to prove directly, without reference
to semi-uniformities, that f is proximally continuous. It remains to show that (c) = (a).
Assuming(c), let X non p Y; we must find a proximally continuous totally bounded
pseudometric d for {P, p> such that the distance from X to Y in (P, d) is positive.
Take a bounded proximally continuous function f on {P, p) which is 0 on X and 1
on Y, and consider the pseudometric d = {<x, y> — |fx — fy| | (x, »> e P x P}.
Evidently d is totally bounded and the distance from X to Yin (P, d) is 1. It remains
to show that d is a proximally continuous pseudometric for {P, p)>. This follows im-
mediately from the fact that, denoting by % the proximally coarse semi-uniformity
of (P, p), the function d; = d : (P, %) x (P, %) — R is uniformly continuous
since it is the composite of two uniformly continuous mappings; namely d, =
({<rys) = |r = s|}:R x R> R)o(f x f: (P, %) x (P, %) - R x R); this shows
that d is a uniformly continuous pseudometric for (P, ) and hence a proximally
continuous pseudometric for (P, p).

It is to be noted that the proximal continuity of d can be proved directly:if X p Y,
then the distance from f[X] to f[ Y] is zero in R and therefore, clearly, the distance
from X to Yin {P, d) is zero; this establishes the proximal continuity of d.
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II. Condition (c) is sufficient. Assuming (c) we shall prove that condition (prox 5)
is fulfilled (remember that, by 25 B.2, condition (prox 5) implies that p is uniformiz-
able). If X non p Y and f is a proximally continuous function on (P, p) which is 0
on X and 1 on Y, then the sets U = E{x|fx <3} =f"'[[-,4[] and V=
= E{x |fx > 4} = f'[ 14, - ]] are disjoint proximal neighborhoods of X and Y
in {P, p).

III. Condition (b) is necessary. Let (P, p> be uniformizable and let % be a uni-
formity which induces p. If X nonp Y, then U[X] n Y = 0 for some U in %, and %
being a uniformity, we can choose a uniformly continuous pseudometric d for
(P, %> such that d{x, y> < 1 implies {x, y) € U; clearly the distance from X to Y
in {P, d) is at least 1. Since d is a uniformly continuous pseudometric for (P, %),
d is a proximally continuous pseudometric for (P, p).

Remark. The equivalence of conditions (a)—(c) was proved partly by means of
semi-uniformities and partly without any reference to semi-uniform spaces. The proof
was accomplished by showing that condition (c) implies (prox 5) and that, if a unifor-
mity induces p, then condition (b) s fulfilled. We want to point out that, without any
reference to the theory of semi-uniform spaces, one can prove that the condition (c)
is equivalent to (prox 5). The proof of the implication (c) = (prox 5) was given in II.
The proof of the implication (prox 5) = (c) is rather difficult; it parallels Ury-
sohn’s construction of continuous functions on normal spaces. It is to be noted that
in our exposition the proofs of all results asserting the existence of continuous, proxi-
mally continuous or uniformly continuous functions were, in fact, based on lemma
18B.10. The Urysohn procedure, just mentioned, gives another method of construction
of continuous and proximally continuous functions (see ex. 14).

25 C.7. If p and q are uniformizable proximities for a set P, then p is proximally
coarser than q if and only if, for each bounded proximally continuous function f
on (P, p), the function f:{P, g> - R is proximally continuous (25 C.6).

Roughly speaking, a uniformizable proximity space is uniquely determined by the
collection of all bounded proximally continuous functions.

D. PROXIMALLY CONTINUOUS FUNCTIONS

The purpose of this subsection is to prove that, for each proximity space £, the set
of all bounded proximally continuous functions on 2, denoted by P*(#, R), is a
closed sub-lattice-algebra of the topological lattice-algebra unif F¥(#, R) of all
bounded mappings of 2 into R.

25 D.1. Conventions. If & is a struct, then the symbol F*(&#, R) will denote the
normed lattice-algebra of all bounded mappings of & into R (see 19 D.14); we shall
utilize the usual notation, i.e. || || denotes the norm, + and . the addition and the multi-
plication both in F* and in R; moreover, . also denotes the external multiplication.
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Next, |f| denotes the function {x — |fx|} : &¥ > R, and the symbols sup and inf
stand for lattice operations, i.e., sup (f, g) = {x — max (fx, gx)}, and similarly for
inf (f, g). We shall say that & is a sub-lattice-algebra of # if the underlying lattice
of A is a sublattice of the underlying lattice of s and if the underlying algebra of
A is a subalgebra of that of . Similarly we use the terms sub-lattice-module, etc.

The main result is the following:

25 D.2. Theorem. The set P*(#,R) of all bounded proximally continuous func-
tions on a proximity space P is a closed sub-lattice-algebra of the normed lattice-
algebra F¥(2,R) of all bounded mappings of 2 into R.

Proof. Clearly every constant function on £ is proximally continuous. Next, if f
is a proximally continuous function, then | f | is also proximally continuous because

dist (|f] [x], [£] [Y]) = dist (/[X], f[Y])

for each X = 2 and Y = 2; this inequality follows from the inequality ||x| — |y|| <
< |x — y| which holds for all real numbers x and y. Clearly, if f is proximally con-
tinuous and r is a real number, then r . f is also proximally continuous. It remains
to show that f + g and f. g are proximally continuous functions whenever f and ¢
are bounded proximally continuous functions, and that if a net {f,} of proximally
continuous functions converges to f in unif F(2, R), then f is proximally continuous.
Indeed, the proximal continuity of the functions sup (f, g) and inf (f, g), where f
and g are bounded proximally continuous functions, follows from the following
obvious equalities:

sup(f,9)=f+sup(0, 9 —f)=F+¥g—-f|l+(g—-S)=
=Hlg - 1| +(f - 9).

inf (f,g) = — sup(-f, —9).
The remaining statements are particular cases of propositions 25 D.3 and 25 D.5
to follow.

