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CHAPTER VI 

GENERATION OF TOPOLOGICAL SPACES 

(Sections 31-35) 

Section 31 is concerned with a development of some order properties of the ordered 
class of all closure operations and of some of its ordered subclasses. The results obtained 
are applied to the projective generation in Section 32 and the inductive generation 
in Section 33. Sections 34 and 35 are closely related to 33. In Section 34 the theory 
of upper and lower semi-continuous correspondences ("multivalued mappings", "set-
valued mappings") is developed and the results obtained are applied to two particular 
kinds of quotient mappings, namely to mutually continuous and inversely lower or 
upper semi-continuous mappings. In Section 35 the theory of convergence is deve-
loped; particular attention is given to spaces whose closure structure can be described 
by means of convergent sequences. The topological results obtained will be applied 
to topologized algebraic structs, particularly to topological groups, rings and mo-
dules; while the projective generation can be given in 32 D, the inductive generation 
requires a special kind of quotient mappings (each quotient-homomorphism of a 
topological group is open) and therefore is not treated until 34 D. In Section 35 
sequentially continuous groups (more generally, K-continuous groups) are introduced. 

It should be remarked that the projective and inductive generation for semi-uni-
form spaces and proximity spaces will be studied in Chapter VII; there the projective 
(inverse) and inductive (direct) limits of presheaves of closure spaces, semi-uniform 
spaces and proximity spaces will be also introduced and discussed. 

The delopment of projective and inductive generation is rather lengthy and there-
fore a detailed introduction illustrated by many examples seems to be appropriate. 

Let P be a set and let {/„} be a family, each fa being a mapping of P into a closure 
space Ma. Let us consider the set T of all closures u for P such that all the mappings 

(*) fa • <P, "> -

are continuous. The set T contains the discrete closure for P because a mapping of 
a discrete space is continuous, whatever the closure structure of the range carrier, 
and if ue T then each closure finer than u also belongs to F because the composite 
of two continuous mappings is a continuous mapping. It turns out that r has a 
greatest element, say u. Thus u is the coarsest closure for P such all the mappings (*) 
are continuous. This closure u and also the space (P, u} are said to be projectively 
generated by the family {/„}, and the family {fa : <P, u) -> is said to be a pro-
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jective generating family. E.g. the product * of a family {*„} of closure spaces is 
projectively generated by the family of all projections pra : * -> a subspace 2 of 
a space * is projectively generated by J : 2 -» the greatest lower bound of a family 
{u0} of closure operations for a set P is projectively generated by the family {J : P 
- <P, «„>}}• 

Let P be a set and let {/„} be a family, each/a being a mapping of a closure space 
2„ into P, and let us consider the set T of all closures u for P such that all the map-
pings 

(**) <P, "> 
are continuous. The set r contains the accrete closure because a mapping into an 
accrete space is continuous, whatever the closure structure of the domain carrier, 
and each closure coarser than an element of r belongs to r. It turns out that r has 
a least element u which is the smallest (i.e., the finest) closure for P such that all 
the mappings (**) are continuous. This closure u and also the space <P, u) are said 
to be inductively generated by the family {/„}; the family {/„ : 2a -> <P, u>} is said 
to be an inductive generating family for closure spaces. E.g. the sum * of a family 
{*„} of closure spaces is inductively generated by the family of all canonical embed-
dings {inj„ : 8?a -> and the least upper bound of a family {«„} of closures for a 
set P is inductively generated by the family {J: <P, ua} -> P}. 

Similarly we define projective and inductive generating families for semi-uniform 
spaces and proximity spaces; e.g. a semi-uniform space <P, is said to be projective-
ly generated by a family {/„} if is the uniformly coarsest semi-uniformity for P 
such that all the mappings fa: <P, fy} -» E*fa are uniformly continuous (of course, 
E*fa are assumed to be semi-uniform spaces). A subspace 2 of semi-uniform (pro-
ximity) space * is projectively generated by J : 2 -* and the product of a family 
{*„} of semi-uniform spaces is projectively generated by the family of projections 
{pra - » W e have not defined the product of a family of proximity spaces. 
In Section 39 we shall define the product of a family {*„} of proximity spaces as 
the space projectively generated by the family of projections {pra : II{|*a|} 

In supplementary Notes a general definition of a "continuous structure", including 
the closure operations, semi-uniformities and proximities, is given, and the concepts 
of a projective and an inductive generating family are introduced. 

Before proceeding to further examples we shall state the main theorems for pro-
jective and inductive generation of closure spaces. It is to be noted that similar results 
hold for semi-uniform and proximity spaces; it is only needed to replace expressions 
such as e.g. continuous, fine by the corresponding expressions for semi-uniform or 
proximity spaces. In addition, it is shown in the Notes that, in terms of theory of 
categories, the notions of projective and inductive generation can be introduced in 
such a manner that the main theorems are carried over. 

(a) A family { f a } of mappings of a space * is a projective generating family if 
and only if the following condition is fulfilled: 
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A mapping f intoSP is continuous if and only if all the mappings fao f are continu-
ous. 

(b) A family {/0} of mappings into a spaced is an inductive generating family 
if and only if the following condition is fulfilled: 

A mapping f of ^ is continuous if and only if all the mappings f ofa are con-
tinuous. 

The first theorem is a generalization of the fact that a mapping / of a space into 
a product Tl{t?a} is continuous if and only if all the mappings pra o f : D */ -> 
are continuous. The second theorem is a generalization of the fact that a mapping / 
of a sum into a space is continuous if and only if all the mappings / 0 inj„ : 
: -> E*/ are continuous. 

From theorems (a) and (b) one can deduce the following results which state a certain 
associativity property of projective and inductive generations: 

(c) If {fa} is a projective generating family and E*fa is projectively generated 
by [gab | b e Ba), then {gab 0 /„} is a projective generating family. 

(d) If {/,} is an inductive generating family and each D*fa is inductively gener-
ated by a family {t7al,} then {/„ o gab} is an inductive generating family. 

Of course, (c) and (d) are generalizations of the facts that Tl{£Pab} is homeomorphic 
to UaUb0>ab and is homeomorphic to Y.£b3Pab. 

The projective (inductive) progeny of a class K of spaces, denoted by proj K 
(ind K) is defined to be the class of all spaces projectively (inductively) generated 
by mappings with range carriers (domain carriers) in K. It follows from (c) and (d) 
that 

proj proj K = proj K , ind ind K = ind K , 
If proj K = K (ind K = K) then K is said to be projective-stable (inductive-stable). 
The last theorems can be stated as follows: 

(e) The projective progeny of any class is projective-stable. 
(f) The inductive progeny of any class is inductive-stable. 

It is to be noted that (e) implies that the projective progeny of any class is hereditary 
and completely productive. 

The supplementary remark of 28 A.6 can be stated as follows: a space 0> is 
uniformizable if and only if SP is projectively generated by functions; stated in 
other words, 9 is uniformizable if and only if belongs to the projective progeny 
of (R). Now it follows from (e) that the class of all uniformizable spaces is hereditary 
and completely productive. Another example: the class T of all topological spaces 
is projective-stable, moreover, T is the projective progeny of any two-point non-
discrete and non-accrete space. Consequently, Tis hereditary and completely pro-
ductive. An example on inductive generation may be in place. By 16 ex. 6 a net N 
converges to a point x in a space 2? if and only if the mapping associated with 
<7V, x) is continuous. Let ^V be a collection of pairs <N, x> such that N is a net 
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with limit points x in It turns out that the collection of associated mappings in-
ductively generates * if and only if J f uniquely determines the closure structure of * 
in the sense that x e X — X if and only if there exists a pair (N, x> in Jf such that 
N ranges in X. 

We have noticed that the product is defined "projectively" and the sum is defined 
"inductively". A subspace is defined "projectively", namely J is a subspace of 0> 
if J: 2 -+0* is a projective generating mapping. The corresponding "inductive" concept 
is the quotient of a space which is defined as follows: A space 2 is the quotient of 
a space 9 under / if / is a surjective inductive generating mapping such that D*/ = * 
and E*/ = 2. (Notice that each quotient of a discrete space is discrete.) It turns out 
that quotients inherit very few of the properties of the original spaces, e.g. every 
space is a quotient of a paracompact space (in particular, a quotient of a topological 
space need not be topological). There are two important additional assumptions on 
the mappings/ which guarantee preservation of some properties, namely inverse upper 
semi-continuity and inverse lower semi-continuity which will be treated in Section 34 
in a more general situation. 

If we wish to restrict our attention to a certain class K of spaces (e.g. topological, 
uniformizable) then it is natural to introduce the concepts of a K-projective gener-
ating family and a K-inductive generating family; e.g. {/„ : <P, u) -» is a X-pro-
jective. generating family if u is the coarsest closure such that all the mappings are 
continuous and <P, u> e Ji-

lt turns out that basic theorems (a) and (b) are not true in general, (a) is true if 
and only if K is inductive-stable, (b) is true if and only if K is projective-stable. 

The theory of K-inductive generation is outlined in 33 B (in connection with the 
fact that the quotient space of a topological space need not be topological) and the 
theory of K-projective generation is outlined in 35 D. 

The main results will be proved independently of each other, e.g. statements (c) 
and (d) will be proved without any reference to statements (a) and (b) although (c) 
or (d) immediately follow from (a) or (b), respectively. The projective generation in 
a given class K (35 D) will be treated without such repetitions. 
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31. O R D E R E D SETS OF C L O S U R E O P E R A T I O N S 

The results of this section will be applied in Sections 32 and 33 to two fundamental 
constructions of spaces and continuous algebraic structs, namely to projective and in-
ductive constructions, which generalize the construction of the product and the sum. 

This subsection is concerned with the development of order properties of the 
class C of all closure operations ordered by the relation {u -> v | u is finer than t>}, 
and of its important subclasses. A great deal of the results will be formulated for 
ordered subsets C(P) of C consisting of all closures for P, P being an arbitrary set, 
instead of for C. The advantage of this lies in the fact that closures for different sets 
are not comparable and therefore, while C(P) is order-complete, the ordered class C 
is not order-complete. We leave to the reader as a simple task the statement for C of 
all the results formulated and proved for C(P). 

The ordered class C will be considered to be ordered "upwards" (see 10 D.2) but 
not from left to right and therefore we shall say upper bound, a greatest lower bound, 
upper saturated, etc., but not a right bound, etc. On the other hand, instead of greatest, 
a lower bound, upper saturated, etc., we shall occasionally say coarsest, a fine bound, 
coarse saturated, etc. Finally, we shall often employ lattice-theoretical terminology, 
e.g. meet instead of infimum, join instead of supremum and meet-stable, completely 
lattice-stable, etc. 

In subsection A we shall prove that every C(P) is order-complete and we shall 
describe suprema and infima in C(P) by means of neighborhoods and the convergence 
of nets. Particularly significant is theorem 31 A.7 asserting that the mappings / : 
<P, sup {wa}> -»• <Q, sup {u„}> and / : <P, inf {wa}> ->• <Q, inf {ua}> are continuous 
provided that all the mappings/ : <P, w„> —> (Q, va) are continuous. 

In subsection B we shall examine properties of the classes of all topological and 
uniformizable closure operations. A particularly significant statement is given in the 
non-topological lemma 31B.2, which enables us to reduce the order properties of 
sets of topological and uniformizable closures to those of C. 

Subsection C is devoted to an investigation of the order properties of the set of all 
closures rendering continuous or inductively continuous a given internal composition 
or a given external composition over a closure space. As a corollary we obtain the 
order properties of the ordered set of all closures admissible for a given group, 
ring, or module over a topological ring. 
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The closing subsection deals with various classes of closure operations introduced 
earlier. Particular attention is given to separated closures. 

A. O R D E R E D CLASS C 

Recall that a closure u is finer than a closure v if and only if both closures are for 
the same set, say P, and uX <= vX for each X c P; often we shall need various de-
scriptions of the relation {u -»• v j u is finer than v} proved earlier, and therefore, 
for convenience, we shall summarize them in the proposition which follows. 

31 A.l. Let u and v be closures for a set P. By definition 16 A.1 of continuity, u is 
finer than v if and only if 

(1) the identity mapping of <P, u) onto <P, v} is continuous. 
According to description (l) and characterizations 16 A.8 and 16 A.4 of continuity 

by means of convergence of nets and neighborhoods, we obtain the following two 
necessary and sufficient conditions: 

(2), (3) if x is a limit point (an accumulation point) of a net N in <P, u), then x is 
a limit (accumulation) point of N in <P, v). 

(4) for each x e P, each neighborhood of x in <P, v) is a neighborhood of x in 
<P, «>• 

Next, by 16 A.6 the following condition is necessary, and by 16 A.10, if v is topo-
logical, then it is also sufficient, for u to be finer than v: 

(5) each u-open set is «-open; and in addition, the word open can be replaced by 
the word closed. 

Finally, sometimes it is convenient to make use of the following form of condi-
tions (4) and (5). Let | x e P} be a family such that "Vx is a local sub-base 
at x in <P, v} for each x. Then the following condition is necessary and sufficient 
for u to be finer than v: 

(4') every element of "Vx is a neighborhood of x in <P, u> for each x in P. 
If v is topological and "T is an open (closed) sub-base for <P, v) then also the fol-

lowing condition is also necessary and sufficient for u to be finer than v: 
(5') Each element of "V is open (closed) in <P, u). 
Now we proceed to the proper object of this section. We begin with the basic 

theorem which asserts that C(P) is order-complete, and describes suprema. 

31 A.2. Theorem. Let P be a set. The ordered set C(P) is order-complete, the 
discrete closure for P ( = the identity relation on exp P) is the least ( = the finest) 
element of C(P) and the accrete closure for P (the closure of each non-void set 
is P) is the greatest ( = coarsest) element of C(P). I f {ua | a e A} is a non-void 
family in C(P), then 

(6) (sup{uf l | a e ^ } ) Z = \j{uaX \ a e A} 
for each X c P . 
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Proof. The facts that the discrete and the accrete closures for P are the finest and 
the coarsest elements of C(P) are self-evident, and moreover they have been verified 
at the beginning of Section 14. Since C(P) possesses a greatest and least element, 
to prove that C(P) is order-complete it is enough to show that each non-void family 
{u.} in C(P) has a least upper bound (= supremum). Thus the proof of the theorem 
will be accomplished if we prove that, for each non-void family {ua} in C(P), the 
relation 

(7) u = {X -+V{uaX}\X ^ P} 

on exp P ranging in exp P is the least upper bound of {ua} in C(P). The proof of the 
fact that w is a closure operation, that is, the verification of conditions (cl 1), (cl 2) 
and (cl 3), is straightforward and may be left to the reader. Next, since {ua} is a non-
void family, we have uX uaX for each X and each a, which means that the closure u 
is coarser than ua for each index a. Thus u is an upper bound of {ua}. To prove that 
u is the least upper bound, let us consider an upper bound v; since v is coarser than 
each ua, we have vX z> u„X for each index a and X <= P and hence vX=> U{u0X} = 
= uX for each X <=. P which means that v is coarser than u. 

Remark. If {ua} is a void family, then uX = 0 for each X c P, where u is given 
by (7), and hence u is not a closure operation whenever P is non-void. It is to be noted 
that 

(8) » = {*-» D M \ X c z P } 
need not be a closure operation for P. If {ua} is an empty family, then vX = P for 
each X <- P and hence v is not a closure operation for P whenever P 4= 0 because 
the closure of the empty set is always empty. If the relation v is a closure operation 
then v is the greatest lower bound of {ua} (this can be proved easily as in the proof 
of 31 A.2, formula (7)). However, v need not be a closure operation even if the 
family {ua} is non-void; in fact, v need not be additive, that is, condition (cl 3), 
v(X u Y) = (vX u vY), need not be fulfilled. Of course, we always have v(X u Y) => 
=> (vX u vY) which follows from the fact that vX c vXl if X c Xy. The converse 
inclusion need not be fulfilled; for example, let P be the three-point set (1, 2, 3) and 
let uh ( = 1,2, be the closures for which «i(l) = (1,3), w2(2) = (2,3) and ut(j) = ( j ) 
in the remaining cases. Then v(j) = ( j) for each j = 1, 2, 3 (where v is given by (8)) 
but «(1,2) = (1, 2, 3) and hence u(l) u v(2) 4= »(1,2). 

Nevertheless, there is an important type of families in C(P) such that the greatest 
lower bound is given by (8). 

31 A.3. If P is a set and {ua} is a range down-directed family in C(P), then the 
v from (8) is the greatest lower bound o/{ua}, that is, 

(9) (inf{«a})X = n M 
for each X <=• P. 

Proof. Of course we say that {ua} is range down-directed if the set of all ua is down-
directed. In view of the foregoing remark it is enough to show that vXl u vX2 => 
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=3 v{Xi u X2) for each Xu X2 <= P. Suppose x $ vX1 u vX2. By the definition 
of v there exist ah i = 1, 2, such that x $ uaiXi. Since {«„} is range down-directed, 
we can pick an a so that ua is finer than both uai. Clearly x $ uaXb i = 1,2, and 
hence x £ ua{Xl u X2) => v(Xt u X2). 

For the construction of (inf{ua})X in the general case see 31 ex. 2. Now we 
proceed to a description of suprema and infima in terms of neighborhoods. We 
begin with the description of suprema; the proof will depend on Theorem 31 A.2, 
formula (6). 

31 A.4. Let x be a point of a set P and let {ua | a e A} be a non-void family in 
C(P). For each a in A let 11 a be a local base at x in <P, ua>. Let 1l be the collection 
of all sets of the form | a e -4} where Ua e 1'¿a for each a in A. Then 1l is 
a local base at x in <P, sup {ua}>. I f , in addition, 1ia is the neighborhood system 
at x in <P, ua} for each a in A, then "U is the neighborhood system at x in 
<P, sup {«„}>, and 

(9) H = | a e A) . 

Proof. Let u stand for sup {ua}. In view of 14 B.7, to prove 1l is a local base at x 
in <P, u> it is sufficient to show that, for each X <= P, x e uX if and only if U n X 4= 0 
for each U in <%. First suppose x e uX and U e °U. We must prove U n X + 0. 
According to (6) the relation x e uX implies x e uxX for some a in A. By definition 
of °U, the set U is the union of a family {Ua | a e A) where Ua e Since x e uaX, 
by 14 B.7 we have Ua n X =# 0 and hence U n X #= 0 because Ux c: U. Now suppose 
x uX. We must find a U in so that U n X = 0. According to (6) we have x $ uaX 
for each a in A. Since <%a are local bases at x we can choose a family [Ua | a e A} 
so that Ua n X = 0 and Ua e °Ua for each a in A. If U is the union of {Ua}, then 
clearly U n X = 0 and, by definition of aU, U belongs to Thus is a local base 
at x in <P, u>. Now let a be the neighborhood systems at x in <P, ua). Since 11 a 

are filters, if X c Y a P and X g 1la then also Ye Ha, and consequently 1l 
for each a in A. Thus 1l c Conversely, if U e f|{^o}, then U = \j{Ua \ a e A} 
where U = Ua for each a in A and hence U e °U. Thus H is the intersection of {1ta}-
Since all 1ltt are filters, their intersection 1l is also a filter. But a local base is the 
neighborhood system if and only if it is a filter. Thus 11 is the neighborhood system 
at x in <P, u> (and (9) holds as we have already shown). 

Corollaries. Let {ua | a e 4̂} be a non-void family in C(P) (where P is a set). 
Then 

(a) the neighborhood system of a set X c P in <P, sup {wa}> is the intersection 
of the neighborhood systems of X in <P, ua>, a e A; and 

(b) asetXczP is open (closed) in <P, sup {"„}) if and only ifX is open (closed) 
in <P, ua> for each a in A. 

Proof. For each x in P and a in A let 1la(x) be the neighborhood system at x in 
<P, u„y, and for each x in P let 1l(x) be the neighborhood system of x in <P, sup {«„}>-
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By 14 B.2 a set U is a neighborhood of a set X in a space if and only if U is a neigh-
borhood of each point of X. In consequence, if X <= P, then | x e X} is the 
neighborhood system of X in <P, «„>, and n{1t(x) | x e X} is the neighborhood 
system of X in <P, sup {ua}>. According to (9) we have %(x) = fi{^a(x) | a e A} 
for each x in P and hence 

f|{®(x) | x 6 X} = f | | * e X, a e A) = n{f> W * ) | * e X} | a e A} . 

The left side of the preceding equality is the neighborhood system of X in 
<P, sup {«„}> and the right side is the intersection of neighborhood systems of X 
in <P, «„>, a e A. The proof of (a) is complete. To prove the assertion of (b) con-
cerning open sets it is sufficient to keep in mind that X is open if and only if X is 
a neighborhood of itself and to apply (a). The assertion concerning closed sets follows 
from that concerning open sets and the fact that X is closed if and only if P — X is 
open. 

The proof of the description of infima which follows does not depend upon the 
preceding results. 

31 A.5. Theorem. Let P be a set and let {ua | a e A} be a non-void family in 
C(P). For each x in P and a in A let 11 &x) be a local sub-base at x in <P, wa>. Then, 
for each x in P, the union %(x) of {^„(x) | a e A} is a local sub-base at x in 
<P, inf {ua}>. If 1la(x) are local bases and the family {ua} is range down-directed, 
then 1l(x) are local bases. 

Proof. I. Since 1l(x) are, obviously, filter sub-bases and x e f)®(x) for each x 
in P, by 14 B.11 (b) there exists a closure operation v for P such that °U(x) is a local 
sub-base at x in <P, v) for each x in P. It will be shown that v = inf {wa}. First it is 
evident that v is a lower bound of {ua} (use, for instance, (4')) and consequently, 
v is finer than inf {wa}. Conversely, every ua is coarser than inf {ua}, and consequently 
every set from ^a(x) is a neighborhood of x in <P, inf {ua}> for each a in A; it follows 
that every set from 1l(x) is a neighborhood of x in <P, inf {ua}> for each x in 'P. But 
1l(x) is a local sub-base at x in <P, v). By (4') the closure v is coarser than inf (uaj; 
this completes the proof of the first assertion. — II. Now suppose that 1la(x) are 
local bases and the family {ua} is range down-directed. Fix x in P and pick U l and U2 

in 1l(x). We muts find a U in 1l{x) so that U a Uin U2. There exist aiy i = 1,2, 
in A such that C/; e ^aj(x). If ua is finer than both ufli then U{ are neighborhoods of x 
in <P, wa> and, ^a(x) being a local base at x in <P, «„>, 1la(x) is a filter base and 
hence there exists a U in 1ta(x) such that U <= U1 nU2; clearly U e 1l(x). 

Corollary. Let {ua \ a e A} be a non-void family in C(P). For each x in P let fx 
be the element {xa | a e A} of the product space II{<P, ua> | a e A} such that 
xa = x for each a in A. Then the mapping f = {x -»• fx) of <P, inf {ua} ) into the 
product space I1{<P, ua>} is an embedding. 

From 31 A.5 one can deduce at once the following description of infima in terms 
of convergence of nets. 
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31 A.6. Theorem. Let {u„} be a family (not necessarily non-void) in C(P). 
A point x e P is an twmmurlMioivprrhtt (a limit point) of a net N in <P, inf {«„}> 
if and only i f , for each a, the point x is ¿1 mm Lit um—JnKi'iTm jMHiit (a limit point) of 
the net N in <P, u„>. 

Remark. Let u be the least upper bound of a non-void family {ua} in C(P), N be 
a net in P and x be a point of P. If x is an accumulation or a limit point of N in 
<P, wa> for some a, then x is, respectively, an accumulation point or a limit point of N 
in <P, u) because u is coarser than ua. Nevertheless, if x is an accumulation point 
or a limit point of N in <P, «), then x may be an accumulation point of N in <P, wa> 
for no a. This may be shown by examples. 

Summarizing, we can say that the least upper bound admits "natural" simple de-
scriptions in terms of closures and neighborhoods, but not in terms of convergent 
nets; and the greatest lower bound admits "natural" simple descriptions in terms 
of neighborhoods and convergent nets but not in terms of closures. 

The first part of the section is concluded with the following simple but very im-
portant result, the straightforward proof of which is left to the reader. 

31 A.7. Theorem. Let f be a mapping of a set P into another one Q. If A is a set, 
{ua | a e A} is a family in C(P) and {va \ a e A} is a family in C(Q) such that 
all mappings f: <P, m„> -* <Q, va} are continuous, then the mappings 

/ : < P , inf {«„}> <Q, inf {<;„}> 
and 

/ : < P , sup {«„}> -* (Q, sup {i;a}> 
are also continuous. 

B. TOPOLOGICAL AND U N I F O R M I Z A B L E CLOSURES 

If u is a closure for a set P then there exists a finest topological closure for P 
coarser than u, the so-called topological modification of u (16B.1), and, similarly, 
there exists a finest uniformizable closure for P coarser than u, the so-called uni-
formizable modification of u (24 B.13,28 C). Using these facts one can reduce some 
order properties of the ordered set of all topological closures for a set P or uniformiz-
able closures for a set P to those of C(P). Since this situation occurs frequently it will 
be convenient to derive some results for general ordered sets. We begin with a de-
finition. 

31 B.l. Definition. Let <X, ^ ) be an ordered set and let Y be an ordered subset 
of <X, g} . The upper modification of an xeX in Y is the least element of Ygre-
ater than or equal to x, that is the element y of Y with the following property: 
x g y, and if yt e Y and x g ylt then y g yv Similarly, the lower modification 
of xeX in Yis the greatest element of Yless than or equal to x, that is, the ele-
ment y of Y with the following property: y g x, and if y^eY and g x, then 
J'i ^ y-
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For example the topological modification of a closure u for a set P is the upper 
modification of u in the set of all topological closures for P. Of course, the upper 
and lower modification of an x 6 X in an ordered subset Y of X need not exist, for 
instance if Y = 0. If X = R and Y = ] 0, 1 [, then the elements 0 and 1 possess 
neither an upper modification nor a lower modification in Y. If X = R and 
7 = Q, then no x e ( X - 7) possesses an upper or lower modification in Y, while 
each xeY, as always, coincides with its upper modification as well as its lower 
modification. 

Before stating the main lemma we review some definitions and proposition about 
ordered sets (see Section 10). Let Y be an ordered subset of an ordered set <X, ^ >, 
Z c y. The following cases can appear (where the infima in X are denoted by inf 
and the infima in Y by infy): (a) there exists inf Z but not infy Z; (b) there exists infy Z 
but inf Z does not exist; (c) there exists neither inf Z nor infy Z; (d) both infima exist but 
inf Z 4= infy Z (of course, infy Z ^ inf Z); (e) both infima exist and they are equal. 
If X is order-complete, then cases (b) and (c) must be omitted but all remaining 
cases may appear. If inf Z exists and belongs to Y, then inf Z is the infimum of Z 
in y (case (e)). Of course, all assertions remain true if inf is replaced by sup. The 
set y is said to be completely meet-preserving in (X, ¿j > if infy {ya} = inf {ya} for 
each non-void family {ya} in Y such that the infimum in Y exists (thus 0 is completely 
meet-preserving), and Y is said to be completely meet-stable in X if inf {ya} e Y 
for each non-void family {ya} in Y such that the infimum exists, i.e., infy {ya} = 
= inf {ya} whenever {ya} is a non-void family in Y such that the infimum in X 
exists. A mapping of an ordered set into another ordered set is said to be completely 
meet-preserving if it preserves infima of non-void families; thus Y cz X is completely 
meet-preserving in <X, ^ > if and only if the identity mapping of Yinto X is complete-
ly meet-preserving. Replacing inf by sup we obtain the definition of completely join-
preserving and completely join-stable sets. Finally, y is completely lattice-preserving 
(lattice-stable) if it is simultaneously completely join-preserving (completely join-
stable) and completely meet-preserving (completely meet-stable). A mapping / is 
said to be idempotent i f f of = / . 

31 B.2. Lemma. Let Y be an ordered subset of an ordered set <X, The fol-
lowing two conditions are equivalent: 

(a) for each x in X there exists the upper modification of x in Y; 
(b) there exists an order-preserving idempotent mapping v of (X, ^ ) into itself 

such that v[X] = Yand x ^ vx for each x in X. 

If the equivalent conditions (a) and (b) are fulfilled, then 

(1) vx = infY {j; | y e Y, x ^ y] 

for each x, i.e., v is uniquely determined by Y, and 

(2) infy {ya} = inf* {ya} 

36—Topological Spaces 
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whenever E{ya} c Y and one of the infima exists; hence Y is completely meet-stable 
and completely meet-preserving in X, and 

(3) supy {vxa} = v sup* {xa} 
whenever the supremum in X exists; in particular, if X is order-complete or bounded-
ly order-complete then Y has the same property. Finally, if <X, g } is order-
complete, then the equivalent conditions (a) and (b) are equivalent to the following 
condition (which is always necessary): 

(c) Y is completely meet-stable in X, and the maximal elements ofX belong to Y. 

Similar results hold for the lower modification. 

Proof. I. Suppose (a). If vx denotes the upper modification of x in Y, then clearly 
the mapping v = {x -> vx} : <JX, g} -* <X, g} fulfils the condition (b), and further-
more (1) holds. 

II. Conversely, suppose (b). We shall prove that vx is the upper modification of x 
in X. Given x e X, if x g y, y e Y, then vx g vy, because v is order-preserving, and 
vy = y because y = vz for some z (since v[X] = Y); hence vy = vvz = vz (vis 
idempotent) and finally vy = y. Thus vx rg y which shows that vx is indeed the 
upper modification of x in Y. 

III. The mapping v is uniquely determined by Y because the upper modification 
of an x is unique. 

IV. Now suppose that the equivalent conditions (a) and (b) are fulfilled and v is 
a mapping satisfying (b). Let {ya} be a non-void family in Y. We know (see II) 
that Y is the set of all y eX such that vy = y. If y is the infimum 
of {>>„} in Y, then y is the infimum of {ya} in X. Indeed, y is a lower bound of {ya} 
in X and if x is any lower bound of {ya} in X, then vx g vya = ya for each a, and 
hence vx is a lower bound of {ya} in Y which implies vx g y and thus x g y. If x is the 
infimum of {ya} in X, then vx g vya = ya for each a and hence vx g x which 
implies vx = x; thus x e Y and hence x is the infimum of {ya} in Y. 

Finally, let x be the supremum of a family {xa} in X and let y = vx; we shall prove 
that y is the supremum of {vxa} in Y. Evidently y is an upper bound of {vxa}, and if z 
is any upper bound of {vxa} in Y, then x g z and hence y = vx g vz = z, i.e. 
y = z -

V. It remains to show that if <X, g ) is order-complete then (c) is equivalent to 
conditions (a) and (b). It has already been shown that conditions (a) and (b) imply (c) 
(without the assumption that ÇX, is order-complete). Conversely suppose that 
(c) holds and X is order-complete. The ordered set X has the greatest element, which 
is, of course, a maximal element and hence belongs to Y by (c). Now if x is any element 
of X and z is the infimum in X of all y e Y, x g y, then z e Y by (c) (because this set 
is non-void) and clearly z is the upper modification of x in Y. Thus (a) holds. 

VI. It is to be noted that the lemma for the lower modification is obtained by ap-
plying the lemma for the upper modification to the inversely ordered set. 
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31 B.3. Remark. Given a set P, the ordered set of all topological closures for P 
will be denoted by xC(P) and the ordered set of all uniformizable closures will be 
denoted by uC(P). 

Recall that the topological modification is denoted by x and hence x[C(P)] is 
the set of all xu, u e C(P), i.e., the set of all topological closures for P. Similarly, o 
is the uniformizable modification and hence u[C(P)] is the set of all vu, u e C(P), 
i.e., the set of all uniformizable closures for P. 

31 B.4. Theorem. Let P be a set. The ordered sets xC(P) and uC(P) are order-
complete, the sets xC(P) and uC(P) are completely meet-stable in C(P) and the 
mappings x : C(P) -* xC(P) and v : C(P) -> uC(P) are surjective and completely 
meet- preserving. 

Proof. By 16 B.3 the topological modification xu of u is the upper modification 
of u in the set of all topological closures for P and xu exists for each u. From lemma 
31 B.2 we obtain all statements for topological closures. Similarly, by 24 B.13 
vu is the upper modification of u in the set of all uniformizable closures for P and vu 
exists for each u. 

31 B.5. The least upper bound in C(P) of a family of uniformizable closures for P 
need not be topological. For example, let P = (0, 1, 2) and let us consider the closure 
uh i - 1, 2, for P such that u¡(0) = (0, i) = u;(i) and u^j) = j for 0 + j + ¿.Evident-
ly, both uf are uniformizable closures for P. On the other hand the supremum u of 
{u; |i = 1, 2} is not topological. Indeed, u(l) = u^l ) u u2(l) = (0, 1) and 
u(0, 1) => u(0) = Ui(0) u u2(0) = (0, 1, 2) and hence uu(l) * u(l). Now it follows 
from lemma 31 B.2 that neither the "lower" topological modification nor the 
"lower" uniformizable modification need exist; more precisely, if a set P has at 
least three elements, then there exists a closure u for P which has no lower modification 
in the set of all topological (uniformizable) closures. 

Because of the great importance of topological and uniformizable closures it will 
be convenient to describe suprema and infima in the ordered set xC(P) of all topolo-
gical closures for P and in the set oC(P) of all uniformizable closures for P directly. 

31 B.6. Theorem. Let {«„} be a non-void family in xC(P) where P is a set, and 
let be the collection of all open sets in <P, ua> for each a. Then the intersection 
°tl of is the collection of all open sets in the set P endowed with the supremum 
of {ua} in xC(P) and the union "V of\fUa} is an open sub-base for the set P endowed 
with the infimum of {ua} in xC(P). 

Proof. This is an immediate consequence of 31 B.4 and the description of open 
sets with respect to the supremum taken in C(P) (Corollary (b) of 31 A.4) and the 
description of neighborhoods with respect to the infimum (see Theorem 31 A.5). 
It may be in place to give a proof which does not depend on properties of C(P). It is 
evident that °U is the collection of all open sets for a topological space <P, uy 
(15 A.6) and "V is an open sub-base for a topological space <P, v} (15 A.9). Since 

36* 
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•f => °Ua => °U for each a, v is a lower bound of {ua} in xC(P) and u is an upper bound 
of {ua} in tC(P). If w is an upper bound (lower bound) of {u„} in tC(P) and is 
the set of all open sets in <P, w>, then necessarily "Ua c if") for each a 
and hence n{^ a} = => "W ( U = ^ <= this implies that w is coarser 
(finer) than u(v). 

Corollary. Let P be a set and let ca be the single-valued relation on xC(P) which 
assigns to each u the collection of all u-open sets. Then the mapping co : tC(P) ->• 
-»• < exp exp P, =>> is one-to-one, order-preserving and completely join-preserving 
(but it need not be meet-preserving). 

31 B.7. Theorem. Let P be a set and let {u,} be a non-void family in uC(P). 
For each a let Jf a be the collection of all exact open sets in <P, n0>. Then the inter-
section Jf of {sVa} is the collection of all exact open sets in <P, m> where u is the 
supremum of {ua} in uC(P) (Jf is an open base for <P, u>), and the union .M of 
{J^a} is an open sub-base for <P, Vs), where v is the infimum of {ua} in oC(P). 

Proof. We know that a space is uniformizable if and only if it is topological and 
the collection of all exact open sets is an open base. Since «C(P) is completely meet-
stable in C(P) (31 B.4) the statement concerning infima follows easily from Theorem 
31 A.5. To prove the statement concerning suprema it is sufficient to show that 
a function / : <P, «> -* R is continuous if and only if the function /„ : <P, «„) -» R 
is continuous for each a. "Only if" is evident, and to prove "if" let us consider the 
supremum u' of {u„} in C(P). By 31 B.4 u is the uniformizable modification of u' and 
hence, by 28 C, / : <P, u> -» R is continuous if (and only if) / : <P, u'> -> R is con-
tinuous. By 31 A.7, if a mapping g : <P, ua~) 2 is continuous for each a, then 
g : <P, u'> -» SL is also continuous. The statement follows. 

Corollary. Let P be a set and let g be a single-valued relation on oC(P) which 
assigns to each u the collection of all exact open sets in <P, u>. Then the mapping 
g: vC(P) —> <exp exp P, =>> is one-to-one, order-preserving and completely join-
preserving (but it need not be meet-preserving). 

C. CLOSURES FOR ALGEBRAIC STRUCTS 

The purpose of this subsection is to prove that, given a group, ring, module over 
a topological ring or an algebra over a topological ring, say <$, then the set of all 
closures admissible for ^ is completely meet-stable in the set C([^|) of all closures 
for \9\ (31 C .11, 31 C.16). It is to be noted that projective and inductive constructions 
of topological algebraic structs will be based on the results of this subsection. 

The proof will be given in a sequence of propositions, each of which will be of 
interest in itself. 

We begin with a theorem which will not be needed for 31 C.11 or 31 C.16 but 
which completes the results of this subsection and which will be needed for a 
general theorem on internal algebraic structs 31 C.10. 
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31 C.l. Theorem. Suppose that { f f a } is a family of internal compositions for a 
set P. Let r be the ordered set of all closures u for P such that each topologized 
internal composition <<ra) m> is inductively continuous. Then the set T is completely 
lattice-stable in C(P) and contains the accrete and the discrete closure for P, and 
hence T is order-complete and every closure for P has an upper modification as 
well as a lower modification in T. 

Proof. By 19 A.3 a topologized internal composition <<r, m> on P is inductively 
continuous if and only if each left translation {x —• ytrx} : <P, u> —>• <P, m>, y eP, 
and also each right translation {x xay} : <P, u) -> <P, «>, y e P, is continuous. 
Hence Theorem 31 C.1 is an immediate consequence of the following proposition. 

31 C.2. If {/,,} is a family of mappings of a set P into itself and T is the ordered 
set of all closures u for P such that each mapping fb: <P, u} -* <P, u> is continuous, 
then T is completely lattice-stable in C(P) and contains the accrete and the discrete 
closure for P, and hence T is order-complete and every closure for P has an upper 
and lower modification in T. 

Proof. Since C(P) is order-complete (31 A.2), by lemma 31 B.2 it is sufficient to 
show that T is completely lattice-stable in C(P) and contains the accrete and dis-
crete closures for P, i.e. that if u is the supremum (infimum) in C(P) of a family {ua} in F, 
then u e T. However, this follows immediately from theorem 31 A.7 asserting that 
i f / 6 : <P, ua> <P, wa> is continuous for each a, then fb : <P, u> -> <P, w) is also 
continuous (even if the index set is empty). 

The case of the continuity of a topological internal composition is not too simple. 
By definition, a topologized internal composition <<r, ua> on P is continuous if the 
mapping a : <P, ua> x <P, ua> ->• <P, ua> is continuous. We shall write the product 
<P, ua> x <P, ua> as <P x P, ua x ua>. If each (a, ua> is continuous then, by 
theorem 31 A.7, the mappings a : <P x P, sup {ua x ua}> -»• <P, sup {«<,}) and 
a : <P x P, inf {ua x ua}> -» <P, inf {wa}> are also continuous; but we do not 
know whether sup {ua x ua} = sup {ua} x sup {ua} and inf {ua x ua} = inf {ua} x 
x inf {ua}. It turns out that the latter equality holds but the former is false as shown 
in the example which follows. 

31 C.3. The mapping of the ordered set C(P) into C(P x P) which assigns to 
each closure u for P the product closure u x u is not join-preserving. Perhaps the 
simplest example may be obtained as follows. Let P = (0, 1, 2) and let u„ i = 1,2 
be the closure for P such that u;(i) = (i, 0) = u;(0) and ut(j) = ( j ) for i + j + 0. 
If w = sup (u1; u2) (in C(P)), then the product closure u x u is strictly coarser 
than the supremum v of the product closures x ux and u2 x u2 in C(P x P). Indeed, 
Pis the only neighborhood of Oin <P, u) and hence P x P is the only neighborhood 
of <0, 0) in <P x P, u x u>. On the other hand (0, i) is a neighborhood of 0 in 
<P, m;> and hence (0, i) x (0, i) is a neighborhood of <0, 0) in <P x P, m; x «,->, 
and finally, U{(0, i) x (0, i) | i = 1, 2} * P x P is a neighborhood of <0, 0> in 
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<P x P, v}. It is to be noted that this example may be used to show that the mapping 
in question is not join-preserving whenever the cardinal of P is at least 3. In 31 C.13 
we shall show that the mapping {u -»• u x u} : C(P) -> C(P x P) is not countably 
monotone join-preserving, i.e. the equality sup {u„ x ua} = sup {ua} x sup {ua} 
need not be true for a range-monotone countable family (whereas evidently this 
equality holds for every finite range-monotone family). 

Now we shall prove that the mapping {u -» u x u) of C(P) into C(P x P) is 
completely meet-preserving and in fact we shall prove essentially more. First recall 
that the product n{<Xa, j£a>} of ordered sets is defined to be the ordered set 
<n{Xa}, gy, where g, the so-called product order, is defined by letting x g y if 
and only if prax g a pr„ for each a, i.e. g is the relational product of the family 
{*.}• 

31 C.4. Theorem. Let {Pa| a e A} be a non-void family of non-void sets. The 
mapping f = {{«„} -* n{ua}} : II{C(Pa)} -> C(n{Pa}) is completely meet-pre-
serving, in particular, order-preserving. 

Proof. Let {va \ a e A} be the infimum of a non-void family {{uba | a e A} | b e ¡3} 
in n{C(Pa)}, ub = n{u6a | a e A}, v = n{ua | a e A}. We shall prove that v is the 
infimum of {ub} in C(n{Pa}). It is sufficient to show (by 31 A.6) that a net N converges 
to x with respect to v if and only if N conveiges to x with respect to each ub. Next, 
since ub and v are product closures, by 17 C.9 N converges to x with respect to ub(v) 
if and only if pra o N converges to pra x with respect to uba(va) for each a e A. Finally, 
by definition of the product order, va is the infinum of {uba | b e B} in C(P) for each a 
in A, and hence, by 31 A.6, pra o N converges to pra x with respect to va if and only if 
pra o N converges to pra x with respect to uba for each b e B. The statement follows. 

Remark. The foregoing theorem will become a corollary of the associativity 
of projective generation (32 A.9). 

31 C.5. Let o be an internal composition on a set P and let F be the ordered set 
of all closures u for P such that the topologized composition <<r, u} is continuous. 
Then the accrete and the discrete closures for P belongs to F and F is completely 
meet-stable, and hence F is order-complete and every closure for P has an upper 
modification in F. 

Proof. If P = 0 then the statement is trivial. Suppose P 4= 0. Evidently the ac-
crete and the discrete closures belong to F. If {ua} is a non-void family in F, then 
each mapping a : <P x P, ua x ua> -> <P, ua> is continuous, by theorem 31 A.7 
the mapping o : <P x P, inf {ua x ua}> <P, inf {«„}> is continuous, and by the 
foregoing theorem 31 C.4inf{ua x ua} = inf{«a} x inf {ua) and hence also <cr, 
inf {ua}> is continuous, i.e. inf {«a} e F. The remaining statements follow from 
lemma 31 B.2. 