25D.3. Let # = {P, p)> be a proximity space. The sum of two proximally con-
tinuous functions on P of which one is bounded, is a proximally continuous func-
tion. The product of two bounded proximally continuous functions on 2 is a proxi-
mally continuous function.

Proof. I. We shall need the following property of bounded proximally continuous
functions: if f is a bounded proximally continuous function on (P, p), r is a positive
real and X p Y, then there exist X' = X and Y’ = Ysuchthat X' pY’ and the diameters
of the sets f[X"] and f[Y"] are at most r. As the set Ef is contained in a bounded
interval, we can choose a finite family {I i} of intervals which covers Ef and such
that the length of eachI;is r. Thus {f ~'[1,]} is a finite cover of 2 and the diameter
of each set f[f~*'[I;]] =I; is at most r. Now if X p Y, then, for some i and j,
(Xnf L) p(Ynf~'[1,]) (by 25 A2) and the diameters of the sets f[X N
A f7I]] and f[Y n f71[1}]] are at most r.
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II. Now let f and g be two proximally continuous functions, f bounded and h =
=f + g. Suppose X p Y. To prove that the distance from h[X] to h[Y] is zero it is
sufficient to show that the distance from h[X] to h[Y] is at most 3r for each
positive real r. Let r > 0. Choose X’ < X and Y’ = Y such that X’ p-Y' and the
diameters of the sets f[X"] and f[Y’] are at most r (this is possible by I). Now if x € X’
and ye Y’, then the distance from fx to fy is at most 2r because the distance of the
set f[X'] from f[Y'] is zero (f is proximally continuous) and their diameters are at
most . Since g is proximally continuous, the distance from g[X'] to g[Y'] is zero
and therefore we can choose x in X’ and y in Y’ so that |gx - gy[ < r. Now
|hx — hy| < |fx —fy[ + |gx — gy| £ 2r + r = 3r, which shows that the distance
from h[X] to h[Y] is at most 3r.

III. Suppose that f and g are bounded proximally continuous functions, | fx] <K
and |gx| < K foreach x, where K > 0, h = f.g,and X p Y. To prove that the distance
from h[X] to h[Y] is zero it is sufficient to show that, for each r > 0, the distance
from h[X] to h[Y]is at most 3K . r. Let r >-0. By I we can choose X' = X and
Y’ = Ysothat X’ p Y’ and the diameters of the sets f[ X"] and f[ Y’ ] are at most r. Since
the distance from g[X'] to g[Y']is zero, we can choose x in X’ and y in Y’ such that
lgx — gy| < r; since the distance from f[X"] to f[Y'] is zero and the diameters of
these sets are at most r, we obtain |fx.gx — fy.gy| < |fx| [gx — gy| + ]gyl

Jdfx =yl =K. ‘3r, and comsequently the distance from h[X] to h[Y] is at
most 3#K; this concludes the proof.

25 D.4. Examples. (a) The sum of two unbounded proximally continuous func-
tions need not be proximally continuous. For example, let P = N x N, and p be a
proximity for P such that X p Y implies n,[X ]| A n,[Y] + 0, i = 1, 2, where n;, =
= {<x, y> = x| <x, y> € P} and n, = {<x, y) - y | {x, > € P} and p is not proxi-
mally discrete, i.e. X p Y for some disjoint X and Y. Such a proximity p exists by
25B.10. Let us take single-valued relations ¢; = N x N, i = 1,2, such that Dg; = N
and the equality 9,x + @,y = 0;x" + @,y  impliesx = x', y = y', e.g., 0,n = 22"*1,
@,n = 2%, Consider the functions f = ¢, o7, : (P, p> = R, g = 0,07, : {P, p) —
— R. By the choice of g; we obtain that the values of h = f + g are integers and
hx, y> = h(x’, y'> implies {x, y)> = (x’, y'). It follows that if X and Y are dis-
joint subsets of P, then h[X | and h[ Y] are disjoint subsets of N and hence the distance
from h[X] to h[Y] is at least 1. As a consequence, h is not proximally continuous.
On the other hand, both f and g are proximally continuous because if X p ¥, then
n[X]nn[Y] %0, i =1,2, and hence f[X] nf[Y] + 0 and g[X] ng[Y] + 0.

(b) The product of two proximally continuous functions need not be proximally
continuous, and the following example is based on the fact that the multiplication in R
is not uniformly continuous. Let f be the identity mapping of R onto itself. Thus f is
a proximal homeomorphism. We proceed to prove that the function h = f.f =
‘= {x > x?} : R > R is not proximally continuous. Let X be the set of all integers
n = 2 and let Y be the set of all n + n~!, n e X. The distance from X to Yis zero

30—Topological Spaces
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because (n + n~') — n = n™', but the distance from h[X] to h[Y] is at least 2 be-
cause (n+n"")? —n*)=2+n"222 and also |(n+ m)? —(n+n"')| 2
= |n® — (n + n™")?| for each ne X and |m| e N. Thus X and Y are proximal but
h[X] and A[Y] are not, which shows that h is not proximally continuous.