It will be shown in 31 C.12 that F need not be join-stable. For an examination of 
the continuity of the inversion of an internal composition we shall need the follo-
wing simple result. 
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31 C.6. Theorem. Let Q be a subset of a set P. The mapping f of C(P) into 
C(Q) which assigns to each u its relativization to Q, is surjective and completely 
lattice-preserving. The mapping f : tC(P) -» tC(Q) is surjective and completely 
lattice-preserving. 

Proof. I. Let {«,,} be a non-void family in C(P). If X is any subset of Q, then 
( / sup {«6})X = Q n U M and (sup {fub))X = = U{Q n UbX} = 
= Q n U{u6Z}, and hence / sup {u6} = sup {fub}. Let x e Q and let °llb be the 
neighborhood system at x in <P, uby for each b. Then the union "U of {%b} is a local 
sub-base at x in <P, inf {m6}>, [Wb] n Q = Vb is the neighborhood system at x in 
(Q,fuby and the union "T of {Vb} is a local sub-base at x in (Q, inf {/«(,}>. But 
clearly "V = \fll~\ n Q and hence inf {fub} is a relativization of inf {u,,}. Clearly 
/ is surjective. — II. Let {uj,} be a non-void family in xC(P) and allb be the collection 
of all open sets of <P, ufc>; the collection V b = n Q is the set of all open sets 
of <2, fub}. By 31 B.6 the intersection of {Wbj {{'fb}) is the set of all open 
sets of the space <P, sup {m6}> « 6 , sup {fub}y). But clearly -f = \fU\ n Q. The 
statement concerning infima follows from I and the fact that the infimum in C(P) 
of topological closures is a topological closure. 

31 C.7. Remark. In the notation of 31 C.6, the mapping / does not commute 
with t, i .e./tu 4= t/m in general. This was proved in 17 A.6. Of course,/tm is always 
coarser than x/u. It follows that the second statement cannot be obtained from the 
first statement and properties of the topological modification t. 

31 C.8. Suppose that P is a set and {/,} is a family of single-valued relations 
such that D/a cz P, E f a c P for each a, and let T be the ordered set of all closures u 
for P such that the mapping fa of the subspace Dfa of <P, u> into the subspace Efa 

of <P, uy is continuous for each a. Then the set T is completely lattice-stable in 
C(P), the accrete and the discrete closures for P belong to T, and hence, T is 
order-complete and each closure for P has a lower and upper modification in T. 

Proof. Evidently the discrete and the accrete closures belong to T. If {u6} is 
a non-void family in T and u = sup {ub} (u = inf {m6}) in C(P), then by 31 C.6, for 
each Qa P the relativization of u to Q is the supremum (the infimum) in C(Q) of 
{vb}, where vb is the relativization of ub to Q. Applying 31 A.7 we obtain u e T. The 
remaining statements follow from lemma 31 B.2. 

31 C.9. Corollary. If P is a set, {<ra} is a family of semi-group structures on P 
and T is the set of all u e C (P) such that the inversion of each <<ra, u> is continuous, 
then T is completely lattice-stable in C(P), f contains the discrete and the accrete 
closure, T is order-complete and every closure for P has its lower and upper modific-
ation in r. 

Proof. The inversion of each <xa is a single-valued relation in.P ranging in P. 
Now we are prepared to state the main result concerning internal algebraic structs. 
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31 C.10. Theorem. Let P be a set, let { f f 0 } , {gb} and {pc} be families of internal 
compositions on P and let each pc be a semi-group structure. Let T be the ordered 
set of all closures u for P such that each <oa, u> is continuous, each <gb, u> is 
inductively continuous and the inversion of each <pc, u) is continuous. Then the 
discrete and the accrete closures for P belong to T, T is completely meet-stable in 
C(P), and hence T is order-complete and every closure u for P has an upper 
modification in T. I f the family {<7a} is empty, then T is completely lattice-stable 
and every closure u for P has a lower modification in T. 

Proof. Apply 31 C.1, 31 C.5, and 31 C.9. 

31 C . l l . Corollary. Let D be a group (ring, field) and let T be the ordered set 
of all closures admissible for & (i.e., compatible with the structure of Then the 
discrete and the accrete closures for belong to T, T is completely meet-stable 
in C(P), and hence T is order-complete and every closure for P has an upper modific-
ation in r. 

31 C.12. Example. We shall show that T from 31 C.11 need not be join-stable. 
Let <G, <t> be any commutative group containing at least two elements, let u be 
the discrete closure for P and v be a non-discrete closure admissible for <G, c) , 
e.g. the accrete closure for G. Consider the product group <ff, g} = <G, (t> x 
x <G, <j>. Let 0 be the neutral element of <G, <7>; thus <0, 0) is the neutral element 
of<H, e>. 

(a) <H, g, u x and <H, g, v x u) are topological groups by 19 A.12 because 
<H, g,u x v} = <G, o, u> x <G, o, v}, <H, g,v x u> = <G, a, v) x <G, o, h>. 

(b) If w = sup (u x v, v x u), then <H, g, w) is an inductively continuous group 
with continuous inversion (by 31 C.10). 

(c) The closure w is the inductive product of v and v, i.e., w = ind (v x v). Indeed, 
if V is a neighborhood of 0 in <G, v>, then (0) x V is a neighborhood of <0, 0> in 
(H, u x u>, F x (0) is a neighborhood of <0, 0> in v x u> and hence W = 
= ((0) x F) u (F x (0)) is a neighborhood of <0, 0> in <H, w>, and clearly the 
sets IFform a local base at <0, 0) in <H, w>. 

(d) Since v is not discrete and w = ind (v x v), the closure w is not topological 
and consequently (H, g, w> is not a topological group because every topological 
group is topological. It may be appropriate to prove directly that <g, w> is not a con-
tinuous internal composition. 

By 19A.4 it is sufficient to show that \W~\ is contained in (G x (0)) u 
u ((0) x G) for no W = ((F x (0)) u ((0) x F)), where Fis any neighborhood of 0 
in <G, v). However, this is almost evident because we can choose an x in (F — (0)) 
and then <0, x), (x, 0) e W and <0, x) g(x, 0) = <x, x) belongs to the set JG -
- <0, 0> which is disjoint with (G x (0)) u ((0) x G). 

(e) If <G, v) is separated, then the diagonal JG of G x G is closed in <G x G) 
ind (v x v)y and hence in <G x G, tw>. It follows that U = ( H - Jc) u «0 , 0>, 



31. O R D E R E D SETS O F C L O S U R E O P E R A T I O N S 569 

is a neighborhood of <0, 0> in (H, tw>. The proof of the second part of (d) can be 
used to show that <q, tw> is not a continuous internal composition. As a consequence, 
the set F is not join-stable in xC(H). 

31 C.13. Example. We shall construct an increasing sequence {u„} of admissible 
closures for the additive group of reals, which will be denoted by <G, + >, such that 
the closure u = sup {«„} is not admissible for <G, + ) (it will follow that sup {u„ x 
x u„) 4= u x u; indeed, if sup {«„ x u„] = u x u then the proof of 31 C.5, applied 

to sup instead of to inf, yields that < + , u) is a continuous composition, and since 
the inversion of < + , u> is continuous by 31 C.9, u must be admissible for the group 
<G, +)) . For each positive integer n let G„ be the subgroup of <G, + ) generated by 
the element n_ 1 , i.e. G„ consists of all k . n~l with k varying over Z, and let 
G0 = (0). Let v be the usual closure for <G, + ), i.e. v is the order closure, and let 11 
be the local base at 0 in <G, +, u>. For each n let 1ln be the set of all [t/] + [G„] 
(= E{x + y | x e U, y e G„}), U e 11. It is easily seen that 11 „ is a filter base fulfilling 
conditions (gnb i) of 19 B.7, and consequently there exists a unique closure u„ admis-
sible for <G, + ) such that 1in is a local base at 0. Clearly {u„} is an increasing se-
quence in C(G), (the filter generated by 1ln always contains H„ + 1) and u0 = v . Let 
u = sup {u„}. The set H = U{G„} is dense in <G, u> and hence in <G, u>. But each 
neighborhood of 0 in <G, w) Contains H, and consequently each neighborhood of 0 
in <G, u> is dense in <G, u>, and hence the closure of each neighborhood of 0 is G. 
Thus, if u were admissible for <G, + ) then necessarily u would be the accrete closure 
for G; but u is not accrete. Indeed, if x, y e G, y $ x + [H] (such x and y exist 
because card H = and card G > K0) then there exists a neighborhood U of y 
such that x^U, i.e., y $ u(x). Indeed, the distance (in R) of to each x + [G„] is 
positive, say rn, and if V„ is the open /-„-sphere about 0 in R, then [F„] u [G„] is a nei-
ghborhood of 0 in <G, m„>, and W„ = y + [F„] 4- [G„] is a neighborhood of y in 
<G, u„y which does not contain x; it follows that U{^>} is a neighborhood of j> in 
<G, «) (by 31 A.4) which evidently does not contain x. 

Remark. If <G, + ) is a finite group, then the set C(G) is finite and therefore the 
set F of all closures compatible for <G, + ) is countably monotonically join-stable. 
On the other hand, if G is infinite, then there exists a group structure for G such that 
the set F is not countably monotonically join-stable. Actually, in 31 C.13 it is enough 
to take for <G, +> any subgroup of the additive group of reals, containing a H 
such that the quotient group G ¡H has at least three elements. Of course the group G 
can be taken countable. 

Now we proceed to external compositions. We shall need the following simple 
result the proof of which is elementary and therefore left to the reader. 

31 C.14. Let P be a non-void set and Si = <R, u> be a closure space. The mapping 

f : {m v x u} : C(P) - C(R x P) 

is injective and completely lattice-preserving. 
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31 C.15. Theorem. Let P be a set, {cra}, and {fic} families of internal 
compositions on P, each fic being a semi-group structure, and {</cd, vdy} and 
<Ae, wey families of domain-topologized external compositions on P. Let f be 
the ordered set of all closures u for P such that each <aa, m> is continuous, each 
<Qb' ' s inductively continuous, the inversion of each </ic, u> is continuous, each 
topologized external composition <u, Kd, vdy is continuous, and finally, every 
<u, ke, wey is inductively continuous. Then the set T is completely meet-stable in 
C(P), the accrete closure belongs to T, and hence every closure u for P has an 
upper modification in C(P). 

The proof based on 31 C.10 and 31 A.7, 31 C.14 is left to the reader. 

31 C.16. Corollary. Let S£ be a module (algebra) over a topological ring 01 and 
let T be the ordered set of all closures admissible for JSf. Then T is completetely 
meet-stable in C(| i?|) , the accrete closure for |j£?| belongs to T, and hence every 
closure for \£f \ has an upper modification in T. 

Remark. It is easily seen that F need not be join-stable (take Sk discrete and use 
the method from 31 C.12). 

D. EXAMPLES 

Here we shall investigate the properties of the ordered sets of all semi-separated, 
locally connected, quasi-discrete, semi-separated and separated closures for a given 
set P. Particular attention is given to separated closures. We shall examine maximal 
elements of the ordered class of all (topological) separated closures. It turns out 
that maximal elements of the class T of all separated closures are just the compact 
elements of T (31 D.8). Characterization of maximal elements of the ordered class 
of all topological separated closures is more complicated (31 D.9). It should be noted 
that although compact spaces will be studied in Section 41, they have already been 
introduced in 29 B.2 and the exercises to Section 17. 

31 D.l. Semi-uniformizable closures. Let P be a set. The ordered set f 
of all semi-uniformizable closures for P is completely lattice-stable in C (P), and the 
discrete closure for P and the accrete closure for P belong to T. As a consequence, 
T is order-complete, every closure for P has a lower modification and an upper 
modification in r and F is a completely lattice-preserving subset of C(P). 

Proof. Clearly the discrete closure for P and the accrete closure for P are semi-
uniformizable and hence belong to J\ Now by virtue of lemma 31 B.2 it is sufficient 
to show that T is completely lattice-stable in C(P). Since every closure for P has an 
upper modification in T (by 23 B.2), again by 31 B.2 the set F is necessarily com-
pletely meet-stable in C(P). To show that F is completely join-stable, take any 
non-void family {«„} in T and let us prove that the supremum u of {ua} in C(P) 
belongs to T. Remember that a closure w for P is semi-uniformizable if and only if 
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x e w(j>) implies y e w(x). Assuming x e u(y) we shall prove y e u(x). Since x e u(y), 
by 31 A.2 there exists an index a so that x e ua(y). Since ua e F, necessarily y e u„(x), 
and u being coarser than ua, we obtain j> e u(x). Thus x s u(y) implies y e w(x) and 
hence u e F. 

Remark. In the proof of the preceding theorem we used the fact that each closure 
for P has an upper modification in F, and this follows from the existence of a fine 
semi-uniformity of a closure space. It is to be noted that one can prove directly 
that r is completely meet-stable. Indeed, if u is the infimum in C(P) of a family {ua}, 
then x e u„X for each a does not imply x e uX, but if X is finite, then the implication 
does hold (see ex. 2). 

31 D.2. Locally connected closures. The ordered set F of all locally 
connected closures for a set P is completely join-stable in C(P), and the accrete 
closure for P as well as the discrete closure belong to F. As a consequence, each 
closure for P has a lower modification in F and F is completely join-preserving 
in C(P). 

Proof. Since the discrete closure and the accrete closure obviously belong to F, 
by lemma 31 B.2 it is enough to show that r is completely join-stable in C(P). Let u 
be the supremum in C(P) of a non-void family {«„} in r. We must prove u e F, 
i.e. given a neighborhood U of a point x in <(P, u) we must find a connected neighbor-
hood V of x in <P, w) such that V <= U. Since U is a neighborhood of x in each 
space <P, u„y we can choose a family {Va} such that Va is a connected neighborhood 
of x in <P, ufl> and Va <= U. Put V = U{K.}- Clearly V <= U and by 31 A.4 V is a 
neighborhood of x in <P, u). Finally, since u is coarser than each ua, each set Va is 
connected in <P, u), and consequently V is connected in <P, u) as the union of 
a family of connected sets containing a common point, namely x. 

Remark. It is easy to see that the set F need not be meet-preserving. 

31 D.3. Q u a s i - d i s c r e t e c losu res . LetPbeaset. The ordered set F of allquasi-
discrete closures for P is completely join-stable in C(P), the discrete and the accrete 
closures for P belong' to F, and consequently F is an order-complete set, each 
closure for P has a lower modification in F and F is completely join-preserving 
in C(P). Next, F is order-dense in C(P), more precisely, each closure for P is the 
infimum in C(P) of a family in F. Finally, F = C(P) if and only ifP is a finite set. 

Proof. I. Clearly the discrete and the accrete closures for P belong to F. If {«„} 
is a non-void family in F and u = sup { u j in C(P), then uX = U{ua^} f° r each 
X cz P (by 31 A.2), and hence if x e uX then x e uaX for some a; since ua e F, 
x e uaY for some finite subset Y of X and hence x e uY. Thus u is quasi-discrete, 
i.e. u e r. Now the remaining statements of the first part of theorem follow from 
lemma 31 B.2. — II. Let u be a closure for P. We shall construct a family in F so that 
u will be its infimum. For each family {Ux | x e P} such that Ux is a neighborhood 
of x in <P, u> let U = | x e P} and vv = {X ^ U'^X] | i c P } . Since U is 
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a reflexive relation (x e Ux for each x), each vv is a quasi-discrete closure for P (see 
26 A.2), and if x e uX then Ux n X 4= 0 and hence x e vv(X n Ux) <= vvX. Thus 
each vv is coarser then u. We shall prove that u is the iniimum of {uj,} in C(P). It is 
enough to show that if y $ uX then y $ vvX for some U. Suppose y $ uX and 
take {Ux\xe P} with Uy n X = 0 and Ux = P for x * y. If U = Z{UX}, then 
clearly y $ vuX. — III. The last statement is evident. 

31 D.4. Semi-separated closures. Let P be a set and T the set of all semi-
separated closures for P. The set T is the closed interval [ u, v ] in C(P) where u is 
the discrete closure for P and v is the topological closure for P such that X <= P 
is closed if and only if X is finite or X = P . It follows that T is down-saturated, 
completely lattice-stable, completely lattice-preserving and every closure for P 
has a lower modification in T. The ordered set T is order-complete. 

Proof. By 26 B.8 v is the coarsest semi-separated closure for P and by 26 B.7 T is 
down-saturated (i.e. fine-saturated).Thus T indeed is the indicated closed interval. The 
remaining statements follows from lemma 31 B.2 (and order-completeness of C(P)). 

31 D.5. The set T of all separated closures for a set P is down-saturated (i.e. fine-
saturated). If P is finite, then T coincides with the set of all semi-separated closures 
for P. — Obvious. 

31 D.6. Example. Let P be an infinite set and T the set of all separated 
closures for P. Then T is not join-stable, and the supremum of an increasing sequence 
of separated closures need not be separated. 

Proof. I. Fix two distinct elements Xi and x2 of P and let us consider the closure 
u,, i = 1, 2 for P such that each x e P, x 4= x( is isolated in <P, u) and a subset 
U of P is a neighborhood of x ; in <P, u;> if and only if xt e U and P — U is finite. 
Clearly u; are separated closures for P but the supremum u of (uu u2) in C(P) is 
not separated; indeed, the points x1 and x2 are not separated. — II. To prove the 
second statement we can assume P to be countable and hence, for convenience, we 
can take for P the set of all rational numbers. Choose a sequence in R — P 
such that the range of {j/J is dense in the space R of reals, and let us define a sequence 
{h„} of closures for P as follows: if x e (P — (0)), then U is a neighborhood of x in 
<P, u„) if and only if U u (R — P) is a neighborhood of x in R and U is a neighbor-
hood of 0 in <P, u„} if and only if U u (R—P) is a neighborhood of the set(0, y0, 
..., y„) in R. Clearly each u„ is a separated closure for P. On the other hand, the sup-
remum u of {u„} is not separated. Indeed, it is easily seen that each neighborhood 
of 0 in (P, uy is dense in (P, uy because it is dense in R. 

Remark. If {«„} is the sequence from the second part of the proof of 31 D.6, then 
sup {un} x sup {«„} 4= sup {u„ x u„}. Indeed, since each u„ is separated, the 
diagonal JP of P x P is closed in <P x P, u„x u„> for each n, and consequently 
the diagonal is closed in <P x P, sup {u„x u„}>; on the other hand the diagonal 
is not closed in (P x P, sup {«„} x sup {«„}>, because sup {u,,} is not separated. 
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31 D.7. Definition. A coarse separated closure (a coarse separated topological 
closure) is a separated closure u (a separated topological closure u) such that no 
separated closure (separated topological closure) is strictly coarser than u. Thus 
coarse separated closures (coarse separated topological closures) are maximal elements 
of the ordered class of all separated (separated topological) closures. 

It turns out that there exists a separated closure (topological separated closure) 
which is not finer than any coarse separated closure (coarse separated topological 
closure). Evidently every topological closure which is a coarse separated closure is 
a coarse separated topological closure, but the converse is not true. First we shall 
give a characterization of coarse separated (topological) closures. 

31 D.8. Theorem. A separated closure u for a set P is a coarse separated closure 
if and only if the following condition is fulfilled: 

(a) If% is a proper filter of sets on P, then f){uX \ X e =f= 0. 

Remark. The closures satisfying the condition of 31 D.8 are said to be compact. 
Thus a separated closure u is a coarse separated closure if and only if u is a compact 
closure. It should be remarked that compact closures will be investigated in Section 41. 

Proof. I. First suppose that there exists a separated closure v which is strictly 
coarser than u. There exists an element x of P such that the neighborhood system 
of x in <P, u> is strictly smaller than the neighborhood system °U of x in <P, u>. 
Choose a U in — "V and consider the set 3C of all V — U with Ve~f. By our as-
sumption 3C is a filter base of sets in P. Since <P, u> is separated, the intersection of 
the collection v\f~ ] is (x), hence the intersection of the collection u\f~ ] is (x) (because 
uX <=. vX for each X c P and each Ve "f contains x). As a consequence, c (x). 
But clearly x e uX for noXeSf and hence = 0- — II. Now suppose that condit-
ion (a) is not fulfilled and take a filter 2C onP such that f)u[2C~\ = 0. For each y in P l e t ^ 
be the neighborhood system of >' in <P, u>. Fix an element x in P and let us consider 
the closure v for P such that °tty is the neighborhood system al y in <P, t?) for each 
y e P, y 4= x, and "T = u \9C\ (= E{17 u X \ U e <%x, X e &}) is the neighbor-
hood system at x in <P, u> (such a closure v exists by 14 B.11 (a) because each aUy as 
well as f is a filter). It is almost evident that ~f~ c but -V 4= allx (there exist 
X e f and U e<%x such that JJ n X = 0). Thus v is strictly coarser than u. 
We shall prove that v is separated. It is enough to show that, for each y e P, the 
intersection of closures of neighborhoods of y in <P, v} is (y). If yeP — (x), then 
1ly is the neighborhood system of y in the space (P , z?̂ , and we shall prove that 
then necessarily = (y). If zeP - (y), then there exists a U in °Uy such that 
z e P — uU, i.e. P - U is a neighborhood of z in <P, u>; if z 4= x, then P — U 
is also a neighborhood of z in <P, t>> and hence If z = x, then we 
can choose a X in 3C such that y e P — uX and clearly Ul = (P — X) n U is 
a neighborhood of y in <P, «> and hence in <P, u), and x $ ul^. It remains to take 
the case y = x. However, if F e f " , then obviously uV = vV, and consequently 
0 [ y ] = r i " M <= O M u n « M = 0 u (*)• The proof is complete. One may 
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notice that v is a topological closure whenever u is a topological closure and the filter 
has a base consisting of open subsets of <P, w>. 

31 D.9. Theorem. A topological separated closure for a set P is a coarse separ-
ated topological closure if and only if the following two conditions are fulfilled: 

(a) If is a filter base of sets in P consisting of open sets in <P, «>, then 
n«[®] 4= 0-

(b) For each point x of <P, u> the regular open neighborhoods of x form a local 
base at x. 

Remark. Topological spaces satisfying condition (a) of 31 D.9 are said to be 
ff-closed spaces; this term will be clear from proposition 31 D.10 (remember that 
a separated space is called a Hausdorff space). The topological spaces satisfying con-
dition (b) are said to be semi-regular. It is to be noted that, evidently, every regular 
topological space is semi-regular. On the other hand, a semi-regular topological 
space need not be regular. This will be shown in 31 D.13 (d). 

Proof. I. Given a topological space <P, u>, the collection v of all regular open sets 
in <P, m> is a base for the open sets of a topological space <P, v) (see 14 C.10 and 
15 A.5) which is separated if and only if the space <P, u> is separated; moreover, 
v is always coarser than u and u = v if and only if condition (b) is fulfilled. It follows 
that condition (b) is necessary. If condition (a) is not fulfilled and if °U is a filter base 
of sets in P consisting of all open subsets of <P, u> such that = 0. a"d finally, 
if SC is the smallest filter containing °U, then the construction of the second part of the 
proof of 31 D.8 leads to a topological closure v for P. Thus condition (a) is necessary. 

II. Now suppose that u fulfils conditions (a) and (b) and let v be a separated topological 
closure coarser than u. We shall show that v = u. Since, by (b), the regular open subsets 
of <P, u> form an open base for <P, u>, it is enough to prove that each regular open 
subset of <P, u> is open in <P, u). Let U be a regular open subset of <P, u>, i.e. 
U = intu uU = P - m(P - uU). The set P - uU = G is open in <P, u> and 
U = P — uG. Thus it is sufficient to show that uG = vG for each open subset G 
of <P, u). Since v is coarser than u, we have uG <= vG, and it remains to prove 
vG a uG. Suppose xevG — uG and take the collection "V of all open neighbor-
hoods of x in <P, v); thus V n G =|= 0 for each Fin f . It follows that = \f~\ n G 
is a filter base of sets in P and moreover, each element of Ql is an open subset of 
<P, u> as the intersection VnG where G is open in <P, u> by our assumption and V 
is open in <P, u> because Kis open in <P, v> and v is coarser than u. By condition 
(a) we obtain 4= 0- On the other hand clearly <= ( \ v \ f \ , but 0 [ X ] = 
= (x) because v is a separated closure, and x $ uG by our assumption, and hence 
f > M = 0 which is a contradiction. The proof is complete. 

31 D.10. A separated closure space <P, u> is a coarse separated closure space 
(i.e. <P, u> fulfils condition (a) of 31 D.8,) if and only if the following condition 
is satisfied: if <Q, v) is a separated closure space such that <P, u> is a subspace of 
<Q, u>, then P is closed in <Q, v>'. A separated topological space <P, w) fulfils con-
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dition (a) o /31 D.9 if and only if the following condition is satisfied: if <Q, Vs) is 
a topological separated space such that <P, u> is a subspace of <Q, Vs), then P is 
closed in <Q, v>. 

Proof. I. Let <P, u) be a subspace of a separated space <Q, Vs) such that P is not 
closed in < Q, Vs), and let us choose an x in vP — P. If y is a local base at x in (Q, Vs), 
then f]v[y] = (x) because v is separated and °U = \y] n P is a filter base because 
x e vP. Clearly f | " M c p n = P n (x) = 0. Thus condition (a) of 31 D.8 
is not fulfilled and <P, u> is not a coarse separated closure. If, in addition, <Q, u> 
is topological, then we can take the collection of all open neighborhoods of x in 
<Q, Vs) as y; then °U is a collection of open subsets of <P, m>, and consequently 
<P, u> does not fulfil condition (a) of 31 D.9. 

II. Conversely, let "U be a filter base of sets in <P, u) such that = 0-
Let Q be a set consisting of all elements of P and a further point, say x. Let us define 
a closure v for Q such that <P, u) is an open subspace of (Q, u> and y = (x) u [&] 
is a local base at x in (Q, v). It is almost self-evident that (Q, v) is separated when-
ever <P, u) is separated, and (Q, v) is topological whenever <P, u) is topological 
and the sets of °U are open in <P, u>. Since clearly x e vP — P, the sufficiency of 
the conditions in both statements follows. 

Remark. By 31 D.10, roughly speaking, a separated closure space (separated 
topological space) <P, u> fulfils condition (a) of 31 D.8 (31 D.9) if and only if <P, u) 
is closed in every separated (separated topological) space. 

The next proposition clarifies the relationship between topological coarse separated 
closures and coarse separated topological closures. 

31 D. l l . A coarse separated topological closure is a coarse separated closure 
if and only if it is regular. 

Proof. I. To prove "if" we shall prove somewhat more: every regular topological 
space <P, u> satisfying condition (a) of 31 D.9 satisfies condition (a) of 31 D.8. Re-
member that in a regular topological space each closed set is the intersection of clo-
sures of its open neighborhoods. Thus, in a regular topological space, if 9£ is a filter 
base of sets in P and if is the set of all open U such that U => X for some XeSC, 
then = O I X I - The statement follows. 

II. To prove "only if" we must show that a topological separated space <P, u) 
satisfying condition (a) of 31 D.8 is regular. If <P, u) is not regular then there exists 
a point x of <P, w> and an open neighborhood U of x such that the closure of each 
neighborhood of x intersects P — U; thus, if y is the neighborhood system at x 
in <P, u), then 3C = E[uV - U | Fe"T} is a filter base in P and uX <= P - U 
for each X in 3C (U is open), and hence C\u\jE~\ a (P — U) n f ) u \ y ] = 0 because 
f)u[y] = (x) (since u is separated) and x e U. The proof is complete. 

31 D.12. No non-void countable separated topological space <P, u> without isol-
ated points fulfils condition (a) o/31 D.9. 
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Corollary. I f <P, «> is a non-void countable separated closure space without 
isolated points, then u is finer than no coarse separated topological closure. 

Proof of 31 D.12. Let <P, w> be a non-void separated topological space without 
isolated points. Evidently each non-void open set is infinite. There exists a single-
valued relation q which assigns to each pair <x, X), where x e P and X is a non-void 
open subset of P, an open set V such that x $ uV and Vn X 4= 0. Indeed, given 
<x, X}, we can choose a y in X — (x) (because X is infinite) and an open neighbor-
hood V of y such that x 4 uV (because u is topological and separated). Now if, in 
addition, P is countable, then there exists a sequence {x„} ranging on P. Put U0 = 
= g<x0, P>, U„ = [/„_! n e(x„, [/„_!> for n > 0. Clearly {[/„} is a decreasing se-
quence of non-void open sets and = $ because x„ £ uU„. 

In closing we shall give an example of a separated topological space satisfying 
condition (a) of 31 D.9 but not condition (b) of 31 D.9, and an example of a space 
satisfying both condition (a) and (b) of 31 D.9 but not condition (a) of 31 D.8. 

31 D.13. (a) Every bounded closed interval of the reals fulfils condition (a) of 31 D.8. 
Indeed, by 17 ex. 5, every order-complete ordered space fulfils condition (a) of 31 D.8. 

(b) Let <P, v) be the closed interval [ 0, 1 ] of the reals endowed with the order-
closure and let u be the closure for P such that the subspace P — (0) of <P, u) 
coincides with the subspace P — (0) of <P, u>, P — (0) is open in <P, u> and U is 
a neighborhood of 0 in <P, u> if and only if U u E{n-1 | n e N, n 4= 0} is a neigh-
borhood of 0 in <P, v>. 

It is easily seen that <P, u> is a topological space satisfying condition (a) but not 
(b) of 31 D.9. 

(c) Let P = ([ 0, 1 [ x [ - 1 , 1 ]) u «1, 1» u «1, - 1 » and let u be the closure 
for P such that u agrees on [ 0, 1 [ x [ — 1 , 1 ] with the relativization of the closure 
structure of R x R, the one-point sets (<1, 1>) and (<1, —1>) are closed in <P, m) 
and the collection of all sets of the form <1, 1> u (] r, 1 [ x ] 0, 1 ]) «1, - 1 > u 
u 0 r, 1 [ x [ - 1 , 0 [)), 0 ^ r < 1, is a local base at <1, 1> (<1, - 1 » in <P, u>. 

It is easily seen that <P, u) satisfies condition (b) of 31 D.9 and does not satisfy 
condition (a) of 31 D.8 (consider the collection of all the sets ] r, 1 [ x (0), 0 ^ r < 
< 1). It is more difficult to show that <P, w> fulfils condition (a) of 31 D.9. First 
notice that if U is an open set the closure of which contains neither <1, —1) nor 
<1, 1>, then U c: [0, r ] x [ - 1 , 1 ] for some r < 1. Now if 11 is a filter base of 
sets in P consisting of open subsets of <P, u) and if the closure of some V ell contains 
neither <1, —1) nor <1, 1), then there exists an r, 0 r < 1, such that \1i\ n Q 
is a filter base of sets in Q, where g = [0, r ] x [ — 1 , 1 ] , However, the subspace Q 
of <P, u) coincides with the product of intervals [0, r ] and [ — 1, 1 ] endowed 
with the order closure, which fulfil condition (a) of 31 D.9 (as we needed in (a)). 
By 17 ex. 5, the subspace Q fulfils condition (a) of 31 D.9 and hence Q n n u [ [ ^ ] n 

n Q\ + 0 and hence 4= 0. 
(d) The space <P, u> of (c) is semi-regular but not regular. 
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32. PROJECTIVE G E N E R A T I O N 
FOR C L O S U R E SPACES 

Let {/„} be a family, each fa being a mapping of a set P into a closure space SLa. 
It turns out that there exists a coarsest closure u such that the mappings fa : <P, u) —• 
-» SLa are continuous; this closure is said to be projectively generated by the family 
{/„}. For example, the product closure is projectively generated by the family of all 
projections (17 C.6), and a closure u for a set P is projectively generated by the col-
lection of all continuous functions if and only if u is uniformizable (this requires 
proof). This section is devoted to the investigation of projectively generated closures. 

In the first subsection we shall be concerned with various descriptions of pro-
jectively generated closures by means of closure operations, neighborhoods and the 
convergence of nets in the range carriers of the generating mappings, and with general 
theorems on the projective construction which generalize the corresponding results 
for product closures. We shall also prove that the projective construction can be 
reduced to the construction of the product closure and the construction of the closure 
projectively generated by a single mapping. 

In subsection B we shall study, for a given class of spaces K, the class proj K of all 
spaces projectively generated by a family of mappings with range carriers in K. Here 
we shall see that the general theorems of Sections 31 and 32 are rather profound and 
that many theorems of chapters III, IV and V are their immediate consequences. In 
subsection C we shall examine projectively generated algebraic structs; all results 
will be consequences of the theorems of 32 A, B and 31 C. The closing subsection D 
is devoted to examples. 

It should be noted that projective constructions will also be provided for semi-
uniform spaces and proximity spaces and therefore the terminology might seem to 
be somewhat complicated at this stage. Finally, it should be pointed out that all 
the results of Section 31 are assumed known. 

A. G E N E R A L I T I E S 

32 A.l. Definition. A projective family of mappings*) with a common domain 
carrier SP is a family {/a} such that each fa is a mapping of 3? into a struct; if the 

*) In the theory of categories such a family is sometimes said to be coinital. A family with a 
common range carrier (in categorial terminology with a common end-object) is called cofinal; 
in our exposition such a family is termed an inductive family. 

37—Topological Spaces 
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range carrier of each fa belongs to a class K, then {/„} is said to be a projective family 
of mappings for K with a common domain carrier 3P. If we say that {/„} is a 
projective family of mappings for K then it is to be understood that {/„} is a pro-
jective family for K with a common domain carrier * which either belongs to K 
or is a set. We shall see that this ambiguity does not lead to any confusion. 

In this section we shall be concerned with projective families for closure spaces, 
i.e. families {/„} such that each f„ is a mapping into a closure space and all the map-
pings fa have a common domain carrier which is a set or a closure space. For 
example, if <P, u) is the product of a family {<Pa, ua>} of closure spaces then the 
family {pra : <P, u> ->• <Pa, wa>} as well as the family {pra : P -» <Pa, ua>} is a pro-
jective family for closure spaces. 

Now we are prepared to introduce those concepts which are basic to the proper 
subject of tiie section. 

32 A.2. Definition. A closure u for a set P is said to be projectively generated 
by a family of mappings {/„ | a e A} if {/„} is a projective family of mappings for 
closure spaces with a common domain carrier P or <P, u> and u is the coarsest 
closure for P such that all the mappings/,, : <P, w> -» E*/„ are continuous; the family 
{/„} is said to be a projective generating family for <P, u>. A closure space <P, u> 
is said to be projectively generated by a family of mappings { f „ } if {/„} is a projective 
generating family for <P, u> and <P, u> is the common domain carrier of all /„. 
The definitions just stated will be carried over to collections of mappings and single 
mappings as follows: a collection 3F has a property if and only if the family 
{/ | / e F ) has the property and a mapping/ has a property if and only if the 
singleton ( / ) has the property Thus, if we say that / is a projective generating 
mapping (for closure spaces, for a closure space) it is to be understood that the family 
{/ | / e (/)} has the corresponding property. 

32 A.3. Examples, (a) A closure space projectively generated by an empty family 
of mappings is an accrete space. — Obvious. 

(b) A closure space projectively generated by a family of constant mappings is 
an accrete space. Indeed, a constant mapping of a closure space * into another 
closure space is always continuous (disregarding the closure structures in question). 

(c) A closure space projectively generated by a family of mappings into accrete 
spaces is an accrete space. Indeed, a mapping of any closure space 3P into an accrete 
closure space is continuous. 

(d) A homeomorphism is a projective generating mapping. — Obvious. 
(e) If {ua} is a family of closure operations for a set P, then inf {ua} is projectively 

generated by the family of mappings {J : P -> <P, ua>}; stated in other words, the 
family {j : <P, inf {ua}> -» <P, ua)} is a projective generating family for closure 
spaces. — Obvious. 

(f) The product <P, u> of a family {<Pa, ua>} of closure spaces is projectively 
generated by the family {pra : <P, u> -> <Pa, ua>} of all projections; stated in other 
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words, the family of all projections of a product space is a projective generating family 
for closure spaces. — This is a restatement of Theorem 17 C.6. 

Now we proceed to the general theory. We begin with a description of projectively 
generated closures. 

32 A.4. Theorem. Every projective family in the class C with a common domain 
P generates exactly one closure operation for P. If u is projectively generated 
by a single mapping f : P -*• <Q, u>, then 

(i) ux = r i [ v f [ x j ] 
for each X c. P. If u is projectively generated by a family of mappings { f a | a e.4} 
and ua is the closure projectively generated by the mapping fa, a e A, then u is the 
greatest lower bound of the family {«„}• 

Proof. I. Let {/„} be a projective family in C and let a set P be the common do-
main of all fa. Obviously there exists at most one closure for P generated by {/„}. 
We shall prove the existence. Let us consider the collection of all closures w for P 
such that all mappings fa : <P, w> -» E*fa are continuous. According to 31 A.7 
sup W (in C(P)) belongs to f . By definition 32 A.2 the closure sup is projectively 
generated by {/,}, that is, sup f is the coarsest closure for P making all mappings/„ 
continuous. — II. Now let u be the closure for a set P projectively generated by 
a family of mappings {/,} (thus P is the common domain of all the /„) and, for each 
a, let ua be the closure projectively generated by the mapping fa. We shall prove 
h = inf {u.}. For each a let us consider the set Ta of all closures w for P such that 
the mapping fa : <P, w> —> E*fa is continuous. By the first part of the proof we have 
sup if = u and sup Wa = ua for each a. Obviously = It follows that 
sup T = inf {sup f a } which is precisely the equality u = inf {«„}. — III. It remains 
to prove (1). Let u be projectively generated by a mapping / : P -» (Q, v), and let 
us consider the single-valued relation w on exp P ranging in exp P which assigns 
to each X the set / - 1[ t?/[Jf]] . The reader will find no difficulty in verifying that 
w is a closure operation for P. Clearly / [wX] c vf\X\ and hence the mapping 
/ : <P, w> ->• < Q, v) is continuous. To prove u = w it remains to show that u is 
finer than w. The mapping/ : <P, u) -> (Q, u) is continuous and hence f\uX~\ c. 
<= vf[X~\ for each X e P, and consequently uX / - ' [ / [ k X ] ] c / _ 1 [ t / [A: ] ] = 
= wX for each X <= P; this implies that u is finer than w and concludes the proof. 

Corollary. If f is an embedding of a space 0* into a space 3., then the space 0> 
is projectively generated by f . If a space SP is projectively generated by a mapping 
f and if f is a one-to-one mapping, then f is an embedding. 

It may also be in place to notice that, in view of the preceeding theorem, Theorem 
28 A.9 can be restated as follows: 

32 A.5. Each of the following two conditions is necessary and sufficient for a 
closure space 0 to be uniformizable: 

(a) SP is projectively generated by a mapping into some uniformizable space. 
(b) 0 is projectively generated by a mapping into some cube [ 0, 1 ]H . 

37* 
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From 32 A.4 and the results of subsection 31 A we shall derive descriptions of 
projectively generated closures in terms of neighborhoods and convergent nets. 

32 A.6. Theorem. Each of the following two conditions (a) and (b) is necessary 
and sufficient for a closure u for a set P to be projectively generated by a non-void 
family of mappings {/„ | a eA}. Condition (b) is necessary and sufficient even if 
,4 = 0. 

(a) if xe P and, for each a, 1la is a local sub-base at fax in E*fa, then the collection 
of all /„ aeA,Ue 1ia, is a local sub-base at x in <P, u}. 

(b) A point x of P is a limit point of a net N in <P, u) if and only if the point 
fax is a limit point of the net fa°N in E*fafor each a in A. 

Proof. Write * = <P, u>. If A = 0 and * is projectively generated by {/,}, 
then 0> is an accrete space (as has already been noted), and the condition (b) is 
fulfilled because, in an accrete space, each point is a limit point of each net. If A = 0 
and condition (b) is fulfilled, then each point of * must be a limit point of each net 
in * which implies that * is an accrete space. Thus condition (b) is both necessary 
and sufficient whenever A = 0. To prove the theorem for the case A 4= 0 we shall 
verify these descriptions tor spaces generated by a single mapping. 

32 A.7. Lemma. Each of the following two conditions is necessary and sufficient 
for a closure u for a set P to be projectively generated by a mapping f :P~* 
-> <G. ®>: 

(a) if K is a local base (sub-base) at fx in <Q,v>, then f~v\li\ is a local base 
(sub-base) at x in <P, u 

(b) a point x of P is a limit (accumulation) point of a net N in <P, m> if and 
only if the point fx is a limit (accumulation) point of the net f0N in (Q,v). 

Proof . First it is easy to see that the two statements of (a) and the two statements 
of (b) are equivalent. We shall prove that the statement of (a) concerning bases is 
necessary and implies the statement of (b) concerning limit points, and the statement 
of (b) concerning limit points is sufficient. — I. First suppose u is projectively gener-
ated by / (thus (1) holds, by 32 A.4) and 11 is a local base at fx in <2, v}. In view of 
14 B.7 to show t h a t / i s a local base at xvin <P, w> it is enough to prove: xeuX 
if and only i f / - 1 [ 1 7 ] n X 4= 0 for each U in It. Since It is a local base at fx in 
<Q, v>, we again have by 14 B.7 that fx E vYif and only if U n Y 4= 0 for each U 
in W. Since obviously U nf[X~\ 4= 0 if and only if f~l[U~\ n X 4= 0, formula (1) 
implies that xeuX if and only if X n / - 1 [ t / ] # 0. — II. Now assume the state-
ment (a). Clearly a net N in P is eventually in each / - 1 [ (7 ] , U e 11, if and only if 
/ o N is eventually in each U e 11. It follows that x is a limit point of N in <P, u> if 
and only if fx is a limit point o f / o N in (Q, v). — III. Finally, assume the statement 
(b); we shall prove that (1) holds. Suppose X <=. P. If x e uX, then x is a limit point 
of a net AT in X and by condition (b),/x is a limit point of / 0 N. Since clearly / o N is 
in f[X], we have/x e vf[X], Thus uX c / _ 1 [ u / [ X ] ] . Conversely, if x e / _ 1 [»/[*]], 
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then/x is a limit point of a net M in f\X~\. Let us choose a net N in X such that M = 
= f o N. Since fx is a limit point of / o N, x is a limit point of N. Since N is in X, 
x e uX. 

Proof of 32 A.6 for the case A 4= 0. For each a in A let ua be the closure project-
ively generated by f„. By virtue of 32 A.4, inf {ua} is the closure projectively generated 
by the family {/„}. Combining Lemma 32 A.7 with the descriptions of local sub-bases 
and convergent nets relative to the infimum of a family of closures (31 A.5 and 
31 A.6) we obtain the theorem. 

Remark. From the description 17 C.9 of convergent nets in the product spaces 
and the foregoing theorem we can obtain a new proof of the fact that the product 
closure is projectively generated by the family of all projections (32 A.3 (f)). 

Now we are prepared to prove two fundamental properties of projectively generated 
closures (32 A.8 and 32 A.9). The remaining statements will be corollaries of these 
two theorems. 