(c) The product of two proximally continuous functions need not be proximally
continuous even if one of the functions is bounded. For example the functions
f={x->x}:R>Rand g = {x —sinx}: R - R are proximally continuous, g is
bounded but h = f. g is not proximally continuous. To prove that g is proximally
continuous it is sufficient to show that g is Lipschitz continuous; indeed |sin x —
—sin y| < |x — y|. To show that h is not proximally continuous consider the
set X of all 2kn, ke N, and the set Y of all 2Kn + dg, K € N, where the sequence
{6k} is so chosen that K sin (2Km + 8x) = K sindx 227" and 0 is a limit
point of {dx}. Thus the distance from X to Y is zero but the distance from h[X] to
h[Y] is at least 271, It may be noted that, on taking for g the mapping {x —
— dist (x, Z)}, the verification becomes considerably simpler.

Remark. A mapping of a pseudometric space into another one is proximally con-
tinuous if and only if it is uniformly continuous (25 A.14), and therefore examples
(b) and (c) can be formulated for uniform continuity: the product of two uniformly
continuous functions need not be uniformly continuous (even if one of the functions
is bounded). It should also be noted that the proofs could be given, probably with
some advantage, by means of more uniform-theoretical tools.

25 D.5. The uniform limit of proximally continuous functions is a proximally
continuous function. Stated in other words, P(.@, R) is closed in unif F(g’, R)for each
proximity space 2.

Proof. Suppose that a net {f,} of proximally continuous functions on a proximity
space 2 converges uniformly to f, i.e., {f,} converges to f in unif F(#,R).Let X p Y
and r be a positive real. We shall prove that the distance from f[X] to f[Y]is at
most 3r. Since {f,} converges to f uniformly, there exists an index a so that
|fax - fxl < r for each x € 2. Since f, is proximally continuous, the distance from
fJX] to f[Y] is zero and therefore we can choose an x in X and a y in Y so that
If,,x —f,,y| < r. Now

Ifx _fy| é lfx _'faxl + |fax _fayl + |fay _fyl <3r.

An alternate proof of 25 D.2 can be based on the theory of semi-uniform spaces
and the fact that if 2 is a proximally coarse semi-uniform space, then U(#, R) =
= P*(2, R), i.e., a function f on a proximally coarse semi-uniform space is uniformly
continuous if and only if f is a bounded proximally continuous function (25 B.21).

25 D.6. Theorem. (a) If 2 is a semi-uniform space and 9 isa commutative topo-
logical group, then U(®, %) is a closed subgroup of the group unif F(?, 4) and
contains all constant mappings.
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(b) If 2 is a semi-uniform space and & is a normed ring, then the set U2, %)
of all bounded uniformly continuous mappings of P into # is a ring; if # = R,
then UX(2, R) contains, with each f, the function |f].

Proof. I. Proof of (a). Suppose that ¢ = (G, +, u). The set U(2, ¥) is closed
in unif (2, 4) by 24 D.7. Since ¢ is commutative, the mapping h = {{x, y) -
- (x — y)} : 9 x ¢ > ¢ is uniformly continuous. Now, if f and g are uniformly
continuous mappings, then f — g = ho(f x g), and consequently f — g is uni-
formly continuous as the composite of two uniformly continuous mappings; hence
U(2, %) is a subgroup. — II. Proof of (b). Suppose that d is the pseudometric
corresponding to the norm of 2, ie.d = {<x, y) - [|x — y|} and let d, be the
pseudometric for || x |#| such that d,{{xy, 1D, <Xz, ¥20) = d{xy, %) +
+ d{y;, y2). Itis easily seen that the mapping {(x, y) — x . y} = {|%| x |#|,d,> —
- (|.@|, d) is Lipschitz continuous and hence uniformly continuous on each set
X x X, where X is a bounded subset of #. Now, asin I, we find that f . g is uniformly
continuous whenever f and g are bounded uniformly continuous mappings. Finally,
if # = R, then evidently h = {x — |x|} : R = R is uniformly continuous and hence,
if f is a uniformly continuous mapping into R, then |f| is uniformly continuous as
the composite of f and h.

E. STONE-WEIERSTRASS THEOREM

By the so-called Weierstrass theorem, for each bounded continuous function f
on a bounded closed interval I of reals and for each positive real r there exists a poly-
nomial function g = {x - Z{axx'|i < n}} such that |fx — gx| < r for each x in I;
stated in other words, if & is the set of all polynomial functions on I, then & is
dense in the normed algebra C*(I, R) of all bounded continuous functions on I.
Notice that & is the smallest subalgebra of C*(I, R) containing the functions
{x — 1} : I - Rand ] : I — R. Thus the Weierstrass theorem can be stated as follows:
the smallest subalgebra of F*(I, R) containing the constant function {x — 1} and
the function ] : I —» R is dense in C*(1, R). Next, clearly the proximity of I is the
proximally coarsest proximity for I such that J : I — R isa proximally continuous func-
tion, and it turns out that C*(I, R) = P*(1, R). (This follows from compactness of 1.)
Thus ] : I - R “entirely determines” the proximity of I, and the smallest subalgebra
of P*(I, R) containing ) :I — R and the constant function {x — 1} is dense in the
normed algebra P*(I, R). It turns out that this is true in general, for an appropriate
definition of “‘entirely determines”.