32 A.8. Theorem. If a spaced is projectively generated by a family of mappings 
{/,}, then a mapping f of a space .2 into 0 is continuous if and only if all com-
posites fa of are continuous. 

Proof. If / is continuous then each mapping fa of is continuous as the composite 
of two continuous mappings. Conversely, suppose that all composites faof are con-
tinuous and let x be a limit point of a net N in 2,. We must show that fx is a limit 
point of./oAT in 0. Each mapping faof being continuous, the point ( f a o f ) x 
(=fa(fx)) is a limit point of the net (/„ „ / ) o N (= / . 0 (/o N)) in E•/. (= E•/. o f ) 
for each a and consequently, by 32 A.6, the point fx is a limit point o f / 0 N. 

It may be noted that the last theorem is a generalization of Theorem 17C.10 
which states that a mapping / of a space into a product is continuous if and only if 
the composites o f / with all projections are continuous. 

32 A.9. Theorem on associativity. Let us suppose that {£a\ a e A} is a family 
of closure spaces and, for each a e A, the space 2La is projectively generated by a 
family of mappings {gab | b e Ba}. Then a family {/„}, each fa being a mapping of 
a given space 0 into 2,a, projectively generates the space if and only if the family 

{9ab°fa\aeA, b e Ba} 
projectively generates 0>. 

Proof. According to Theorem 32 A.6, condition (b), it is enough to prove that 
the following two statements (2) and (3) are equivalent for each point x of 0> and each 
net N in 0: 

(2) for each a in A,fax is a limit point of the net fa o N in SLa\ 
(3) for each a in A and b "in B^ the point gab • fax is a limit point of the net 

(gah o fa) oN in E*(gab 0 /„) = E * ^ ) . 
Fix an a in A. The space 2La being projectively generated by the family 

{gab | b e Ba), again by 32 A.6 (b), fax is a limit point of the net / a o N if and only if, 
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for each b in Ba, the point gab(fax) (= (gab» fa)x) is a limit point of the net gab 0 (fa • N) 
( = (dab ° fa) ° N) in the range of gab. Since the index a was chosen arbitrarily in A, 
the equivalence of (2) and (3) follows. 

It may be noted that the preceding theorem is a generalization of Theorem 17C.19 
which asserts that the canonical mapping of the product space IT{Pa | a e ,4} onto 
the product n{n{P,, | b e Bc} | c e C} is a homeomorphism where A is the union 
of {Bc}, and {Bc} is a disjoint family consisting of non-void sets. 

Now we shall prove that the property of projective generating families stated in 
32 A.8 is characteristic. 

32 A.10. Theorem. A projective family {/„} of mappings for closure spaces 
with a common domain carrier 8? is a projective generating family if and only 
if the following condition is fulfilled: 

A mapping f of a closure space into the closure space * is continuous if and only 
if all the mappings /„ o / are continuous. 

Proof . The condition is necessary by 32 A.8. Conversely suppose that the condi-
tion is fulfilled. Write * = <P, u). If v is any closure for P then, by the condition, 
the identity mapping J : <P, v} <P, m> is continuous, i.e. v is finer than u, if and 
only if all the mappings f„: <P, v} -> E *fa are continuous. As a consequence, u is 
proj actively generated by the family {/„}. 

32 A.11. P r o j e c t i v e f a c t o r i z a t i o n . For every projective family {fa} of map-
pings for closure spaces with common domain carrier 8f, which is a space, there 
exists a unique projective generating family {ga} for closure spaces with common 
range carrier M such that |*| = and fa = ga oh for each a where h is the 
identity mapping of * into 21. The mapping h is continuous if and only if all the 
mappings fa are continuous. 

Proof. Wri te* = <P, u). Take the closure v projectively generated by the family 
of mappings / . : P - E*/. and put ga=fa: <P, o> E*f a , h = J : <P, u> -» 
- <P, B>. 

Remark. In accordance with the general rule regarding the use of square brackets 
we can write 

to = [ M 
and this formula is sometimes named the projective factorization of the projective 
family {/„} (of course f„, ga and h are the mappings from 32 A.11). 

It has already been shown that the product closure is projectively generated by the 
family of all projections, that is, the construction of the product closure is a special 
case of the projective construction. Now we will show that the construction of a pro-
jectively generated closure can be reduced to the construction of a product closure 
and a closure projectively induced by a single mapping. If a space * is projectively 
generated by an empty family, then * is an accrete space, and consequently * is 
projectively generated by any constant mapping. If the family is non-void, then the 
reduction is described in the theorem which follows. 
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32 A.12. Theorem. A non-void projective family {/„} of mappings for closure 
spaces is a projective generating family if and only if the reduced product f of the 
family {/a} is a projective generating mapping for closure spaces. 

Proof. Let 3? be the common domain carrier of all the/a and let 2 be the product 
of the family {E*/a} of closure spaces. Recall that / is the mapping of * into 2 which 
assigns to each x the point {/ax}. If ga is the projection of 2 into E*/a, then fa = gaof 
for each a. Since {ga} is a projective generating family, by 32 A.9, / is a projective 
generating mapping if and only if {/,} is a projective generating family. 

32 A.13. Theorem. If a closure space 0> is projectively generated by a family 
of mappings {/a} and 2 is a subspace of 8P, then 3 is projectively generated by the 
family where each ga is the domain-restriction of fa to 2. 

Proof. If h is the identity mapping of 2 into * then ga = fa° h for each a. Since 
A is a projective generating mapping and {/„} is a projective generating family, {ga} 
is a projective generating family by 32 A. 9. 

The preceding theorem states that the projective construction commutes with the 
operation of taking of subspaces. In conclusion we shall prove the following corollary 
to 32 A.9 (associativity).' 

32 A.14. Theorem. Let P be^a set, {Qa | a e A} a family of sets and {/,} a fa-
mily of single-valued relations such that D f a = P and E/a c: Qafor each a. Let K 
be the mapping of the product ordered set n{C(Qa)} into the ordered set C(P) 
which assigns to each {i/a} the closure projectively generated by the family 
{fa'.P -* <Q„, wa)}. Then the mapping K is completely meet-preserving. 

Remark. Before proceding with the proof let us notice that this theorem is a gene-
ralization of Theorem 31 C.4 asserting that the mapping of the product ordered set 
n{C(Qa)} into the ordered set C(n{Qa}), which assigns to each {ua} the product 
closure Il{ua}, is completely meet-preserving. Indeed, it suffices to take P = Tl{Qa} 
and / a = pra n (P x Qa). 

Proof. Suppose that u = {ua} is the infimum of a non-void family {t)t | b e B} 
in n{C(ga)}, vb = [vba | a e 4̂}. According to the definition of the product order, 
for each a in A, the closure ua is the infimum of the family {vba | b e B) in C(Qa) 
and hence ua is projectively generated by the family of mappings {J : Qa -» 
-» (Qa, vba) | b e B}. Since KU is projectively generated by the family {/a : P 
—• <Qa, ua> | a e A], by theorem 32 A.9 the closure KU is projectively generated by the 
family of mappings {/„ : P -> <Qa, vba> | a e A, b e B}. Next, inf {KV,, | b e B) is pro-
jectively generated by the family of mappings {J : P <P, ku6) | b e B) and each 
space <P, Kvb} is projectively generated by the family {/ a : <P, Kvb} ->• (Qa, vba) | a e 
e A) and hence, by 32 A.9, inf {¡cvb | b e B} is projectively generated by the family 
of composites, i.e. by the family {/a : P -» (Qa, vba> | a e A, b e B). Thus the closures 
KU and inf {ku,, | b e Bj are projectively generated by the same family and hence 
KU = inf {kd6 | b e Bj. The proof is complete. 
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Remark. The mapping K in 32 A.14 need not be join-preserving, e.g., in the 
particular case described in the remark folloving 32 A.14 (see 31 C.3). 

B. PROJECTIVE-STABLE CLASSES 

We shall investigate properties of the class of all spaces projectively generated by 
a family of mappings with range carriers in a given class of spaces. The theory will 
be applied to the classes of all topological, uniformizable and pseudometrizable 
spaces. Further examples will be given in the closing subsection 32 D. For con-
venience we shall agree on some special notation which will be used only in this 
section. 

32 B.l. Definition. If K is a class of closure spaces and X is a cardinal, then the 
symbol proj^K will stand for the class of all closure spaces projectively generated by 
families of mappings with range carriers in K such that the cardinal of the index set 
is at most X, and the symbol proj K will stand for the class of all closure spaces pro-
jectively generated by families of mappings with range carriers in K; thus proj K 
consists of all spaces belonging to at least one projN K. As usual, this notation will 
be applied to classes of closures, i.e. if Lis a class of closure operations and if K is 
the class of all closure spaces <P, u) such that u e L , then projK L (proj L) stands for 
the class consisting of the closure structures of all 0 e projMX (3? e proj K). The class 
proj K is called the projective progeny of K. If K = proj K, then K is said to be 
projective-stable. 

32B.2. For any class of spaces K and X = 0 the class p ro j K X consists of all 
the accrete spaces. If K and K' are classes of closure spaces and i / X and X' are 
cardinals, then 

(a) X g X', K c K' implies 

projN K <=. projN-X' <= proj K' => proj K , 

(b) if X 4= 0, then projx K => K, 
(c) if X ^ 1 or X ^ X0, then projN projN K = projN K, 
(d) proj proj K = proj K, 
(e) the class projN K is hereditary, 
(f) i / X ^ 1 or X ^ X0, then the class projNK is closed under products of families 

of cardinal ^X, 
(g) the class proj K is hereditary and completely productive, 
(h) i / X ^ X0, then proji projKX = proj^K. 
Proof. Every accrete space is projectively generated by the empty family and 

a space projectively generated by the empty family is accrete. Thus proj0 K is the 
class of all accrete closure spaces. Statements (a) and (b) are evident. Statements (c) 
and (d) follow immediately from 32 A.9. Statement (e) follows from 32 A.13. 
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Statement (f) follows from the fact that the product space is projectively generated 
by the family of projections. Statement (g) follows from (e) and (f). Finally, if / is 
a projective generating mapping and E*/ is projectively generated by a non-void 
family {/„}, then clearly {/„»/} is a projective generating family. The last statement 
follows. 

Remark. It is to be noted that proj2 proj2 K + proj2 K in general. For example, 
if K is a singleton (ZP) where 5? is a two-point discrete space, then every discrete space 
consisting of eight points belongs to proj2 proj2 K but not to proj2 K. 

32 B.3. Theorem. Let K be a class of closure spaces and let X ^ 1 be a cardinal. 
A space 0 belongs to projK K if and only if either 3P is an accrete space or 0 is 
homeomorphic with a subspace of a product space 2 x Sft, where 2 is an accrete 
space (which can be chosen so that \2\ = and is the product of a family in 
K of cardinality at most X. 

First we shall prove 
32B.4. If 2. is a non-void accrete space and 3% is any space, then the projection 

of the product space 2 x 3k onto ffl is a projective generating mapping. 
Proof. Let {/„1 a e A) be a projective generating family for closure spaces and 

let B be a subset of A such that the range carrier of each fa, a e A — B is an accrete 
space. Then clearly { f a | a eB] is a projective generating family. Since the product 
space is projectively generated by projections, the statement follows. 

Proof of 32 B.3.1. By 32 B.2 the class projN Kis hereditary and contains all accrete 
spaces. Since projt projN K = projN K (by 32 B.2 (h)), every homeomorph of a space 
from projN K belongs to projK K, and if 2 is an accrete space and J? is a space from 
projN K, then the product space 2 Y. Sk also belongs to projN- K (by 32 B.4). 
Finally, if ^ is the product of a family in K of a cardinal at most X, then 3k belongs 
to projtf K because the product space is projectively generated by projections. Thus 
all spaces described in the theorem belong to projN K. 

II. Conversely, let <P, u> 6 projK K. If <P, u> is not an accrete space, then <P, m> 
is projectively generated by a non-void family of mappings { f a \ a e A). Let / be 
the reduced product of the family {/„} and let 3k be the range carrier of / (thus 
g r / = {x ->• {fax} | x e P} and 0t is the product of {E*/a}). By 32 A.12 the mapping/ 
is a projective generating mapping. Let J be the set P endowed with the accrete 
closure and let g be the identity mapping of <P, u> onto SL. Clearly g is continuous 
and hence (g, / ) is a projective generating collection of mappings (because ( /) is 
such a collection); by 32 A.12 the reduced product h = g x r e d / ( = {x <x,/x>} : 
: <P, h> -> 2 x 3$) is a projective generating mapping. But clearly h is injective 
and hence h is an embedding. The proof is complete. 

As an immediate consequence we obtain the following theorem: 

32 B.5. Theorem. Let K be a class of closure spaces. A space 8P belongs to the 
class proj K if and only if either SP is an accrete space or 0 is homeomorphic with 
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a subspace of a product space 2 x SR., where 2 is an accrete space (which can be 
chosen so that \2\ = and * is the product of a family in K. 

32 B.6. Example. If Sf is the empty space, then the class proj« (y) as well as the 
class proj (y) coincide with the class of all accrete spaces. 

32 B.7. Theorem. Let y be a non-void space and let X ^ 1 be a cardinal. Then 
a closure space * belongs to proj^y if and only if 3? is homeomorphic with a sub-
space of 2 x yN where 2 is an accrete space (which can be chosen so that \2\ = 
= A space 3P belongs to proj y if and only if 8P is homeomorphic with a sub-
space of a space 2 x yN for some accrete space 2 (which can be chosen so that 
\2\ = \&\) and for some cardinal X. 

Proof. The second statement follows from the first one and the first statement fol-
lows from 32 B.3; it is enough to show that every accrete space is a subspace of a 
product space in the theorem, but this is evident since y is non-void, and y N with 
X' g X is homeomorphic with a subspace of Sf 

32 B.8. Examples, (a) Suppose that we know that the class tC of all topological 
spaces is hereditary, completely productive and contains all accrete spaces (all this 
has already been proved). By 32 B.5 we obtain proj tC = tC. (b) Suppose that 
we know that the class uC of all uniformizable spaces is hereditary, completely pro-
ductive and contains all accrete spaces. By 32 B.5 we obtain proj dC = uC. (c) Let 
K be the class of all pseudometrizable spaces. If we know that K is hereditary, 
countably productive and K contains all accrete spaces, then Theorem 32 B.3 yields 
projKo K = K. (d) By 32 B.7 the class proj (R) consists of all spaces which are homeo-
morphic with a subspace of a space of the form 2 x RN where 2 is an accrete space 
and X is an appropriate cardinal. If the class of all uniformizable spaces is defined 
as proj (R), then theorem 32 B.2 states that the class of all uniformizable spaces is 
hereditary, completely productive and contains all accrete spaces, and theorem 32 B.7 
gives a description of uniformizable spaces. 

32B.9. Theorem. Let K be a class of spaces and let Lbe the class consisting of 
closure structures of all spaces from K. In order that p ro jX = K it is necessary 
and sufficient that (a) proj t K cz K, and (b) the class L is completely meet-stable 
in the ordered class C. 

Remarks. Evidently condition (a) can be replaced by the following condition: 
K contains a non-void space, and i f / is a projective generating mapping with E*/ e K, 
then also D*/ e K. Next, it follows from (a) and (b) that, if proj K = K, then 
every closure has an upper modification in L; in particular, L is order-complete 
and completely meet-preserving in C. 

Theorem 32 B.9 is an immediate consequence of the following more general 
result: 

32 B.10. Let X ^ 1 be a cardinal, K a class of closure spaces and L the 
class consisting of closure structures of spaces ofK. In order that projK K = K it is 
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necessary and sufficient that (a) pro^ K <=. K and (b) ifu is the infimum in C of a 
non-void family {ua | a e A} in L and card A g X, then ue L. 

Proof. Clearly both conditions are necessary (for (b) remember that inf{ua}is 
projectively generated by the family of mappings {J : <P, inf {«„}> -»• <P, ua>}, 
where P is the set such that all the ua are closures for P). Conversely, assuming con-
ditions (a) and (b) let us consider any space <P, u> e projN K, and take a family 
of mappings {/a | a e A} which projectively generates <P, u> and such that 
card A g X, E*fa e K for each a in A. If the cardinal of A is at most 1, then <P, t/> 
belongs to projj K and hence to K by condition (a). If the cardinal of A is at least 1, 
let us consider the family {«„} such that each ua is projectively generated by the 
mapping fa: P —>• E*/„• By 32 A.4the closure u is the infimum of {ua}, by condition (a) 
each closure ua belongs to L,and by condition (b) the infimum of {ua} also belongs to L. 

Remark. Evidently if projK K = K, then Lis X-.meet-stable in C and every 
accrete closure belongs to L; on the other hand Lneed not be completely meet-stable 
in C and the upper modification of an element of C in Lneed not exist. For example, 
if K is the class of all pseudometrizable spaces, then projNo K = K (32 D.2) but 
proj K is the class of all uniformizable spaces, and the upper modification of an ele-
ment of C in K need not exist. Finally, note that it follows from 32 B.9 that proji K <= 
czK, proj K 4= K imply that at least one closure has no upper modification in L. 

32 B.ll. The class xC of all topological spaces. One has that proj xC = xC 
and if F is a two-point non-discrete and non-accrete space (equivalently, non-discrete 
and feebly semi-separated) then proj ( * ) = xC. Stated in other words, if a space 2 
is projectively generated by a family of mappings into topological spaces, then 2 
is a topological space, and moreover 2 is projectively generated by a family of 
mappings into the space 0> described above. 

Proof. I. The class of all topological closures is completely meet-stable and con-
tains all accrete closures (31 B.4); hence, by 32 B.9, to prove proj xC = xC it is enough 
to show that a closure space <Q, u> projectively generated by a mapping/into a topo-
logical space <J?, w> is topological. If X <=• Q, then vX =/ - I[w/[AT]] by 32 A.4, 
and the set wf\X~\ being closed in <R, w> (w is topological) and the mapping/ being 
continuous, we find that the set vX is closed in (Q,v). Thus (Q, v} is topological. — 
II. To prove proj (SP) = xC it is sufficient to show that proj (*) id tC, because * is 
topological (every two-point space is topological) and hence by I proj (*) <= projxC = 
= xC. Under an appropriate notation of points of * by x and y we have (x) = (x) 
and (y) = (x, y) = Let <g, v) be a topological space and * an open base 
for t>>. The reader will find no difficulty in showing that the space u> is 
projectively generated by the family [ f v | U e £%}, where fu is the mapping of <Q, v} 
into * which assigns to each point z eU the point y and to each point z e Q — U 
the point x (compare with 26 B.9(b)). 

32 B.12. P s e u d o m e t r i z a b l e spaces . Suppose that we know that the class of all 
pseudometrizable closures is countably meet-stable (see 31 ex. 4). Since clearly 
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every accrete space is pseudometrizable, to prove that the class of all pseudometriz-
able spaces is invariant under countable projective construction, by 32B.10 it is 
enough to show that if f is a projective generating mapping and the range carrier 
<Q, v} of f is pseudometrizable, then the domain carrier <P, u> of f is also pseudo-
metrizable; this can be proved as follows: if a pseudometric d induces v, then D = 
= d o (gr / x g r / ) is a pseudometric for P inducing the closure u. But this is evident 
because the mapping / : <P, D) -> <Q, d} is distance-preserving (i.e. d(fx,fy> = 
= D<x, y>; that D induces u may be shown by noting that a net D(xa, x> converges 
to zero if and only if the net ii</x„, /x> converges to zero). It should be remarked 
that other proofs will be given in 32 D. 

Every class projx K contains all accrete spaces. Sometimes it is convenient to omit 
from projK K those accrete spaces which are obtained trivially, i.e. as projectively 
generated by the empty family or by constant mappings. 

32 B.13. Definition. A distinguishing projective family of mappings is a pro-
jective family {/„} with a common domain £P such that for all distinct elements x 
and y of \£f \ there exists an index a such that fax 4= fay. 

Now given a class K of spaces and a cardinal K one can consider the class, say 
ProjNK, of all spaces projectively generated by a distinguishing family { f a | a e A} 
with range carriers in K such that the cardinal of A is at most X, and the class Proj K 
defined similarly. Then the accrete spaces mentioned above are avoided, except 
for the void space. 

32 B.14. A distinguishing projective family {/„} of mappings for closure spaces 
is a projective generating family if and only if the reduced product f of { f a } is an 
embedding. — 32 A.4 Corollary, 32 A.12. 

We leave to the reader as a simple task the formulation and proof of propositions 
for the classes Proj« and Proj similar to those for projK and proj. 

C. T O P O L O G I Z E D A L G E B R A I C STRUCTS 

We shall investigate projective constructions for topologized algebraic structs. 
Roughly speaking, this subsection is related to subsections A and B as subsection 
31 C is to 31 A and 31 B. 

32 C.l. Let a be an internal composition on a set P, n be an internal composition 
on a set Q and f be a single-valued homomorphism-relation under a and ¡i such 
that Df = P. Let v be a closure for Q and let u be the closure projectively generated 
by the mapping f:P-> t>>. Then, if <fi, is a continuous or inductively 
continuous composition, then <<r, u) has the same property. 

Proof. Since/is a homomorphism-relation we have f ° a = fi o(f x / ) and hence 
/ ' » a ' = ( ! . ( / ' x / 0 w h e r e / ' = / : < P , «>-+<&»>, a' = ff : <P, w> x <P, u> -
-» <P, u> and n' = fi : <Q, v} x <2, d> ->• <Q, v). By our assumption / ' is a pro-
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jective generating mapping, and hence / ' x / ' is continuous. Now if </i, u> is con-
tinuous, i.e. p' is a continuous mapping, then p' • ( / ' x / ' ) is continuous and hence 
/ ' o a' is continuous, and finally, / ' being a projective generating mapping, a ' is 
continuous by 32 A.8, i.e. <<r, u> is continuous. Similarly, if /i' is inductively continu-
ous, then p o ( / ' x / ' ) and hence / ' o a' is inductively continuous, and / ' being 
a projective generating mapping, a' is inductively continuous by 32 A.8, i.e. (<r, u> 
is an inductively continuous composition. 

32 C.2. Under the notation and assumptions of 32 C.1, if a and p are semi-group 
structures, then the inversion of <tr, u> is continuous whenever the inversion of 
(p. u> is continuous. 

Proof. If g is the inversion of a and h is the inversion of p, then / o g = h of. 
Let 01 be the subspace Dg of <P, u>, g' = g if the subspace Oh of <Q, v), 
h' = h : if -> ¡f and finally, f'=f:@-*Sr. By 32 A.13 / ' is a projective 
generating mapping. Clearly f'og' = h'o/'. If h' is continuous, then h' • / ' and 
hence / ' o g' is continuous, and / ' being a projective generating mapping, g' is con-
tinuous by 32 A.8. 

As an immediate corollary of 32 C.1 and 32 C.2 we obtain the following important 
theorem. 

32 C.3. Theorem. Let f be a homomorphism of a group (ring) % into a group 
(ring) 3fF. If v is a closure admissible for M', and u is the closure projectively 
generated by f : \§\ -* v>, then u is admissible for <8. 

Using the theorems of 31C and Theorem 32 A.4 we obtain at once from 32 C.1 — 
32 C.3 the following important result. 

32 C.4. Theorem. Let \ a e A} be a family, and let <3 and all the be 
semi-groups, groups or rings. Let {/,} be a family, eachfa being a homomorphism 
of y into Finally, let {va} be a family such that va is a closure for and let 
u be the closure projectively generated by the family of mappings { f a : \S\ 
-* Then, if all the f„> are either continuous or inductively con-
tinuous semi-groups, or topological groups, or topological rings, then u> has 
the same property. 

Proof. By 32 C.1—3 the theorem is true for the case where the cardinal of the index 
set is one. In the general case let u„ be the closure generated by fa : -> va}\ 
by 32 A.4 the closure u is the infimum of {ua}. Finally, by the theorem 31 C.10, the set 
of all closures making <8 a continuous or inductively continuous semi-group or topo-
logical group or topological ring, respectively, is completely meet-stable in C(|^|) and 
contains the accrete closure. 

32 C.5. Let f: <P, u> -* <Q, v} be a projective generating mapping and let 
•(U,Q,W} and <V,QLFW) be topologized external compositions such that g r / is a 
homomorphism-relation under q and g1. If <v, gls w> is continuous or inductively 
continuous then <u, g, w> has the same property. 
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Proof. Let q' = g : <A, w> x <P, u> -> <P, u>, g[ = : (A, w> x <Q, v> 
-> <Q, f ) (i.e. (?' and f?i are associated topologized external multiplications). Clearly 

/<=£?' = ei o((J : <A, w> w>) x / ) . 

If <t>, Qi, w) is continuous or inductively continuous, i.e. if the mapping Q\ is 
continuous or inductively continuous, then the right side of the above equality has 
the same property, and hence, / being a projective generating mapping, Q' has the 
same property. 

32 C.6. Theorem. Let Si be a topological ring, i f a module over and {if„} 
a family of modules overLet { f a } be a family, each fa being a homomorphism 
of i f into i f a . If {ua} is a family such that each va is a closure admissible for the 
module i f „ over SR. and if u is the closure projectively generated by the family 
{f„: |if\ then u is admissible for the module over The same 
holds on replacing modules by algebras throughout. 

.Proof. By 32 C.4 the closure operation u is admissible for the underlying group 
(ring) of if and hence it remains to show that the external structure of Jaf is continu-
ous under u. If ua is the closure projectively generated by the mapping fa : \ -*• 
-*• va), then u = inf {«„} by 32 A.4, the external structure of if is continu-
ous under each ua by 32 C.5, and hence, by 31 C.16, under u. 

In the concluding part we shall be concerned with projective constructions for 
topological modules. Recall that by our convention 19 E.3 all the properties defined 
for mappings for closure spaces are carried over to mappings for topological algebraic 
structs; e.g., if / is a mapping of a topological module into another one then we say 
that / is a projective generating mapping provided that the mapping / regarded as 
a mapping of the underlying closure spaces is a projective generating mapping. 

32 C.7. Theorem. Every topological real module is projectively generated by 
a family of homomorphisms into pseudometrizable topological real modules. 

Proof. Let if be a topological real module and let T be the set of all pseudometriz-
able closures compatible for the underlying module of if which are coarser than 
the closure structure of i f . By ex. 16, each neighborhood of the zero in if is 
a neighborhood of zero with respect to a closure of T. As a consequence if is pro-
jectively generated by the family {J : if i f a | u e Tj where i f u denotes the under-
lying module of if endowed with u. 

A real topological module i f is said to be locally convex if convex neighborhoods 
of the zero of if form a local base. Recall that a set X is convex in a real module if 
rx + sy belongs to X whenever xeX, y eX, r 2: 0, s ^ 0, r + s = 1. For properties 
of convex sets see the exercises to Section 19. 

32 C.8. Theorem. A topological real module is locally convex if and only if it is 
projectively generated by a family of homomorphisms into normed spaces. 



32. P R O J E C T I V E G E N E R A T I O N 591 

Proof. Let K be the class of all locally convex real modules. Since the inverse 
image under a homomorphism of a convex set is a convex set, we find immediately 
that each space projectively generated by a family of homomorphisms whose range 
carriers lie in K belongs to K. Next, in a normed space the spheres about the zero 
are convex and hence each normed space is locally convex. It remains to show that 
every locally convex space is projectively generated by a family of mappings into 
normed spaces. Let if be a locally convex space. It will suffice to show that for each 
neighborhood U of the zero there exists a continuous norm cp for if such that 
(px < 1 implies x e U and this follows from the following proposition the proof 
of which was given in 19 ex. 4. 

32 C.9. Let X be an absorbing balanced convex neighborhood of zero in a real 
topological module i f . For each x in i f let Ax be the set of those positive real r such 
that x e Then Ax is non-void (because X is absorbing), and 

(p = {x -»inf Ax | xe\£e\) 

is a continuous norm for i f such that <px < 1 implies x e X, and x e X implies 
(px ^ 1. 

Remark. By 19 ex. 5, there exists a metric linear space which is not locally convex. 

32 C.10. Definition. A topological Si-module i f is said to be weak if i f is pro-
jectively generated by a family of homomorphisms into the topological ^-module 
associated with Si. 

32 C. l l . Theorem. Every weak real topological module is locally convex but 
no infinite-dimensional normed separated space is weak. 

Proof. The first assertion follows from 32 C.8 because R is a normed module. 
Let if be a normed real module. If if is infinite-dimensional and separated, then the 
set n{/ r x [0]} is unbounded for each finite family {/¡} of linear functional (27 ex. 15), 
and hence a bounded neighborhood of the zero contains no set of the form 
n i / i " 1 [U«]} where {/,} is a finite family of functionals and Ut are neighborhoods 
of the zero in R. As a consequence (32 A.6), if is not projectively generated by linear 
functionals. 

32 C.12. Remark. It follows from 19 ex. 2 that each finite dimensional topological 
real module is weak and normable. 

32 C.13. Locally convex modif ica t ion. Let if be a topologized real module 
(the norm is denoted by |. |), i f ' the underlying module of i f . Denote by if, , the 
module i f ' endowed with a norm <p for i f ' over R. Let 11 be the set of all norms for 
i f ' such that the mapping J : if -» i f p is continuous and let us consider the closure u 
projectively generated by the family of mappings {J : i f ' ->• i f v | q> e °U\. By 33 C.6 
u is admissible for i f ' over R. The closure u will be called the locally convex modific-
ation of the closure structuie of i f , and the resulting topological module over R will 
be called the locally convex modification of if and will be denoted by Ic i f . 
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32 C.14. Theorem. The locally convex modification lc i f of a topologized real 
module i f is the unique locally convex space with the same underlying module as i f 
and with the following property: 

I f f is a homomorphism of i f into a locally convex module X, then f is continuous 
if and only if the mapping g = f : lc i f ->• J f is continuous. 

Proof. Evidently there exists at most one space lc i f satisfying the condition. 
We shall prove that lc if satisfies the condition. By definition lc if is locally convex 
and the mapping h = J : if -»• lc if is continuous. It follows that if g is continuous 
then / = g 0 h is continuous. Conversely, suppose that / is continuous and let us con-
sider the set Jf of all continuous norms for J f . If <¡9 e J f , then clearly q> g r / is 
a continuous norm for i f , and therefore <p gr / is a continuous norm for lc if (by 
the definition of lc i f ) . However, g r / = gr g and therefore q> gr g is a continuous 
norm for lc if for each <p in J f . Since .if is projectively generated by {J : Jf -» 
-» <|X|, (p}}, g is continuous by 32 A.10. 

32 C.15. Weak m o d i f i c a t i o n . Let i f bea topologized module over a topological 
ring 0t and let i f ' be the underlying module of i f over 3k. Let OF be the set of all 
continuous linear forms f on i f , and let u be the closure projectively generated by 
the family of mappings { / : | i f | 01 | / e By 32 C.6 the closure u is compatible 
for i f ' over 31 (!% can be considered as a topological module over01). The closure u 
will be called the weak modification of the closure structure of i f , and the resulting 
topological !%-module will be called the weak modification of i f and will be denoted 
by weak i f . 

The reader can prove without a difficulty the following characterization of weak i f . 

32 C.16. Theorem. The weak modification i f t of a topologized module i f over 
a topological module $k is the unique weak space over with the same underlying 
module as i f , which satisfies the following condition: 

Let f be a homomorphism of i f into a weak topological module Jf over 01. 
Then f is continuous if and only if the mapping f: i f [ -*• Jf is continuous. 

D. EXAMPLES 

According to 32 B.7 a class K is projective-stable if and only if K is hereditary, 
completely productive and contains all accrete spaces. A direct proof of proj K = K 
is often more convenient than the proof of the facts that K is hereditary, completely 
productive and contains all accrete spaces. For example we shall prove: 

32 D.l. The class of all regular spaces is projective-stable. 
Proof. Let 0 be projectively generated by a family of mappings {/„} such that 

the range carriers of all the fa are regular. If {/„} is empty, then \0\ is a unique 
neighborhood of any point of 0 and \0\ is closed. Suppose that {/„} is non-void 
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and U is any neighborhood of a point x of * . There exists a finite set B of indices 
and a family {Ua | a e B} such that Ua is a neighborhood of f„x in E*fa and 
n{/0

_ 1[^ a] | a e B} a U. Choose a family {Va | a e B} such that Va is a neighborhood 
of f„x and the closure of V„ is contained in Ua for each a, and put V = n{ /7 ' [ K j | a E 

e B). Since the closure of Va is contained in Ua and fa is continuous, the closure of 
/T' tKi] is contained i n / - 1 [ l / 0 ] ; consequently, the closure of Fis contained in each 
f~l[Ua] and hence in U. 

We gave a complete proof to show that the proof of proj K = K is the same 
as the proof of the fact that K is completely productive, i.e. that the special 
properties of projections of a product space into coordinate spaces plays no important 
part in the proof. On the other hand, a completely productive class containing all 
accrete spaces need not be hereditary and therefore need not be projective-stable, 
e.g. the class of all compact spaces (41 A). 

32 D.2. Let M be the class of all pseudometrizable spaces. Then projNo M = M, 
and projK M, where X ^ X0, consists of all uniformizable topological spaces each 
of which has an X-locally finite open base (i.e. a base which is the union o /X locally 
finite families). 

Proof. I. Suppose that a space * is projectively generated by a family of mappings 
{/„ | a e A} such that the cardinal of A is X. By 30 B.2 each space E*/„ has c-locally 
finite open base *„. For each a let c6a be the collection of all fa\B~\, B e 38a. Since 
f„ is continuous, is a o-locally finite collection in and hence # = U i ^ l a e A} 
is X-locally finite. Since {/„} is a projective generating family, is an open sub-base 
for If <6 = | b e B}, the cardinal of B is K and each ^ fcis locally finite, then 
the smallest multiplicative collection & containing <€ is an open base for and clearly 
S = | F is a finite subset of B}, where ST is the smallest multiplicative collection 
containing all 3>b, be F. Clearly, each <?f is locally finite and the set of all the sets F 
has cardinal X. Thus each space of proj« M has a X-Iocally finite base. Each space 
of M is uniformizable and hence each space of proj« M cz proj M is uniformizable. 
In particular, each space of projKo M has a <r-locally finite open base and hence is 
pseudometrizable by the pseudometrization theorem 30 B.2. 

II. Assume that {Ua | a e A} is an open X-locally finite base for a uniformizable 
space Let A = Ui^i | b e B}, where the cardinal of B is X and each family 
{U¿ | a e Ab} is locally finite. For each a in A and each b in B let Vab be the union 
of all Uc, c e Ab, such that Uc and — U„ are functionally separated. It is easily 
seen that the sets Vab and — Ua are functionally separated (see 28 ex. 9). From 
the fact that * is uniformizable we derive immediately that Ua = \J{Vab | b e B) for 
each a. Indeed, if G is a neighborhood of x in then the sets (x) and — G are 
functionally separated and hence a neighborhood of (x) and — G are functionally 
separated. 

For each <a, b) e A x B let fab be a continuous function on * which is 1 on Vab, 
0 on - Ua and which fulfils the inequality 0 ^ fab ^ 1. The family {fab \aeAb} 

38—Topological Spaces 
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is locally finite. For each b and b' in B let 

dbb- = {<*, y> - E{|fa bx - faby\ \ a e Ab.} \ x e y e \0\} . 

Clearly each dbb. is a continuous pseudometric for 0 , and it follows from Ua = 
= U{Pa& | b £ B} that Ua contains an open 1-sphere about x with respect to some 
dbb.. It follows that 0 is projectively generated by the family 

{] :0 (¡0\, dbb,) | <6, b'} e B x B} . 

32 D.3. S e p a r a t e d s p a c e s . If a separated space0 is projectively generated by 
a family of mappings {_/],}, then { / , } is a distinguishing family, i.e. if x =# y, then 
fax =|= f„y for some a (indeed, if fax = fay for each a then the closure of(x) contains 
y). On the other hand, if { f a } is a distinguishing projective generating family for 
a space 0 and if the range carrier of each { / , } is separated, then clearly 0 is 
separated. Consequently, if { f a } is a projective generating family for 0 and the 
range carriers are separated, then 0 is separated if and only if the family is 
distinguishing. 
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33. I N D U C T I V E G E N E R A T I O N 
F O R C L O S U R E S P A C E S 

In the preceding section we studied the coarsest closure for a set P making all given 
mappings f„ : P <Q0, va) ((Qa, va) being closure spaces) continuous. Here we 
shall concern^ ourselves with the dual situation. Let there be given a family {/„}, 
each fa being a mapping of a closure space 3-a into a set P which does not depend 
on a, and we shall study the finest closure u for P such that all mappings /„ : D*fa -> 
-> <P, u) are continuous. It turns out that, roughly speaking, the operation of form-
ing the sum of a family of closure spaces plays the same part in the theory of in-
ductively generated closures as the operation of forming products in the theory of 
projectively generated closures. Fundamental theorems are proved in subsection A. 

We shall also see that inductively generated closures inherit very few of the pro-
perties from the closure structures of domain carriers of the mappings of the ge-
nerating family. Closures projectively generated by a family of mappings into topo-
logical, uniformizable or regular spaces are topological, uniformizable or regular, re-
spectively; every closure operation is inductively generated by a family of mappings 
whose domain carriers are hereditarily paracompact spaces (33 B.2); in particular, a 
closure inductively generated by a family of mappings from topological spaces need 
not be a topological closure. Because of the great importance of topological closures 
we shall introduce (in 33 B) the notion of a closure topologically inductively generated 
by a family of mappings {/„} as the finest topological closure making all the /„ 
continuous. The main results are proved without any reference to the theory of induct-
ively generated closures. On the other hand, evidently the closure topologically in-
ductively generated by a family {/„} is the topological modification of the closure 
inductively generated by the family {/a}, and this fact enables us to reduce the theory 
of topologically inductively generated closures to the theory of inductively generated 
closures. For convenience, this reduction will be given in a more general situation, 
namely for "K-inductively generated closures" where K is a projective-stable class 
of spaces. Thus we obtain, e.g., the theory of inductive generation for uniformizable 
spaces and regular spaces. 

As in the case of projective generation, inductive generation can be reduced to the 
construction of the sum of a family of spaces and construction of the closure inductive-
ly generated by a single mapping only (namely, the corresponding reduced sum). 
In subsection C we shall study closures inductively generated by a single mapping 

38« 



596 VI. G E N E R A T I O N ^ O F T O P O L O G I C A L S P A C E S 

and the related notions of a quotient mapping and a decomposition space, and the 
class of spaces stable under the inductive construction, the so-called inductive-stable 
classes of spaces. 

The closing subsection (33 D) is devoted to various examples; e.g. we shall introduce 
the inductive product of a family of closure spaces which generalize the inductive 
product of two spaces and we shall explain "pasting" and "sewing" of closure spaces 
which often occur in the theory of functions. 

It should be remarked that two special cases of inductive generating mappings 
will be considered in the next section, and various important examples related to 
inductive construction will be given in Section 35 devoted to the examination of 
convergence which can be regarded as a part of the theory of inductive generation. 

A. GENERALITIES 

For convenience we shall introduce the following concept (compare with 32 A.1). 
33 A.l. Definition. An inductive family of mappings with a common range 

carrier 0 is a family {/„} such that each {/,} is a mapping of a struct into^; if the 
domain carrier of each fa belongs to a class K, then {/„} is said to be an inductive 
family in K with a common range carrier If we say that {/„} is an inductive 
family of mappings forK then it is to be understood that {/„} is an inductive family 
in.K with a common range carrier 0 which either belongs to K or is a set. We 
shall see that this ambiguity does not lead to any confusion. 

Notice that 0 is a projective as well as an inductive family of mappings for each 
class K. In this section we shall study inductive families for closure spaces, i.e. families 
{/„} such that each fa is a mapping of a closure space and all the mappings fa have 
a common range carrier which is a set or a closure space. For example, if <P, ti> 
is the sum of a family {<Pfl, u„>} of closure spaces, then the family {inja : <Pa, ua) -* 
-* <P, u>} as well as {inja : <P„, ua> -*• P} are inductive families for closure spaces. 

33 A.2. Definition. A closure operation u for a set P is said to be inductively 
generated by a-family of mappings {/„ | aeA} if {/„} is an inductive family of 
mappings for closure spaces with the common range carrier P or <P, u> and u is the 
finest closure for P such that all the mappings fa : D*fa -» <P, u> are continuous; the 
family {/a} is said to be an inductive generating family for <P, u>. A closure space 
<P, w> is said to be inductively generated by a family of mappings {/„} if {/,} is 
an inductive generating family for <P, u> and <P, u) is the common range carrier 
of all/fl. The definitions just stated will be carried over to collections of mappings and 
single mappings as follows: a collection J5* has a property if and only if the 
family { / | / e ^ * } has the property and a mapping / has a property if and 
only if the singleton (/) has the property Thus, if we say that / is an inductive 
generating mapping (for closure spaces, for a space <P, u>) it is to be understood 
that the family {/ | / e (/)} has the corresponding property. 
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33 A.3. Examples, (a) The empty family 0 is simultaneously a projective family 
and an inductive family. We know that every accrete space is projectively generated 
by the empty family. It is evident that every discrete space is inductively generated 
by the empty family. 

(b) If a closure space 0* is inductively generated by a family of constant mappings, 
then 8? is discrete. Indeed, a constant mapping into any space is continuous. 

(c) A space inductively generated by a family of mappings of discrete spaces is 
discrete. Indeed, a mapping of a discrete space into any space is continuous. 

(d) If {u„} is a family in C(P), then sup {ua} is inductively generated by the family 
{J : <P, O -> P}. 

(e) The sum 8P of a family {*„} of closure spaces is inductively generated by the 
family {inja : 8Pa -*• 9 } of canonical embeddings. — This is a restatement of 17 B.3. 

Now we proceed to the general theory. The first theorem corresponds to an analog-
ous result (32 A.4) for projectively generated closures. 

33 A.4. Theorem. Every non-void inductive family of mappings for the class C 
generates exactly one closure operation. If a closure u for a set P is inductively 
generated by a family of mappings {/„ | a e A} and i f , for each a in A, ua is the 
closure inductively generated by the mapping fa, then u = sup {«a | a e A}. If u is 
a closure for a set P inductively generated by a mapping f : (Q, v) -* P, then 

(*) uX = X u / ^ f ' M ] 

for each X c P. Finally, if u is inductively generated by a family of mappings 
{</.,<Q., vay, Py \ a e A}, then 

(**) uX =Xu I){f„[vaf;1 [XJ] \ae A} 

for each X P; stated in other words, x e uX if and only if x e X or /a
_1[x] inter-

sects vaf~i\_X~\ for some a in A. 

Proof. I. The uniqueness is obvious. We shall prove the existence. Let {/„ | a e A} 
be an inductive family in C with E*fa a set P and let us consider the set <P of all 
closures w for P making continuous all mappings /„. By 31 A.7 the closure inf <P 
(in C(P)) belongs to <P, and from definition 33 A.2 it is obvious that inf <P is the 
closure inductively generated by {/a}. 

II. Now, for each a, let ua be the closure inductively generated by the mapping fa. 
According to I, ua = inf <Pa where is the set of all closures for P making 
continuous the mapping fa. Since obviously <P = | a e A}, we have inf <P = 
= sup {inf i>a} which implies the equality u = sup {ua}. 

III. Now let u be the closure for P inductively generated by a mapping / : 
: <"6. y> P- We shall prove that (*) is true for each X c: P. Consider the single-
valued relation w on exp P ranging in exp P which assigns to each X c P the set 
X u / [ u / _ l [ A ' ] ] . The reader can verify without difficulty that the relation w is 
a closure for P. By definition of continuity, a mapping / : <Q, v) -> <P, ux> is con-
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tinuous if and only if uYX f \ y f o r each X <= P, that is, if and only if uL 

is coarser than w. It follows that w = u. 
IV. It remains to prove the formula (**). But this follows from the facts which 

have already been proved. Indeed, by II u = sup {u„}, and by III uaX = X u 
for each X <= P. Since u = sup {«„}, by 31 A.2 uX = UK*} 

whenever the indexed set A is non-void; this yields (**) under the assumption 
A 4= 0. If A = 0, then obviously u is the discrete closure for P, that is uX = X for 
each X c. P, and obviously (* *) is also fulfilled. 

Corollaries, (a) In order that a space <P, u> be inductively generated by a map-
ping f : (Q, v) -y <P, w> it is necessary and sufficient that / [ u F ] = uf\Y~\ for 
each Y = f~l[X], X <= P and uX = X if X <=. P - f[Q]. 

(b) Let f be a mapping of <Q, v) onto <P, u). If f is a projectively generating 
mapping, then f is an inductive generating mapping. Stated in other words, if 
f'Q-* <P, m> projectively generates v, then f:(Q,vy-*P inductively generates u. 

(b') If f is an injective inductively generating mapping, then f is projectively 
generating. 

(c) If f is an inductive generating mapping then the set |E*/| — E/ is an open and 
closed discrete subset of E*/; in particular, each point of |E*/| — E/ is isolated. 

(d) If {ua} is a family in C(P) and if Ia is the identity mapping of <P, ua> onto 
<P, sup {«„}), then {/„} is an inductive generating family for <P, sup {«„}). 

(e) The assertion of 33 A.3 (e). 
Proof . Statement (a) is a straightforward consequence of the description (*), 

statement (b) follows from the description (*) and the description (1) from 32 A.4 
of projectively generated closures. Statement (c) follows from (*) or perhaps more 
easily from (a). 

The next three corollaries of description (**) of inductively generated closures 
express basic properties of inductively generated spaces and therefore they will be 
formulated as theorems. It is to be noted that these theorems are analogues of Theo-
rems 32 A.10, 32 A.9 and 32A.13 for projectively generated spaces. Their proofs 
are a matter of a relatively simple calculation based on the description (**) of 
generated closures. The reader will find no difficulty in providing these without 
reading the proofs which follow Theorem 33 A.7. 

33 A.5. Theorem. Let { f a \ a e A} be a family of mappings of closure spaces into 
a closure space 0.1n order that the space 0 be inductively generated by the family 
{/„} it is necessary and sufficient that a mapping f of the spaced into a space M be 
continuous if and only if all mappings f o fa are continuous (compare with 32 A.10,). 

33 A.6. Theorem. Let { f a \ a e A] be a family of mappings from closure spaces 
into a space 0 and the domain space D*fa of each fa be inductively generated by 
a family of mappings {gab | b e Ba}. Then the space 0 is inductively generated by 
the family {/a} if and only if it is inductively generated by the family [ f a o gab\be 
e Ba, a e A) (compare with 32 A.9). 
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33 A.7. Theorem on partial commutativity. If a closure space * is inductively 
generated by a family of mappings {fa} and if 2 is a subspace of*, then 2 is in-
ductively generated by the family {ga}, where each ga is the restriction of fa to 
a mapping of the subspace / f l

_ 1 [ | ^ | ] of D*f a into 2, i.e. Dga = f~l\\2\\, 
E*ga = 2 and gax = fax for each x e Dga. (Compare with 32 A.1.3J 

Proof of 33 A.5.1. First let us suppose that * is inductively generated by {/„} and 
/ is a mapping of * into a space * . If / is continuous, then each composition f °fa is 
continuous as the composition of two continuous mappings. Conversely, suppose 
that all compositions f of„ are continuous. If {Ya} is any family such that Ya c D/a 

then by continuity of / o fa 

/ o / a [ F a ] ( = / [ / a [ F j ] ) ^ 7 7 / e t . 

In particular, i fX <= |* | and Ya = f~\X~\ then from (**) we obtain 

/ [ * * ] = / [ * ] u U{/[/a[Fa]]} C / [ X ] * 

which establishes the continuity of / . 
II. Suppose that the condition is fulfilled. I f / is the identity mapping of * onto * , 

then / is continuous and by assumption all / o / a are continuous. B u t / a f a = fa and 
hence all / a are continuous. Thus the closure structure of * is coarser than the closure 
inductively generated by the family of mappings {/a} considered as mappings into 
the underlying set |* | of * . If u is any closure for the set |* | such that all ga = 
= <Br D*/a> " » are continuous, and if / is the identity mapping of the 
space 3P onto u>, then ga = / o / a for each a and hence each/ o/a is continuous. 
Hence, by the condition, / is continuous; this means that the closure structure of * 
is finer than u. It follows that the closure structure of 8? is the finest closure for the 
set making all the mappings fa continuous; this concludes the proof. 

Proof of 33 A.6. By formula (**) of 33 A.4 we have 

(1) Fa
D'« = Ya u U i U ^ m ^ ] I beBa} 

for each a e A and Ya <= D/a. By formula (**) the fact that * is inductively generated 
by {fa} is equivalent to 

(2) Z CZ => = X u U{/ a[7TT*]D /"] I as A}, 
and the fact that * is inductively generated by {/„ o gab} is equivalent to 

(3) = U {/ . o gab[(fa o gabyl [X]D°<">-] \azA,bsBa}. 
According to (1), the conditions (2) and (3) are equivalent (put 7a = fa ^ X ] and 
notice that (/a » gab)~l [X] = 5aV[Yj). 

Proof of 33 A.7. The fact t h a t * is inductively generated by {/„} is equivalent to 
(2). By the definition of relativization closures we have X3 = X® n 12j for each 
X <= | j | and hence 

X3 = X u U{ga\7TT[X]03a] {"¿A} 

for each X c= 12\; this means that 2 is inductively generated by {ga}. 
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In the preceding section we saw that the projective generation can be reduced to 
the construction of the product closure and the closure projectively generated by 
a single mapping. Now it will be shown that the construction of the inductively 
generated closure can be reduced to the construction of the sum closure and the 
closure inductively generated by a single mapping. If a space 0 is inductively generated 
by the empty family, then 0 is a discrete space and hence 0 is inductively generated 
by any constant mapping into 2P. For spaces inductively generated by a non-void 
family the reduction is described in the theorem which follows. 

33 A.8. Theorem. Let { f a | a e A} be a non-void inductive family of mappings for 
closure spaces with a common range carrier 0 and let fbe the reduced sum of the 
family {/„} i.e. f = {<a, x> -* / ax} : £ {D*/J Then {/,} is an inductive gener-
ating family if and only if the mapping f is an inductive generating mapping. 

Proof. Let ix denote the canonical embedding of D*f a into the sum space E{D*/a}, 
i.e. ia = inja : D*f a E{D*/a}. Clearly /„ = / ° ia for each a in A. Since {/„} is an 
inductive generating family (e.g. by 33 A.3 (e)), the statement follows from 33 A.6. 

33 A.9. Inductive factorization theorem. Let { / , | a e A} be an inductive family 
of mappings for closure spaces with a common range carrier 2? which is a space. 
There exists a unique inductive generating family {ga} for closure spaces with a 
common range carrier 2 such that = \2\ and f„ = ho gafor each a where h is 
the identity mapping of 2 onto The mapping h is continuous if and only if all 
the mappings fa are continuous. 

Proof. Write & = <P, u> and let us consider the closure v inductively generated 
by the family { / . : D*/„ -> P}. If ga = / . : D*/. -» <P, »> and h = J : <P, i>> -
-» <P, u), then {ga} is an inductive generating family for closure spaces and fa = 
= h o ga for each a. By 33 A.5 the mapping h is continuous if and only if all the 
mappings fa are continuous. 

Remark. Since/,, = L ga for each index a, we can write 

{/.} = A o [{«.}](= •«.}) 
and this formula is sometimes termed the canonical inductive factorization of the 
inductive family {/„} (compare with 32 A.11). 

33 A.10. Remark. Let {/„} be an inductive family of mappings for closure spaces 
with common range carrier & and let 

(*) {/.} = h, o [{¿}] , / = 1, 2, 

where hi are bijective mappings and {g^}, / = 1, 2, are inductive generating families 
of mappings for closure spaces. If k = /tj"1 o h2, then k~l = h2

x ° hlt gj, = h gl 
and gl = k"1 o gl for each a; hence k as well as k~l is continuous by 33 A.5, and 
consequently is a homeomorphism. Thus the factorization (*) with {g'a} an inductive 
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generating family is unique up to a homeomorphism k It is to be noted that if we are 
given {g!,}, then the mapping h; need not be completely determined unless {Eg'a) 
is a cover of the common range carrier of all g'a. 

In 33 A.4 we described the closure inductively generated by a family of mappings 
{fa} by a simple formula depending on closures of domain spaces of mappings /„. 
We shall often need descriptions of neighborhoods, open sets and closed sets in 
a space 0 inductively generated by a family of mappings {/„} in terms of the corres-
ponding notions for the domain spaces of the mappings /„. The required results are 
listed in the following proposition, the proof of which depends on 33 A.4 and the 
descriptions of suprema of families of closure operations. 

33 A. l l . The<>rem. Let 0 be a closure space inductively generated by a family 
of mappings {/,}. A subset U of 0 is a neighborhood of a point x of 0 if and only if 
xeU and / a - 1 [ t / ] is a neighborhood of / a - 1 [ x ] in the domain D *faof fa for each a. 
A subset U of 0 is open if and only if the set /„'[L'] is open for each a, and finally, 
a subset X of 0 is closed if and only if the set /^'[X] is closed for each a. 

Proof. According to 33 A.4 the closure structure of 0 is the least upper bound 
of the family {ua} where ua is the closure inductively generated by the mapping /„ 
considered as a mapping of D*ftt into the underlying set of By 31 A.4 a set X c 
is a neighborhood of x in is open or is closed if and only if it has the corresponding 
property relative to the closure ua for each a. Hence it remains to prove that i f / : 
: <Q> u> «) is a n inductive generating mapping, then X a P is a neighbor-
hood of x in <P, u> or X is open in <P, u> or X is closed in <P, «> if and only 
if x e X and / _ 1 [ X ] is a neighborhood of / ~ ' [ x ] o r / - 1 [ X ] is open in <Q, u> or 
/ ~ ' [ X ] is closed in (Q, v), respectively. It will suffice to prove the first statement be-
cause the second one is an immediate consequence of the first (a set is open if and only 
if it is a neighborhood of all its points) and the third follows from the second (a set 
is closed if and only if its complement is open). To prove the first recall that, ac-
cording to 33 A.4, we have uY = Yu f\y/_1[Y]] for each Y e= P. By definition, 
X c P is a neighborhood of x in <P, u> if and only if x e P — u(P — X), that is, 
if and only if x e P - ((P - X) u / [ u / _ 1 [ P - X]]), i.e. if and only if x e X 
a n d / - ' [ x ] c Q — u / - 1 [ P — X]. However, the last inclusion means that /" ' [X] 
is a neighborhood o f / - 1 [ x ] in (Q, u> (because of the trivial equality/-1 [P — X] = 
= Q — / " ' [ X ] ) , which accomplishes the proof. 

Usually a space inductively generated by a family of mappings {/„} inherits very 
few of the properties of the domain spaces of the mappings fa. This explains the fact 
that the inductive construction of spaces occurs so frequently. Indeed, often very 
complicated spaces with many extraordinary properties can be constructed by a 
suitable choice of an inductive generating family of mappings, usually with very 
simple and reasonable domain spaces, and conversely, an examination of a complicat-
ed space can be simplified by a suitable inductive generating family of mappings. 
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B. INDUCTIVE CONSTRUCTION FOR TOPOLOGICAL SPACES 

We know that a closure space projectively generated by a family of mappings 
into topological spaces is a topological space. It turns out that a closure space in-
ductively generated by a family of mappings of topological spaces need not be topolo-
gical. For example, if u = sup {ua} in C(P), then u is inductively generated by the family 
of mappings {J : <P, ua> -» P} and if all the ua are topological, then u need not be topolo-
gical. It may be in place to give the simplest example. If a space <P, «> is not topological 
then necessarily the cardinal of P is at least 3 because there exists a subset X of P 
such that X * 0, uX - X 4= 0 and uuX - uX 4= 0. Consider the set P = (1, 2, 3) 
and define a closure u for P as follows: u(l) = (1, 2), m(2) = (2, 3) and u(3) = (3). 
Obviously the closure u is not inductively generated by any mapping whose domain 
is a topological three-point space. Nevertheless, u is inductively generated by a map-
ping / whose domain is a topological four-point space. Such a mapping / can be 
constructed as follows: let Q = (xx, x2, x3, x4) be a four-point set, v the closure 
for Q such that »(x j = (xx, x2), v(x2) = x2, v(x3) = (x3, x4) and v(x4) = (x4); and 
fxy = l , / x 4 = 3 and fx2 = fx3 = 2. Clearly <Q, v) is a topological space and the 
above closure u is inductively generated by the mapping / : <Q, -» P. 

Now we shall show that every closure space is inductively generated by a family 
of mappings whose domain carriers are topological. 

33B.1. Example. Let <P, u) be a closure space. For each aeP x exp P, 
a = <x, X), let ga be the set X u (x), va the closure operation for Q„ such that 
y e vaY — Y if and only i f F c Qa, y = x euY — Y and finally, let fa be the ident-
ity mapping of <Qa, va> into <P, u>. It follows from formula (**) of 33 A.4 that a 
family {/a | a e A} where A c P x exp P inductively generates <P, u> whenever 
the set A has the following property: 

(*) if y euY — Y then there exists a X> e yl such that y e u(X n Y). 

In particular, the space <P, u> is inductively generated by the family {fa \ a e 
e P x (P)}; in this case each mapping / a is bijective and u = sup {va | a e P x (P)}. 
Each space < Qa, va~) has at most one cluster point, namely x if a = <x, X}, and 
evidently every space with at most one cluster point is topological. Therefore each 
space <Qa, ua> is topological. Thus we have proved that 

(a) Every space is inductively generated by a family of injective mappings 
whose domain carriers are topological spaces (each with at most one cluster point). 

If the space <P, u) is quasi-discrete, then the set of all <x, Xy such that X is a one-
point set and x e uX — X possesses the property (*), and therefore 

(b) Every quasi-discrete space is inductively generated by a family of one-to-one 
mappings whose domain carriers are two-point feebly semi-separated spaces (and 
hence topological). 

If the space <P, u> is semi-separated, then each space <Qa, ua> is semi-separated 
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(because va is finer than a relativization of a semi-separated closure, namely u). 
Evidently every semi-separated closure space possessing at most one cluster point is 
paracompact (29 ex. 7). It follows lhat 

(c) Every semi-separated closure space is inductively generated by a family oj 
bijective mappings the domain carriers of which are paracompact separated 
spaces. 

By an appropriate modification of the construction of 33 B.1 we shall prove the 
following interesting result. 

33 B.2. Theorem. Every closure space is inductively generated by a family of 
mappings the domain carriers of which are paracompact separated spaces, each 
possessing at most one cluster point. 

Proof. Let <P, u> be a closure space. For each ae(P x exp P), a = (x, X), 
let Ra be the set X u (x), and va be the closure for Ra such that y e vaY — Y if and 
only if Y c Ra, y = x and x e u(Y — F) for each finite subset F of Y, and finally, let 
fa be the identity mapping of va) into <P, u>. It is evident that each <Rfl, va) is 
a semi-separated space with at most one cluster point, and hence each <Ra, va) is 
a paracompact separated space. Let v be the closure inductively generated by the 
family {/„ | a e (P x exp P)}. Clearly v is finer than u and, in addition, x e vX — X 
if and only if x e u(X — F) — X for each finite subset F of X. As a consequence, if u is 
semi-separated then u = v and we obtain a new proof of statement (c) of 33 B.1, 
and if <P, u> is not semi-separated then v 4= u because x e u(>>) for some y e 
e P — (x) but x £ 0 = u((y) — (y)) t>(y) — (y). Thus, if <P, w> is not semi-
separated, then we must add some further mappings. Let B be the set of all ((x, _y>), 
<x, e P x P, such that x 4- y and x e u(y). Notice that B n (P x exp P) = 0 
because the elements of B are one-point sets but the elements of P x exp P are pairs, 
and hence not classes. For each a e B let <Ra, va) be any semi-separated space with 
exactly one cluster point, say ra (e.g. we can take the subspace of reals consisting of all 

n = 1,2,..., and the point 0 as ra), and let us consider the mapping/,, of (Ra, va) 
into <P, m> which carries ra into x and Ra — (ra) into y, where a = (<x, y>). Now 
it follows from 33 A.4 (**) that the closure space (P, u) is inductively generated by 
the family {/„ | a e B u (P x exp P)}. 

Remark. Notice that in 33 B.1 (c) the space <P, u) is assumed to be semi-separated 
and the mappings fa are bijective, and hence injective, but in 33 B.2 the space <P, it) 
is not assumed to be semi-separated so that the mappings fa need not be injective; in 
fact, if <P, u> is not semi-separated and <P, u} is inductively generated by a family 
of mappings fa whose domain carriers are semi-separated, then at least one fa is not 
injective. 

Topological spaces are of principal importance and a closure inductively gener-
ated by a family of mappings of topological spaces need not be a topological closure. 
Therefore we shall study the finest topological closure making continuous all map-
pings of a given inductive family of mappings. For convenience we shall consider 
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any class of spaces K and we shall try to carry over the theory presented in 33 A. 
In conclusion direct proofs will be given for the case where K is the class of all 
topological spaces. It is to be noted that theorems for general projective-stable K 
may be applied to various classes of closure spaces. 

33 B.3. Definition. Let K be a class of closure spaces. A closure u for a set P is 
said to be K-inductively generated by a family of mappings {/„} if {/„} is an in-
ductive family of mappings for closure spaces with common range carrier P or <P, u>, 
and u is the finest closure such that <P, u) e K and all mappings fa : D*/„ -» <P, »> 
are continuous; the family {/„} is said to be a K-inductive generating family for 
<P, w>. These definitions are applied to a collection of mappings as to the family 
{ / |/e IF}, and to a single mapping / as to the collection (/). If K is the class of all 
topological spaces then we shall say "topologically inductively generated" and 
"topological inductive generating family" instead of ".K-inductively generated" 
and ".K-inductive generating family", respectively. 

From the definition we obtain immediately 
33 B.4. Theorem. Let K be a class of spaces and let L be the class consisting of the 

closure structures of spaces of K. Let { f a } be an inductive family of mappings for 
closure spaces with the common range carrier <P, u). Then u is the closure K-
inductively generated by the family {/,} if and only if u is the upper modification 
in Lof the closure v inductively generated by the family { f a : D*fa -> P}. 

33 B.5. Corollary. If the closure K-inductively generated by a family {fa} exists 
for each inductive family {/,} for closure spaces, then every closure u has its upper 
modification in L, and consequently L is order-complete and completely meet-
stable in C. Conversely, if every closure has an upper modification in L, then 
the closure K-inductively generated by an inductive family {/„} for closure spa-
ces exists for each {/,}. 

33 B.6. Suppose that K is a class of spaces and L is the class consisting of the 
closure structures of spaces of K. Let u be a closure for a set P and v a closure 
from L n C(P) such that the following condition is fulfilled: 

(*) A mapping f: <P, u> - » ^ l e K , is continuous if and only if the mapping 
g = / : <P, v) -* 2 is continuous. 

Then v is the upper modification of u in L. Conversely, if K = proj K, i.e. ifK 
is projective-stable, then the upper modification v of u in L is the unique closure 
satisfying condition (*). 

Proof. I. Suppose that a closure v e Ẑ fulfils (*). Since J: <P, v} <P, r> is con-
tinuous and <P, u> £ K, by condition (#) the mapping J : <P, w> -» <P, v) is continu-
ous, i.e. v is coarser than u. If w e Lis a closure coarser than u, then the mapping 
J : <P, u> -> <P, w> is continuous, and hence by condition (*), the mapping J : 
: <P, u> -> <P, w> is continuous, i.e. w is coarser then v. Thus v is actually the upper 
modification of u in L. 
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II. Conversely, suppose that K is projective-stable and u e C(P). By 32 B.9 there 
exists the upper modification v of u in L. We shall prove that « fulfils (*). If g is 
continuous, then/is continuous because v is coarser than u. Conversely, if/is continu-
ous and if w is the closure projectively generated by the mapping / : P 2, then 
we L because 2e K and K is projective-stable, and clearly w is coarser than u. But 
v is the finest closure of L coarser than u and hence v is finer than w. Since/ : <P, w> --» 

2 is continuous, g = f : <P, v} -> 2 is also continuous. 
Remark. Notice that 33 B.6 is a generalization of Theorem 16 B.4 on topological 

modification, and of Theorem 24 B.15 on uniformizable modification. 

33 B.7. Let K be a projective-stable class of closure spaces and let Lbe the class 
of closure structures of spaces ofK. In order that an inductive family of mappings 
{/„} with the coinmon range carrier <P, u) be a K-inductive generating family it 
is necessary and sufficient that 

a mapping f of <P, u> into a space 2 from K is continuous if and only if all the 
mappings f o f a are continuous. 

Proof. I. Let us consider the closure v for P inductively generated by the family 
{ f a -»• P}, and let u be /¿-inductively generated by {/,}. By 33 B.4 the closure u 
is the upper modification of v in L and hence, by 33 B.6, if 2 e K, then a mapping 
/ of <P, u) into 2 is continuous if and only if the mapping/ : <P, v) -> 2 is continu-
ous; but v is inductively generated by {/„ : D*/a -> P} and consequently / : <P, v> -*• 

2 is continuous if and only if all the mappings ( / : <P, u> 2) o (/„ : D*fa -> 
-> <P, u>) are continuous. Since ( / : <P, v} 2) ° (f„ : D*fa <P, u>) = / 0/fl, we 
find that / is continuous if and only if all the mappings / o fa are continuous. - II. We 
have proved that the condition is necessary. But evidently at most one u e L fulfils 
the condition and hence the condition is sufficient. 

Remark. Notice that Theorem 33 A.5 is obtained for K = C. 
Now we shall prove that 33 B.7 implies the theorem on associativity. It is to be 

noted that, for the case C = K we obtain Theorem 33 A.6 which was proved inde-
pendently of theorem 33 A.5. 

33B.8. Theorem on associativity. Suppose that K is a projective-stable class of 
closure spaces and { f a | a e A} is an inductive family of mappings for closure spaces 
with the common range carrier <P, u>. For each a in A let D*fa be K-inductively 
generated by a family {gab | b e Ba}. Then {/„} is a K-inductive generating family 
if and only if the family { f a o gab | a e A, be Ba} is a K-inductive generating family. 

Proof. Notice that both inductive families have the same common range carrier, 
namely <P, u). By 33 B.7 the statements that {/„} or {/„ o gab} are K-inductive gener-
ating families are equivalent to the statements that, if 2 e K and / is a mapping of 
<P, u) into 2, then / is continuous if and only if all / o/„ are continuous or all f 0 

o(fa° gab) are continuous, respectively. But each {gab | b e Ba} is a K-inductive generating 
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family and therefore, again by 33 B.7, all ( / afa) 0 gab are continuous if and only if 
all the f ofa are continuous; since ( / o f„) o gab = / o (/„ o gab), the proof is complete. 

33 B.9. K-inductive factorization theorem. Let K be a projective-stable class of 
closure spaces. If {/„} is an inductive family of mappings for closure spaces with 
the common range carrier <P, u> belonging to K, then there exists a K-inductive 
generating family {ga} and an identity mapping h such that fa = h0 gafor each a. 
All the mappings fa are continuous if and only if the mapping h is continuous. 

P r o o f . Let v be the closure K-inductively generated by the family { f a : D * f a -> P}, 
h = J : <P, - <P, u>, and ga = fa : D*fa <P, v}. 

R e m a r k . Theorem 33 A.7 on partial commutativity for inductive generation for 
closure spaces is not true for K-inductive generation. This will be shown for the case 
K = xC in 33 B.15. 

33 B.10. Theorem. Let K be a projective-stable class of closure spaces and let k 
be the single-valued relation on C which assigns to each closure space 2P its upper 
modification in K, i.e., K(P, u> = <P, KU) where KU is the upper modification of u 
in the class of closure structures of spaces ofK. Let { f a | a e A} be a non-void inductive 
family of mappings for closure spaces with the common range carrier <P, u}. 
Each of the following two conditions is necessary and sufficient for {/„} to be a 
K-inductive generating family: 

(a) the reduced sum f of { f a } is a K-inductive generating family; 
(b) the mapping g = / : k D * / - * <P, u> is a K-inductive generating mapping. 

P r o o f . It is almost self-evident that the two conditions are equivalent. Let ia stand 
for the mapping inj0 : D * f a kD*/. Since fa = g 0 ia for each a, to prove that (b) is 
necessary and sufficient, it is enough to show (by 33 B.8) that {ia} is a K-inductive 
generating family; this follows from 33 B.4 and the fact that {inj„ : D*/0 -> D*/} is an 
inductive generating family. 

R e m a r k . It is natural to define the K-sum of a family {£?a} of closure spaces as 
the upper modification of the sum space in K. It is to be noted that the K-sum 
of {&„} may actually be distinct from e.g. for K take the class of all accrete 
spaces. 

33 B . l l . Theorem. Every non-void inductive family topologically inductively 
generates exactly one closure operation. If a closure u for a set P is topologically 
inductively generated by a family of mappings { f a } and for each a the mapping fa 

topologically inductively generates ua, then u is the least upper bound of {ua} in 
the ordered set xC(P) of all topological closures for P. If a closure u is topologically 
inductively generated by a mapping f then a set X a E*/ is open (closed) if and 
only i f i s open (closed) in D*f. If a closure u for a set P is topologically 
inductively generated by a family { / f l } then X cz P is open (closed) in <P, u) if 
and only if '[X] is open (closed) inD*fafor each a. 
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Proof. I. Uniqueness is clear and existence can be proved in the same way as in 
33 A.4. 

II. The formula u = sup {ua} (in tC(P)) can be proved in the same way as in 
33 A.4. 

III. Let / be a mapping of a space 2 into a set P. Consider the collection H of all 
JJ <=. P such that / _ 1 [E/] is open in 2. It is easy to verify that 11 is the collection of 
all open sets for some topological closure u for P (use 15 A .6). Now, as in the proof 
of 33 A.4, one can show that u is topologically inductively generated by/. The state-
ment concerning closed sets follows from the one concerning open sets. 

IV. The description of open and closed sets of a space topologically inductively 
generated by a family {/„} is an immediate consequence of II, III and the description 
31 B.6 of open sets relative to the least upper bound in tC(P) of a family of topological 
closures. 

33 B.12. Theorem. Let F be a topological space and for each ae A, let fa be a 
mapping of a space into 0>. Then 8P is topologically inductively generated by the 
family {/,} if and only if the following condition is fulfilled: 

Jf f is a mapping of 0* into a topological space then f is continuous if and only 
i f f 0 fa is continuous for each a in A. 

Pr o of. I. First let {/„} be a topological inductive generating family. I f / is continuous, 
then all f °fa are continuous as compositions of continuous mappings. Conversely 
suppose that all compositions / o fa are continuous. Since * is topological, to prove 
f is continuous it is enough to show that Y = / _ 1[X] is open in P for each open 
subset X of Sk. Since 9 is topologically inductively generated by {/„}, to prove Y is 
open in * it is enough to show t h a t / J ^ Y ] is open in D *fa for each a. Since / of„ is 
continuous, the set ( / ° / a ) - 1 [X] = / J ^ / - 1 ^ ] ] must be open for each a. The 
continuity of / follows. — II. The proof of sufficiency of the condition follows the 
proof of 33 A.5. 

33 B.13. Theorem. Let us suppose that & is a topological space and { f a | a e A} 
is a family, each fa being a mapping of a topological space 2a into 8P. For each a 
in A let 2a be topologically inductively generated by a family of mappings 
{gab | beBa). Then 0> is topologically inductively generated by {/„} if and only 
if it is topologically inductively generated by the family [ f a o gah \ a e A, b s Ba}. 

Proof. The proof proceeds as that of 33 A.6; instead of the description (**) of 
inductively generated closures we must use the description of open sets from 33 B.11. 

33 B.14. Factorization theorem for topological inductive generating families. 
Suppose that { f a | a e A} is a family, eachfa being a continuous mapping of a space 
2a into a space 3P. There exists a topological inductive generating family {ha \ a e A} 
and a one-to-one continuous mapping g such that fa = g o hafor each a in A. 

By 33 A.7 the operation of taking the inductively generated closure commutes, in 
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a certain sense, with the operation of taking a subspace. The analogue for topologically 
inductively generated closures is not true as we shall now show. 

33 B.15. If a space SP is topologically inductively generated by a mapping / (from 
a topological space, or even a normal space) and if Si is a subspace of SP, then 3ft, need 
not be topologically inductively generated by the mapping g where g is a mapping of 
the subspace/_1[|^|] of D*/ into S/t which coincides with / on D*g. Moreover, if 
a mapping </, (Q, v>, P} inductively generates a closure u which is not topological, 
then there exists a subset R of P such that the restriction g of / to a mapping of the 
subspace/-'[K] of <Q, v) into R topologically inductively generates a closure which 
is not the relativization to R of u. In fact, if w) is not topological, then (by 
17 A.7) there exists a subset R of P such that the topological modification rw of the 
relativization w of u to R is not a relativization of xu to R. On the other hand the clo-
sure w is inductively generated by g and tw and xu are topologically inductively 
generated by g and / , respectively. 

C. QUOTIENT SPACES 

An embedding is a projective generating injective mapping. In a certain sense, 
which will not be made precise, the "dual" concept is an inductive generating surjective 
mapping. A space 2 is a homeomorph of a subspace of a given spaced if and only if 
2 is the domain carrier of a projective generating injective mapping / whose range 
carrier is SP. The dual concept of "a homeomorph pf a subspace of SP" is "a quotient 
of space 2 is a quotient of SP if 2 is the range carrier of an inductive generating 
surjective mapping with domain carrier SP. 

The first part of the subsection concerns quotients and related concepts. The second 
part is devoted to an examination of the inductive progeny of a given class (and cor-
responds to 32 B). 

33 C.l. Definition. If / is a mapping from a closure space SP (i.e. SP = D*/), then 
the quotient of SP under f (the topological quotient of SP under f , respectively), de-
noted by 0>lf (&lTf> respectively), is defined to be the set E/ endowed with the closure 
inductively (topologically inductively, respectively) generated by the mapping 
f:0->Ef.A quotient (topological quotient) mapping is a mapping of a spaced 
into a space 2 such that the space 0 / f (0lTf, respectively) is a subspace of 2. 

Thus a surjective mapping is a quotient or a topological quotient mapping if and 
only if it is, respectively, an inductive or topological inductive generating mapping. 
Evidently each inductive generating mapping is a quotient mapping and each topo-
logical inductive generating mapping is a topological quotient mapping. The con-
verse is not true. Indeed, if / is an inductive generating mapping then |E*/| — E/ is 
an open discrete subset of E*/ (by Corollary (c) of 33 A.4) but this need not be true if/is 
only a quotient mapping. Moreover, if/ is a quotient (topological quotient) mapping 
of 0 into 2 and if 21 is any space such that E/ c 2t and the subspaces /[|^|] of 2 
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and / [ | * | ] of 2X are canonically homeomorphic, then the mapping / : * -» 2^ is 
also a quotient (topological quotient) mapping. 

It has already been noted that an embedding is a projective generating mapping 
but not an inductive generating mapping. It is clear that an embedding is always 
a quotient mapping and if the domain carrier is topological, then it is also a topo-
logical quotient mapping. 

For convenience we review some propositions about quotient sets under equival-
ences. Let g be an equivalence relation on a P 4= 0, that is, g is a symmetric reflexive 
and transitive relation for P such that g[P] = P. The quotient of P under g, denoted 
by Pig, is the set of all equivalence classes, i.e. the sets of the form x e P . 
Thus P[g is a disjoint non-void cover of P and each of its elements is also non-void; 
stated in other words, P/g is a decomposition of P. The mapping {x -> g[x]} of P 
onto P/g will be "called the canonical mapping of P onto P/g and will usually be de-
noted by 7i. If 2 is any decomposition of P then there exists exactly one equivalence 
g on P such that 9> = P/g; it is g = x D | D e 3>}. Now we are prepared to 
introduce the concept of the quotient of a space under an equivalence or a decomposi-
tion. 

33 C.2. Definition. Suppose that <P, u) is a closure space, g is an equivalence 
relation on P and % is the canonical mapping of P onto P/g. The quotient of <P, u> 
under g (the topological quotient of <P, u> under g), denoted by <P, u}/g (<P, u}jTQ, 
respectively) is the set Pjg endowed with the closure inductively (topologically in-
ductively) generated by the mapping n : <P, u> -* P/g; stated in other words, 

<P, u}lg = <P, u>/n 
<P, u>/Tg = <P, u>lTn . 

It follows from the definition that the quotient of a space P under an equivalence g 
can be always considered as the quotient of P under the canonical mapping n of P 
onto P/g. Conversely, it is easy to verify that every quotient P / / can be obtained by 
a canonical homeomorphism from P/{fx = fy} onto P//. More precisely, 

33 C.3. Theorem. Let f be a quotient mapping of a closure space onto another 
one 2 (thus 2 = ¡P/f) and let n be the canonical mapping of SP onto the quotient 
space »¡{fx = fy} (thus Fl{fx = fy} = Fjn). There exists a homeomorphism / 
such that f = J o%. 

Proof. Clearly there is exaclly one mapping/such tha t / = Jo n, that this mapping 
is one-to-one and n = of. Both mappings / and n being quotient mappings onto, 
they are inductive generating mappings. In consequence, the mappings / o n (= / ) 
and J ' 1 o / ( = 71) being continuous, the mappings / and / - 1 are continuous by 
33 A.5. 

33 C.4. Theorem. Let f be a topological quotient mapping of a closure space 3P 
onto another one 2 (thus 2 = in particular, 2 is topological) and let n be 
the canonical mapping of & onto the topological quotient space FIT{fx = f y } 

39—Topological Spaces 
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(thus 0>lT{fx = fy} = 0/Tn). Then there exists a homeomorphism / such that 
f = Jo n. 

The proof proceeds as that of 33 C.3; instead of 33 A.5 we apply 33 B.12. 

R e m a r k . Let X be a subset of a space P and let g = (X x X) u U{(C*> x>) | x e 
e P — X}. The spaces P/g and P/T g are often said to be obtained by identifying or 
topologically identifying the points of the set X. 

Often we shall need earlier results adapted for (topological) quotients and (topo-
logical) quotient mappings. For easier references we summarize these in two pro-
positions which follow. 

33 C.5. A) Let SP be a closure space, g be an equivalence on 0 and n be the canon-
ical mapping of 0 onto the quotient space 0jg. Then 

(a) 7i is an inductive generating mapping for 0\g. 
(b) A mapping f of 0\g into a space is continuous if and only if the composition 

f o n is continuous. 
(c) A mapping f of 0\g into a space is a quotient mapping if and only if f ° n is 

a quotient mapping. 
(d) If 2. is a subspace of 0 such that \2\ = n~l\Y~\ for some Y and a = g n> 

n (\2\ x |j2|), then J/cr is a subspace of 0\g. 
(e) If a is an equivalence on SP such that g c u, then the canonical mapping of 

2P\g onto S?\a is a quotient mapping, that is 3P\o = (0jg)lf. 
(f) I f X = 7c - 1[y], then n\X] = F. 
(g) F c \0\g\ is open (closed) in&lg if and only if the set is open (closed) 

in 3P. 
B) Letf, g and h be mappings such that h = g of andf is an inductive generating 

mapping. If one of the mappings g and h is a quotient mapping or an inductive 
generating mapping, then the other also has the corresponding property. 

C) The composition of two quotient mappings need not be a quotient mapping. 

33 C.6. A) Let dP be a closure space, g be an equivalence on 2P and n be the canon-
ical mapping of 0 onto the topological quotient SPjTg. Then 

' (a) n is a topological inductive generating mapping for 
(b) A mapping f of &lTg into a topological space is continuous if and only if the 

composition f on is continuous. 
(c) A mapping f of 0lTg into a spaced is a topological quotient mapping if and 

only i f f on is a topological quotient mapping. 
(d) Partial commutativity with formation of subspaces does not hold (see 

33 B.15J. 
(e) If (7 is an equivalence on 0* such that g c a, then the canonical mapping f 

of 0jTg onto 0jTo is a topological quotient mapping, that is, SPjTa = ( 0 l T g ) l T f 
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(f) * / r i ? = T(Fie). 
(g) Y <=. \FITQ\ is open (closed) if and only if 7t~1 [ Y] is open (closed) in 3?. 

B) Let f , g and h be mappings such that h = g of and fis a topological inductive 
generating mapping. If one of the mappings g and h is a topological quotient map-
ping or a topological inductive generating mapping, then the other mapping also 
has the corresponding property. 

C) The composition of two topological quotient mappings need not be a topologic-
al quotient mapping. 

The concluding part is devoted to various examples. We begin with the spaces of 
components and quasi-components of a space; for earlier results needed, see 20 B 
and 21 B. 

33 C.7. If * is a closure space and is the collection of all components o f * , then 
the union o of {C x C | C e is an equivalence on * (20 B.4). The quotient 
spaces */o- and * / r c are called the component space of * and the topological com-
ponent space of * . Similarly the union cr1 of all C x C, C being a quasi-component 
o f * , is an equivalence (20 B.9). The quotient spaces */ffi and */r<r1 will be called 
the quasi-component space and the topological quasi-component space of * . As 
always, */ rcr = x(*/<r) and F l T o t = t(*/<t^. 

(a) Since a c. o^ (20 B.9), there exists a mapping / of */<r onto * / c i and fT of 
*/Ttr onto */xff1 such that nt = / o n and niT =/T° nT, where 
are canonical mappings o f * onto * /a , */ rff , */<ru */xCT1 respectively. Since n1 and it 
are quotient mappings, the mapping/ is a quotient mapping by 33 C.5. Since nL T and nT 

are topological quotient mappings, the mapping fT is a topological quotient mapping 
(33 C.6); stated in other words, 0>lo1 = (Flo)If and FITo1 = ( * / r f f ) / r / T . 

(b) A space * is feebly locally connected if and only if one, and then all, of the 
spaces */er, F j o ^ */Ta, * / r u 1 , are discrete. 

(c) The associated mappings {X -»7t[X]} and {X -> carry quasi-com-
ponents into quasi-components. In particular, quasi-components of F ! o u and hence 
oi FITou are one-point sets if | * | + 0. 

(d) The components of */<r are one-point sets if | * | 4= 0: if C c |*/cr| is connected 
and 2 is the subspace 7t_1[C] of * , then the quotient £l[(n | 2) is a subspace of */<r. 
But J/(7c | J2) is the component space of H. Hence, to prove that C is a one-point set 
it is enough to notice that the component space of a space is connected if and only if 
the space is connected. 

It should be remarked that the range carrier of an inductive generating mapping 
inherits very few of the properties of the domain carrier. There are two very significant 
special cases of inductive generating mappings which preserve more properties; they 
will be considered in the next section. Here we shall investigate properties of classes 
of spaces invariant under inductive constructions (compare with 32 B). 

39* 
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33 C.8. Definition. If K is a class of spaces and L is the class of closure structures 
of spaces of K, then ind K denotes the class of all spaces inductively generated by 
families of mappings with domain carriers in K, and ind L denotes the class of closure 
structures of spaces of ind K. A class K is said to be inductive-stable if ind K = K. 
The classes ind K and ind L are called the inductive progeny of K and L, respectively. 

33 C.9. If K is any class of spaces then the class ind K contains all discrete spaces. 
Next, K cz ind K and ind ind K = ind K, i.e. ind K is inductive-stable and contains 
K. Finally, ifK c K' then ind K <= ind K'. 
. Proof. The empty family inductively generates every discrete space and hence 

ind K contains all discrete spaces. A homeomorphism is an inductive generating 
mapping and therefore K <=• ind K. The formula ind ind K = ind K follows from the 
associativity theorem 33 A.6. The last statement is evident. 

33 C.10. Let K be a class of spaces. A space 0 = <P, u> belongs to the class 
ind K if and only if 8? is the quotient space of a space under a mapping f where 
M is the sum of a family {&„ \ ae A) such that all 0ta, excepting at most one, say 

belong to K and = <P, v} where v is the discrete closure for P. 
Proof. Every such space belongs to ind ind K = ind K. Conversely, suppose 

<P, u> e ind K and take an inductive generating family { f b | b e B} for <P, u> such 
that D*fb e K for each b in B. Choose an element a, a $ B, put A = B u (a), and 
let /„ be the identity mapping of <P, v} onto <P, u>, where v is the discrete closure 
for P. It is evident that {/„ | a e A} is an inductive generating family for <P, u> and 
the reduced sum / of { f a | a e A), i.e. / : {<a, x) fax} : E{D*/a} -* <P, «>, is a sur-
jective inductive generating mapping (33 A.8). Thus <P, u) = E{D*/,}//. 

33 C . l l . Let K be a class of closure spaces and let Lbe the class of closure struc-
tures of spaces of K. In order that K be inductive-stable (i.e. ind K = K) it is 
necessary and sufficient that 

(a) i f f is an inductive generating mapping and D */ e K, then E */ e K; and 
(b) every closure has its lower modification in L. 
Remark. Recall that, by lemma 31 B.2, condition (b) is equivalent to the following 

statement: L contains all discrete closures and L is completely join-stable in C. In 
the proof we shall use this equivalence. 

Pro of. If ind K = K, then clearly (a) is fulfilled; also, Lcontains all discrete closures 
(33 C.9) and L is completely join-stable in C because sup {ua} in C, where {ua} is 
a family in some C(P), is inductively generated by the family {J : <P, ua> -> P}, 
and hence, by the foregoing remark, (b) is fulfilled. Conversely, assuming (a) and (b) 
let us consider a space <P, u> inductively generated by a family {/„} with domain 
carriers in K. If {/a} is empty, then u is discrete and hence, by (b), belongs to L. 
If {/„} is non-void, then consider the family {ua} where each ua is inductively generated 
by the mapping fa : D*/a P. By (a) uaeL for each a and hence u = sup {ua} (by 
33 A.4) belongs to L(by (b)). Thus <P, u}eK. 
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33 C.12. Examples, (a) It follows from 31 B.5 that neither the class of all topo-
logical spaces nor the class of all uniformizable spaces is inductive-stable. 