25 E.1 Definition. We shall say that a collection . of mappings of a proximity
space 2 = (P, p) into a proximity space 2 projectively generates the proximity of
2 (or projectively generates ) if p is the proximally coarsest proximity for P such
that all mappings f € # are proximally continuous.

The desired result can be stated as follows:

30*
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25 E.2. Stone-Weierstrass Theorem ( for proximity spaces). Let ? be a proximity
space projectively generated by a collection # of bounded functions, and let F
be the smallest subalgebra of F*(2?,R) containing .# and the constant function
{x = 1} : 2 > R. Then the closure of # in F¥?,R) is P¥(?,R). Stated in other
words, a bounded function fon P is proximally continuous if and only if the follow-
"ing condition is fulfilled:

For each positive real r there exists a polynomial function P = {{z,,...,z,) >
= Z{a;pi 28 . ..oz |i; £ kY| z; € R} : R" > Roand functions fo, ..., f, in M such
that|fx — P(foxX, ..., fx)| S r foreach x € |P|ie.(|f — Po(foXrea--- X reafu)| < 7).

25E.3. Remarks. (a) If .# = @, then clearly the proximity structure of & is the
proximally coarsest proximity for IWI, and the Stone-Welerstrass Theorem states that
precisely the constant functions are bounded proximally continuous functions;
this is, of course, trivial.
| (b) The Stone-Weierstrass Theorem states that if .# projectively generates 2,
then exactly the bounded proximally continuous functions can be obtained from .4
and the constant function {x — 1} : 2 — R by the following operations:

(1) addition, multiplication and external multiplication (algebraic operations);

(2) taking uniform limits (a topological operation).
In other words, f is a bounded proximally continuous function if and only if, for

each positive real r, there exists a linear combination g of finite products of functions
of # and the function {x — 1} : 2 — R such that |[f — g < r.

(c) Instead of the assumption that & is the smallest subalgebra containing .# and
the function {x — 1} we can assume that & is the smallest ring containing .# and
all constant functions.

(d) By Theorem 25 D.2, P*(2, R) is a closed subalgebra of F*(#,R) and therefore
it is sufficient to prove that the closure in F*(2, R) of & contains P*(2, R), i.e. every
bounded proximally continuous function on 2 is a uniform limit of functions of &#.

The proof of 25 E.2 will be given in 25 E.10. We begin with a discussion of the
proximity space projectively generated by a family of mappings into proximity
spaces. It is to be noted that a more advanced theory will be given in Section 39.

25 E.4. Let & be a collection of bounded functions on a set P. There exists aunique
proximity p for P such that (P, p) is projectively generated by the collection of all
Sunctions [:{P, p> =+ R, fe F. The set D of all pseudometrics d; = {(x, y) —
= |fx = fy| Kx, y> e P x P}, feF, generates the proximally coarse semi-
uniformity of {P, p>. If D' is the smallest set containing 2 and such that d,, d, €
€9 =(d, + d,)e2’, then X pY if and only if the distance in (P, d) from X to Y
is zero for each d in 2.

Proof. I. Let % be the semi-uniformity generated by the collection 2 of pseudo-
metrics; by 23 A.12 the sets of the form E{(x, » | dlx, y> < r}, de 9, r> 0,
form a sub-base for %, and % is a uniformity by 24 A.9. Clearly each d € 2 is totally
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bounded and hence % is totally bounded; % being a uniformity, it is proximally
coarse (by 25 B.12). — II. Let p be the proximity induced by %. Clearly the last state-
ment of 25 E.4 holds. Hence every f : (P, p> = R, f € # is proximally continuous. —
IIL. It remains to prove that p is the proximally coarsest proximity for P such that
all the functions f: (P, p> —» R, fe %, are proximally continuous. Let q be any
proximity for P such that all the functions f:{P, p> —» R, fe &, are proximally
continuous; we shall show that g is proximally finer than p. Since each f : (P, g¢) —
—R, fe #, is proximally continuous, each d,, fe &, is a proximally continuous
pseudometric for (P, p>; each d; being totally bounded, all the elements of 2’
are proximally continuous pseudometrics for (P, p) (by 25B.23), and hence % JS
a proximally continuous uniformity for (P, ¢)». Thus p is proximally coarser than q.

Assume that a proximity space (P, p) is projectively generated by a collection %

of bounded functions, and for each f in & let d, be the pseudometric defined in
25E4.If X pY, then the distance from X to Yis zero in each (P, d,). It is easy to
find an example such that X and Y are distant in (P, p) but proximal in each (P, d).
If the set of all d, is addition-stable, then (by 25 E.4) X non p Y implies that X and
Y are distant in some <P, d,). Similarly, if X p Y then f[ X] is proximal to f[Y]in R
for each f € &, but the converse is not true; this follows from the similar result for
dy. It is interesting to show that the converse is not true even if & is a linear space.
We shall only construct such an & with the following algebraic property: f;, f, € # =
= f,+ f, € #. Using this example the reader may construct without difficulty such
a linear space &

25 E.5. Example. Let (P,p) be a subspace of R, P=1, ul,ul,, I, =
=[0,1],I,=[23].1I,=[4,5], and let us consider the following two func-
tions fand g on (P, p) :fx = gx = xforxel,,fx =x —2and gx = xforerz
and finally, fx = x — 2and gx = x — 4 for x € I,.