(b) The class of all discrete spaces is inductive-stable. 
(c) The class of all quasi-discrete spaces is inductive-stable (show that each quotient 

of a quasi-discrete space is quasi-discrete and the sum of a family of quasi-discrete spa-
ces is a quasi-discrete space). 

(d) An important inductive-stable class will be considered in Section 35 (S-spa-
ces, i.e. spaces which can be described by means of the convergence of sequences). 

(e) Let L consist of all accrete and all discrete closures. Clearly every closure has 
a lower as well as an upper modification in L, and quotients and subspaces of spaces 
from K belong to K. On the other hand, K is neither inductive-stable nor projective-
stable, and in fact K is not closed under products or sums. 

In conclusion to point out the duality between the concepts considered, we shall 
state a description of the projective and inductive progeny of a given class of spaces; 
the proof follows from earlier results. 

33 C.13. Let K be a class of spaces. A) Let K1 be the class of all discrete spaces. 
The inductive progeny of K consists of quotients of sums of spaces of K u K1. 
In particular, K is inductive-stable if and only if K contains all discrete spaces, 
K is closed under sums, and quotients of spaces ofK belong toK. 

B) Let K2 be the class of all accrete spaces. The projective progeny ofK consists 
of all subspaces of products of spaces ofK^j K2. In particular, K is projective-stable 
if and only if K contains all accrete spaces, K is closed under products (i.e. K is 
completely productive), and subspaces of spaces ofK belong to K (i.e. K is here-
ditary). 

D. EXAMPLES 

We shall introduce the following concepts: the inductive product of a family of 
closure spaces, a closure space inductively generated by a collection of its subspaces, 
a strictly inductively generating family. Then we shall define the meaning of commonly 
employed expressions as e.g. a space obtained by identifying the points of prescri-
bed sets, a space obtained by pasting together pairs of prescribed points, a space ob-
tained by sewing together spaces of a given family of spaces along a given family 
of homemorphisms or subspaces. 

The subsection ends with an exposition of some constructions which can be used 
to obtain an example of a regular separated topological space which is not uniform-
izable (33 D.6) and an example of an infinite regular separated topological space such 
that each continuous function on it is constant (33 D.7) — of course, such a space 
is not uniformizable. 

33 D.l. Inductive products . In 17 D.1 the inductive product of two spaces * 
and 2, denoted by ind (3P x 2) or * x ind 2, was defined by specifying neighbor-
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hoods of points (the "crosses"). In terms of this section, Theorem 17 D.3 can be re-
stated as follows: The space ind ( * x 2) is inductively generated by the family of all 
canonical embeddings, i.e. the mappings {x ->• <x, j>>} : * x |2j , y e \2\, and 
{y -> <x, j>} : 2 x \2\, x e Now we shall introduce the concept of the 
inductive product of a family of closure spaces. 

Let {Pa | a e A} be a family of sets and let P be the product of {Pa}. For each x 
in P and a in A there is a one-to-one map fxa of the set Px into P, called the canonical 
embedding of P„ into P corresponding to x, which assigns to each z e P„ that point 
of P whose a-th coordinate is z and the other coordinates coincide with corresponding 
coordinates of x. Thus/ J a = fyiI whenever xa = ya for each a 4= a. 

(a) Let {ua | a e A} be a family, each ua being a closure for Pa. There is defined 
the product closure II{ua} for P, which is, as it has already been shown, projectively 
generated by the family of all projections pra : P —> <Pa, ua>. This closure will be 
sometimes called the projective product of {ua}. Now we shall define the inductive 
product of {«a} and the topological inductive product of {ua} to be the closure ge-
nerated inductively or topologically inductively, respectively, by the family of all 
canonical embeddings fxa : <Pa, ua> -> P, x e P, a e A. The space <P, «>,. where 
u is the inductive or the topological inductive product, will be denoted accordingly by 
ind n « P a , ua)} o r Tind n{<Pa, "a)}. (Thus the letter t can be taken as the topologic-
al modification.) Now, since {/,,„} is an inductive generating family for ind n{Pa} 
and {/x,a} is also a topological inductive generating family for -rind n{Pa}, we obtain 
the following result: 

(b) If {*a} is a family of spaces then a mapping g of ind n{*a} into a space * is 
continuous if and only if each composite g o fx a is continuous, and a mapping g of 
•rind II{*a} into a topological space is continuous if and only if all composites 
g a fx a are continuous. Roughly speaking, a mapping from ind n{* a} is continuous 
if and only if it is continuous in each coordinate separately, and similarly for mappings 
from tind Il{*a}. 

(c) Mappings from products which are not continuous (relative to the projective 
product closures) but which are continuous relative to the inductive product closures 
frequently occur in mathematics. The fundamental problem is the following: "to 
express" a given "inductively" continuous mapping in terms of "projectively" con-
tinuous mappings. For example, it may be shown that if / is a continuous mapping 
of the inductive product ind [3? x J ) of spaces * and 2, into a pseudometrizable 
space then there exists a sequence {/„} of continuous mappings of the projective 
product * x 2 into * such that for each x the sequence {f„x} converges to fx, 
stated in other words, / is of the first Baire class on * x 2. 

(d) We leave to the reader the task- of defining the canonical embeddings into 
Px x P2 x ... x P„ and the inductive product ind (0>

l x ... x <?„). It is easily seen 
that 

ind x ... x *„) = (...((*! x ind * 2 ) x ind * 3 ) . . . ) x ind . 
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33 D.2. Spaces induct ively generated by a given family of subspaces. 
Let us consider a closure space <P, w> and a collection 3C of subspaces of <P, u>. 
For each X e 3C let be the canonical mapping of X into P. The family in-
ductively generates a closure v for P which is finer than u. If v = u, then the space 
<P, u> is said to be inductively generated by the collection 3C of its subspaces. If 
<P, w) is topological, then also the closure topologically inductively generated by 
{ f x } is finer than u and if it coincides with u, then <P, u> is said to be topologically 
inductively generated by the collection 3S of its subspaces. 

(a) In order that a closure space SP be topologically inductively generated by a col-
lection 3C of subspaces of SP it is necessary and sufficient that a set U <= SP be open 
if and only if the set U n X is open in X for each X e 9C. 

(b) In order tfyat a closure space SP be inductively generated by a collection 3C of its 
subspaces it is necessary that, for each y s SP and Y c= \S?\, y e.Fif and only if y e Y 
or y e X n X n Y for some X in 3C. (Notice that X n X n Y is the closure of X n Y 
inX.) 

(c) If 9£ is an interior cover of a space SP, then SP is inductively generated by 9£, 
and if SP is topological, then SP is also topologically inductively generated by SC. — 
Obvious. 

(d) Of course, the condition from (c) is not necessary. For example, every metriz-
able space is inductively generated by the collection of all countable subspaces with 
exactly one accumulation point. Indeed, if x e F — Y, then there exists a sequence 
{*„} in Y which converges to x. Clearly X = (x) u E{x„) is a countable subspace 
with exactly one accumulation point, namely x. Such spaces will be investigated in 
Section 35 devoted to convergence, in particular the L-spaces and S-spaces (that is, 
spaces such that their closure structure can be described in terms of convergent 
sequences). 

(e) A space is feebly locally connected if and only if it is inductively generated by 
the collection of all open connected subspaces. A topological space is locally connected 
if and only if it is inductively (topologically inductively) generated by the collection 
of all locally connected open subspaces. (Trivial.) The "if" part of the latter statement 
of (e) can be strenghtened as follows: 

(f) If a space 0 is inductively generated by a collection of its locally connected 
subspaces, then SP is locally connected. 

For the proof of (f) and a further discussion of local connectedness, see the 
exercises. 

In the last two examples 33 D.1 and 33 D.2 all inductive generating families {/„} 
were formed by embeddings. 

33 D.3. Definition. An inductive (topological inductive) generating family 
{/„} is said to be strict if al l /0 are embeddings. The meaning of the expressions of 
the type "strict inductive generating family for a set or a space" is obvious and there-
fore the definitions are omitted. 
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Let {/„} be a strict inductive (topological inductive) generating family for a space 
8?. For each a and b in A let ¿%ab be the subspace of 8P whose underlying set is E:fa n 
n Efb , and Ma be the subspace of 8P whose underlying set is E\fa. Thus the mappings 
fa : D*fa -» 0ta are homeomorphisms, and 8kab = 8kba. Let 8k'ab denote the subspace 
of D*/„ with underlying set f~ [¡¿%ab |]. Clearly fa : 0t'ab 8kab is a homeomorphism. 
Hence the mapping fb

 1 o fa : 8$'ab -> 8k'ha, which will be denoted by Z(/fl, fb), is also a 
homeomorphism. Clearly l ( f a , f b ) = r 1 ( f b , f a ) -

If X is any class then {/„} might be termed a X-structure if each l(fa,fb) belongs 
to X; if, in addition, {E/fl} is an interior cover of 8?, then {/„} might be termed a strong 
X-structure. For example, if n e N and X is the set of all analytic homeomorphism 
of open subsets of if" onto open subsets of c€n, i.e. such homeomorphisms which are 
simultaneously analytic, then a pair {/fl}>, where * is a separated connected 
closure space and {/„} is a strong X-structure for 8P, is called an n-dimensional 
analytic manifold. Similarly real fe-differentiable n-dimensional manifolds are defined. 
Of course a X-structure need not be a strong X-structure. 

The next two examples concern the operations of pasting and sewing together of 
spaces which occur frequently e.g. in function theory. 

33 D.4. Suppose that 8P is a closure space. If g is an equivalence relation on * 
then there is defined the quotient space Fjg. We may say that SPjg is obtained from P 
by pasting together all points of each equivalence class. Now let us suppose that 
we are given a relation o for 8P, that is, a <=. x we want to find the smallest 
equivalence on 8P containing o, in other words, there is prescribed which points must 
be pasted to which points, and we want to describe all pairs <x, _y> of points which 
must be necessarily pasted together. The required equivalence g is obviously the inter-
section of all equivalences containing o. There is a direct construction of o. First 
recall that (see 1 C) a relation a for P is an equivalence on P if and only if a => AP 

(reflexivity and a[P] = P), a = a - 1 (symmetry) and a o a = a (transitivity). 
Now the construction goes as follows: put o0 = AP u (<r u a - 1 ) and by induction 
on+l = on o o,„ n e N; it is easily seen that g = (J{°n}- Indeed, by induction we 
have o cz o„ <=. g for each n and hence o a a' = (j{°n} £?; on the other hand a' 
is an equivalence because o' => A, o' is symmetric as the union of symmetric relations, 
and finally clearly a' o a' = a'. 

Now let | a e A] be a family of spaces and let * be the sum of | a e A}. If g 
is an equivalence on 8P, then the quotient space 8P\g is sometimes said to be obtained 
from the family | a e A] by pasting together all pairs of points <x, y) e g. Some-
times there is given a relation a in * which prescribes which points must be pasted 
together with which points, and if we want to construct the resulting quotient space 
we must find the smallest equivalence on * containing o. This can be done as above. 

33 D.5. There is a special case of pasting which will be called sewing. Let and 
be closure spaces and let / be a homeomorphism of a subspace of onto 

a subspace SL2 of 0>2. Let 8P be the sum of and *2> 9 the mapping of the subspace 
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injĵ  [2^ oi&> onto the subspace inj2 [22] of 0 "induced"by/, and let 0 be the small-
est equivalence on 0 containing the graph of g. Evidently g = g u g~x u AP. The 
quotient space &jg is said to be obtained from spaces 3PX and 3?2 by sewing together 
along the homeomorphism f . If the homeomorphism / mentioned above is uniquely 
determined by subspaces 2l and 22 and the context then we say that the space 3P is 
obtained from spaces 3PX and SP2 by sewing together along subspaces 2t and 22. 

The reader will find no difficulties in adapting the construction to obtain the con-
cept of a space obtained by sewing together a given family of spaces along a given 
family of homeomorphisms. 

33 D.6. An example of a regular topological space which is not 
uniformizable. Let Q and P be infinite sets and let the cardinal of P be greater 
than the cardinal of Q. Choose a ^ in P and an rj in Q. Let u be the closure for P 
such that £ is the only cluster point of 0 = <P, u) and the complements of neighbor-
hoods of £ are-finite, and let v be the closure for Q such that the point y is the only 
cluster point of 2 = (Q, v) and the complements of neighborhoods of the point rj 
are finite. We know that the product space <P, u> x (Q, v) is normal (29 B.8) and 
hence the subspace 3k = (R, w) of <P, u> x <Q, v}, where R = P x Q - «£, rj}), 
is uniformizable. Let X = (P - (£)) x (rj), Y = (£) x (Q - (»?)). Clearly X and Y are 
closed in 0 and we have shown in 29 B.8 that X and Y are not separated in M and 
hence 3k is not normal. We shall need the following property of continuous functions 
on 3k, 0> and 2. 

(a) Let / be a continuous function on <P, u). For each positive real r there exists 
a neighborhood U of ^ such that \fx — fl; | < r for each x in U. The complement 
of U is finite and thus the inequality is true for each x in P except for a finite 
number of x's. If A is a countable set of positive reals such that 0 = inf A, then 
fx = fi if and only if | fx — /£ | < r for each r in A, and hence fx = ft; for all x 
except for a countable number. Of course a similar result holds for continuous func-
tions on <Q, v). 

(b) Let / be a continuous function on 3k. There exists a real number c such that 
(1) fix, tj) = c for each xe P except for a countable number of x ' s ; 
(2) If {yn} is a one-to-one sequence in Q — (q), then the sequence {/<£, y„>} 

converges to c. As a consequence, the number c is determined by values of / on any 
countably infinite subset of Y. 

(3) There exists a subset P' of P containing £ and a subset Q' of Q containing t] 
such that the cardinal of P — P' is at most card Q, the cardinal of Q — Q' is countable 
and fz = c for each z e P ' x Q' — (<£, >/)) and hence / is constant on P' x Q'— (<£, //>). 

(c) Let us consider the sum ST of the family {3? j ne N}. Thus \£f\ = N x \M\ 
and the closure structure of S? is inductively generated by the family {inj„ : 3k 

if | n e N}. Let g be the smallest equivalence on ¿f such that: 
(1) in, x) gin + 1, x> for each xeX and each even n 
(2) in, y> gin + 1 , y > for each j i g Y and each odd n. 
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It is evident that two distinct points are equivalent only in cases (1) and (2) (re-
member that X n Y = 0). Let 2T be the quotient of 9> under g, i.e. ST - yjg. The 
subspace (n) x M of ¡f will be termed the n-th sheet and denoted by Mn, the set 
(n) x X the main row of the n-th sheet, and the set (n) x Y the main column of the 
n-th sheet. By (1) each even sheet and the following odd sheet are sewed together along 
the main rows (i.e. by the homeomorphism {<n, x> <n + 1, x> | xeX}) and, 
by (2), each odd sheet and the following even sheet are sewed together along the main 
columns (i.e. by the homeomorphism {<n, y} <n + 1, | y e Y}). Let h denote 
the canonical mapping of Sf onto F and h„ the mapping h o inj„ : 01 . First 
we shall show that 

(3) {h„} is a strict inductive generating family for and the family {Eh„} is a closed 
locally finite and star-finite cover of ST (i.e. each member intersects only a finite 
number of members). 

Since h is an inductive generating mapping and {inj„ : * -> S?} is an inductive 
generating family, by 33 A.6 {h„} is an inductive generating family. Clearly each h„ is 
injective. Since 01 is a topological space, to prove that h„ is an embedding, it is suf-
ficient to prove that /i„[F] is closed for each closed F c and this follows from the 
fact that Mk = h^^h^Fj] is closed for each k (clearly M„ = F, M t is0if \k — n| > 1 
and Mk is F n X or F n Yin the remaining cases) because {hk} is an inductive gener-
ating family. We have also proved that Eh„ is closed for each n. If \k — w| > 1 
then Eh„ n Ehk = 0 and therefore {Eft„} is clearly star-finite. If z is any point of ST 
then the star U of z in {E/i„} is a neighborhood of z because / j„ _ 1 [z] 4= 0 implies 
/i~1[L/] = As a consequence, {E/i„} is locally finite. 

(4) 2T is a semi-separated totally disconnected space (sets simultaneously open and 
closed form a base for ST). As a consequence, 3T is a separated uniformizable space. 

Clearly * is a totally disconnected space, and using this fact the reader find without 
difficulties that is totally disconnected. Finally, the space is semi-separated because 
/i7x[z] is a onerpoint set for each n and * is semi-separated. 

The space 3" is separated and uniformizable but for each continuous function / 
on we have fl{/['1«[^]]} 4= We shall prove somewhat more. 

(5) If / is a continuous function on 2T, then there exist a real c and a countable subset 
X' of X such that / o h„x = c for each x e X — X' (remember that the cardinal of 
X - X' is infinite). 

The composite/,, = / o hn is a continuous function on 0t and therefore, by (b) (1), 
there exists a real c„ and a countable subset X„ of X such that f„z = c„ for each 
z eX — X„. Put X' = U{*„}; of course, the cardinal of X' is countable and /„z = c„ 
for each z e X — X'. We shall prove that c„ = ck for each n and k. It is sufficient 
to show c„ = cn + 1 for each n. If n is even and z eX, then clearly h„z = hn + 1z and 
therefore c„ = cn+1. Assuming that n is odd, choose a one-to-one sequence {_y„} in 
Y. By (b) (2), the sequence {f„yk [ k} converges to cn and the sequence {fn+iyk \ k] 
converges to c„+1 . Since h„yk = hn+lyk we obtain f„yk = fn+lyk and hence c„ = cn+1. 
It should be noted that if Q is uncountable then (5) follows immediately from (b) (3). 
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Now we are prepared to exhibit the required example. 
(d) Let T0 be a set consisting of all points of \9~\ and one further point, say 

Let ST0 be the space whose underlying set is T0, such that 3~ is an open subspace of 
£TQ and the complements in T0 of sets of the form Ehn form a local sub-base at We 
shall prove that ST § is a separated regular topological space but is not uniformiz-
able. First let us notice that the sets 

U„ = (C) u \J{Ehk | k ^ n} 

form a local base at If / is a continuous function on which is zero on — 
- U„,n > 0, then 0 e / [ E / i J for each k (by (c)(5)) and therefore /£ = 0. Con-
sequently, is not uniformizable. Clearly each set U„ is closed and = (£)• 
Using the facts that is an open subspace of and ST is a separated regular space 
the reader will find without difficulties that is a regular separated space. Evidently 

is a topological space. 

33 D.7. A regular separa ted topological space wi thout non-cons tan t 
con t inuous funct ions . 

(a) Let if be a closure space and let Ly and L2 be two equipollent subsets of if 
such that L1 is dense in i f , L t n L2 = 0 and each continuous function on if is con-
stant on L2. Let <p be a bijective relation for Lx and L2 and let u be the smallest equi-
valence on if containing q>. If / is a continuous function on the quotient space i f /a , 
then/ is constant because / is constant on the dense set fif[L2] where g is the canonical 
mapping of if into if/<r. If if is regular, separated and topological, then the quotient 
i f / c need not be regular or topological but i f / c is always separated. If i f t is the 
topological regular modification of if ¡a, then every continuous function on if x is 
constant but i f t need not be separated. However, as we shall see later, there exist 
spaces i f / a such that i f x is separated. 

We want to construct a space if and an equivalence a such that if/tr possesses 
some additional properties which will allow us to prove that if x is separated. 

(b) Suppose that we are given a topological regular separated space J f , a closed 
subset Z of X', a proper filter of sets on Z, a point £ of Jf and a dense subset M 
of X such that 

(1) M n Z = 0 and £ non e M; and 
(2) C i Z but for each continuous function / on Jf there exists an A in si such that 

(/£) = f[A\, i.e./C is the only value o f / on A. 
Remark. Such a space Jf exists and, in addition, Jf may possess many additional 

properties. As an example, let Jf be the space from 33 D.6, Z be the set /i0[X], s i be 
the filter having for a base the collection of all subsets of Z whose complements in Z 
are of cardinal less than the cardinal of Z, £ be the point C of and M be the set of 
all hn(x, y}, <x, e (P - (£)) x (Q - (r,)). 

Let us consider the sum sp3.cc J^f j — | m e M}. Thus M x | Jf | is the under-
lying set of J f ! and Jf t is inductively generated by the family of mappings {injm : 
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: X -* JTj}. Let x be the smallest equivalence on containing all the pairs 
<<m, z>, <n, z » , z e Z, me M, ne M, and consider the quotient i f of Jf1 under x, 
i.e. i f = J f j / t , and the canonical mapping 5 of J f t onto i f . Roughly speaking, 
i f is obtained from ¿T by sewing together card M copies of Jf along Z; more precisely, 
i f is obtained from by sewing together all the subspaces (m) x Z, me M. The 
space i f has the following two properties: 

(3) The mapping g is one-to-one on M x M and L t = g\_M x M] is dense in i f . 
(4) The mapping g is one-to-one on M x (() and each continuous function / on i f 

is constant on L2 = g[M x (£)]. 
Proof. Clearly g is one-to-one on M x M. The set M is dense in Jf and therefore 

the set M x M is dense in Since g is continuous, L t is dense in i f . Evidently 
g is one-to-one on M x (£). Let / be a continuous function on i f . Let us consider 
the continuous function h = f ag on We shall prove that h is constant on 
M x (Í) (which implies tha t / is constant on L2). Let hm = h o (injm: Jf We 
must show that /imi( = hmi( for each mt and m2 in M. By (2) we can choose A{ e si 
such that hmi[At] = (hmiC). If A = Aí n A2, then (hmtC) = and clearly 

= M 4 ] - w h i c h implies that (fcmiC) = (hm2C) and hence /zm,C = hm2 

(c) If Jf is the space of 33 D.6 and if Z, js/ and M are defined as stated in 
Remark subsequent to (b) (2), if is the space defined in (b) and i f j is the space de-
fined in (a), then i f x is a separated regular topological space such that each continu-
ous function on i f 1 is constant. 

We have proved that every continuous function on i f t is constant. The fact that 
i f t is separated is left to the reader as an exercise on topological modification. We 
want to point out that the set L1 is isolated; this can be used to give a very simple 
proof. It is to be noted that (c) is due to J. Novák (who made the assumption that 
the cardinal of both spaces * and J of 33 D.6 are uncountable). 

(d) If i f ! is an infinite countable regular topological space, then i f x is para-
compact (because each cover has a tr-locally finite refinement) and hence i f x is 
uniformizable. Therefore a space which is regular and topological but not uni-
formizable, is necessarily uncountable. Since the space 0t of 33 D.6 can be taken 
with cardinal K1; the cardinal of the space i f t of (c) may also be taken as 
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3 4 . H Y P E R S P A C E S A N D C O N T I N U I T Y 
O F C O R R E S P O N D E N C E S 

This section is devoted to an examination of the "continuity" of correspondences 
for closure spaces. It is natural to introduce three kinds of continuity, namely upper 
semi-continuous, lower semi-continuous and continuous correspondences. For map-
pings all three kinds of continuity coincide with the usual one (in the sense of De-
finition 16 A.1). The definitions will be based on hyperspaces of a given space which 
are introduced and studied in subsection A. Subsection B is concerned with defining 
and developing the properties of correspondences. In subsection C an important 
result of B enables us to prove, e.g., that the quotient of a topological group under 
a homomorphism is a topological group. In the last subsection some special kinds 
of correspondences are considered, mainly inversely upper or lower semi-continuous 
quotient mappings. 

A preliminary comment seems to be necessary. 
Let / be a mapping of a closure space 3P = <P, u> into another one 2 = <Q, v). 

We know that the following two conditions are necessary and sufficient for the map-
ping/ to be continuous: 

(1) If V is a neighborhood of y in 2, t h e n / - 1 [ F ] is a neighborhood of the set 
/_1b] in 9. 

(2) If y $ vY, then f~l\y\ n t i f ' f y ] = 0. Evidently condition (i) implies the 
following condition (i'), i = 1, 2: 

(1') If Fis open in 2, then/ _ 1 [F] is open in 
(2') If Yis closed in 2, then/_ 1[Y] is closed in 
If 2 is topological, then (i') implies (i), i = 1, 2. Now let / be a domain-full cor-

respondence of & into 2. Thus / = <gr/, £P, 2) where g r / is a relation such that 
D g r / = \SP\ and E g r / c 12\. It is easy to see that (1) implies (1') and (2) implies 
(2'). On the other hand condition (1) is not equivalent to condition (2), and, in addi-
tion, (1) does not imply (2), and (2) does not imply (1). Evidently it is sufficient to 
show that in the class of all topological spaces (1') does not imply (2') and (2') does 
not imply (1'). If n is the projection of a product space 2 onto one of its coordinate 
spaces, say SP, then n carries open sets into open sets (by 17 C.7) and hence the cor-
respondence 7T_1 : 0 -» 2 fulfils condition (1'). On the other hand, n need not carry 
closed sets into closed sets (27 ex. 5) and hence the correspondence : 0 -> 2 need 
not fulfil condition (2'). An example of a (continuous) mapping g (for topological 
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spaces) which carries closed sets into closed sets but which does not carry open sets 
into open sets was given in 27 ex. 4; the correspondence g~l fulfils (2') but not (1'). 

A domain-full correspondence satisfying condition (1) (condition 2) is said to be 
lower (upper) semi-continuous and a correspondence satisfying both conditions is 
said to be continuous. It is to be noted that the theory developed will usually be ap-
plied to a correspondence/ -1 where/ is a continuous mapping. Therefore it is con-
venient to introduce the following terminology: a correspondence / is said to be 
inversely lower semi-continuous if the inverse correspondence f~l is lower semi-
continuous, and similarly we define inversely upper semi-continuous correspondences 
and inversely continuous correspondences. Thus, e.g., a mapping / of a closure space 
2 into a closure space 5? is inversely lower semi-continuous if (and only if) x e int U 
implies / [ x ] c int/[(7], and if 2 is topological, then this condition can be replaced 
by the requirement that / carry open sets into open sets. A mapping which carries 
open (closed) sets into open (closed) sets is termed open (closed). Thus a mapping / 
of a topological space into a closure space is inversely lower (upper) semi-continuous 
if and only iff is open (closed). 

It turns out that a simultaneously continuous and inversely upper or lower semi-
continuous mapping is a quotient mapping and quotient mappings of this kind have 
many important properties. We mention two: The product of inversely lower semi-
continuous quotient mappings is a quotient mapping, and this is the result which is 
needed for the proof of the fact that quotients of a topological group are topological 
groups. A domain-restriction of a quotient mapping need not be a quotient mapping; 
on the other hand a domain-restriction of an inversely upper (lower) semi-continuous 
quotient mapping to a closed (open) subspace is a quotient mapping. Next, a quotient 
of a space Sf inherits very few of the properties of SP. Inverse lower or upper semi-
continuity of the canonical mapping onto a quotient often enter as essential addi-
tional assumptions. 

The examination of the continuity of correspondences can be reduced to an examin-
ation of continuous mappings as follows. Given a space we define certain spaces 
H+(*), H_(*) and H(*) whose underlying set is the collection of all non-void sub-
sets of and then we define: a correspondence ranging in * is upper semi-continu-
ous, lower semi-continuous or continuous if the mapping {x -> /[(x)]} of the sub-
space D/ of D*/ into the space H+(*), H_(*) or H(*) respectively, is continuous. 

It is to be noted that the terms lower and upper semi-continuous historically 
originate from semi-continuous functions introduced in 18 D (see ex. 15). Keep in 
mind that an upper semi-continuous function in the sense of 18 D need not be con-
tinuous, but an upper semi-continuous function in the sense introduced here is con-
tinuous. We hope that this ambiguity will not lead to any confusion. In this section 
functions semi-continuous in the sense of 18 D will be not considered. 
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A. HYPERSPACES 

In 12 A the star of a set in a cover was introduced. Here we shall need the so-
called combinatorial star of a set Y in SC which is defined to be the set of all X e 3C 
intersecting Y and which will be denoted by star (Y, 9C). We shall simply say a star 
because the star in the sense of 12 A will not be needed. For convenience let us 
agree to denote by exp' X the set of all non-void subsets of X, that is, exp' X = 
= cxpX - (0). 

34 A.l. Definition. Let <P, u) be a closure space. The hyperspace of upper semi-
continuity H+(P, u) of <P, u) is defined as follows: the underlying set of H+(P, u) 
is the set exp' P and 

(1) E{exp' U | [/is a neighborhood of X in <P, u>} 
is a local base a t Z in H+(P, u) for each X. The hyperspace H_(P, u) of lower semi-
continuity is defined as follows: the underlying set of H_(P, u) is exp' P and 

(2) E{star (17, exp' P) | X n int U #= 0} 
is a local sub-base at X in H_(P, u). Finally, the hyperspace H(P, u) of continuity 
is defined to be the set exp' P endowed with the infimum of closure structures of 
spaces H+(P, u) and H_(P, u). 

If 0 = <P, u> then we shall write H(0>) instead of H(P, u) and similarly for 
H+(0>) and H_(0>). 

Of course it must be shown that (l) and (2) is a local base and a local sub-base at X 
for some closure operations for exp' P; that is, according to 14 B.10,11 it must be 
shown that each element of (1) and also each element of (2) contains X, and in 
addition, the intersection of two elements of (1) contains an element. The former 
statement is obvious and the latter follows from the obvious equality 

exp' (l/i n U2) = (exp' U^ n (exp' U2) 

and the fact that the intersection of two neighborhoods is a neighborhood. 
From the definition we obtain at once 

34 A.2. Let <P, u> be a closure space and f be the relation E{<x, (x)> | x e P}. 
Then the mappings f : <P, u> -»• H +(P, u), / : <P, u> H_(P, u) andf: <P, w> 
-+ H(P, u) are embeddings (which will be called the canonical embeddings of 
<P,u) into H + ( P , u), H_(P, u) and H(P, u) respectively). 

Now let X e H_(P, u) and let star (l/f, exp' P), i ^ n, be canonical neighborhoods 
of X. Then n { s t a r (Uh exp P)} is a neighborhood of X and clearly 

(3) fl{star (l/„ exp P)} = E{y| Ye P, Ut n Y * 0 for each /}. 
Since (2) was a local sub-base at X in H _(P, u), the collection of all sets of the 

form (3) form a local base at X in H _(P, u). 
Now we shall describe a certain type of local bases in H(P, it). According to 31 A, 

if w is the infimum of two closures wx and w2, say for a set Q, and and %2 are 



624 VI. G E N E R A T I O N ^ O F T O P O L O G I C A L S P A C E S 

local bases at a point x in wx> and <Q, w2> respectively, then 11 v u is a local 
sub-base at x in <2, w>. It follows that the sets of the form 

(4) E{Y| Y e t / , YnUi 4= 0 for i = 0,.. . , n} 
form a local sub-base at X in H(P, u), where U is a neighborhood of X in P, n e N and 
l/j are sets such that X n int t/; 4= 0 for each i S n. But clearly the sets of the 
form (4) form a filter base, and consequently, the collection of all sets of the form (4) 
is a local base at X in H(P, u). The set (4) coincides with the set 

(5) E{Y | Y c \J<%, YnV+0 for each Fin li] 
where 1l consists of U and all sets Ui n U, i ^ n. In addition, 1l is finite and interiorly 
covers X. Conversely, if 1l is any finite collection which interiorly covers X in <P, m> 
and if U = \J1l and {[/¡} is any finite sequence whose range is 1l, then the set (5) is 
equal to the set (4). It follows, exactly the sets of the form (4) can be of the form (5). 

34 A.3. Theorem. Let <P, u> be a closure space and let X e exp' P. The collection 
of all sets of the form (5) is a local base at X in H(P, u) where H varies over all finite 
subcollections of exp' P such that {int U \ U e 1i\ covers X and int U n X 4= 0 
for each U in 

34 A.4. Theorem. If <P, w> is a topological space, then all three hyperspaces 
H + (P , u), H_(P, u) and H(P, u) are also topological spaces and the collection of 
all exp' U, U open in <P, w), is an open base for H + (P , u); the collection of all 
star (U, exp' P), U open in <P, u>, is an open sub-base for H_(P, u); and finally, the 
collection of all sets of the form 

(6) E{y| Yc=U®, U e W ^ - U n Y + 0 } 
where °U is a finite collection of open subsets of (P, u>, is an open base for H(P, u). 

First we shall prove 
34 A.5. Let <P, u) be a closure space. IfU is open in <P, u ) then the set exp' U 

is open in H + ( P , m) and the set star (U, exp' P) is open in H _(P, u). If H is a finite 
collection of open sets then the set (6) is open in H(P, u). 

Proof of 34 A.5. Let U be an open subset of <P, u>. If 0 4= X <= U then X n 
nintU = XriU = X + Q and hence, by definition, exp' U is a neighborhood of X 
in H+(P, u). The set X was chosen arbitrarily, and hence exp' U is a neighborhood 
of each of its elements which means that exp' U is open. Similarly, if X n U 4= 0 
then X n int U 4= 0 (U = int U), and hence star (U, exp' P) is a neighborhood of X 
in H_(P, u). Since X was arbitrarily chosen in star (U, exp' P), star (U, exp' P) is 
open in H_(P, u). Using 34 A.3 it is easily seen that the set (6) is a neighborhood of 
each of its points in H(P, u). 

Proof of 34 A.4. Let <P, u> be a topological space; thus int U is open for each 
U c P. We shall only prove the statement for H+(P, u); the statements for H_(P, u) 
and H(P, u) can be proved in a similar way. By 34 A.5 the sets exp' U, U open in 
<P, w>, are open in H+(P, u). It remains to show that every neighborhood °U of any 
X e H+(P, u) contains an exp' U containing X with U open in <P, w). By definition 
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there exists a neighborhood V of the set X in <P, w> such that exp' F c f , Put 
U = int V. The set U is an open neighborhood of X and clearly exp' U c: exp' V. 

34 A.6. If 2 is a subspace of a closure spaced then H+(2), H_(J) and H(i>) are 
subspaces ofH+(0>), H_(3f) and W{3fi) respectively. 

The straightforward verification is left to the reader. 
34 A.7. Theorem. Let 3 be a subspace of a closure space 3k, 3k be the collection 

of all sets X c intersecting \2\ and let f be the single-valued relation on 3i 
which assigns to each X the set X n 12\. If 2 is closed in 3? then the mapping f of 
the subspace 3$ ofH+(3P) into H+(j2) is continuous. If 2 is open in then the map-
ping f of the subspace 3k of into H _(2) is continuous. 

Corollary. Under the assumptions ofi4 A.7, if 2 is simultaneously open and closed 
in 3k, then the mapping of the subspace 3k of H(0) into H(2) is continuous. 

Proof of 34 A.7.1. Let 2 be closed, X be any point of 3k, and 6U be any neighbor-
hood of fX in H +(2). By definition, there exists a neighborhood U of the set fX in 2 
such that exp' U <= Put V = (\&>\ - \2\) u U. Since 2 is closed, V is necessarily 
a neighborhood of the set X in By definition of H+(0), exp' Fis a neighborhood 
of the point X in H+(P). In consequence W = 3k n (exp' V) is a neighborhood of 
the point X in the subspace 0 of H+(P). Clearly / [ t T ] <= exp' U c Thus we 
have proved: if X e 3k and H is a neighborhood of fX, then there exists a neighbor-
hood W of X such that f\iV] c By definition, the mapping / is continuous. 

II. Now let 2 be open, X be a point of 3k and f be a neighborhood of fX in 
H _(2). By definition of H _(2) there exist subsets of 2 such that (inta Ut) nfX #= 0 
and fl.star (Uh exp' 12\) <= Since J is open, we have intj JJt = int^, [/¡; consequent-
ly (int# U,) n X 4= 0, which implies that star (Uh exp' is a neighborhood of X 
in H_(0). Hence UTi = gi n star([/;,exp' | ^ | ) (= star(C/;,exp' |^|),but we need not 
this) is a neighborhood of X in the subspace 3k of H_(3"). Clearly 

D i / M = flc star (Uh exp' 12\) cz % , 
which establishes the continuity. 

Remark. Let 2 be a closed (open) subspace of a space 3P. The collection of all 
X c \0>\, X n \2\ # 0, is an open (closed) subset of (H_(^>), respectively). 

B. CONTINUITY OF CORRESPONDENCES 

A correspondence for closure spaces 0 and 2 is a correspondence / such that 
D*f = 3P and E*/ = 2, i.e., / = <gr/, 3P, 2s) where g r / i s a relation for \3P\ and \2\ 
(i.e. D g r / c= E g r / cz which is called the graph o f / . Thus every mapping 
for closure spaces is a correspondence for closure spaces. Correspondences and related 
concepts were introduced in subsection 7 B. For convenience we recall the terminology 
and conventions needed. As in the case of mappings we often write / instead of gr / , e.g. 

40—Topological Spaces 
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f\X~\, E/, and occasionally, gr / instead of / . A correspondence / is domain-full if 
|D*/| = Df, range-full if |E*/| = E/, and/uZ/ifit is range-full and domain-full. A cor-
respondence/ for 0> and 2 is said to be for 3P ranging on 2 if |E*/| = EIf, onSP 
ranging in 2 if |D*/| = Df, and on & ranging on 2 or on SP onto 2 if it is both on 
* ranging into 2 and for * ranging on 2. 

34 B.l. Definition. A correspondence / for closure spaces * and 2 is said to be 
upper semi-continuous, lower semi-continuous or continuous if the mapping 
{x / [x]} of the subspace Df of * into H +(2), H _(2) or H(2), respectively, is 
continuous (in the usual sense, that is, in the sense of Definition 16 A.1). A corre-
spondence / for closure spaces is said to be inversely upper semi-continuous, in-
versely lower semi-continuous or inversely continuous if the inverse correspondence 
is, respectively, upper semi-continuous, lower semi-continuous or continuous. 
Finally, a correspondence / will be termed bilaterally upper semi-continuous, bi-
laterally lower semi-continuous or bilaterally continuous if both / a n d / - 1 are 
upper semi-continuous, lower semi-continuous or continuous, respectively. Instead 
of bilaterally continuous we shall usually say bicontinuous. 

First we shall prove that the continuity of a correspondence/ depends on subspaces 
Df of D*f and E/ of E*/ only. 

34 B.2. Theorem. Let f be a correspondence for closure spaces * and 2, let 3PX 

be a subspace of * such that ^¡j = Df, and 21 be a subspace of 2 such that 
\2y\ = Ef. Then f is upper semi-continuous, lower semi-continuous or continuous 
if and only if the correspondence f : -> 2t has the corresponding property. 
Roughly speaking, the upper or lower semi-continuity or the continuity of a cor-
respondence / only depends on the relativization of the closure structure of D*f to 
Df and the relativization of the closure structure of E*/ to EIf. 

Proof. It is self-evident that / is upper or lower semi-continuous if and only if the 
correspondence f -* 2 has the corresponding property. Since 2-^ is a subspace 
of 2, by 34 A.6 H + ( J 1 ) , H_( j2J and H ( j 2 X ) is a subspace of H +(2), H _ ( 2 ) and 
H ( j ) respectively, and therefore, e.g., the mapping (x ->/[x]} : ¿P1 -*• H +(2^ is con-
tinuous if and only if the mapping {x / [x] } : -»• H + ( 2 ) is continuous. 

According to the preceding theorem we may restrict our attention to full corres-
pondences. 

Every struct-mapping is a struct-correspondence, in particular, a mapping for 
closure spaces is a correspondence for closure spaces. Thus for mappings we have 
two definitions of continuity, the one introduced in 16 A.1 and the second one intro-
duced in 34 B.1. It is stated in the proposition to follow that the two definitions are 
equivalent, and moreover, upper semi-continuity as well as lower semi-continuity 
is equivalent to continuity. 

34B.3. The following properties of a mapping f for closure spaces are equi-
valent: f is continuous in the sense of Definition 16 A.1, / is continuous in the sense 
of Definition 34 B.1,/ is upper semi-continuous, f is lower semi-continuous. 
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Proof. Let / be a mapping of a closure space 9 into a closure space 2. By 34 A.2 
the canonical mappings, say g+, g_ and g, of 2 into H +(2), H _ ( 2 ) and H(i>) re-
spectively, are embeddings. By Definition 34 B.1 the mapping / is upper semi-con-
tinuous (lower semi-continuous, continuous) if and only if the mapping g+ of 
(g_ of, g o f ) is continuous in the usual sense, i.e. in the sense of Definition 16 A.1; 
since g+ (g_, g, respectively) is an embedding, g + of (g _ of, g of, respectively) is 
continuous in the usual sense if and only if the mapping / is continuous in the usual 
sense. 

Remark. A direct proof is probably simpler. 
Now we shall give direct descriptions of lower and upper semi-continuity. 

34 B.4. Theorem. Suppose that f is a correspondence for closure spaces 9 and 2. 
Each of the following two conditions is necessary and sufficient for the correspond-
ence f to be lower semi-continuous: 

(a) If V is a neighborhood of y in 2, then f~l\V~\ is a neighborhood of the set 
f ~1 in the subspace Df of 

(b) If x e Df and V is a neighborhood of a point of / [ x ] in 2 (i.e. if / [ x ] n 
n int V 4= 0), then there exists a neighborhood U of x in 9 such that V n / [ z ] 4= 0 
for each z eU. 

Each of the following two conditions is necessary and sufficient for the correspond-
ence f to be upper semi-continuous: 

(c) If x e Df and Vis a neighborhood of the set / [ x ] in 2, then the set E{z | / [ z ] <= 
c V} is a neighborhood of x in the subspace Df of 9. 

(d) I f x e Df and Vis a neighborhood of the set / [ x ] in 2, then there exists a neigh-
borhood U of x in 0* such that/[z] c Vfor each z in U. 

Proof. Evidently (a) is equivalent to (b), and (c) is equivalent to (d). We shall 
prove that condition (a) (condition (c)) is necessary and sufficient for / to be lower 
(upper) semi-continuous. Clearly we may and shall assume that / is domain-full. 
Consider the mappings 

g = {x -»• / [x]} : 9 -* H _(J), h = {x ->/[*]} : * -> H + ( 3 ) . 

By definition, the correspondence / is lower or upper semi-continuous if and only if 
the mapping g or h, respectively, is continuous. Evidently one has / - 1 [ F ] = 
= g~l [star (V, exp' | j | ) ] and E{z|/z c V) = ft_1[exp' F] for each V c \2\. 

Now, the equivalences immediately follow from Definition 34 A.1 of the closure 
structures of H _ ( 2 ) and H +(2) (given 0 4= Y <= \2\, the sets star (V, exp' \2\), 
Yn int V 4= 0, form a local sub-base at Yin H _ ( 2 ) and the sets exp' V, Y c int V, 
form a local base at Yin H +(2)). 

It follows immediately from the preceding theorem that if a full correspondence / 
is lower (upper) semi-continuous then the inverse correspondence/'"1 carries open 
(closed) sets into open (closed) sets. 