It is easily seen that the collection (f, g) projectively generates (P, p). Let & be
the set of all linear combinations rf + sg with non-negative r and s. We shall show
that h[I,| n h[I, U I,] # 0 for each h in & (on the other hand, I, and I, U I, are
distant in (P, p)). Let h = rf + sg, r.2 0, s 2 0. It is easily seen that h[I,] =
=[0,r+s],nI,]=[235+r],h[Is] =[2r,3r +s].Itis clear that t =
=min (2r + 25) < r + sand hence te h [I,] n h [I, n15].

Suppose that a proximity space £ is generated by a collection & of bounded proxi-
mally continuous functions. By the preceding example it is not true that if X and Y
are distant in 2 then f[X] and f[ Y] are distant in R for some f in #. On the other
hand one has the following essentially weaker result:

25 E.6. Suppose that a proximity space {P, p) is projectively generated by a
collection & of bounded functions. Then X p Y if and only if the following condition
is fulfilled: If X is the union of a finite family {X;} and Y is the union of a finite
family {Y;}, then there exist indices i and j such that f[X;] is proximal to f[Y;] for
each fin &
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Proof. For each f in & put p, = E{<X, Y) | f[X] is proximal to f[¥] in R}. It is
easy to verify that each p, is a proximity for P and p is the proximally coarsest
proximity for P proximally finer than each p,, f € #. Now the statement is implied
by the following lemma:

25E.7. Let P be a set and let {p,, | a eA} be a family of proximity relations
JSor P. There exists a proximally coarsest proximity p for P proximally finer than
each p,, acA. If A + 0 then XpY if and only if X < P, Y < P and the following
condition is fulfilled:

If {X} is a finite cover of X and {Y;} is a finite cover of Y, then there exist indices
iand jsuchthat X;p,Y; for each a in A.

Proof. I. If A = @, then clearly the proximally coarsest proximity p for P has the
required property.

II. Suppose that A 4 @ and let us consider the relation g = E{(X, > ] acAd=
=X p, Y} (by 25E.5 g need not be a proximity because condition (prox 4) need not
be fulfilled). Let p be the relation consisting of all <X, Y such that, for each finite
cover {X;} of X and each finite cover {Y;} of Y, there exist indices i and j so that
X q Y;. Thus p fulfils the condition in the theorem. We shall prove that p is a proximity
for P; conditions (prox 1), (prox 2) and (prox 3) are evident and condition (prox 4)
is verified in the following way. Suppose X*non p¥, k = 1,2; we shall prove
(X' v X*)nonp Y. By our assumption there exist finite covers (families!) Z* of X*
and #* of Y, k = 1, 2, such that for each member X’ of Z* and Y’ of #* we have
X' non qY'.Let ¥ be a finite cover of Y refining the collection E#' U E®? and let
Z = EZ' U EZ? (remember that E%* denotes the collection of all members of %°).
Now if X' € &, Y’ € % then X’ belongs to EZ! or EZ?, say EZ, and Y'is contained
in an element Y” of E#!. By our assumption X’ non g Y” and therefore also, ob-
viously, X’ non g Y’ which shows that (X' U X*)non pY.

III. Now let p’ be any proximity for P proximally finer than each p,, a € 4; thus
Xp'Yimplies XqY. Fix subsets X and Y of P such that XpY; we shall prove that XpY.
This will imply that p’ is proximally finer than p. Let {X;} be a finite cover of X and
{Y;} be a finite cover of Y.Since X p’ Y, by 25 A.3 there exist indices i and j so that
X;p'Y;and hence X;qY;. As a consequence X p Y by the definition of p, which
completes the proof.

Now we are prepared to prove two propositions which will imply Theorem 25 E.2.
We begin with a sufficient condition for a subset of P*(#, R) to be dense in P*(2, R).

25 E.8. Suppose that % is a collection of functions on a proximity space P =
= (P, p) satisfying the following condition:

If X non pY and if r is a positive real, then there exists an f in & such that
0 < fx < r for each x e P, f[X]| = (0), f[Y] = (r).

Then for each non-negative bounded proximally continuous function g on # and
each positive real r there exists a finite family {f;} in F such that |gx — Z{fix}| <
=< r for each x in P.
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Corollary. If a linear subspace % of P*(2,R) fulfils the above condition, then
F is dense in the normed space P*(2,R).

Proof.I. To prove the corollary it is sufficient to notice that % contains all con-
stant functions. Given an r > 0, there exists an f in & such that f[0] < (0), f[P] =
< (r) (because P non p P), and hence fx = r for each x in P. — IL Let g be a non-
negative bounded proximally continuous function on £ and let r > 0. Let k be the
smallest positive integer such that gx < kr for each x€ P, For each i < k let X, =
= E{x|gx < ir}.If 1 £i <k, then the sets X;_, and P — X, are distant in 2
and therefore we can choose an f; in & such that 0 < f;x < r for each xe P and
f[Xi-1] = (0), fi[P — X;] = (r). It is easy to verify that |gx — E{fx|l < i < k}| <
< r for each x in P.

25 E.9. Lemma. Suppose that #? = {P, p) is a proximity space and ¥ is a sub-
lattice-module of P*(?,R) containing all constant functions, and projectively gener-
ating . Then for each X non pY and each positive real r there exists an fin F so
that fisQon X, ronYand 0 £ fx < r for each xec P.