40» 
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34 B.5. Definition. A correspondence f for closure spaces is said to be open 
(closed) if the image of each open (closed) subset of the subspace Df of D*/ is open 
(closed) in the subspace E/ of E*/. A correspondence / is said to be inversely open 
(closed) if the inverse correspondence / _ 1 is open (closed). 

Now the corollary of 34 B.4 mentioned above can be stated as follows: 
34B.6. Every lower semi-continuous correspondence is inversely open and every 

upper semi-continuous correspondence is inversely closed. 
It is easily seen that an inversely open (closed) correspondence need not be lower 

(upper) continuous. For example, if 0 is the topological modification of a space 2, 
then the mapping J : 0> -» 2 is both inversely open and inversely closed, but it is 
continuous if and only if 0 = 2, i.e. if 2 is topological. On other hand, for topological 
spaces the equivalence is true as stated in the following theorem. 

34 B.7. Theorem. In order that a correspondence f ranging in a topological 
space be lower (upper) semi-continuous it is necessary and sufficient that f be 
inversely open (closed). 

Proof . Recall that, in a topological space, the interior of a set is open and apply 
34 B.4. An alternate proof follows from the fact that hyperspaces of a topological 
space are topological spaces. 

Remark. It should be noted that an open (closed) correspondence is often defined 
to be a correspondence/which carries open (closed) subsets of D*/ into open (closed) 
subsets of E*/. In functional analysis the term closed correspondence (usually closed 
mapping) often means that the graph is closed in the product of the domain carrier 
with the range carrier. 

We leave to the reader the task of the formulation of results for inversely lower 
and upper semi-continuous correspondences which are obtained by applying 34 B.4, 
34 B.6 and 34 B.7 to the inverse of a correspondence. We restrict ourselves to map-
pings. 

34B.8. In order that a mapping f of a closure space 0 into another closure 
space 2 be inversely lower semi-continuous it is necessary and sufficient that / [ t / ] 
be a neighborhood of fx in the subspace E / of 2 for each neighborhood U of any 
point x of 0. In order that a mapping f of a closure space 0 into another closure 
space2 be inversely upper semi-continuous it is necessary and sufficient that for 
each y in Ef and each neighborhood U of f~l\y\ in 0 there exist a neighborhood 
Vof y in 2 such that/-1[z] U for each z e V (i.e./_1[F] c U). Any inversely 
lower (upper) semi-continuous mapping is open (closed), and an open (closed) 
mapping of a topological space in a closure space is inversely lower (upper) semi-
continuous. 

34B.9. Examples , (a) The projections of the product of a family of closure 
spaces onto coordinate spaces are inversely lower semi-continuous. This is obvious 
(and was stated in 17 C.7). By 17 ex. 5, the projections need not be closed and thus 
certainly need not be inversely upper semi-continuous. 
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(b) Every projective generating mapping f is inversely continuous. In fact, if U 
is a neighborhood of a point x of D */, then there exists a neighborhood F of fx such 
t ha t / _ 1 [F ] c U; since f[U] => E / n / [ / _ 1 [ F ] ] = E / n V, / [ f ] is a neighborhood 
of fx in E/, which establishes the inverse lower semi-continuity of / (by 34 B.8); now U 
is also an arbitrary neighborhood of / - 1 [ / x ] , and y e V implies /_1[_y] <= U, which 
establishes the inverse upper semi-continuity. 

(c) Every continuous inversely upper semi-continuous mapping as well as every 
continuous inversely lower semi-continuous mapping is a quotient mapping .Indeed, 
let/be a continuous and inversely lower or upper semi-continuous mapping. Without 
loss of generality we may and shall assume that / is surjective. (Under this as-
sumption the mapping / is a quotient mapping if and only if / is an inductive gener-
ating mapping.) We shall show that / is an inductive generating mapping, that is, 

y b Y(in E */) o f 1 [y] n / ^ [ Y ] * 0 (in D*/) . 

The implication <= means the continuity of / . The implication => is proved as fol-
lows. Assuming/_ 1[j] n / - 1 [ Y ] = 0 we must show y 4 Y. By our assumption the 
set U = |D*/| — / _ 1 [ Y ] is a neighborhood o f / _ 1 [ / ] . Now, i f / is inversely lower 
semi-continuous, then/[C/] = |E*/| — Yis a neighborhood of y in E*/ which does 
not intersect Y, and hence y $ Y; and if / is inversely upper semi-continuous then 
there exists a neighborhood Fof y in E*/such t h a t / - 1 [ F ] <=• U and hence F n Y = 0 
which implies that y &Y. 

(d) Not every quotient mapping is inversely lower or upper semi-continuous, and 
in fact, inversely lower or upper semi-continuous quotient mappings form a very 
small but important class of quotient mappings. Subsection C will be devoted to 
an examination of this kind of quotient mappings and also to its generalization to 
families of mappings. Here we want to show that a quotient mapping need not be 
inversely lower or upper semi-continuous. Since the quotient of a topological space 
need not be a topological space it is sufficient to prove the following proposition. 

(e) I f f is a surjective continuous and inversely lower or upper semi-continuous 
mapping, then E*/ is topological provided that D*/ is topological. 

Suppose that / is continuous and surjective, and D*/ is topological. Assuming 
that / is inversely upper semi-continuous, and hence closed, we shall prove that the 
closure Yof any subset Yof E*/is closed. By the continuity/ we have / [ / _ 1 [Y]] <= 
c Y; since D*/ is topological, the set / _ 1 [ Y ] is closed in D*/, and consequently, 

/ being closed and surjective, / [ / - 1 [ Y ] is closed in E*/, which implies that Yis 
closed in E*/. Assuming that / is inversely lower semi-continuous (and hence open) 
we shall prove that intF is open in E*/ for each F <= E/. According to the continuity 
of / we have i n t / _ 1 [ F ] =>/ - 1 [int F]. The set U = i n t / _ 1 [ F ] is open in D*/ 
and hence, / being an open surjective mapping, / [ [ / ] is open in E*/. Clearly int F cz 
<= f\U~\ <= V, which shows that int F = /[C/] and concludes the proof. 
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The remainder of the subsection is devoted to an examination of composites, restric-
tions and products of lower and upper semi-continuous and continuous correspond-
ences. 

34 B.10. If g is a domain-restriction of a correspondence f and f is upper semi-
continuous, lower semi-continuous or continuous, then g has the corresponding 
property. 

Proof. Let / be a correspondence for closure spaces SP and 2, and let g be the 
domain-restriction of / to a subspace 0>x of i.e. D *g = E *g = 3, D g = 
= n D/ and gr g = g r / n (Dg x E/). The statements follow from definition 
34 B.1 and from the fact that the restriction of a continuous mapping is a conti-
nuous mapping. E.g., the mapping {x -»• i?[x]} : D g -> H + ( J ) is a domain-
restriction of the mapping {x ->• / [x ]} : D/ -» H + ( J ) where D g is considered as 
a subspace of âPt and D/ is considered as a subspace of SP (remember that SP̂  is 
a subspace of 0"); it follows that if the latter mapping is continuous, i.e. / is upper 
semi-continuous, then the former mapping is continuous, i.e. g is upper semi-
continuous. 

A similar result for range-restrictions is not true. This will be seen from the proof 
of the following important theorem. 

34 B.l l . Theorem. Let g be the range-restriction of a correspondence f for closure 
spaces. If f is upper semi-continuous and Eg is closed in Ef then g is also upper 
semi-continuous. If f is lower semi-continuous and Eg is open in Ef, then g is also 
lower semi-continuous. 

Proof. Let g be the range-restriction o f / , i.e. E*g is a subspace of E*/, D*g = D*f 
and gr g = gr / n (D/ x Eg). Thus D g is the set of all x e Df such that / [ x ] n 
n Eg + <D and g\x\ = Eg n / [ x ] . We shall only prove the statement concerning 
upper semi-continuity, leaving the similar proof for lower continuity to the reader. 
Suppose that / is upper semi-continuous. According to 34 B.2 we may assume that / 
is range-full, and it is sufficient to prove that the correspondence g : D*g E*/ 
is upper semi-continuous, i.e. to verify that the mapping g^ = {x -» g[x]} : D g 
-*• H+(E*/) is continuous. Consider the subspace St of H+(E*/) consisting of all 
/ [x ] , x e Dg, i.e. of all / [ x ] such tha t / [x ] n Eg 4= 0, and the mapping hL = {x -» 
- / [ x ] } :Dg ^ h2 = {X ^ X nEg} H+(E*/). Clearly gi=h2o ht. The 
mapping hY is continuous because {x -> / [x]} : D g ->• H+(E*/) is continuous by 
34 B.10, and 3C is a subspace of H+(E*/) containing the actual range of g. The map-
ping h2 is continuous by 34 A.7. 

Remark. A proof without hyperspaces is probably more clear. If D*/ is a topo-
logical space then it is sufficient to prove that f is inversely closed or open and this 
is almost evident. 

Corollary. Under the assumptions o/34B.11, if Eg is simultaneously open and 
closed in Ef and if f is continuous, then g is also continuous. 
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We leave to the reader the task of formulation of the results for inverse upper and 
lower semi-continuity and inverse continuity which are obtained by applying the 
results of 34 B.10 and 34 B.11 and Corollary of 34 B.11 to the inverse of a corres-
pondence. Nevertheless, we shall state and prove these results for mappings. 

34 B.12. Theorem. Let f be a mapping of a closure space 9 into a space 2L and 
let g be the domain-restriction of f to a subspace of If = /-1[/[|*i|]] 
(i.e. | = f~l\Eg~\) and f is inversely upper semi-continuous, inversely lower 
semi-continuous or inversely continuous, then g has the corresponding property. 
If l^l is closed (open) in 9 and f is inversely upper (lower) semi-continuous, 
then g is also inversely upper (lower) semi-continuous. If is simultaneously 
open and closed in 9 and f is inversely continuous, then g is also inversely con-
tinuous. 

Proof. The first group of statements follows from 34 B.10, the second one from 
34 B.11, and the last statement follows from Corollary of 34 B.11 or from the second 
group of statements. 

34 B.13. If f is a mapping simultaneously continuous and inversely upper (lower) 
semi-continuous, then the domain-restriction of f to any closed (open) subspace 
of D*/ is a simultaneously continuous and inversely upper (lower) semi-continu-
ous mapping, and in particular, by 34 B. 9 (c), a quotient mapping. 

Proof. Any restriction of a continuous mapping is a continuous mapping, and 
therefore the results follow from 34 B.12. 

I f / and g are correspondences such that E*/ = D*g, then the composite g of is 
defined to be the correspondence gr g o gr / : D*/ -»• E*g (7 C.1). It is not true that 
the composite of two upper (lower) semi-continuous correspondences is an upper 
(lower) semi-continuous correspondence. The composite of two continuous cor-
respondences may fail to be a continuous correspondence. The theorem which fol-
lows gives the best positive results. 

34 B. 14. Theorem. The composite g of of two upper (lower) semi-continuous 
correspondences is upper (lower) semi-continuous provided that the set E / n Dg 
is closed (open) in the subspace Ef ofB*f, in particular, ifEf c: Dg, e.g. if g is 
domain-full. 

Proof. Let h = g of. I. Suppose that both / and g are lower semi-continuous 
correspondences. By 34 B.4 it suffices to show that if z e /i[x] and Wis a neighborhood 
of z in E*h (= E*g), then U = is a neighborhood of x in D*h (= D*/)• 
Choose a y such that y e / [ x ] and z e Since g is lower semi-continuous, the set 
V = g~l\W~\ is a neighborhood of y in Dg, and hence F n E/ is a neighborhood 
of y in E/ n Dg. Now, if Eif n Dg is open in E/, then Vn E/ is a neighborhood of y 
in E/, and hence / _ 1 [ F n E/] is a neighborhood of x because / is lower semi-
continuous. Since/ - 1[V _ 1[W] n E/] = /i - 1[W], the proof is complete. — II. Sup-
pose that both / and g are upper semi-continuous and Dg n E/ is closed in E f . By 
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34 B.4 it suffices to show that if x e Dh and W is a neighborhood of /i[x] in E*h, 
then there exists a neighborhood U of x such that h[U] c W. Put X = / [ x ] n Dg. 
Clearly g[X] = h[x]. Since g is upper semi-continuous, by 34 B.4 there exists a neigh-
borhood VofX in Dg such that g[V~\ c W. Put Vt = (E/ - Dg) u V. Since E/ - Dg 
is open in E/ (its complement E/ n Dg is closed in EIf by our assumption) and 
Fis a neighborhood of X = / [ x ] n Dg, Vl is a neighborhood o f / [ x ] in E f . By 
34 B.4 there exists a neighborhood U of x in D/ such that/[(7] cz Vlw Since g[F] = 
= 0[F t ] we obtain h[U] = g[f[Uj] c ^ F j = g[F] <= W. The proof is complete. 

Remark. Notice that theorem 34B.11 is an immediate consequence of the pre-
ceding theorem. If h is a range-restriction o f / , let us consider the correspondence 
g = ]Bh: E */ ->• E */ which is bicontinuous. Clearly h = g of; apply 34 B.14. 

The preceding theorem was proved without using hyperspaces. Notice that / is 
upper semi-continuous if and only if the mapping = {x -*• / [x ]} : D/ -> H+(E*/) 
is continuous, and g is upper semi-continuous if and only if the mapping h2 = 
= {y : Dg H+(E*g) is continuous. Clearly the composite h2 o does 
not exist even if bo th / and g are full (with a trivial exception) because the elements 
of E*hi are subsets of D*h2 (if |E*/| = Dg). Nevertheless, a proof based on hyper-
spaces is very simple but requires the following "symmetric" characterizations of 
semi-continuous and continuous correspondences by means of hyperspaces. 

34 B.15. Theorem. Let f be a domain-full correspondence. Then f is upper 
semi-continuous if and only if the mapping 

h, = {X - / [ X ] } : H +(D*/) - H+(E*/) 
is continuous; f is lower semi-continuous if and only if the mapping 

h2 = {X ^ f [ X j } : H_(D*/) - H_(E*/) 

is continuous; and finally, f is continuous if and only if the mapping 
h3 = {X ^ / [X]} : H(D*/) H(E*/) 

is continuous. 
Proof . Evidently the last statement is an immediate consequence of the first two 

statements. We shall prove the first statement only. If h1 is continuous then {x ->• 
- / [ * ] } :D*/ H+(E*/) is continuous as the composite of two continuous mappings, 
namely the canonical embedding of D*/ into H+(D*/) followed by Conversely, 
assuming that {x -» / [*]} : D*/ H+(E*/) is continuous, we shall show that hy 

is continuous. Let X be any element of H+(D*/) and Y = hxX, i.e. Y = f[X~[. Let 
H be a neighborhood of Yin H+(E*/). We must find a neighborhood "f" of X in 
H+(D */) such that <= 11, i.e. Z e f =>/[Z] e 11. Choose a canonical neigh-
borhood exp' U c: 1l of Y in H + (E*/); thus U is a neighborhood of Y. Since 
{x / [x]} : D*/ H+(E*/) is continuous, we can choose a neighborhood F of X 
such that / [ x ] e exp' U for each x e F, i.e. / [ x ] c U for each x e V, and hence 
/ [ F ] <= U. The collection •f = exp' F is a neighborhood of X in H+(D*/), and 
evidently h^'f ] <= exp' U a 1l which completes the proof. 
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34 B.16. Definition. The product of a family {fa} of correspondences for closu-
re spaces is defined to be the correspondence / such that 

D*f = n{D*/fl}, E*/ = n{E*/fl} 

and that the graph o f / i s the relational product of the family {gr /„}; thus 

n{/J = <n re l{gr/ f l}, n{D*/0}, n{E*/„}>. 

The definition of the product / x g is evident. 
Remark. It is obvious that 

( n { / , } r = ! ! { / - } , 

i.e. the inverse of a product is the product of inverses. 
It turns out that the product of upper semi-continuous correspondences need not be 

an upper semi-continuous correspondence. For example let / be the mapping of the 
space Q of rational numbers into the one-point space (0). Clearly / - 1 is an upper 
semi-continuous and inversely continuous full correspondence. On the other hand 
the product correspondence g = f~l x (J : Q ->• Q) is not upper semi-continuous 
because its inverse g~l = / x (J : Q Q) followed by the homeomorphism 
{<0, x> -»• x} : (0) x Q ->• Q is the projection of Q x Q onto Q which is not closed 
(by 27 ex. 5) and therefore is not inversely upper semi-continuous. On the other hand, 

34 B.17. The product of a family of lower semi-continuous correspondences is 
a lower semi-continuous correspondence. The product of inversely lower semi-
continuous correspondences is an inversely lower semi-continuous correspondence. 

Proof . By virtue of the remark following 34 B.16 the two statements are equi-
valent. We shall prove the first one. Let / be the product of a non-void family 
{/„ | a e A} of lower semi-continuous correspondences. Without loss of generality 
we may and shall assume that all the fa are full, and hence that / is full. Let x e D/, 
y e / [x ] , and let Fbe a neighborhood of y in E*/. We must show that / _ 1 [ F ] is 
a neighborhood of x in D*/• Choose a canonical neighborhood W of y such that 
W c V; thus 

W = E{z | z e E/, a e A' => pra z e Wa} , 

where A' is a finite subset of A and Wa is a neighborhood of pra y in E*fa for each a. 
By our assumption/" is a neighborhood of praxin D*/afor each a in A'. Since 
each fa is full we have /a

_1[|E*/a|] = |D*/fl| for each a. Consequently 

U = E{i | t € Df, a e A' => pra t ef;l[Wj} 

is a neighborhood of x in D*/. But clearly U = / - 1 [ W ] c=/ _ 1 [F] . The proof is 
complete. 

Remark. A correspondence f is said to be proper i f / i s a lower semi-continuous 
correspondence such that, for each simultaneously lower semi-continuous and inversely 
upper semi-continuous correspondence g, the product correspondence / x g is in-
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versely upper semi-continuous. It turns out that the product of any family of proper 
correspondences is a proper correspondence. It should be noted that proper map-
pings are often called perfect mappings. We do not intend to present the theory of 
proper correspondences though this theory is very important and interesting. We 
only note that a full proper correspondence carries over many properties of the 
domain carrier to the range carrier and conversely. 

C. Q U O T I E N T S OF T O P O L O G I Z E D ALGEBRAIC STRUCTS 

A surjective inductive generating mapping / need not be inversely lower semi-
continuous. On the other hand if the closure structures in question are compatible 
for some group structures such that / is a homomorphism, then / is inversely lower 
semi-continuous and, in fact, the following somewhat more general result is true. 

34 C.l. Theorem. Let f be a quotient homomorphism of a topologized group 
H = <G, o, u) onto a topologized group 2/f = <H, p, v), i.e. the mapping f : 
: (G, u> -> <H, v} is a quotient mapping and f : <H, <r> ->• <ii, p} is a homo-
morphism. If the inversion of & is continuous then the inversion of^C is also conti-
nuous. If is inductively continuous, then Jf is inductively continuous and f is 
inversely lower semi-continuous, in particular, f is open. If is continuous, then 3fC 
is continuous. If & is a topological group, then is a topological group. 

Proof. I. Since/is a homomorphism, we have 
(*) /o f f = pa(f x / ) , 

and if g is the inversion of ^ and h is the inversion of then 
(**) fog = hof. 

If g is continuous, then / o g is continuous, by (**) h of is continuous, and / being 
a surjective quotient mapping, h is continuous. Thus, if the inversion of ^ is conti-
nuous, then the inversion of is continuous. 

II. Suppose that <c, u> is inductively continuous, i.e. let the mapping a' = o : 
: ind (<G, m> x <G, u>) -> <G, u> be continuous, p = p : ind « i f , v) x <H, v)) -* 

<tf, i>> and / ' = / : <G, m> <H, v). The equality (*) implies / ' o a' = p o ind 
( / ' * / ' ) where ind ( / ' x / ' ) is the inductive product of / ' and / ' . Since / ' is a 
quotient mapping, ind ( / ' x / ' ) is a quotient mapping and therefore, to prove that 
p' is continuous, it is sufficient to show that p 0 ind ( / ' x / ' ) is continuous and this 
follows from the above equality because o' and / ' are continuous. Thus <p, v) is 
inductively continuous. 

III. If / x / is a quotient mapping then the equality (*) implies that <p, v) is 
continuous whenever <a, u) is continuous. The product of quotient mappings need 
not be a quotient mapping but the product of two continuous inversely lower semi-
continuous mappings is a continuous inversely lower semi-continuous and hence a 
quotient mapping, and this is our case. 
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IV. Assuming that (a, u) is inductively continuous we shall prove that / is in-
versely lower semi-continuous. Let U be a neighborhood of a point x of <G, u>; we 
must show that / [£/] is a neighborhood of fx, and / being a quotient mapping, it is 
sufficient to prove t h a t / - 1 [ / [ t / ] ] is a neighborhood o f / _ 1 [ / x ] , Clearly/~ l [ /x ] = 
= and / ~ '[ /[£/]] = [L7] a[K] where K is the inverse image under / of the 
neutral element of J f . If y is any element of K then [i/] ay is a neighborhood of 
xay because U is a neighborhood of x and the mapping, {z -> zay} : (G, u> —• 

<G, u) is a homeomorphism which carries U into [(/] ay and x into xay. Since 
[L7] ay c [[/] cr[/C], [[/] a\K\ is a neighborhood of each element of xa[K], 

V. If is a topological group, then the inversion of JC is continuous by I and is 
continuous by III, and therefore is a topological group. 

Remark. Remember that a surjective quotient mapping is an inductive generating 
mapping and therefore we may apply the theorems of Section 33, in particular, of 
subsection 33 C. 

Assume that <G, a) is a group; now if H is any subgroup of <G, a> such that 
x<x[/i] = [H] ax for each x, then the relation g = E{<x, y} | xay~l e H} is stable 
under a and hence there exists a unique group structure ¡i on the quotient set G/g 
such that the mapping {x -»• x«r[ii]} : <G, a} ->• <G/^, /z) is a homomorphism. 
Such a subgroup H (which is an ideal in the sense of 8 D.4) is often said to be an 
invariant subgroup of <G, a> and the group <G/^, /i> is said to be the quotient of 
<G, a} under H and is denoted by <G, <t)/H. 

34 C.2. Let % = <G, a, u> be a topological group and let H be an invariant 
subgroup of <G, a). Let v be the closure inductively generated by the canonical 
mapping {x [H] trx} of G onto <G,a}/H. By 34 C.1 the topologized group 
<<G, a}jH; v> is a topological group which will be denoted by ^¡H and will be 
called the quotient of'S under H. The mapping {x -»• [ # ] <rx} of onto H will 
be called the canonical mapping of <& onto ^/H. By 34 C.1 the canonical mapping 
of '¡S onto &IH is inversely lower semi-continuous, i.e. open is a topological 
space). 

A topological group is separated if and only if it is semi-separated, and therefore 
the following proposition holds. 

34 C.3. A quotient ^/H of a topological group & is separated if and only if H 
is closed in <S. 

34 C.4. Let be a topological group and let H be the closure of the neutral ele-
ment eof 'S. Then H is an invariant subgroup of & and the quotient group 10/H is 
separated. 

Proof. Let us consider an inner automorphism/of <S. Since/e = e and/ is continu-
ous we have that /(e) c: (/e) = (e), which shows that H is stable under each auto-
morphism of <S. Since (e) is a subgroup, the closure H of (e) is a subgroup also. 
Thus H is an invariant subgroup of The quotient group '¡SjH is separated by 34 C.3. 
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34 C.5. The quotient group 1S\H is discrete if and only if H is open in IS. 

34 C.6. Let f be the canonical mapping of a topological group G (written 
multiplicatively) onto its quotient group GjH. If X is any subgroup of G, then 
/ [ X ] is a subgroup of G[H, [X] . [ / i ] a subgroup of G, H is an invariant subgroup 
of [X] . [H] and the topological groups [X] . \H~\jH and / [ X ] are isomorphic. 

Proof. Evidently / [ X ] = / [ [ X ] . [H]] and therefore without loss of generality 
we may and shall assume X = [X] . [if], i.e. K => H. We have X = / _ 1 [ / [ X ] ] 
and therefore, by 33 A.7, the restriction g of the inductive generating mapping (see 
the remarks following 34 C.1) / to a mapping of X onto / [X] is an inductive gener-
ating mapping and hence a quotient mapping. Now if h is the canonical mapping 
of X onto K/H then there exists a unique mapping k such that h 0 k = g; in addition 
k is bijective. Since h and g are inductive generating mappings, k is a homeomorphism 
(33 C.5). 

34 C.7. Theorem. Let f be a quotient homomorphism of a topological ring 
= ^i» ffi> u i> onto a topologized ring 02 = <(̂ 2> ff2> ̂ 2> ui>- Then * is a 

topological ring. 

Proof. By 34 C.1 the group <i?2> a n "2) is topological and / is inversely lower semi-
continuous. Since / is a homomorphism we have gr / o = p2 ° (gr / x Srf) ar>d 
consequently / ' o p'x = p'z o ( / ' x / ' ) , where / ' = / : <i?l5 ux> <i?2, u2), and 
v'i = Pi '• (Rb ";> x u i ) i = 1, 2. Since is continuous, / ' o p\ 
is also continuous and therefore, by the above equality, p'2 o ( / ' x / ' ) is continuous. 
Since / ' is continuous and inversely lower semi-continuous, the product / ' x / ' has 
the same property and hence/' x / ' is a quotient mapping. Since/' x / ' is surjective, 
/ ' x / ' is an inductive generating mapping and the continuity of p'2 o ( / ' x / ' ) 
implies that p'2 is continuous. Thus the multiplication of SH2 is continuous and hence 
0 2 is a topological ring. 

Remark. We leave to the reader the simple task of defining the concept of 
a quotient of a topological ring. 

34 C.8. Theorem. Let f be a quotient homomorphism of a topological module 
(algebra) over a topological ting 0 onto a topologized module (algebra) £f2 

over 9. Then S£2 is a topological module (algebra) over 3%. 

Proof. According to 34 C.7 it remains to prove that the external multiplication 
of <£2 is continuous. Denoting by Q\ the topologized external multiplication of if,-
we have / o Q\ = g2 o ((J : M -» x / ) . Since / and J : M -> 01 are simultaneously 
continuous and inversely lower semi-continuous, this product has the same property 
and the continuity of g'z follows by the same argument as the continuity of p'2 in the 
proof of 34 C.7. 

Remark. We leave to the reader as a simple task the definition of the concept 
of a quotient of a topological module or algebra. 
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D. E X A M P L E S AND R E M A R K S 

We know that each of the following conditions is necessary and sufficient for 
a mapping / of a closure space <P, u> into a closure space (Q, v) to be continuous: 

(*) X <= P =>f[uX] <= vf[X] 

(**) Y<= Q^uf-'lYl^f-'lvY]. 
I f / i s a correspondence then the conditions (*) and (**) are not equivalent because (*) 
is equivalent to the lower semi-continuity o f / and (**) is equivalent to the upper semi-
continuity of / as stated in the following theorem. 

34 D.l. Theorem. Let f be a correspondence on a closure space <P, u> ranging 
in a closure space <Q, v). Then f is lower semi-continuous (upper semi-continuous) 
if and only if condition (*) (condition (**)J is fulfilled. 

Proof. I. Assuming (*), if x e u(P - / - 1 [ F ] ) , then/ [x] c vf[P - / _ 1 [ F ] ] and 
clearly F n / [ P — / - 1 [ F ] ] = 0- Consequently, if Vis a neighborhood of a point y 
of / [x] , t h e n / - 1 [ F ] is a neighborhood of x, whichshows that / i s lower semi-continu-
ous (by 34 B.4). Conversely, i f / i s lower semi-continuous, t h e n / - 1 [ F ] is a neighbor-
hood of each x such that V is a neighborhood of a point of / [ x ] (by 34 B.4). If 
y $ vf\X\, then V = Q — f\X~\ is a neighborhood of y, and hence U = / - 1 [ Q — 
— / [ X ] ] is a neighborhood of each point o f / - 1 [ y ] . Since clearly U nX = 0, no 
point of / ~ 1 belongs to uX, and hence y £ f\_uX~\. — II. Assuming (**) we shall 
prove that, for each x e P and each neighborhood V of / [ x ] in <Q, v), there exists 
a neighborhood U of x such that / [U] c V. By 34 B.4/ will be upper semi-continuous. 
Put U = P - / _ 1 [ 6 - V~\. Clearly f{U] n (Q - V) = 0 and hence/[l /] c V. Since 
/ [ x ] n v(Q — V) = 0, (**) gives x u / _ 1 [ Q — V~\ which means that U is a neigh-
borhood of x. Finally, suppose that / is upper semi-continuous and x £ / - 1 [ u Y ] . 
We must show that x $ u / - 1 [Y] , Clearly the set V = Q — Y is a neighborhood of 
each point o f / [x] . By 34 B.4 we can choose a neighborhood U of x such that/[C7] <= 
cz V. Clearly U n / _ 1 [ Y ] = 0 which shows that x £ m/_1[Y]. 

34 D.2. Theorem. Let f be a correspondence on a closure space <P, w> ranging 
on a closure space (Q,v}. Then f is simultaneously lower semi-continuous and 
inversely upper semi-continuous if and only if 

X <= P implies f[uX] = vf\X] , 

and fis simultaneously upper semi-continuous and inversely lower semi-continuous 
if and only if 

Y <= Q implies / _ 1 [uY] = w/_ 1[Y] . 

Proof. We shall prove only the first statement. Let X a P. If / is lower semi-
continuous, then f\uX\ c vf\X\ (by34D.1). If / is inversely upper semi-continuous, 
i.e. / - 1 is upper semi-continuous, then applying the foregoing theorem to / - 1 we 
obtain/[«X] => vf\X] (of course ( / _ 1 ) _ 1 = / ) . 



638 VI. G E N E R A T I O N ^ O F T O P O L O G I C A L S P A C E S 

Remark. A mapping / of a space <P, w> onto a space <Q, v) is a quotient map-
ping if and only if vf[X] = f[uX~\ for each set X such that / " 1 [ / [X]] = X. Now 
it is evident from 34 D.2 that every simultaneously continuous and inversely upper 
or lower semi-continuous mapping is a quotient mapping. 

Now we restrict our attention to mappings. We have shown (34 B.9 (c) or the pre-
ceding remark) that every continuous inversely upper or lower semi-continuous map-
ping is a quotient mapping. On the other hand we have shown (34 B.9 (d)) that a 
quotient mapping need not be inversely upper or lower semi-continuous. Inversely 
upper or lower semi-continuous quotient mappings form a very important class of 
quotient mappings because many properties of domain carriers are carried over to 
range carriers and conversely. First we shall introduce the current terminology for 
quotient spaces under an equivalence and we shall give an interesting characterization 
of the concepts introduced. 

34 D.3. Definition. An equivalence ^ on a closure space * is said to be upper 
semi-continuous, lower semi-continuous or continuous if the canonical mapping 
of * onto SP\Q is, respectively, inversely upper semi-continuous, inversely lower semi-
continuous or continuous. A decomposition 2> of a non-void space * (i.e. a disjoint 
cover o f * which is a collection consisting of non-void sets) is said to be upper semi-
continuous, lower semi-continuous or continuous if the equivalence (J{D x D | D e 3>) 
possesses the corresponding property. 

34 D.4. Theorem. An equivalence Q on * is upper semi-continuous, lower semi-
continuous or continuous if and only if the quotient 9/g is a subspaceofH+(9), 
H_(*) or H(*) respectively. 

It is more convenient to prove the following somewhat more general statement. 

34 D.5. A continuous mapping f of a closure space 8? onto a closure space 2 is 
inversely upper semi-continuous, inversely lower semi-continuous or inversely con-
tinuous if and only if the mapping {y -*/-1[y]} : 2 -* H+(*) , {y - * / - 1 [ y ] } : 
: 2 -» H_(*) or {y - » / _ 1 [ j ' ] } : 2 -» H(*) respectively, is an embedding. 

Proof. Denote by o the relation {y -> / _ 1 [ (y) ] | y e | By definition, regardless 
of the continuity of / , the mapping o : 2 -* H +(*) is continuous if and only if the 
mapping / is inversely upper semi-continuous, and similarly for o : 2 -* H _(J) and 
a : 2 ^ H(i>). Consequently "if" is evident in all three statements. "Only if" will be 
proved for inverse upper semi-continuity only. Suppose that the mapping g = 
= a : 2 - H + (*) is continuous. Let j be the canonical embedding of 2 into H +(2) 
and let 2' be the subspace of H +(2) whose underlying set is Ej. Let g' be the mapping 
of 2' into H + (* ) such that gy = g'jy for each y in \2\. Since j is an embedding, g' 
is continuous, and to prove that g is an embedding it is sufficient to show that g' is 
an embedding. Since the mapping / is continuous, / is upper semi-continuous and 
therefore, by 34 B.15, the mapping 

h = {X^/ |X]}:H + (*)^H + ( J2) 
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is continuous. If t] e | j 2 ' | , i.e. rj = (y), y e |j2|, then hg'ri = r\. Thus g' is an embed-
ding. 

Remark. If the mapping {y -» / _ 1 [y ]} : 2 -» H+ (*) in an embedding then / need 
not be continuous. 

34 D.6. By 34 B.9 (e) the quotient of a topological space 0> under an upper or lower 
semi-continuous equivalence g is a topological space. A new proof can be obtained 
from 34 D.4. Indeed, by 34 A.4 the hyperspaces of a topological space are topological, 
and hence SPjg is a topological space as the subspace of a topological space. 

The domain-restriction of a quotient mapping / to a subspace * of D*/ need not 
be a quotient mapping even if * is both closed and open in D*/. E.g., if a closure u 
for a set P is the supremum of a family {ua} and ua 4= u for each a, then <P, u) is 
inductively generated by the family of mappings {J : <P, ua} -> <P, u>} and hence 
the reduced sum / of this family is an inductive generating mapping for <P, u) and 
the domain carrier of / is the sum space 2 = £{<P, "„>}• Clearly the restriction fa 
o f / to each subspace (a) x P of .2 is an injective mapping which is not an embedding 
and hence fa is not a quotient mapping. Clearly (a) x P is both open and closed in 2. 

On the other hand, if / is an inversely upper (lower) semi-continuous quotient 
mapping and 0t is a closed (open) subspace of D*f, then f\0t is both continuous and 
inversely upper (lower) semi-continuous mapping (34 B.13) and therefore a quotient 
mapping. 

Let / be a mapping of a space <P, u> onto a space (Q, v), Y1 and Y2 be subsets 
of Q and let Xi = / _ 1[Y ;] , i = 1, 2. I f / is continuous and Y1 and Y2 are separated 
or semi-separated in <Q, v}, then X1 and X2 have the same property in <P, «>. If / is 
a quotient mapping and Xy and X2 are semi-separated in <P, u>, then Yt and Y2 are 
semi-separated in (Q, v); however, a similar result for separated sets is not true. 

34 D.7. Let fbe an inversely upper semi-continuous mapping of a space 9 onto 
a space 2, Yx and Y2 be subsets of 2 andXt = / - 1 [ Y j , i = 1, 2. I f X i and X2 are 
separated in then Yx and Y2 are separated in 2. 

Proof. Let t/ ; be a neighborhood of X( in i = 1, 2, such that n U2 = 0. 
Let Ff be the set of all y e\2\ such that / - 1 [ y ] U¡. Since U^ n U2 = 0 we have 
VlnV2= 0. Since / - 1 [ / [ ^ ; ] ] = we have f[Xt] = Y; <= F;. Finally, since / is 
inversely upper semi-continuous, Ff is a neighborhood of Yt in 2 (by 34 B.8). 

From this fact we shall derive the following results. 
34 D.8. Let g be an upper semi-continuous equivalence on a space Then 
(a) 0/g is separated if and only if each two distinct fibres are separated in 8P. 
(b) If any neighborhood of any fibre contains the closure of a neighbor-

hood of {?[*] and each fibre is closed, then SPjg is regular and separated. 
(c) If each fibre is closed and 9 is normal (hereditarily normal) then SPjg is 

a separated normal (hereditarily normal) space. 
Proof. Let / be the canonical mapping of 9 onto SPjg. 
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I. The "only if" part of (a) follows from continuity of / and "if" follows from 
34 D.7. 

II. The assumptions of (b) imply that any two distinct fibres are separated; by (a) 
&IQ is separated. Next, if g[x] does not belong to the closure of a set 3C in 0/g then 
\SP\ — f~l[9£~\ is a neighborhood of g[x] in 0 and hence the sets / ~ 1 [SC~\ and g\x~\ 
are separated (by our assumption). By 34 D.7 the sets 9C and (e[x]) are separated in 
0\g, which shows that 0/g is regular. 

III. Let 0 be normal and let the fibres be closed. By 34 D.6 0/o is topological, 
and by (b) 0/g is a separated regular space. If Yt and Y2 are disjoint closed subsets 
of 0/g, then Xt = / _ 1 [Y t] and X2 = / - 1 [Y2] are disjoint closed subsets of 0 (because 
/ is continuous) and hence, 0 being normal, X1 and X2 are separated. Since / is 
inversely upper semi-continuous, the sets Yt and Y2 are separated (by 34 D.7) 
which shows that 0/g is normal.If 0 is hereditarily normal, then 0/g is normal (this 
was just proved) and hence by 30 A.4, it remains to show that any two semi-separated 
subsets Y1 and Y2 of 0/g are separated in 0fg. The sets XY = / ^ [ Y j and X2 = 
= / _ 1 [Y 2 ] are semi-separated in 0 because/ is continuous. Again by 30 A.4 the 
sets Xl and X2 are separated, and finally, by 34 D.7 the sets and Y2 are separated. 

34 D.9. Let g be a lower semi-continuous equivalence on a closure space 0. Then: 
(a) The local character of 0/g is less than or equal to the local character of 0. 
(b) If 0 is topological then 0/g is topological and the total character of 0/g 

is less than or equal to the total character of 0. 
(c) If g is a closed subset of 0 x 0, then 0/g is separated. 
Proof. Denote by / the canonical mapping of 0 onto 0/g. I. If "U is a local base 

at x, then clearly the set of all/[I/], U e 11, is a local base at fx. — II. If 0 is topo-
logical then 0/g is topological (35 D.6). If 01 is an open base for 0, then clearly the 
set of all / [ £ ] , Be0), is an open base for 0/g. — III. The mapping / x / is continuous 
and inversely lower semi-continuous and g is the inverse image under / x / of the 
diagonal of 0jg x 0[g. Consequently the diagonal is closed which implies that 0/g 
is separated. 

Remark. If 0jg is separated, then g is closed because g is the inverse image under 
/ x / of the diagonal of 0jg x 0jg, and the diagonal is closed because 0jg is 
separated. 
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3 5 . C O N V E R G E N C E 

This section is devoted to questions related to the definition of a closure space by 
specifying which nets converge to which points. 

We know that a closure space * is entirely determined by the relation Lim 2? 
(called the convergence class of * ) consisting of all <iV, x> such that N is a net which 
converges to x in * : namely x e X if and only if there exists a net N in X which con-
verges to x in In subsection A we shall give a necessary and sufficient condition 
for a relation to be the convergence class of a closure space, and also a necessary and 
sufficient condition for a relation to be the convergence class of a topological space. 
A subclass # of L im* is said to be a determining convergence relation f o r * provided 
that x e X if and only if there exists a pair <7V, x> in # such that N ranges in X and N 
converges to x in In subsection A we shall also study the following question: given 
a determining convergence relation for a closure space how can one reconstruct 
the convergence class of * from <€. 

Subsection B is concerned with the development of the properties of those closure 
spaces, the so-called S-spaces, which permit a determining convergence relation whose 
domain consists of sequences, and of a special kind of S-spaces, the so-called L-spaces, 
which are characterized among all S-spaces by the condition that each sequence has 
at most one limit point. Roughly speaking, L-spaces are related to S-spaces as separ-
ated closure spaces to closure spaces. 

In subsection C the class S of all S-spaces will be studied. It turns out that the class 
S is inductive-stable and hence every space * has a lower modification in S, which 
is denoted by G3P and called the sequential modification of In 33 B we investigated 
inductive constructions in a projective-stable class of spaces (e.g. topologically in-
ductively generated closure operations). Here we are in an appropriate situation to 
introduce projective constructions in an inductive-stable class K, in particular, the pro-
duct in K of a family of spaces in K. If K = S then the product in K is called the sequential 
product. It is easily seen that the sequential product of a family {*a} of spaces is the 
sequential modification of the usual product, i.e. <r Il{*0}. The sequential product 
will be used in the definition of a sequential group, i.e. of a topologized group such that 
the inversion is continuous and the group multiplication is continuous as a mapping 
of <t(^ x into 1?. This will be performed in subsection D. 

In subsection E the spaces which are sequential modifications of uniformizable 

41—Topological Spaces 
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spaces are investigated. The class of all these spaces is projective-stable in the class S 
and consists of all spaces which are projectively generated by a mapping into 

Let <JV, be a net in a closure space 5? and let x be a point of 8P. Let Q be a set 
consisting of the points of DN and a further point, say y, and let us consider the clo-
sure v on Q such that DN is a discrete open subspace of < Q, v> and U cz Q is a neigh-
borhood of y if and only if y e U and U n DN is residual in <DJV, ^ ). Finally, let / 
be the mapping of < Q, v} into SP which assigns to each z e DN the point Nz, and 
f y = x. It is easily seen that N converges to x in 0 if and only if the mapping / is 
continuous. Consequently, subsections A —D can be regarded as a part of the theory 
of inductive constructions. This statement will be made more precise in subsection F, 
where also the spaces inductively generated by countable subspaces will be studied. 

Recall that all nets are assumed to be directed. 

A. C O N V E R G E N C E GLASSES 

35 A.l. Definition. The convergence class of a closure space 0 (of a closure 
operation u) denoted by Lim SP (Lim u) is the relation consisting of all pairs <iV, Xs} 
such that N is a net converging to x in SP (relative to u). A convergence class is the 
convergence class of a space. A convergence relation is a relation Pranging in a set 
such that D<& is a class of nets. 

Of course every convergence class is a convergence relation and Lim <P, u> = Lim u 
for any space <P, u). It is sometimes convenient to denote the convergence class 
of a spaced by Lim,? instead of by Lim then Lim^ [N] denotes the set consisting 
of all limit points of N in and if Lim^ is single-valued, i.e. if SP is separated, then 
we can write Lim^ N to denote the unique element of Lim^ [TV], and this is the usual 
notation. Of course, if 0 is uniquely determined by the context, then SP is not in-
dicated and both notations coincide; we write Lim, Lim [N] and Lim N. 

First let us recall the main properties of convergence classes. 

35 A.2. Theorem. Let be the convergence class of a closure space (P, w>. 
Then 

(a) If N is a constant net in and x is the only value of N, then <N, x ) e c€. 
(b) E<€ = P. 
(c) x e uX if and only ifXcz E^ and there is a <N, x> in <6 such that EN cz X. 
(d) If M is a generalized subnet of N and <iV, x ) e e€, then also <M, x ) e <£. 