Proof. I. It will suffice to prove that, given X non p Yand r > 0, there exist finite
families {X,;} and {Y;} such that X = Y{X,}, Y= U{Y;}, and for each of the indices
i and j there exists a required function f;; for X; and Y}, i.e. f;;is 0 on X, r on ¥;
and 0 £ f;;x <7 for each x in P. Indeed, f = inf sup {f;;} is then a required func-
tion for X and Y. o

II. Suppose X nonpY, X + 0 &= Y and let f be an element of % such that the
distance from f[X] to f[Y] is positive, say r (such an element need not exist).
Choose a finite decomposition {X;} of X and {Y;} of Y such that the diameter of
each set f[X;] as well as each f[Y;] is less than %r; this is possible because f is
bounded. We may and shall assume that X; # @ # Y, for each i and j. If x" e X,
y' €Y;and fx' < fy', then fx < fy for each x in X; and y € ¥;; indeed, since the
distance from f[X;] to f[ ¥;] is at least that from f[X] to f[ Y], i.e. r,and |fx — fx'| <
<3, |fy = fy'| < %r, we obtain fx < (fx' + 4r) £ (fy' — 3r) < fy. Similarly,
if fx' > fy’ for some x’ € X;, y' € Y}, then fx > fy for each x in X; and each y in Y;.
If fx < fy for each xeX; and y € Y;, then put

h;; = {z > min (fz, inf f[Y;])} : 2 > R,
g:; = {z > max (h;z, sup f[X;])} : Z - R,
Jij={z = (g7 — supf[X;])} : 2 > R.

Clearly the function h;;, and hence g,;, and finally f;; all belong to &, f;; is zero on
X and dist (f[X;], f[Y;]) 2 r. Now given a positive real s, for an appropriate real
t, t.fiis son Y; and zero on X,. Similarly, if fx > fy for x € X; and y€Yj, then
the same construction leads to a function f € # which is zero on Y; and s on X .
III. Now suppose that X non p Y. Since & generates &, by 25 E.é there exist
finite decompositions {X;} of X and {Y;} of Y such that for each i and j there exists
an fin & so that the distance from f[X ;] to f[ Y;] is positive. Applying II to each pair
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X, Y; we obtain finite decompositions {Z,} of X and {T,} of Y such that for each k
and [ there exists a function in % which is zero on Z,, s on Y, and its range is contained
in the interval [ 0, s ] . The proof is complete.

25E.10. Proof of Theorem 25 E.2. Suppose that a proximity space £ is pro-
jectively generated by a collection .# of bounded functions, and let & be the smallest
algebra containing . and the constant function {x — 1} : 2 —» R (and hence all
constant functions). Let us consider the closure % of # in F*(2, R). Since A <
< P¥2,R), ({x » 1} : 2 » R) e P¥2, R) and P*2, R) is a closed subalgebra of
F*(#, R) (by 25 D.2), we have ¥ = P*(2, R). Clearly ¥ is closed in F*(2, R) (the
closure structure of F*(2, R) is topological!) and ¥ is an algebra by 19 D.5 because
it is the closure of an algebra, namely of #. Since ¥ is a closed algebra, ¥ is a lattice
(by 19 D.16). Since P¥2,R) > 4 o .# and # projectively generates 2, ¢ also
projectively generates 2, and therefore, by 25 E.9, ¢ is dense in P*(#, R). Since ¢
is closed, ¥ = P2, R).

The concluding theorems are intended to clarify the relations between proximities
and sets of bounded functions. We shall need the following description of the proxi-
mity of bounded subsets of R which is also a corollary of a result of Section 41 on
compactness.

25 E.11. Theorem. A bounded subset X of R is proximal to a subset Y of R if
andonly if X n Y =+ 0.

Proof. If X n Y & 0, then the distance from X to Yis zero and hence the sets X
and Y are proximal (without any supposition on X ). Conversely, assuming that a bound-
ed set X is proximal to a set Y, i.e. the distance from X to Y is zero, we can take
sequences {x,} in X and {y,} in Y such that the sequence {|x, — y,|} converges to
zero. Since X is bounded, some subsequence {x,} of {x,} converges to a point x
(Corollary to 15 B.24). Clearly x € X. Since |x — y,| <'|x — x,,| + |%s, = Yu/l the
sequence {y, } also converges to x. Thus x € Yand hence xe X n Y.

25 E.12. Theorem. Let & = (P, p) be a uniformizable proximity space and
let A be a closed linear subspace of F*(2,R) containing the constant function
{x > 1} : # > R. The following statements are equivalent:

(a) A = P¥Z,R) .

(b) A is a subalgebra of F¥?,R) (i.e. g,,9,€ A=g,.g,€A), if XpY and
feA, thenf?(j mm + 0, and if X non pY then there exists an fin A,0< f<1,
which is zero on X and one onY.

(b') A is a sublattice of F¥(2,R) (i.e. g€ A= |g| € 4, or equivalently, gy, g, €
eA=sup(g,, g,)€A, inf (g,, g,)€4), if XpY and fe A then f[X] n f[Y] + 0, and
if X non pYthen there exists an fin A,0 < f = 1, which is zero on X and oneon?.

(c) A4 is a subalgebra of F¥(?,R)and X pY if and only ifm nm + 0 for
each fin A.
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(¢") A is a sublattice of F¥(2, R) and X pY if and only ifm nm * 0 for
each fin A.

(d) A is a subalgebra of F¥(2, R) and A projectively generates 2.

(d") A is a sublattice of F¥(2, R) and A projectively generates 2.

Proof. Evidently (b) implies (c), and (b’) implies (c’). By 25 E.11 (c) implies (d),
and (c’) implies (d’). Every closed subalgebra is a sublattice (by 19 D.16) and there-
fore (d) implies (d'). By the proof 25 E.10 of the Stone-Weierstrass Theorem, (d’)
implies (a). It remains to show that (a) implies both (b) and (b"). This follows from
25C5and 25 D.2,

Remark. Notice that the preceding theorem states that, under certain assumptions,
A is stable under multiplication if and only if 4 is lattice-stable (compare (b) and (b")
or (c) and (¢') or (d) and (d")).

A proximity space £ is uniquely determined by any mapping of 2, in particular,
by any function on 2. Indeed, if f is a mapping of 2 into any struct, then # = D*f.
By 25 C.5 a uniformizable proximity space 2 = (P, p) is uniquely determined by
graphs of bounded proximally continuous functions, namely X non p Y if and only
if there exists a bounded proximally continuous function f such that (gr f) [X] < (0)
and (gr f) [Y] = (1). If & is a class of mappings, then gr [ # ] will denote the class of
all gr f, f€ &#. Theorem 25 D.2 states that gr [P*(2, R)] is a closed subalgebra of
the normed algebra gr [F*(2, R)] of all bounded real-valued relations on £, and
evidently it contains all constant relations. In the converse direction the foregoing
results lead to the following important theorem.

25 E.13. Theorem. Let P be a set and A a closed subalgebra of gr[ F*(P, R)] con-
taining all constant relations. There exists a unique uniformizable proximity p
Sor P such that gr [P*({P, p>,R)] = A. The proximity p is described by any of
conditions (b), (c¢) or (d) from 25 E.12.

Proof. By 25 E.4 there exists a unique proximity projectively generated by the
collection A. The remainder follows from 25 E.12. Another formulation may be in
place.

25 E.14. The relation {# — gr [P*(#, R)] | 2 is a uniformizable proximity space}
is a one-to-one relation ranging on the class of all closed algebras of bounded real-
valued relations containing all constant relations. _

Of course, by a closed algebra of bounded real-valued relations we mean a closed
subalgebra of a normed algebra gr [F*(2, R)], where £ is a struct.

25 E.15. Examples. (a) Let 2 be the sum of a non-void family {#, | a € A} of
uniformizable proximity spaces and let B be the set of all bounded functions f on 2
such that all functions f, = f -inj, : 2, - R are. proximally continuous and all f,
except for a finite number of a’s are zero-functions. It is easily seen that B projectively
generates 2. Clearly B is an algebra. By the Stone-Weierstrass Theorem, B is dense
in P*(2, R). On the other hand, it is easily seen that B + P*(&, R).
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(b) Let 2 be a subspace of a uniformizable proximity space £ and let ¢ be the
mapping of P*(2, R) into P*(2, R) which assigns to each f the domain-restriction
to 2. It is almost evident that Eg projectively generates 2. Since Eg is an algebra,
Eg is dense in P*(#, R) by the Stone-Weierstrass Theorem. In the next subsection
we shall show essentially more, namely E¢ = P*(2, R), stated in other words, each
bounded proximally continuous function on a subspace 2 of a uniformizable pro-
ximity space is the domain-restriction of a bounded proximally continuous function
on the whole space, i.e., it permits a bounded uniformly continuous extension on the
whole space.

25 E.16. Remark. The Stone-Weierstrass Theorem does not hold for complex-
valued functions (see ex. 15).

F. EXTENSION OF UNIFORMLY CONTINUOUS
PSEUDOMETRICS

The purpose of this subsection is to prove the following two rather profound
results.

25 F.1. Theorem. Let 2 be a subspace of a uniform space P. Every bounded
uniformly continuous function on 2 has a uniformly continuous domain-extension
on 2, i.e. the mapping

{f— fI.Q} : U¥(2, R) > U*(2, R)
is surjective.

25 F.2. Theorem. Let 2 be a subspace of a uniform space 2. Every bounded
uniformly continuous pseudometric for 2 is the relativization of a bounded uni-
Sformly continuous pseudometric for 2.

First we shall prove that 25 F.1 implies 25 F.2. The proof will be given in two pro-
positions which follow.

25F.3. If d is a uniformly continuous pseudometric for a subspace {Q,¥ > of
a semi-uniform space {P, %) and if there exists a uniformly continuous pseudo-
metric D for (P, U) such that d{x, y> £ D{x, y) for each {(x, y> € Q x Q, then
there exists a uniformly continuous pseudometric d* for {P, ) such that d is
the relativization of d*.