By statement (c) of this theorem a space can be reconstructed from its convergence 
class, that is, a space is completely determined by its convergence class. As a con-
sequence, every concept based on the concept of a closure space can, in principle, be 
described in terms of convergence classes, and in particular a space SP can be de-
termined by specifying L im^\ Of course, the descriptions in terms of convergence 
classes are not always convenient and appropriate, though in some cases they are 
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of great importance; recall, e.g., the simple description (cf. 32 A.6) of projectively 
generated closure operations. Further examples of such convenient descriptions are 
listed in the theorem which follows. The reader will easily find that all of these are 
merely restatements of earlier results. 

35 A.3. Theorem, (a) A mapping f of a space * into a space 2 is continuous if 
and only if the relation {<N, x> -» </o N,fx> | <iV, x> e Lim * } ranges in Lim 2. 
In particular, if and 2 ore convergence classes such that E^ = Ec€2, then 
<£x a &2 if and only if the closure corresponding to <S1 is finer than that corres-
ponding to and more generally, the inclusion L i m * c: Lim 2 is equivalent 
to this statement: the underlying set of * is a subset of that of 2 and the closure of * 
is finer than the relativization of the closure of 2. 

(b) If {ua} is ix non-void family of closures for a set P, then (see 31 A.6) 
Lim(inf {«„}) consists of all <N, x> such that <N, x ) e Lim ua for each a; sug-
gestively but incorrectly ('Lim ua is non-comprisable and hence {Lim ua} does not 
exist), 

Lim (inf {ua}) = fl{Lim ua} . 

(c) A space * is separated if and only if the convergence class of * is single-
valued (27 A.6). 

(d) A space * is topological if and only if the convergence class of * satisfies 
the condition on iterated limits f15 B.13j. 

If we want to define a concrete space by specifying the convergence class we must 
find a convenient sufficient condition for a given convergence relation to be a con-
vergence class. Such conditions will be given in Theorem 35 A.17, and for topological 
spaces in Theorem 35 A.18. It is sometimes convenient to prescribe not the whole 
convergence class but only a sufficiently large subclass of the convergence class which 
completely determines the convergence class. The procedure is similar to that of the 
description of closure spaces by neighborhoods which has already been treated in sub-
section 14 B, and therefore we recall the main results in a formal fashion to point out 
the main ideas. The terminology introduced will be used only here. 

35 A.4. Let us term the neighborhood relation of a closure u and denote by fit 
the relation consisting of all pairs <[/, x) such that U is a neighborhood of x in the 
space <P, w) (P is uniquely determined by u). We know that the relation {u fu | u 
is a closure} is one-to-one. Next, if u is a closure then the relation fu has the following 
properties: (a) x e U for each <U, x) e /u , (b) ( /u) _ 1 [x] is a filter in E ( fu ) for each 
x e E(fu) , and (c) E ( fu) is a set. Conversely, if a relation / possesses the properties 
(a), (b) and (c), then / = fu for some u. 

Notice that this fact has been often used to define a closure by specifying the neigh-
borhood systems at points. We know that it is often convenient to specify not the 
entire neighborhood systems but local bases or local sub-bases only. The latter 
method is based on the following result: If o is any relation ranging in a set such that 
x e U cz Eer for each <17, x) e o, then there exists a smallest neighborhood relation 

41« 
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q such that g => a and Eg = Eo. This neighborhood relation can be described as 
follows: <U, x> eg if and only if U belongs to the smallest filter in Eg containing 
<7_1[x]. The definition of spaces by specifying local bases is based on the following 
result: let <j be a relation as above, u the corresponding closure operation; hence fu 
is the corresponding smallest neighborhood relation containing a. The following 
conditions are equivalent: 

(a) x e uX o X <= E a, x e Eo, <[/, x>eo-=>£/nX=|=0 
(b) fu = {<[/, x> | V <= U e Eo for some (V, x> e a) 
(c) c t - 1 [ x ] is a filter base in Eo for each x e Eo. 
Thus the relation o describes u "directly", that is, in the sense of (a), if and only if 

the neighborhood relation fu of u can be reconstructed from a by (b). Condition (c), 
which is formulated in terms relating to a only, is a characterization of those o which 
directly describe a closure operation. We want to introduce a similar notion for con-
vergence and obtain a similar result. 

35 A.5. Definition. A determining convergence relation for a closure space 
<P, u> (for a closure operation u) is a convergence relation # c Lim <P, u> such 
that x e uX if and only if X <=. P and x) e # for some net N ranging in X. 
A determining convergence relation is a determining convergence relation for some 
space. 

Every convergence class is a determining convergence relation, and a determining 
convergence relation # is a determining convergence relation for exactly one space 
<P, u>; indeed, P = and x e uX if and only if <AT, x) e # for some N ranging 
in X. No characterization of determining convergence relations is known. Never-
theless, there are very simple and natural sufficient conditions which are given in 
the theorem which follows. Further comments will be given after the proof. 

35 A.6. Theorem. The following three conditions are sufficient for a convergence 
relation <6 to be a determining convergence relation: 

(a) EN e EW for each N e D<&. 
(b) If x e E<&, then there exists a net N in (x) such that <AT, x ) e c6. 
(c) If <N, x> e # then <M, x> e for each subnet M of N. 
Remark. Conditions (a) and (b) are also necessary. 
Proof. Put P = and consider the single-valued relation u which assigns to each 

subset X the set uX consisting of all points x such that <iV, x) e ^ for some net N 
ranging in X, in symbols uX = E{x | there exists (N, x> e # with EJV <= X}. It will 
be shown that u is a closure operation for the set P and ^ is a determining convergence 
relation for <P, u>. It follows from the definition that «0 = 0. From condition (b) we 
obtain at once X c uX for each X cz P. Since clearly X c Y implies uX c uY, we 
have uXx u uX2 u(Xt u X2) for all Xly X2 <= P. To prove the converse in-
clusion, suppose x e u(Xt \j X2); it is to be proved that x e (uXx u uX2). By de-
finition of u there exists a net N in (Xt u X2) such that </V, x> Consider the 
sets A( = E{a | a e.DN, NaeXi}, i = 1,2. Since Av u A2 = DN, at least one of 
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the sets A1 or A2, say A„ must be cofinal in DN, and hence directed by the relativized 
order. Now the restriction M of N to At is a subnet of N ranging in the set Xt. By 
condition (c) the pair <M, x> belongs to and finally, by definition of u, x e uXt. 
Thus u is indeed a closure for P. To show that is a determining convergence rela-
tion for <P, u> we must show that ^ c Lim <P, u> and x e uX if and only if <AT, x> e 
e for some net N in X. The latter fact follows from the definition and the former 
one is proved as follows: Suppose that <N, x) e # but N does not converge to x 
in <P, u>. By (a), EN <= P. There exists a neighborhood U of x such that N is not 
eventually in U, that is, N is frequently in P — U. It follows that the restriction M 
of N to the ordered subset A = E{a \ a e DN, Nae(P - t/)} of DN is a subnet of N, 
and M ranges in P — U. By condition (c) <M, x) e and by definition of u we obtain 
x e u(P — U) which contradicts our assumption that U is a neighborhood of x. This 
concludes the proof; the remark is evident. 

It may be noted that the condition (c) is not necessary. The reader can easily find 
a corresponding example. Obviously condition (c) cannot be omitted. Some weakened 
form of condition (c) will be discussed in the exercises. 

A special sort of determining convergence relations which will be introduced in the 
definition which follows is very important in practice. 

35 A.7. Definition. A convergence relation W will be termed a convergence struc-
ture if the following conditions are fulfilled: (a) EN <= for each N e D&; (b) If N 
is a net in such that Na = x for each a in DN, then <N, x) e c€\ and (c) If 
<iV, x> e <6 then <M, x) e # for each subnet M of N. A convergence structure for 
a space SP is a convergence structure which is a determining convergence relation 
for^>. 

As a corollary of 35 A.6 we obtain: 
35 A.8. Theorem. Every convergence structure is a determining convergence 

relation. 
Now let ^ be a determining convergence relation for a space SP. It is natural to 

inquire about a description of the convergence class of SP in terms of (€. Such a de-
scription will be given for a special class of determining relations. First we shall give 
a sufficient condition for <S, x) s Lim SP. 

35 A.9. Let <€ be a determining convergence relation for a space SP. If S is a net 
in 0 and xeSP is such that each subnet N of S has a generalized subnet M with 
<M, x ) e c€, then S converges to x in SP, i.e. <S, x ) e Lim 

Proof. Suppose that x and S fulfil the condition and S does not converge to x in 
There exists a neighborhood U of x such that S is not eventually in U, and hence, 

S is frequently in \SP\ — U. It follows that some subnet N of S ranges in — U. 
By the condition we can choose a generalized subnet M of N such that <M, x> e c€. 
Since N ranges in — U, M also ranges in j^j — U . But M converges to x and 
hence x belongs to the closure of the set \SP\ — U, which contradicts our assumption 
that U is a neighborhood of x. 
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Example. The condition of 35 A.9 is not necessary; e.g. let 3? be an infinite accrete 
space and let <€ be the class of all pairs <N, x> such that xe8P and N is a constant 
net in Clearly <€ is a determining convergence relation for Next, if S is a one-to-
one net in * the domain of which does not have a greatest element, then no general-
ized subnet of S is constant. Since * is infinite, we can choose a one-to-one sequence 
{x„} in * and an x in Since 3P is an accrete space, {x„} converges to x in On 
the other hand, no generalized subnet of a subnet of {x„} is constant. 

Let ^ be a determining convergence relation for a space * and let 38 be the class 
of all <S, x) satisfying the condition of 35 A.9. By 35 A.9 we have 38 <=. Lim and 
the example following 35 A.9 shows that in general * #= Lim 3P. There is an 
important kind of pairs <S, x) e Lim * which belong to 38 for each <6. The result 
is given as a corollary of 35 A.11. Recall that if JV converges to x in <P, u> and A is 
cofinal in DN, then x e uN|\4]. 

35 A.10. Definition. We shall say that a net N converges regularly to a point x 
in a space 3P if N converges to x and x eN[4] implies that A is a cofinal subset 
of DN. 

Of course, not every net converging to a point x converges to x regularly. For 
example if a constant net converges regularly to a point then its domain is one-point. 
Next, in an accrete space, every net converges to each point but a net converges re-
gularly if and only if its domain is one-point. In a discrete space a net N converges 
regularly to a point x if and only if the domain of N possesses a greatest element, 
say a, Na = x and Na 4= x for a 4= a. Evidently a generalized subnet M of a net regul-
arly convergent to a point x need not converge regularly to x. On the other hand 
a subnet of a net regularly convergent to a point x converges regularly to x. 

35 A.11. Let W be a determining convergence relation for a space 2?. If a net N 
regularly converges to a point x in 3P, then there exists a generalized subnet M 
of N such that <M, x>e<ii. 

Proof. Since x e EN we can choose a <M, x) in # such that EM <= EN. We shall 
prove that M is a generalized subnet of N. Since EM <= EN we can choose a single-
valued relation g ranging in DN such that M = N o g and Dg = DM. It will be 
shown that M is a generalized subnet of N under g, that is, given an a in DN, there 
exists a fi in DM such that /? ^ b (in DM) implies a ^ gb (in DN). 

The set A of all a e DN such that a non ^ a is not cofinal in DN. Since N converges 
regularly to x, x $ N[A], and consequently there is a neighborhood U of x disjoint 
with N[^4]. Thus NaeU implies a ^ a. Since M converges to x in P, there exists 
a p in DM such that Mb e U for each b e DM, P ^ b. If P ^ b in DM, then Mb = 
= Neb e U and hence gb ^ a in DN. 

Corollary. If is a determining convergence relation for a space * and a net S 
converges regularly to x in 39, then each subnet of S has a generalized subnet M 
such that (M, x> e<#. (Compare with 35 A.2 (d).J 
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35 A.12. Example. Suppose that 2P is a semi-separated space and TV is a sequence 
converging to x in Then either the sequence N possesses a subsequence regularly 
convergent to x or N is constant for sufficiently large indexes. — Evident. 
A similar result for nets is not true. The example which follows clarifies the situation. 

35 A.13. Example. Let A be a non-void set and let | a e 4̂} be a family of 
spaces and {xa | a e A} be a family such that xa e \2Pa| for each a. Finally, let 0 be 
the space obtained from the family {2Pa | a s A} by identifying the points of the family 
{xfl}. That is, 2? is the quotient of the sum space under the smallest equivalence 
containing the set X x X where X is the set of all <a, xfl>, a e A. 

Suppose that, for each a, S" is a sequence in 2Pa converging to the point xa, and ^ is 
an order directing the set A. Let S be the net the domain of which is the directed set 
(A, x n{DS" I a e 4̂} and the value of which at a point <a, {na}> is <a, S^ ^ e 
e 2P. One can prove "without difficulty that 

(a) The net S converges to the point X in 
(b) The net S does not converge regularly to X provided that {A, ^ ) does not 

have a greatest element; moreover, 
(c) no subnet of S converges regularly to X in 0 provided that </t, ^ ) does not 

have a greatest element. 
(d) If all the spaces are semi-separated, S" =|= xa for each a e A and each n e N, 

and (A, Si) is the directed set of all natural numbers, then no diagonal sequence 
{<a, S"o> | a e A} converges to the point X in 2?. 

Now we return to our subject. Under the notation of the remark preceding De-
finition 35 A.10, we want to find a sufficient condition on # for 2$ = Li m2P such that 
any convergence class always fulfils this condition. In 35 A.13 we have given, in 
a special case, a construction of non-regularly convergent nets from regularly con-
vergjnts nets. Now we shall show that one such condition consists of requirements 
that <6 be stable under this construction. 

35 A.14. Theorem. Lei <6 be a determining convergence relation satisfying the 
following condition, which will be called the condition of diagonalization. 

If A is a directed set and {Ma | a e A} is a family such that <Ma, x> e <€ for each a 
in A, then <M, x) e'fi where M is a net the domain of which is the product ordered 
set 

A x n{DM° | a e A) 
and the value of which at a point <a, {¿„}> is 

Then, if S converges to x in & then each subnet of S has a generalized subnet M 
such that <M, x ) 6 <€. 

Remark. It should be noted that the condition of diagonalization is a weakened 
form of the condition on iterated limits. Nevertheless, although the condition on 
iterated limits characterizes convergence classes of topological spaces in the class 
of all convergence classes, the assumption of diagonalization is fulfilled by every 
convergence class, as will be proved in 35 A.16. 
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Proof. Suppose that a net S converges to x in 9 and that N is a subnet of S. 
Therefore N also converges to x in 8P. Let A denote the directed domain 
of N. For each a in A let Xa be the set of all Na, a. ^ a. Since N converges 
to x, the point x belongs to the closure of each Xa, a e A. Since % is a deter-
mining convergence relation for 9 we can choose a family {M° | a e A} such that 
<M°, x> e and M" ranges in Xa for each a in A. Let M be the net in the condition 
of diagonalization; thus <M, x) e c€. We shall prove that M is a generalized subnet 
of N. Let g be a single-valued relation on DM into DN which assigns to each point 
<a, {&„}> a point a such that a ^ a, Na = M^. Clearly M = N o g. To prove that 
M is a generalized subnet of N under Q it remains to show that for each a in A (= DN) 
there exists y e DM such that y ^ c in DM implies a ^ gc in A. But this is almost 
self-evident. Indeed, putting y = <a, {ba}} where {ba} is arbitrarily chosen, then y 
has the required property; since if y ^ c, c = <a l t {b'a}y, then a ^ ax in A and 
QC ^ at (by the choice of G), and hence gc 5: a. 

Combining 35 A.14 and 35 A.9 we obtain at once the following description of con-
vergent nets in terms of a determining convergence relation satisfying the condition 
of diagonalization. 

35 A.15. Theorem. Suppose that & is a space and <€ is a determining convergence 
relation for * satisfying the condition of diagonalization (see 35 A.14J. Then 
a net S in \0>\ converges to a point x of in 0* if and only if each subnet N of S 
possesses a generalized subnet M such that <M, x> e (€. 

Now we are prepared to give a characterization of convergence classes. 
35A.16. Theorem. The following conditions are necessary and sufficient for 

a convergence relation ^ to be a convergence class. 
(a) is a determining convergence relation. 
(b) # fulfils the condition of diagonalization. 
(c) If S is a net in and x is a point of E"^ such that each subnet of S has a 

generalized subnet M with <M, x> e & then <S, x> e <€. 
Remark. Condition (c) is equivalent to the following condition 
(c') if S is a net in x is a point of E% and <S, x> $ •<?, then there exists a subnet 

N of S such that <M, x> ^ ^ for no generalized subnet M of N. 
Proof. The sufficiency is a straightforward consequence of 35 A.14. We shall 

prove the necessity. Suppose that % is the convergence class of a space Condition 
(c') is fulfilled by 35 A.2 (d). Obviously <6 is a determining convergence relation for 
It remains to show that # satisfies the condition of diagonalization. Suppose that A 
is a directed set, {Ma | a e A} is a family of nets each of which converges to x and M 
is the net from the assumption of diagonalization (see 35 A.14). We must show that 
M converges to x. Given a neighborhood U of x we can choose a family {b'a | a e A} 
such that b'„ ^ b in DM" implies M"b e U. Now if a! is any element of A and 
<a', {b'a}} ^ <a, {ba}} = c, then Mc = M'bi and b'a g b% in DM1, and consequently 
Mc e U by the choice of {b'a}. 
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35 A.17 Theorem (a character iza t ion of convergence classes). The fol-
lowing conditions are necessary and sufficient for a convergence relation W to 
be a convergence class: 

(a) ^ is a convergence structure. 
(b) % fulfils the condition of diagonalization. 
(c) Condition (c) of 35 A.16. 
Proof. The sufficiency is a consequence of the previous theorem and of Theorem 

35 A.8 asserting that a convergence structure is a convergence determining relation. 
The necessity of the condition again follows from the previous theorem and the fact 
that every convergence class is a convergence structure. 

35 A.18. Theorem (character izat ion of convergence classes of topol-
ogical spaces). The following conditions are necessary and sufficient for a conver-
gence relation ^ to be a convergence class of a topological space: 

(a) is a convergence structure. 
(b) fulfils the condition on iterated limits. 
(c) Condition (c) of 35 A.16. 
Proof. Since condition (b) of 35 A.18 implies condition (b) of 35 A.17, and the 

other conditions are identical, a convergence relation satisfying the conditions of 
35 A.18 is a convergence class of a space 0 (by 35 A.17) which is topological by 
15 B.13, because it fulfils the condition on iterated limits. Conversely, if # is the 
convergence class of a topological space, then the condition (b) is fulfilled by 15 B.13, 
and the remaining are fulfilled by the foregoing theorem. 

Subsection A is ended by examples. First we shall show that many of the results 
of previous sections can be easily proved by means of the results of this subsection. 

35 A.19. (a) If {«.} is a non-void family in C(P) then u = inf {ua} exists and 
# = E {JV\ y e Lim ua for each a} is Lim u; if all the u„ are topological, then 
so is u. 

Proof. Let be as above. It follows from 35 A.17 that is a convergence class, 
say of a space <P, u); if all the ua are topological then u is topological by 35 A.18 
(because # fulfils the condition on iterated limits). It follows from the character-
ization of continuity by means of nets that u = inf {ua}. 

(b) If / is a mapping of a set P into a space 2, then there exists a unique closure 
projectively generated by / , say u, and Lim <P, w) consists of all <iV, x> such that 
</ o AT,/x> e Lim 2; if 2 is topological, then <P, u) is topological. 

Proof. Consider the convergence relation consisting of all <N, x> such that 
</ o N,/x> e Lim 2. It follows from 35 A.17 that ^ is a convergence class for a space 
<P, u) which is topological whenever 2 is topological (by 35 A.18). It is easily seen 
that u is projectively generated by/ . 

It follows from (a), (b) that 
(c) if {/„} is non-void family, each fa being a mapping of a set P into a space 2a, 

then there exists a unique closure u projectively generated by {/„}; the convergence 
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class of <P, u> consists of all pairs <iV, x> such that N is a net ranging in P, x e P 
and </„ o N,fax> e Lim for each a. 

In particular, defining the product closure as the closure projectively generated by 
projections, we obtain that a net converges to a point x in a product space if and only 
if it converges pointwise to x. 

It follows immediately from (c) that: 
(d) if {/„} is a projective generating family for a space*, then a mapping/ into * 

is continuous if and only if all the composites fa of are continuous. 

35A.20. Convergence closure for the collection of all closed subsets 
of a c l o s u r e space . Let 3F be the collection of all closed subsets of a topological 
space <P, w). Let <6 be the set of all pairs <S, X> such that S is a net in OF and X 
is the topological limit of S in <P, u) (for the definition see 15 ex. 10). The class t? 
is a convergence structure for 2F satisfying the condition (c) of 35 A.16. 

35 A.21. Convergence closure for an ordered set. Suppose that <P, 
is an ordered set (not necessarily monotone). An eventual upper (lower) bound of 
a net N in <P, ^ > is an element x such that Na ^ x (x ^ Na) for all sufficiently 
large indices. A net N is said to be eventually bounded if it has both these bounds. 
If N is eventually bounded, then the infimum (supremum) of the set of all eventual 
upper (lower) bounds of N, if it exists, is called the upper limit (lower limit) of N, 
and is denoted by Lim sup N (Lim inf N). Evidently, always Lim inf N iS Lim sup N. 
If equality holds, then we write Lim N for the common value and say that N is order-
convergent to Lim N. Let # be the class of all pairs (N, Lim iV> where N varies over 
all order-convergent nets. It is easily seen that is a convergence structure. The 
closure determined by # will be called the convergence closure of <P, ^ >. If <P, ^ ) 
is order-complete, then Lim sup N and Lim inf N exist for each net N in <P, g ) and 

Lim sup N = inf {sup {Na \ a g a} | a e A} 
Lim inf N = sup {inf {Na \ a ^ a} | a e A] . 

If <P, :g> is monotonically ordered then the convergence closure coincides with 
the order closure. 

35A.22. Convergence closure for the ordered set of subsets of a set. 
Let * be the collection of all subsets of a set P ordered by inclusion, and let W be the 
class described in the preceding example 35 A.21. Thus <iV, X} e # if and only if 
N is a net in * and 

X = f){U0Va | a ^ a] | a 6 DN} = U{fl{JV« | a ^ a} | a e DJV} . 
Let the symbols Lim N, Lim sup N and Lim inf N have the meaning from 

35 A.21. We shall prove that then the convergence relation # fulfils condition (c) of 
35 A.16, that is, if S is a net in * and X e * such that <S, X> £ <ii, then there exists 
a subnet N of S such that <M, X} e ^ for no generalized subnet M of N. If Lim S 
exists, then Lim M = Lim S for each generalized subnet M of S and hence we can put 
N = S. Now suppose that Lim S does not exist and pick a point x in Lim sup S — 
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— Lim inf S. If x e X let N be the restriction of S to the set A of all a e DS such that 
x £ Na, and if x $ X then let N be the restriction of S to the set A of all a e DS such 
that x e Na. In both cases, by the choice of x, the set A is cofinal in DS, and hence N is 
a subnet of S. If M is a generalized subnet of N, then x $ Lim sup M in the first case 
and x 6 Lim inf M in the second case by the choice of N. It follows N has the required 
property. It is easily seen that fulfils the condition on iterated limits, and hence 
is the convergence class of a space <exp P, u). These results can also be derived from 
the fact that <exp P, w) is a homeomorph of the product 3 P where 2 is a two-point 
discrete space. 

B. SEQUENTIAL DETERMINING RELATIONS 

In this subsection we shall be concerned with questions related to the possibility of 
description of spaces in terms of convergent sequences. For convenience we shall 
introduce further terminology. 

35 B.l. Definition. A sequential relation is a convergence relation the domain 
of which consists of sequences. A sequential determining relation is a determining 
convergence relation which is simultaneously a sequential relation. The sequential 
convergence class of a space 3P is the class (in fact a set) of all pairs <S, x) such that S 
is a sequence converging to x in 3?. A sequential convergence class is the sequential 
convergence class of a space. Finally, a sequential structure is a sequential relation ^ 
satisfying the following three conditions: 

(a) If <S, x) e <€, then ES c 
(b) If x e Etf and S is a constant sequence {x | n e N}, then <S, x) e <6. 
(c) If <S, x) e and N is a subsequence of S, then <IV, x> e 

35 B.2. Theorem. Every sequential convergence class is a sequential structure, 
and every sequential structure is a sequential determining relation. 

Proof. The first assertion is evident and the second one follows from 35 A.8. 

35 B.3. Theorem. Let u be a closure for a set P and let be the sequential con-
vergence class of the space <P, u>. There exists a closure v for P such that <€ is a 
sequential determining relation for <P, v>. The closure v is the finest closure such 
that S converges to x in <P, v) for each <S, x> e c€, and # is the sequential con-
vergence class of <P, v). 

Proof. By 35 B.2 ^ is a sequential determining relation, say for a space <Q, v). 
Clearly Q = P. If w is any closure for P such that ^ c Lim <P, w>, then the identity 
mapping of <P, r ) onto <P, w> is continuous because ^ is a determining convergence 
relation for <P, u>, and hence w is coarser than v; this proves the second statement. 
Finally, to prove the last statement, notice that tf is contained in the sequential con-
vergence class of <P, d) and, on the other hand, the sequential convergence class of 
<P, u> is contained in that of <P, u>, which is #. 
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35 B.4. Theorem. Every space with a countable local character admits a sequen-
tial determining relation, in particular, every semi-pseudometrizable space admits 
a sequential determining relation. 

Proof. Suppose that x belongs to the closure of a set X and {U„ \ n e N} is a local 
base at x. Thus {AT n U„ | n e N} is a filter base and we can choose a sequence 
{x„} so that x„ e n Uk | k ^ n}. The sequence {x„} ranges in X and converges 
to x. 

The following example shows that the converse of this theorem is not true, that is, 
there exists a space with an uncountable local character which admits a sequential 
determining relation. 

35 B.5. Example. Let P be a set consisting of all points of Q and a further point x. 
Let us define a closure operation u for P such that the space Q is a subspace of <P, u> 
and x e uX if and only if either x e X or the closure of X f) Q in the space R inter-
sects R — Q. Finally, let # be the sequential convergence class of the space <P, u>. 
It can be verified that 

(a) <P, m> is a semi-separated topological space; 
(b) <P, u) is not separated because the closure of each neighborhood of each 

point of Q contains x; 
(c) <P, m> is of a countable local character at each point of Q but not at x; 
(d) & is determining convergence relation for <P, u>; 
(e) <6 is single-valued. 
The verification of all assertions, perhaps except of the fact that <P, m) is not of 

a countable local character at x, is straightforward and may be left to the reader. 
The uncountability of the local character at x will follow from Theorem 35 B.12 
asserting that a space 9 satisfying conditions (d) and (e) is separated provided that 
it is of a .countable local character. Nevertheless, a direct proof is not difficult. 

Now we shall proceed to the following problem. Given a sequential determining 
relation ^ for a space SP, to find a reasonable description of the sequential convergence 
class of SP in terms of We shall restrict ourselves to the case when SP is semi-
separated, or equivalently, as will be shown, <6 is single-valued at constant nets. 
Under this assumption no form of the condition of diagonalization will be needed, 
and in fact the resulting theorem will follow by a slight modification of the result 
35 A.11 for regularly convergent nets. 

35 B.6. Theorem. Let be a determining sequential structure for a semi-separ-
ated space Then a sequence S in converges to a point x in SP if and only if 
every subsequence N of S has a subsequence M such that <M, x> e 

Proof. If a sequence S fulfils the condition, then S converges to x by 35 A.9. Con-
versely, suppose that S converges to x in 9 and N is a subsequence of S. It follows 
that the sequence N also converges to x in SP. According to 35 A.12, either N 
possesses a constant subsequence or some subsequence of N converges to x regularly. 
In the former case choose a constant subsequence M of N. Since P is semi-separated, 
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Mn = x for each n, and consequently <M, x> e because # is a sequential determin-
ing relation. In the latter case choose a subsequence M of N which regularly converges 
to x. The point x belongs to EM# — EM, and therefore there exists a pair <M', x> 
in <6 such that EM' c EM. Since M converges regularly to x, one can easily construct 
a subsequence M" of both M' and M. Since # is a sequential structure, <M", x) 6 <€. 
Clearly M" is a subsequence of N. 

The fact the a space SP admitting a sequential determining relation # is semi-
separated can be expressed in terms of as the proposition which follows asserts; 
this will enable us to restate the foregoing theorem without any reference to the 
space SP. 

35B.7. Let <6 be a sequential determining relation for a space SP. In order that 
0 be semi-separated it is necessary and sufficient that be single-valued at each 
constant sequence. 

Proof. The space SP is semi-separated if and only if y e (x) implies y = x. On 
the other hand, for each x in SP there exists exactly one sequence ranging in (x), 
say S, and consequently, if y belongs to the closure of (x) then <S, _y> e <€. The pro-
position follows. 

By virtue of 35 B.7, Theorem 35 B.6 can be restated as follows. 

35 B.8. Theorem. Let us suppose that is a sequential structure, and let Ql be 
the smallest sequential convergence class containing (that is, Q) is the sequential 
convergence class of the space determined by (ê). If <€ is single-valued at each 
constant sequence, then <S, x> e S> if and only if S is a sequence ranging in E<6 
and each subsequence N of S possesses a subsequence M such that <M, x ) e <6. 

35 B.9. Theorem. The following conditions are necessary and sufficient for 
a sequential relation to be the sequential convergence class of a semi-separated 
space: 

(a) is a sequential structure single-valued at constant sequences. 
(b) If S is a sequence in E<ë, x e E<ê and <S, x> £ <6, then there exists a subse-

quence N of S such that <M, x ) e for no subsequence M of N. 
Proof. I. First suppose that % is the sequential convergence class of a semi-

separated space SP. Then condition (a) follows from 35 B.2 and 35 B.7, and condition 
(b) follows from 15 B.21. — II. Now suppose that # fulfils the conditions. By (a) 
the sequential relation ^ is a sequential determining relation for a space SP which is 
semi-separated by 35 B.7. By 35 B.8 condition (b) implies that # is the sequential 
convergence class of SP. 

We know that a closure space is semi-separated provided that it admits a sequential 
determining relation which is single-valued at constant sequences and, on the other 
hand, a space is separated provided that its convergence class is single-valued. It is 
natural to ask whether a space is separated provided that it admits a single-valued 
determining convergence relation, and if not, whether a space is separated provided 
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that it admits a single-valued sequential determining relation. The answer is in the 
negative. Indeed, the sequential class of the space <P, u> in 35 B.5 is a single-valued 
determining convergence relation for <P, u) but (P, u> is not separated. It should be 
noted that every space admits a single-valued determining convergence relation. 

35 B.10. Definition. An L-space is a space SP the sequential convergence class 
of which is a single-valued determining convergence relation for SP. An L-structure 
is a single-valued sequential structure. 

35 B . l l . Every L-space is semi-separated, but not necessarily separated. 
An important class of separated L-spaces is described in the theorem which follows. 

35 B.12. Every L-space with a countable local character is separated. 

Proof. The proof is similar to that of the fact that a space is separated whenever 
its convergence class is single-valued. Suppose that points x and y are not separated 
and the space is of a countable local character at both points x and y. There exist 
local bases {[/„ | n e N} and [Vn \ n e N} at x and y respectively, and Un n Vm =|= 0 
for each n and m. Since both {Un} and {K„} are filter bases, we can choose a sequence 
{x„} so that x„ e 0{C7, n Vk \ k ^ n, I ^ n} for each n e N. Clearly the sequence 
{xn} converges to both x and y. 

35 B.13. Theorem. The following two conditions are necessary and sufficient 
for a sequential relation to be the sequential convergence class of an L-space: 

(a) is an L-structure. 
(b) If S is a sequence ranging in x e and <S, x> £ , then there exists 

a subsequence N of S such that <M, x> e <6 for no subsequence M of N. 

Proof. The conditions are sufficient by 35 B.9. The necessity is obvious. 

35 B.14. Theorem. A space 0 is an L-space if and only if it admits a determining 
L-structure. 

Proof. The necessity is obvious. We shall prove the sufficiency. Suppose that an 
L-structure is a determining convergence relation for a space SP. We must show that 
each sequence S in SP possesses at most one limit point. Suppose that x and y are 
limit points of a sequence S. We shall prove x = y. It is enough to find a subsequence 
M of S such that <M, x) e and <M, _y> e ^ because # is single-valued. First notice 
that SP is semi-separated, by 35 B.7. Now, since S converges to x, it follows from 
35 B.6 that there exists a subsequence N of S such that x> 6 <€. Since S converges 
to y, N also converges to y. Applying once more 35 B.6 we obtain a subsequence M 
of N such that <M, y} e (€. But ^ is a sequential structure, and hence <M, x) e rS 
because <JV, x) 6 # and M is a subsequence of N. 

It is to be noted that "L-structure" cannot be replaced by "sequential relation" 
in the foregoing theorem. The corresponding example is given in 35 B.17. 

35 B.15. Definition. We shall say that a net N converges strictly to a point x in 
a space SP if it converges to x in SP and no y e — (x) is a cluster point of N, that 
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is, if it is eventually in each neighborhood of x and each point y #= x has a neighbor-
hood Fsuch that N is eventually in — V. 

35 B.16. In a separated space every convergent net is strictly convergent. In an 
L-space every convergent sequence is strictly convergent. 

Proof. I. Suppo.se that a net N converges to a point x in a separated space SP and 
ye \SP\ — (x). There exist neighborhoods U and V of x and y such that U n V = 0. 
Since N converges to x, N is eventually in U <=• P — V. — II. Now suppose that 
a sequence S converges to x in an L-space 3P and y e\SP\ — (x) is a cluster point of S. 
Since SP is semi-separated, \SP\ — (j>) is a neighborhood of x and hence S is eventually 
in \3P\ — (j>), say n ^ n0 implies that S„ + y. Consider the set X of all S„, n ^ n0. 
Since y is a cluster point of S, y belongs to the closure of X in dP. Thus we can choose 
a sequence N ranging in X and converging to y. Since ye \3P\ — X and SP is semi-
separated, the sequence N contains no constant subsequence. Therefore we can con-
struct a common subsequence M of both S and N. This sequence M must converge 
to both x and y, which contradicts our assumption that SP is an L-space. 

The following examples show that the assumption 3P is separated and SP is an 
L-space are essential in the foregoing theorem. 

35 B.17. Examples, (a) Let P be the set consisting of all natural numbers and 
two further points xx and x2. Let us define a closure operation u for the set P so that 
N is an open discrete subspace of <P, u> and xf e uX if and only if xf e X or X n N 
is infinite. It is easily shown that 

(1) <P, u> is a semi-separated space. 
(2) The sequential convergence class of <P, u> is a determining convergence 

relation for <P, u>. 
(3) If a sequence S ranging in N converges to xy, then it converges to x2 as well. 
(b) Let P be the set consisting of all points of the ultrafilter space /¡N (see 14B.12) 

and a further point x. Define a closure u for P so that ¡} N is an open subspace 
of P and x belongs to the closure of a set X if and only if either x e X or X contains 
an infinite number of elements of N. It is easy to show that 

(1) <P, u> is a semi-separated space. 
(2) A sequence S in P is convergent if and only if either it is eventually constant 

or it converges to x. 
(3) Any sequence S in <P, u> is either eventually constant or it has an infinite 

number of cluster points. 
(4) Only the eventually constant sequences converge strictly. 

C. SEQUENTIAL MODIFICATION 

Now we proceed to an investigation of properties of the class of all spaces admitting 
a sequential determining relation and the class of all L-spaces. For convenience we 
shall introduce further terminology. 
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35 C.l. Definition. An S-space is a closure space 9 such that some sequential 
relation is a determining relation for An S-closure is the closure structure of some 
S-space. The ordered class of all S-closures will be denoted by S. If P is a set then 
S(P) denotes the ordered set of all S-closures for P. The class of all S-spaces will also 
be denoted by S. The ordered class of all L-closures will be denoted by L, and L(P) 
will denote the ordered set of all L-closures for P. The letter L also denotes the class 
of all L-spaces. 

By 35 B.4 every space with a countable local character is an S-space. By 35 B.5 the 
local character of an S-space need not be countable. Recall that an L-space is an 
S-space * such that the sequential convergence class of * is single-valued (35 B.10). 

35 C.2. A closure space * is an S-space if and only if the sequential convergence 
class of 8? is a determining convergence relation for &Next, a mapping f of an 
S-space 2. into a closure space 0* is continuous if and only if f o S converges to fx 
in 9 whenever S is a sequence which converges to x in £t\ in particular, an S-closure v 
is finer than a closure u if and only if the sequential convergence class of v is con-
tained in the sequential convergence class of u. The class S is hereditary. 

35 C.3. Theorem. The class S is inductive-stable and contains all accrete spaces. 

Of course every accrete space is an S-space. The fact that S is inductive-stable will 
be proved in a more general situation. 

35 C.4. Let 0 be a non-void class of directed sets and let K be the class of all the 
spaces * which admit a determining convergence relation <6 such that the ordered 
domains of nets from D<& belong to <9 (thus K = S provided that 6 = (N)J. Then K 
is an inductive-stable class of spaces. 

If * is any space, X c and x s X, then we can choose an < A, e <3 (because 
6 4= 0), and the constant net {a -*• x} ranges in X and converges to x in 8P. Now 
35 C.4 will follow from a somewhat more general result 35 C.6 for which we need the 
important concept of a generating convergence relation. 

35 C.5. Definition. A generating convergence relation for a closure space 
0> = <P, u> is a convergence relation # <= L i m * such that if x e uX — X then 
there exists a <iV, x> e % with N ranging in X. 

Thus a determining convergence relation for a space * is a generating convergence 
relation for 8P. A generating conveigence relation for * need not be a determining 
convergence relation for 8P, e.g. 0 is a generating convergence relation for each dis-
crete space. This example shows that a generating convergence relation for a space * 
does not determine 

35 C.6. Suppose that a space 0> = <P, u> is inductively generated by a family 
of mappings { f a | a e A} and {*£„} is a family such that is a generating con-
vergence relation for D*fafor each a in A. Then the class of all </a 0 N,fax), 
a e A, <N, x> e is a generating convergence relation for 
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Proof. Clearly # c Lim 2?. Assuming y euY — Y we can pick an a in A and x 
in D/a such that fax = y and x belongs to the closure o f f ~ X[Y] in D*/0(by the de-
scription 33 A.4 of inductively generated closures). Since eia is a generating con-
vergence relation for D*fa we can pick <N, x> in such that N ranges in /^ ' [Y] -
Clearly fa o N ranges in Y. 

According to 33 C.11, Theorem 35 C.3 implies the following proposition. 

35 C.7. Let P be a set. Then 

(a) For each u in C(P) there exists the lower modification of u in S(P). 

(b) The ordered set S(P) is order-complete and contains the discrete and the 
accrete closure for P. 

(c) S (P) is completely join-stable and completely join-preserving in C (P) . 

35 C.8. Definition. The lower modification of a closure u in S will be termed the 
sequential modification of u and will be denoted by <ru. The sequential modification 
of a closure space 2P = <P, u), denoted by <s2P, is defined to be the space <P, <ru>. 
The letter a will be used to denote the relation {« au | u e C} as well as the relation 
{0> -v <s0> | & e C}. 

Since the class S is inductive-stable, by 35 D.8 (or ex 7) the sequential modification 
of a closure operation can be characterized as follows. 

35 C.9. Let u be a closure for a set P. The sequential modification of u is the 
unique closure v for P which satisfies the following condition: 

A mapping f of an S -space into <P, u> is continuous if and only if the mapping 
f : D* / -* <P, v) is continuous. 

35 C.10. The relation {2P 2 | <s2P = <J3} is an equivalence on the class of all 
closure spaces, and = a2 if and only if the sequential convergence classes of 0 
and 2 coincide. In particular, for every space 2? the sequential modification of 0 
is the unique S-space 2 such that the sequential convergence classes of 2P and 2 
coincide. 

Proof. Clearly it will be sufficient to prove the last statement. Let be the se-
quential convergence class of a space By 35 B.3, is a determining convergence 
relation for a space 2 which is an S-space by definition, and the identity mapping 
of 2 into 2P is continuous because ^ cz Lim 2?. Evidently # is the sequential con-
vergence class of 2. If 2ft, is an S-space such that the identity mapping of 2ft onto 2P is 
continuous, then the sequential convergence class 22) of is contained in Lim 
and hence in which implies that the identity mapping 2ft onto 2 is continuous 
because 2 is an S-space. Thus 2 = <s2P. The uniqueness is evident. 

Remark. Notice that the proof of 35 C.10 does not depend on the results 35 C.3 — 
35 C.9. In fact we have given an alternate proof of the existence of sequential modifi-
cation and hence a new proof of 35 C.7 (but not a new proof of 35 C.9). 

The following example shows that the class S is not meet-preserving in C. 

42—Topological Spaces 
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35 C.ll. Example. Let P be the ordered set of all ordinals less than or equal to 
the first uncountable ordinal <xtu u be the order closure for P, and let # be the se-
quential convergence class of <P, u). For each ordinal a. < co1 let ux be the finest clo-
sure for P coarser than u and such that the subspace of all a ^ a is an accrete sub-
space of <P, «„>. One can easily show that 

(a) u is the infimum of {«„ | a < c u j (taken in C(P)); 
(b) each closure ux is of a countable local character; 
(c) the sequential convergence class (6a of <P„, ua} consists of all pairs from 

and all pairs (N, x> such that x ^ a and each ¡3 < a is an eventual strict lower bound 
of N; 

(d) <€ = n{<?« | « < ffli}; 
(e) the closure v for which ^ is a determining convergence class, is the infimum 

of {u„} in S(P) and simultaneously it is the lower modification of u in S(P), and con-
sequently v is finer than u; 

(f) the closure u does not belong to S(P) (no sequence ranging in P — (a^) 
converges to ajx in <P, u>, and hence co1 is isolated in <P, i>>), which shows that v is 
strictly finer than u. Consequently, u has no upper modification in S(P). 

Now we shall give a rather interesting result. First let us recall that each closure has 
an upper modification in the class of all topological closures (because IC is projective-
stable), and a closure need not possess a lower modification in tC (because XC is 
not join-stable in C), and moreover a closure is topological provided it has a lower 
modification in tC (31 ex. 3). On the other hand, there exists a closure which is not 
uniformizable but has a lower modification in UC. 