Proof. Let f{x,y> =d{x,y) if {(x,y>e @ x @ and f{(x,y> = D{x, y> if
<x, y>e((P x P) —(Q x Q). It is evident that f = {<x, y> = f<x, y> | {x, pD e
€ P x P} is a uniformly continuous semi-pseudometric for (P, %). Let d* be the
largest pseudometric for P such that d* < f. Clearly d* is a uniformly continuous
pseudometric () : {P,f> — (P, d*) is Lipschitz continuous and hence uniformly
continuous) and we shall prove that d is the relativization of d*. Fix a point {x, y)
of @ x Q. Since d* < f, we have d*(x, y) £ d{x, y); to prove the inverse in-
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equality we shall use proposition 18 B.4 which states that d*(x, y) is the infimum
of all the numbers
(*) I{f(xpxisp|isn—-1},n21
where {x;} varies over all finite chains from x to y, i.e. x = x, x, = y. We shall
prove that each of the numbers (*) is greater or equal to d{x, y). If all the x;
belong to Q, then f{x;, x;.,) = d{x;, x;4;) and the required inequality follows
from the triangle inequality for 4. If all the x,,..., x,.; belong to P — Q, then
fLx;y 341> = D{x;, x;+1> and the triangle inequality for D yields that the number
(%) is at least D<x, y> = d{x, y). The general case reduces to the preceding two ca-
ses. Indeed, let {i; | Jj= m} be the increasing sequence of those i for which x; € Q.
The sum (*) can be written as follows:
(#+) S{E{f(xp %41 | i S i< ijuq}|jSm~1}
Each of the numbers Z{f{(x;, X;41) | i; £ 1 < ij.} is at least d{x;, x;,,,> by the
second of the above mentioned particular cases, and hence (x*)is at least d(x, y) by
the first of these cases.

According to 25 F.3, to prove 25 F.2 it is sufficient to verify the following proposition
whose proof will be based on 25 F.1.

25F4. If d is a bounded uniformly continuous pseudometric for a subspace
{Q,¥") of a uniform space {P, %), then there exists a uniformly continuous pseudo-
metric D for (P, %) such that d{x, y> < D{x, y> for each {(x,y)>e Q x Q.

Proof. By 23 D.19 the function d : {@,7") x {Q,#") — R is uniformly continu-
ous and, of course, bounded. Since {Q,¥"> x {(Q,¥ ) is a subspace of (P, %) x
x (P, %), by 25F.1 there exists a bounded uniformly continuous function f on
(P, Uy x (P, %) the restriction of which to {(Q,¥ > x {(Q,% ) is d. For each x
and y in P let D(x, y> = sup {|f<x, z) — f<y, z)| |z € P}. It is easily seen that
D ={{(x,y) > D{(x,y>|{x,y>eP x P} is a pseudometric for P. If (x,y)e
€ Q x Q, then D{(x, y> 2 [f{(x, y) — f(y, y)| = d<{x, y). It remains to show that
D is uniformly continuous. Let r be a positive real. We must find a U in % such that
{x,y> €U implies D{x, y> < r. Since f is uniformly continuous in {(P, %) x
x {P, %) we can choose a U in % such that (x, y>eU, {x', y'> e U implies
[£Cx, x> = Ky, ¥'D| S r. Now if <{x,y>eU, |f{x,z) —f(y,z)| <r because
{z,z) e U, and hence D{x, y)> < r.

It remains to prove Theorem 25 F.1. Its proof will be performed by means of a
device introduced by P. Urysohn in his proof of the theorem on continuous extension
of functions on normal spaces.

25 F.5. Proof of 25 F.1. Let f, be a bounded uniformly continuous function on
a subspace 2 of a uniform space £. The required uniformly continuous extension g
of f, on 2 will be given in the form

(1) g =X{g,|neN}

where the series converges uniformly and g, are uniformly continuous functions on 2.
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The sequence {g,} will be constructed together with a sequence {f,} in U*(Z, R)
such that

(2) fn+1=fn_gn|ga ie. fn_fn+l=gn|-9,
and R
(3 {f.x} converges to zero for each xe|2|.

First we shall show that if such sequences exist, then g is a uniformly continuous
extension of f,. The function g is uniformly continuous as the uniform limit of
a sequence, namely {Z{g,|n < k}|ke N}, of uniformly continuous functions.
If x €|2|, then (by (2))

gox + ... + g, X = (fox —flx) + ...+ (fnx _fn+1x) = fox — fus1X

and hence, by (3), gx = fox. Existence of {f,} and {g,} is provided by induction. By
our assumption there exists a real number K such that |fox| < K for each x € |2).

Put
K 72 n+1
o= —1{- .
2 ()

We shall prove that there exist sequences {f,} in U*(2, R) and {g,} in U*(#, R) such
that (1) holds and

4 |fx| < 3r, foreach xe|g|,
(5) lg.x| £ r, foreach xel|?|.

Clearly (4) implies (3) and (5) implies that the series (1) is uniformly convergent.
Evidently ] f0x| =< K = 3ry. The inductive step consists in showing that, given an
fo€ UX(2, R) satisfying (4), there exists a g, € U*(2, R) such that (5) holds and the
function f, , ; defined by (2) fulfils condition (4) (with n replaced by n + 1). Consider
the sets

X={x|xel2, fxs -r}, Y={x|xel|2,fxzr}.

The sets X and Y are proximally distant in 2 and hence in 2 (because the proximity
induced by the uniform structure of 2 is the relativization of the proximity induced
by the uniform structure of 2, see 25 A.20). Therefore, by 25 C.5, there exists a proxi-
mally continuous function g, on # such that (5) holds and g, is —r, on X and r,
on Y. By our assumption (4) the values of f, on X lie between —3r, and —r,; on Y
they lie between r, and 3r,. Thus |f,.x| < 2r, foreach xinX U Y. If x € | 2] —
—(XUY), then |f,.x| < |fx| + |gax| < 2r,. Thus always |f,.,x| < 2r, =
= 3r,4+.. Since g, is proximally continuous and bounded, g, is uniformly continuous
by 25 B.21.

25F.6. Remark. In the exercises it is shown that theorems 25 F.1 and 25 F.2 are
not true for unbounded functions and pseudometrics.
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