35 C.12. Theorem. If a closure operation has an upper modification in S, then 
it is an S-closure. 

Proof. Let u be a closure for P having an upper modification vt in S(P). Consider 
also its lower modification v, and denote by and <0, the sequential convergence 
classes of vt and v respectively. By 35 C.10, is also the sequential convergence class 
of w. Suppose that vy 4= u. We shall derive a contradiction by constructing a v2 e S(P) 
coarser than u and strictly finer than vv Clearly also vt + v and hence there exists 
a subset X of P and an xe P such that .v e v^X but x $ vX. Choose a sequence S 
ianging in X and converging to x in <P, v1). Clearly <S, x) $ In consequence, 
there exists a subsequence N of S such that <M, x) e # for no subsequence M of N. 
Since # is also the sequential convergence class of <P, u>, no subsequence M of N 
converges to x in <P, w>, in particular, N does not converge to x in <P, u>. Therefore 
there exists a neighborhood U of x in <P, u) such that N is not eventually in U, and 
hence, some subsequence M of N ranges in P — U. Remove from all pairs x> 
such that R is a subsequence of M and denote the resulting set by c€2. Obviously 

3 ' s a sequential structure and the closure v2, for which is a determining 
convergence relation, belongs to S(P) and is strictly finer than (because c 

4= #!). On the other hand v2 is coarser than u. We shall prove that y e uY — Y 
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implies that y e v2Y. If y 4= x, then evidently y e vxYif and only if y e v2Y, and there-
fore y e V2Y because VT is coarser than u and hence y E VT Y. If y = x, then clearly 
x e u(Y — EM), hence x e V^Y — EM) which implies XEV2(Y — EM) because the 
relativization of v2 to P — EM coincides with the relativization of vt to P — EM. 
The proof is complete. 

Alternate proof. Clearly any quasi-discrete closure is an S-closure. By 31 D.3 
every closure is a greatest lower bound of quasi-discrete closures. Hence vt = u. 

By 35 C.11 or 35 C.12 the class S is not completely meet-stable in C. Now we shall 
prove that the class S is not meet-stable in C. 

35 C.13. There exist L-closures u and v for a countable set P such that the in-
fimum w of u and v is not an S-closure and the sequential modification of w is the 
discrete closure for P, i.e. the infimum of u and v in S (P) is the discrete closure. 
The space <P, w} (and hence both spaces <P, u> and <P, u ) ) can have the following 
property: no two points are separated in <P, w>, that is, any neighborhood of any 
point is dense in <P, w>. Consequently, no point of <P, u> or <P, r> is of a countable 
local character. 

Both spaces will be constructed by the same method (related to that used in 
35 B.5). 

(a) Let P be a countable dense subset of the space R of reals and let {A"x | x e P } 
be a disjoint family of dense subsets of R such that PnXx = 0 for each x (such P 
and Xx can be chosen by 22 ex. 7). Let us define a closure operation u for P as 
follows: y euY if and only if either y eY or the closure of Y in R intersects the 
set Xy. It is easily seen that u is indeed a closure for the set P. 

(a) A subset U of P is a neighborhood of a point y in <P, u> if and only if y eU 
and U ZD P n G for some open set G in R containing Xy (thus G is dense in R j . 

Indeed, if U fulfils the condition then clearly y $ u(P — U); and conversely, if 
y $ u(P — U) then y eU and the closure F of P — U in R does not intersect the 
Xy and consequently we can put G = R — F. From (a) we will derive: 

(P) If {Ya | a e A} is a finite family of subsets of P such that each Ya is a neighbor-
hood of at least one point, then the intersection Yof {¥"„} is an infinite set. 

Indeed, let Ya be a neighborhood of ya in <P, w> and let Ga => Xya be an open 
subset of R such that P n G . c Ya. Since Xya is dense in R for each a, each Ga is 
also dense, and R being a topological space and Ga being open, the intersection G 
of {Ga | a e A} is also an open dense subset of R. Clearly P n G c Y. Since P is 
dense in R, P n G is an open dense subset of the subspace <P, t>> of R. But <P, vy 
is infinite and semi-separated and hence the set P n G is infinite. 

(y) NO two points of <P, w> are separated (see (P)J. 

(8) If a sequences converges to a point 3' in <P, u), then the set Z of all accumula-
tion points of S in the space R is non-void and is contained in the set (>>) u Xy. 

First we shall prove that Z c (y) u Xy. Let z be any accumulation point of S in 

42* 
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R; there exists a subsequence N of S converging to z in R. Moreover, N can be chosen 
constant or one-to-one. If N is constant, then obviously Nn = z for each n and con-
sequently z = If N is one-to-one, then z is the unique accumulation point in R 
of the set Y of all N„. On the other hand, since S converges to y in <P, u>, the se-
quence N also converges to y in <P, u>, and consequently y euYn for each n 
where Yn is the set of all Nk, n ^ k. Since N is one-to-one, there exists an n so that 
y i Yn. Since y euY„, the closure of Y„ in R must intersect the set Xy. But the closure 
of Y„ in R is contained in that of Y which is contained in F u (z) c P u (z). Since 
P n Xy = 0, z e Xy; this completes the proof of the fact Z c (j>) u Xy. 

It remains to show that Z 4= 0. Suppose that Z = 0. Then the set Yof all S„, n e N, 
is discrete. Consider the sequence { Y„} where Y„ is the set of all Sk, n ^ k. Since 
S converges to y in <P, u> we have y e uY„ for each n. The closure of Y„ in R is 
contained in that of Y in R, which equals Y since Y is discrete in R. But 7 c P c 
c R — Xy and consequently, by definition of u, y e Y„. But this implies that y is 
an accumulation point of S in R, which contradicts our assumption Z = 0. 

(E) Suppose that a sequence S converges to a point y in <P, U> and y is the only 
cluster point of S in the space R. Then S„ = y for sufficiently large n. 

Proof. I. Consider the sequence {Y„} where Yn is the set of all Sk, k ^ n. Since y is 
the unique accumulation point of S in R, the closure of Yn in R is Y„ u for each n. 
Since S converges to y in <P, u) we have y suY„ for each n, and hence y e Yn for 
each n because (Y„ u (y)) n Xy = 0. Thus S frequently equals y. 

II. If N is any subsequence of S, then N converges to y in <P, u) as well and by 
our assumption y is the unique accumulation point of N in R. By the first part of the 
proof the sequence N frequently equals y. 

III. By II every subsequence of S frequently equals y. By a simple argument the 
reader shows that S eventually equals y. 

(t|) <p, U} is an L-space. 
By (5) the sequential convergence class # of <P, u) is single-valued. It remains 

to show that # is a determining convergence relation of <P, u). Suppose y e uY — Y. 
By definition of u the closure of Yin R intersects Xy, and consequently we can choose 
a sequence S ranging in Y and converging to a point of Xr It is easily seen that S 
converges to y in <P, m>. 

(b) Let us choose a countable dense subset P of R and disjoint families {Xy | y e P} 
and {Zj, | y e P) of dense subsets of R such that P n Xy = Q, P r\Zy = 0 and 
Xyi n Zyi = 0 for each y, and y2 in P. Let u be the closure for P constructed in (a) 
and let v be the closure for P constructed in (a) with Xy replaced by Zy. From the 
assertions (8) and (e) of (a) it follows that the infimum of u and v in S(P) is the discrete 
closure. Indeed, if a sequence S converges to a point y in both <P, w) and <P, u> 
then the point y is the unique cluster point of S in the space R of reals by (5), and by 
virtue of (e) the sequence S eventually equals y. On the other hand, by virtue of (p) 
the infimum w of u and v in C(P) is not the discrete closure for P. It is sufficient to show 
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that no two points of <P, w> are separated in <P, w> and to prove this it will suffice 
to show that any neighborhood of every point contains a set of the form G n P , 
where G is an open dense set in the space R. Indeed, if Gx and G2 are open and dense 
in R, then Gt n G2 is also open and dense in R, and hence, P being dense in R, 
(Gt n P) n (G2 n P) = Gt n G2 n P * <b. Let y be any point of <P, w>. The col-
lection "W of all sets of the form U nV,U and V being neighborhoods of y in <P, u> 
and <P, u> respectively, is a local base at y in <P, w>. Given U and V, by (a) we can 
choose open dense sets Gt and G2 in R such that Gt n P c U and G2 n P a V. 
Put G = Gi n G2. The set G is open and dense in R, and clearly G n P U n V. 

Remark. Choose a point z in P. Consider the closure u t such that P — (z) is 
discrete and the w ̂ neighborhoods and «-neighborhoods coincide, and also the closure 
vt obtained similarly from v. If wx = inf (ulf vt), then wx is not discrete and the 
S-modification of vvt is discrete. Of course, Mj and are S-closures. Since z is the 
unique cluster point of u t as well as of wl5 both spaces <P, u ty and <P, t^) are para-
compact. It should be noted that a direct construction of u t and is essentially 
simpler than that of u and v. 

35 C.14. Corollary. The product of two L-spaces need not be an S-space. 

Proof . Consider the product * = <P, w> x <P, t>) where u and v are the closures 
constructed in 35 C.13. The mapping / = {x ->• <x, x>} : <P, inf (u, v)) -» * is an 
embedding and D*/ is not an S-space by 35 C.13. Therefore the subspace E/ of * 
is not an S-space and hence * is not an S-space because the class S is hereditary. 

The infimum of two L-closures need not be an S-closure. On the other hand the 
following proposition follows immediately from the description of neighborhoods 
relative to the infimum of a family of closures. 

35 C.15. The greatest lower bound of a countable family of closures of countable 
local character is a closure of a countable local character, in particular, an S-clo-
sure. 

Now we proceed to an examination of the class L. First we shall state trivialities. 

35 C.16. The class L of all L-closures is down-saturated in the class S. The class 
of all L-spaces is hereditary and closed under sums. 

By definition an L-space is an S-space whose sequential convergence class is single-
valued. Remember that a closure space * is separated if and only if the convergence 
class of * is single-valued. Thus L-spaces are characterized among all S-spaces 
similarly as separated spaces among all closure spaces. It turns out that L-spaces 
have properties similar to separated spaces, e.g. 35 B.16. On the other hand, in some 
points the properties are rather different. E.g. we know that the supremum of a mono-
tone family of separated closures need not be a separated closure and a separated 
closure may be finer than no coarse separated closure. For L-closures we shall prove 

35 C.17. Theorem. The supremum of a non-void monotone family of L-closures 
is an L-closure. 
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Proof . Let {u0} be a monotone family in L(P),that is, {ua} is non-void and for each 
at and a2 either uat is finer than u„2 or uai is finer than uB1, and let u be the supremum of 
{ua} in C(P). Since S is completely join-stable, u is an S-closure. Now, to prove that 
u is an L-closure it is enough to show (by 35 B.14) that there exists a determining 
L-structure # for <P, u>, that is, a single-valued sequential convergence structure 
for <P, «). Let <<o be the union of {#„} where <6a is the sequential convergence class 
of <P, «„> for each a. Evidently ^ is a determining sequential structure for <P, «>. 
The fact that # is single-valued follows from the monotonicity of {«„}. First notice 
that the family {&a} is also monotone (relative to the inclusion); now if (N, x), 
<N, j>> e then both <N, x> and <N, y} belong to some and since is single-
valued, we obtain x = y. 

35 C.18. Corollary. For any L-closure u there exists a maximal L-closure coarser 
than u, i.e. an L-closure v such that v is coarser than u and that if an L-closure 
w is coarser than v, then w = v. 

35 C.19. A closure u is said be a coarse L-closure if u is an L-closure and each 
L-closure coarser than u coincides with u. 

The class of all coarse L-closures will be studied in the exercises. It is to be noted 
that the supremum of two L-closures need not be an L-closure. For example, consider 
the space <P, u} from 35 B.17 (a) and let w; be the closure for P obtained from u by 
declaring the set (x() to be open. Obviously both u1 and u2 are (separated) L-closures, 
but the supremum of Uj and u2 is the closure u which is not an L-closure. This example 
also shows that there exists no coarsest L-closure finer than u. One can show that, 
more generally, a closure u for a set P admits a lower modification in L(P) if and 
only if its sequential modification is an L-closure. 

In conclusion we shall introduce three important classes of L-spaces the properties 
of which will be discussed in the exercises. 

35 C.20. (a) Sequent ia l convergence closure for an ordered set <P, 
In 15 B.16 we defined the order-limit of a net N in <P, ^ ) which was denoted by lim N. 
The set 92 of all pairs <S, lim S) where S runs over all order-convergent sequences in 
<P, ^ ), is a single-valued sequential convergence structure for <€, i.e. an L-structure 
for P. The L-structure # determines an L-closure for <P, ^ ) which will be called the 
sequential closure for <P, 

(b) Sequent ia l c losure f o r expP. The sequential closure for exp P, where P 
is a set, is defined to be the sequential convergence closure for the ordered set 
<exp P, <= >. 

(c) Sequent ia l c losure for closed subsets of a c losure space. Let & be 
the set of all closed subsets of a space <P, u> and let # be the set of all pairs <S, F} 
such that S is a sequence in & topologically convergent to F. The relation is an 
L-structure for P. The closure determined by W will be called the sequential conver-
gence closure for closed subsets of <P, u) . 
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D. P R O J E C T I V E G E N E R A T I O N IN A GIVEN CLASS 

In subsection 33 B we studied inductive constructions in a given class K of closure 
spaces (Definition 33 B.3), in particular, in a projective-stable class K. The theory 
developed was applied to the inductive construction in the class of all topological 
spaces. Up to present section we have considered no important and interesting 
inductive-stable class which is not projective-stable. The class S is very interesting, 
and possibly important, and it seems to be appropriate for illustrating general 
theorems on projective constructions in an inductive-stable class. 

In what follows let K be a class of closure spaces, L be the class consisting of closure 
structures of spaces of K, X be the relation consisting of all pairs <u, v} such that 
v is the lower modification of u in L, and finally, K = {<P, u> -» <P, Xu}}. 

Notice that the classes K and L were usually denoted by the same symbol, e.g. 
tC denotes both the class of all topological spaces and the class of all topological 
closure operations, the symbols OC, S and L were used similarly, and the relations 
X and K were usually denoted by the same symbol, e.g. x, o, a. 

We want to introduce all definitions without any assumption on K. Nevertheless, 
the main theorems require some of the following additional assumptions on K which 
are fulfilled if K = S: K is inductive-stable, DK = K, K is hereditary. By 33 C.11 
if K is inductive-stable, then DK = K. If K is the class of all semi-separated closures, 
then DK = C but K is not inductive-stable. If K is the class of all locally connected 
spaces, then K is inductive-stable, but it is not hereditary. 

35 D.l. Definition. A closure u for a set P is said to be K-projectively generated 
(or projectively generated in K) by a family of mappings {/„} if {/a} is a projective 
family of mappings for closure spaces with a common domain carrier P or <P, «), 
and u is the coarsest closure such that <P, u} e K and all the mappings/,, : <P, u) -> 
-> E*/0 are continuous; the family {/a : <P, u> —• E*/„} is said to be a K-projective 
generating family for <P, m>. The definitions just stated are carried over to collec-
tions of mappings and to single mappings in a standard manner. A class K t is said 
to be K-projective-stable or projective-stable in K if c K and the common do-
main carrier of any K-projective generating family with range carriers in K1 belongs 
to Kt. 

From the definition we obtain immediately 

35 D.2. Let fa be a projective family of mappings for closure spaces with a 
common domain carrier <P, u>. Then u is K-projectively generated by the family 
{fa} if and only if u is the lower modification in L of the closure operation 
projectively generated by the family {fa: P -* E*/FL}. 

35 D.3. Corollary. If {/„} is a projective generating family for closure spaces 
with a common domain carrier * and if KSP exists, then {/„ : K$P -* E*/„} is a K-
projective generating family. 
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Of course, a non-void family can K-projectively generate at most one closure oper-
ation. If K = 0, then no family K-projectively generates a closure operation. From 
the existence of projectively generated closures and from 35 D.2 we obtain at once 
the following theorem. 

35 D.4. Theorem. D/C = C (i.e. every closure has a lower modification in L) 
if and only if every projective family for closure spaces K-projectively generates 
a closure operation. 

35 D.5. If / is a projective generating mapping for closure spaces then / : kD*/ 
-v kE*/ need not be a K-projective mapping. For example consider a class K which 
is not inductive-stable but which has the property DK = C, e.g. one may take the 
class of all semi-separated spaces. It is easily seen from 33 C.11 that there exists an in-
ductive generating mapping / such that D*/ e K but E*/ £ K. Thus the closure 
structure of kE*/ is strictly finer than the closure structure of E*/ and consequently 
the mapping / : D*f -> KE*/ is not continuous; now only recall that D*f e K, i.e. 
KD*/ = D*/. Let 2P be the space projectively generated by the mapping/: D/ ->• E*/-
Since / is continuous, the closure structure of KSP is coarser than the closure structure 
of KD*/ = D*/. It follows that the mapping / : k3P KE*/ is not continuous. On 
the other hand, / : KSP E*/ is a K-projective generating mapping. 

35 D.6. Theorem. If K is inductive-stable and if { f a } is a projective generating 
family for closure spaces, then {«/„} is a K-projective generating family, where 
Kfa denotes the transpose of fa to a mapping for spaces from K, i.e. Kf„ = fa : 
: K D * / „ K E * / 0 . 

Proof . Let {/„} be a projective generating family for a closure space 5P. By 35 D.3 
{/„ : KSP E*/,} is a K-projective generating family. Since the closure structure of 
kE*/0 is finer than that of E*fa for each a, to prove that {k/„} is a K-projective gener-
ating family it is sufficient to show that each «/„is continuous. Fix an arbitrary a and 
consider the space 2 inductively generated by the mapping/„: KSP -> | E * / A | . Evidently 
the closure structure of J is finer than that of E*fa and thus finer than that of KE*/ 
because K is inductive-stable and KSP e K; this implies that k/„ is continuous. It 
should be remarked that the main step of the proof consisted in showing that kf 
is continuous whenever / is continuous and K is inductive-stable. 

The following characterization of K-projective generating families of mappings 
in an inductive-stable class is a generalization of Theorem 32 A.10. 

35 D.7. Theorem. Suppose that K is an inductive-stable class of closure spaces. 
Then every projective family of mappings for closure spaces K-projectively gener-
ates a closure operation, and in order that a projective family of mappings for clo-
sure spaces {/„} with a common domain carrier <P, e K be a K-projective gener-
ating family it is necessary and sufficient that a mapping f of a space MeK 
into <P, u> be continuous if and only if all the mappings faof are continuous. 

We shall need the following characterization of the lower modification in an in-
ductive-stable class. 
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35 D.8. Theorem. Let u be a closure for a set P and let v be a closure from L n 
nC(P) such that the following condition is fulfilled: 

(*) A mapping f : 2 -»• <P, w>, 2eK, is continuous if and only if the mapping 
g = / : 2 -* <P, is continuous. 

Then v is the lower modification of u in L, i.e. v = Xu. Conversely, if K is in-
ductive-stable, i.e. indX = K, then the lower modification in L of any closure u 
for P is the unique closure v satisfying condition (*). 

Proof. I. Assume that a closure vsL fulfils (*). Since J : <P, u> <P, u) is 
continuous and v e L, by (*) the mapping J : <P, u> <P, w) is continuous and hence 
v is finer than u. If w e L is finer than u, then the mapping J : <P, w> -> <P, «> is 
continuous, and by (*) the mapping J : <P, w> ->• <P, v) is continuous, i.e. v is 
coarser than w. Thus v = Xu. 

II. Suppose that K is inductive-stable. By 33 C.11 each closure has a lower 
modification in L, i.e. DA = C. Given a closure u for P we shall prove that v = Xu 
fulfils condition (*). If g is continuous, then / is continuous because v is finer than u. 
Conversely, assuming that / is continuous, let us consider the closure w inductively 
generated by the mapping / : 2 -»• P. Thus w is finer than u, and K being inductive-
stable, w belongs to L. Consequently w is finer than v = Xu. Since / : 2 -* <P, w> 
is continuous, g is also continuous. 

35 D.9. Proof of 35 D.7. Let us consider the closure u projectively generated by 
the family {/„ : P -»• E * / 0 } . Since K is inductive-stable, by 33 C.11 each closure has 
a lower modification in L (i.e. DA = C). By 35 D.3 the closure v = Xu is JC-project-
ively generated by the family { f a : P E * / „ } - By 32 A.10 a mapping / into <P, u> is 
continuous if and only if all the mappings fa o / are continuous. By 35 D.8 a mapping/ 
of a space of K into <P, w> is continuous if and only if the mapping / : D*/ <P, i>> 
is continuous. Combining these two results we find that the conditions is necessary. 
It is evident that the condition is sufficient. 

35 D.10. Remark. Proposition 35 D.8 can be extended as follows. A class K 
is inductive-stable if and only if DA = C and u e C(P), v = Xu imply (*). Indeed, 
if K is not inductive-stable and if DA = C, then there exists an inductive generating 
mapping / such that D*/ e K, E*/ £ K; clearly JCE*/ =|= E*/. Thus the mapping / is 
continuous but the mapping / : D*/ -> JCE*/ is not continuous, which shows that 
condition (*) is not fulfilled. It is evident that Theorem 35 D.6 can be proved in 
a similar way. 

Now we shall prove that 35 D.7 implies the associativity of projective construction 
in an inductive-stable class K. Notice that Theorem 32 A.9 is obtained for K = C. 

35 D . l l . Theorem on associativity. Suppose that K is an inductive-stable class 
of closure spaces and {/„ | a e A} is a projective family for closure spaces with com-
mon domain carrier For each a let E *fa be K-projectively generated by a family 
{gab | b e Ba}. Then { / , } is a K-projective generating family if and only if the family 
\gab o fd \ a E A,b e Ba) is a K-projective generating family. 
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Proof. Both the projective families in question have the same common domain 
carrier. By 35 D.7 the statement that {/„} or {/„ o gab] is a K-projective generating 
family is equivalent to the statement that if / is a mapping of a space of K into SP, 
then / is continuous if and only if all the mappings faofoi (gab °/0) o / respectively, 
are continuous. Since each {gab | b e Ba), a e A, is a K-projective generating family, 
again by 35 D.7, all gab o (/„ of), b e Ba, are continuous if and only if the mapping 
fa o/is continuous. Since gab 0 ( f a of) = (gab 0fa) o / the two statements are equivalent. 

Corollary. If K is inductive-stable then a projective family { f a } is a K-projective 
generating family if and only if {/„ : D*/„ -> KE*/J is such. 

Remark. Neither "if" nor "only if" hold in 35 D.11 whenever Dk = C and K is 
not inductive-stable. Indeed, under these assumptions there exists a projective gener-
ating mapping / of a space SP into a space 2 such that the mapping k/ = / : KSP -* K2 
is not continuous (by 35 D.5). Now J : k2 2 is a K-projective generating mapping, 
the composite (J : K2 2) O icf = f : KSP -> 2 is a K-projective generating mapping, 
but Kf is not a K-projective generating mapping, which shows that the "if" is not 
true. Let us consider the space SR. which is K-projectively generated by the mapping 
/ : \SP\ -* K2; thus / : (ft -> K2 and J : K2 -» 2 are ^projective generating mappings 
but their composite is not a K-projective generating mapping because SP, =|= KSP 
(remember that / : K3P K2 is not continuous). 

A subspace of closure space & can be defined to be a space 2 such that the identity 
mapping of 2 into 3P is a projective generating mapping (in particular 12\ <=• 

35 D.12. Definition. A K-subspace of a space SP or a subspace of 3P in K is a space 
2 such that \2\ <= \&\ and the identity mapping of 2 into 2P is a K-projective gener-
ating mapping. 

35 D.13. If 2 is a subspace of a space SP, then K2 is a K-subspace of SP. If K is 
inductive-stable and 2 is a subspace of DP, then K2 is a K-subspace of the space KSP. 

Proof. If J : 2 -> & is a projective generating mapping, then J : K2 2P is a 
K-projective generating mapping (by 35 D.3), and if, in addition, K is inductive-
stable, J : K2 -> KSP is a K-projective generating mapping (by 35 D.6). 

If 2 is a subspace of a space 0> then K2 need not be a subspace of KSP even if K is 
inductive-stable. It is sufficient to show that a subspace of a space of K need not 
belong to K even if K is inductive-stable; e.g. the class of all locally connected spaces 
is inductive-stable but not hereditary. 

35 D.14. If K is hereditary and 8P eK then 2 is a subspace of SP if and only if 
2 is a K-subspace of — Evident. 

35 D.15. Corollary. Let K be a hereditary inductive-stable class. If 2 is a subspace 
of SP, then K2 is a subspace of KSP. 

One can define a K-restriction of a mapping f for closure spaces to be a mapping 
F\SP-*2 such that SP is a K-subspace of D*/ and 2 is a K-subspace of E*/. We 
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leave the discussion of K-restrictions to the exercises. Here we shall only prove the 
following generalization of theorem 32 A.13 on commutativity of projective construc-
tions with the operation of taking subspaces. 

35 D.16. If K is inductive-stable, {/„} is a K-projective generating family for 3P, 
and 2 is a K-subspace of 2P, then {/„ : 2 -> E*fa] is a K-projective generating 

family for 2. 
Proof. Notice that 

{ / . : 2^ E*fa] = f a 0 ( i : 2 ^ 9 ) 

and J : 2 -*• is a K-projective generating mapping, and apply 35 D.11. 
Recall that the product of a family {*„} of closure spaces is the set P = 

= n{|*„|} endowed with the closure operation projectively generated by the family 

35 D.17. Definition. The K-product of a family {*„} of closure spaces is the set 
P = n{|*a|} endowed with the closure operation K-projectively generated by the 
family of mappings {prfl : P 

Of course, the K-product of a family need not exist. On the other hand, from 35 D.2 
we obtain immediately the following description of K-products by means of products 
and K. 

35 D.18. Theorem. The K-product of a family {*„} exists if and only if K I l{* a} 
exists. If SP = K n { * a } exists, then SP is the K-product of {*„}. If K is inductive-
stable then the K-product exists and K N{*A} = K N{»C*A}. 

Proof. The second assertion follows from 35 D.11. 
If K is inductive-stable then the K-projective construction can be reduced to con-

struction of K-products and the closure K-projectively generated by a single map-
ping. The K-reduced product, which is needed for this, will not be introduced. 

35 D.19. Theorem. Suppose that K is inductive-stable and {/„} is a projective 
family of mappings with a common domain carrier which is a space. Then 
{/„} is a K-projective generating family if and only if the mapping 

f — {x ^ {fax}} : * ->• k n{E*/a} 

is a K-projective generating mapping. 
Proof. Let 2 be the space projectively generated by the family {/„ : \SP\ -> E*/a}, 

9a = fa & E*/aandlet g be the reduced product of {ga}. By 32 A.12, g is a pro-
jective generating mapping if and only if {ga} is a projective generating family. It 
follows from 35 D.2 that g = f : SP n{E*/a} is a K-projective generating mapping 
if and only if {/„} is a K-projective generating family. It remains to show that / is 
a K-projective generating family if and only if g is such: apply 35 D.11, Corollary. 

Alternate proof. fa = (prfl : k U{E*fa} E*/„) 0f for each a. Apply 35 D.11. 
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35 D.20. E x a m p l e . A K-continuous internal composition is a topologized internal 
composition <cr, u> such that the mapping a of the K-product of <DD<r, u> with 
<DDO-, u> into < D D A , u) is continuous, i.e. the mapping 

G : (Do, X(u x u ) > ->• < D D ( t , w> 

is continuous. A K-group is a topologized group <G, a, m> with continuous inversion 
such that the composition m> is K-continuous. If K = S then we shall speak 
abou t sequentially continuous compositions and sequential groups. If <«7, u> is 
a continuous internal composition, then <cr, u> is K-continuous provided that the 
K-product of u with u exists. If <0-, u> is sequentially continuous and u is an S-closure, 
then <<7, u> is inductively continuous. Indeed, it is easily seen that ind (u x u) is finer 
than a(u x u). For properties of S-groups see the exercises. 

35 D.21. Definition. The K-projective progeny of a class H of spaces is the class 
of all spaces K-projectively generated by a family of mappings with range carriers 
in H. The class H is K-projective-stable if it coincides with its K-projective progeny. 

35 D.22. Theorem. If H2 is the projective progeny of a class H, then the K-pro-
jective progeny Hx of H consists of all spaces K0>,&>eH2, i.e. Hi = k [ H 2 ] . — 35 D.2. 

We wish to describe the K-projective progeny of a given class without any reference 
to the projective progeny. The following concept will be needed. 

35 D.23. Definition. An L-accrete closure for a set P is the greatest L-closure 
for P, i.e. the lower modification in Lof the accrete closure for P. A K-accrete space 
is a space whose closure structure is L-accrete, i.e. a space * is a K-accrete space if 
and only if * = K£L for some accrete space 2L. 

Example. If K is the class of all discrete spaces,thena space * is K-accrete if and 
only if * belongs to K. 

35 D.24. Theorem. Let K be an inductive-stable class and H be any class of 
spaces. Then the K-projective progeny Hl of H consists of all K-accrete spaces 
and all K-subspaces of K-products of the form K(8P X K I l { * a } ) where is a 
K-accrete space and 8PaeH for each a. I f , in addition, K is hereditary, then Hx 

consists of all K-accrete spaces and all subspaces of K-products of the form 
x K n { * a } ) where * is a K-accrete space and 2Pa e H for each a. 

Proof. Let H2 be the K-projective progeny of H. By 32 B.5 H2 consists of all accrete 
spaces and all subspaces of products of the form 0t x n{* a } where * is an accrete 
space and 0>aeH for each a. If K is inductive-stable then X N { * F L } ) = 

= x K n{*„}) (by 35 D.18), and i f / i s a K-projective generating mapping, then 
Kf is a K-projective generating mapping (by 35 D.6). Now the first statement follows 
from 35 D.22. The second statement follows from the first one and from 35 D.15. 

35 D.25. Theorem. Let K be hereditary and inductive-stable. Each of the fol-
lowing two conditions is necessary and sufficient for a space H to be an element of 
the K-projective progeny of (0), where * is a non-void space: 
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(a) 2 is K-projectively generated by a mapping into a cube 
(b) 2 is K-projectively generated by a mapping into 
(c) 2 is a K-subspace of a space of the form 2! x where 2' is an appropriate 

accrete space (which can be chosen so that \2'\ = \2\) and X is an appropriate 
cardinal. 

(d) 2 is a subspace of a space of the form K(2' x where 2' is an appropriate 
K-accrete space (which can be chosen so that \2\ = \2'\) andtf is an appropriate 
cardinal. 

Proof: 35 D.24. 
35 D.26. Theorem. Let K be an inductive-stable class and let Hi be the K-projective 

progeny of a class H. Then Hi is K-projective-stable, in particular, Hl is closed 
under K-products, and K-subspaces of spaces of H1 belong to Hi (i.e. is K-hered-
itary). If H is hereditary, then Hx is also hereditary. 

Proof: 35 D.11, 35 D.13. 

E. S E Q U E N T I A L M O D I F I C A T I O N S 
O F U N I F O R M I Z A B L E SPACES 

Here we shall examine the basic properties of the class consisting of sequential 
modifications of uniformizable spaces, i.e. the class a[uC] which will be denoted by 
<roC. Since i)C is the projective progeny of the space R of reals, by 35 D.22 the class 
cuC is the S-projective progeny of R; thus the theory developed in 35 D applies. 
Since S is hereditary and inductive-stable, from the results of 35 D.22, 24, 25 we obtain 
directly the following assertions. 

35 E. l . Theorem. The class ouC is hereditary and S-projective-stable, in parti-
cular, closed under S-products. — 35 D.26. 

Since every accrete space is an S-space, every S-accrete space is necessarily an 
accrete space. 

35 E.2. Theorem. The following conditions on a space 0* are equivalent: 
(a) 0> is the sequential modification of a uniformizable space. 
(b) 0> is a subspace of a space of the form a (2 x aRN) , where 2 is an appropriate 

accrete space (which can be chosen so that \2\ = and X is an appropriate 
cardinal. 

(c) 0 is the sequential modification of a subspace of 2 x R x where 2 is an ap-
propriate accrete space (which can be chosen so that \SP\ = \2\) and X is an 
appropriate cardinal. 

(d) 0 is S-projectively generated by a mapping into a cube RN. 
(e) 0 is S-projectively generated by a mapping into aR* for some appropriate 

cardinal X. 
Proof . 35 D.25. 
From 35 E.2 (b) we shall derive the following characterization. 
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35 E.3. Theorem. An S-space 8P is the sequential modification of a uniformizable 
space if and only if 3P is projectively generated by a mapping into oRN for some 
appropriate cardinal X. 

Proof. Clearly the conditions imply 35 E.2(e). Conversely, suppose that * belongs 
to <7oC. By 35 E.2(b), there exists an embedding / o f * into a(3 x «iR*) where 3 is an 
accrete space and x is a cardinal. It is sufficient to prove that a(3 x <tRK) = 

= J x ®RX, because then / followed by the projection of 2 x <TRx into <TRn will be 
a projective generating mapping by 32 B.4. To prove the equality it is sufficient to 
show that 3 x trR* is an S-space, i.e. 3 x aRN admits a sequential determining re-
lation, and this will be proved in a more general situation. 

35 E.4. The product of an S-space and an accrete space is an S-space. 
Proof . Let * = 3 x where 3 is an accrete space and * is an S-space. Consider 

the projection % of * into SP. If x belongs to the closure of a set X in 3k, then %x 
belongs to the closure of Jt[X] in 3P, and therefore there exists a sequence {>>„} in 
7t[Z] which converges to %x in 8P (because * is an S-space). Let {x„} be any sequence 
in X such that -KX„ = y„ for each n. Since 3 is an accrete space, the sequence {xn} 
converges to any point z such that {7txn} converges to nz, in particular, {xn} converges 
to x. 

Now we shall give a direct description of spaces which are sequential modifica-
tions of uniformizable spaces. 

35 E.5. Theorem. Each of the following conditions is necessary and sufficient 
for an S-space 8P to be the sequential modification of a uniformizable space: 

(a) There exists a set <6 of functions on * with 0 ^ / ^ 1 for each f in m such 
that a sequence S in 3P converges to a point x in 3P if and only if the sequence 
f o S converges to fx in R for each f e (€. 

(b) If a sequence S in 8? does not converge to a point x e | * | in 3P, then there 
exists a bounded continuous function f on 8? such that the sequence f o S does not 
converge to the point fx in R. 

Proof. I. If (a) is fulfilled, then each function of % is continuous (because 3P is 
an S-space) and therefore (a) implies (b). Next, it is easy to show that (b) implies (a). 
Indeed, assuming (b), take the set of all continuous functions / on * such that 
0 ^ / ^ 1 for each / in c6. If a sequence S converges to x in P, then / o S converges 
to fx in R for each / in because each such/is continuous. If a sequence S in * does 
not converge to x in then f o S does not converge to fx for some / in (by (b)). 
Thus the two conditions are equivalent. 

II. We shall prove that condition (a) is necessary and sufficient. If * is the se-
quential modification of a uniformizable space 3, then |* | = \3\ and a sequence S 
converges to x in * if and only if the sequence S converges to x in 3. Since 3 is uni-
formizable, 3 is projectively generated by the collection of all continuous functions 
on 3 whose values lie between 0 and 1, and hence a sequence S converges to x in 3 
if and only if / 0 S converges to fx in R for each / in <S'. Let # be the collection of all 
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f :0 -* R, / e Clearly condition (a) is fulfilled. Conversely, assuming (a) let us 
consider the space 2 projectively generated by the family of mappings {/ : j0j -> 
-> R | f eft}. The space 2 is uniformizable and a sequence S converges to x in 2 
if and only if the sequence f a S converges to fx in R for each / in (ê. By condition (a) 
a sequence S converges to x in 2 if and only if it converges to x in 0. Since 0 is an 
S-space, 0 is the sequential modification of 2. 

35E.6. If a closure space <P, v) is the sequential modification of a uniformiz-
able space, then <P, v) is the sequential modification of its uniformizable modifi-
cation. 

Proof . The statement was proved, in fact, in the last part of the proof of 35 E.5; 
however, a direct proof may be in place. Suppose that v is the sequential modification 
of a uniformizable closure u. Clearly v is finer than u. Then the uniformizable modi-
fication w of v, which is the finest uniformizable closure coarser than v, is also 
finer than u and consequently aw is finer than au. Since w is coarser than au, aw is 
coarser than a au = au. Thus aw = au. 

Remark. In general, there are many uniformizable closures u such that au = v, 
and moreover a uniformizable S-space 0 may be the sequential modification of 
a uniformizable space 2 ^ 0 . For example let \P , u) be a separated non-discrete 
uniformizable space such that only the eventually constant sequences are convergent 
(for example, one may take the ultrafilter space f]N of an infinite set N), then au is 
the discrete closure for P which is, obviously, uniformizable. 

35 E.7. If 2 is a subspace of a space 0, then a2 is a subspace of a0. If {0aj is 
any family of closure spaces then 

a U{0a} = a Tl{a0a} . 

Proof . The first statement follows from 35 D.15 because S is hereditary and in-
ductive-stable. On the other hand, a direct proof is evident. The second statement 
follows from 35 D.18 because S is inductive-stable. A direct proof is almost evident. 
Indeed, a sequence S converges to x in a Tl{0a} (a Tl{a0a}, respectively) if and only 
if the sequence pra o S converges to pr„ x in 3Pa (in a3Pa, respectively) for each a; on 
the other hand, a sequence S' converges to x' in 3Pa if and only if S' converges to x 
in a3Pa. 

From 35 E.3 we shall derive the following result: 

35E.8. Theorem. The following conditions on a space 3P are equivalent: 
(a) 3P is separated and@ is the sequential modification of a uniformizable space. 
(b) 0* is an L-space and 0 is the sequential modification of a uniformizable 

space. 
(c) 0 is feebly semi-separated and 0 is the sequential modification of a uniform-

izable space. 
(d) 0 is a homeomorph of a subspace of aR N / o r some cardinal K. 
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Proof. Evidently (a) => (b) => (c). The closure structure of <rRN is finer than the 
closure structure of the cube RN which is separated, and therefore each subspace of 
<rRN is separated. Next, the sequential modification of a subspace is the subspace of 
the sequential modification (by 35 E.7) and therefore (d) implies (a). It remains to 
show that (c) implies (d). But thisfollowsfrom.35 E.3 and the following simple lemma. 

35E.9. A projective generating mapping whose domain carrier is feebly semi-
separated is injective and hence an embedding. 

Proof. If fx = fy, then x belongs to the closure of (y) and y belongs to the closure 
of(x). 

Remark. It is interesting to notice that if an L-space * is the sequential modifica-
tion of a uniformizable space 2, then 2 is separated. Indeed, if 2 is not separated, 
then some point x belongs to the closure of a singleton (y) in 2, y 4= x and hence the 
constant sequence {y | n e N} converges to x in 2 and hence in 3P\ this shows that * 
is not an L-space. 

35 E.10. Corollary. The class L n ouC is hereditary and closed under S-products. 
Proof. The class L n <ruC is the intersection of the class of all separated spaces 

and of the class <i«C. 

35 E.l l . In conclusion we shall give an alternate proof of 35 E.3 (which does not 
depend on the results of 35 D). First suppose that h is a projective generating map-
ping of an S-space * into ffRN. 

If a sequence S does not converge to a point x in * then the sequence h o S does not 
converge to hx in <TRn (because h is a projective generating mapping), and therefore 
there exists a projection n of wRN onto one of coordinate spaces such that n o 
o (h o S) does not converge to nhx in R. Put g = % o h. Then g is a continuous function 
on * and g o S does not converge to gx. Now it is easy to construct a bounded con-
tinuous function with this property. Thus condition (b) of 35 E.5 is fulfilled. Converse-
ly, assuming (a) of 35 E.5, let us take the set # from (a) and consider the mapping 
h = {x -y {fx | / e %}} of * into 2 = CTR^. It is evident that a sequence S converges 
to x in * if and only if the sequence h • S converges to hx in 2. Since both 0> and 2 
are S-spaces, h is necessarily a projective generating mapping. 

F. REMARKS AND EXAMPLES 

If <P, u) is an S-space and x e uX, then x e uYfor some countable subset Yof X, 
and hence <P, w> is inductively generated by its countable subspaces (see 33 D.3). 
If <P, u> is an L-space and x e uX — X, then there exists a countable subset Y of X 
such that x is the only cluster point of Yin <P, u>, i.e. <P, m> is inductively generated 
by countable subspaces with only one cluster point in <P, u}, or, equivalently, by 
closed countable subspaces with exactly one cluster point. In this subsection we examine 
the class of all spaces inductively generated by countable subspaces and the class 
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of all spaces <P, u> inductively generated by closed countable subspaces with only 
one cluster point. We begin with several rather general remarks which will enable the 
reader to formulate and prove the results of this subsection in a more general 
situation. 

By 16 ex. 6 a net <JV, ^ ) ranging in a space & converges to a point x of 0 if and 
only if the mapping / defined by g r / = N u ((si, x>) is continuous; here si is the 
filter of all residual sets in DN, si is the unique cluster point of D*/ and (si) u [si] 
is the neighborhood system at si. The theory of convergence can be reduced to the 
theory of inductive generation of spaces by assigning to each 3P, (N, ^ > and x the 
mapping g r / : D*/ -> 0 with/ defined above. 

In agreement with the current approach to similar situations we have implicitely 
assumed sá $ DN; however it may well happen that si e DN. A similar situation 
has occurred in 14 B where PX had been defined, and will also appear in 41 C, where 
a completion of a uniform space is constructed. Here one of the simplest correct 
approaches to such situations will be described. For further possibilities see Remark 
in the following item. 

35 F. 1. Definition. For each set X let XX be the set exp U^{x | x e X, x is a set}. 
It is easily seen that if x e X is a set, then card x < card XX, and hence XX $ X. Now, 
givén an arbitrary directed set si = {A, ^ ), let a. si be the filter a! of all residual 
sets provided that a' $ A and let a si = Xsi x a' otherwise. It follows that a si $ A, 
and E(aj/) = a' if a' e A. Let sp si be the closure space with underlying set \si\ u a si 
such that the point a si, called the ideal point of sp si, has the collection (a si) u [a'] 
for the neighborhood system, while all the other points are isolated. The space sp si 
will be termed the space associated with si. 

Remark. It may be noted that this approach differs from the current one precisely 
in those cases in which the latter is not correct. Next, observe that a. si $ \si\ is the 
only property of asi needed, and therefore a si might be introduced e.g. on the basis 
of the Axiom of Choice. It should also be remarked that there are further very reason-
able approaches. If one resigns from the assumption that \si\ <= |sp si|, X <= \PX\, 
then one can take sp si such that |sp si\ = (a') u E{(x) | x e \si\} with a' an ideal 
point and similarly for fiX. 

First let us notice that 
(a) if Q is a single-valued relation on a directed set <B, -<> ranging in a directed 

set <v4, ^ ) and if / is the mapping of sp <B, -<> into sp (A, ^ ) which assigns 
to each b e B the point gb, and to the ideal point of sp -<> assigns the ideal point 
of sp <A, ^ ), then / is continuous if and only if, for each residual set X in (A, ^ ), 
there exists a residual set Fin <B, -<> such that í?[Y] <= X. 

It follows immediately from (a) that, under the assumptions of (a), 
(b) if / is continuous, then f?[y] is cofinal in <A, ^ ) for each residual set Y in 

<B, <>. 

43—Topological Spaces 
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The mapping / just defined will be termed the mapping of associated spaces as-
sociated with Q. 

For each pair c = <N, x> where N is a net and x is an element, let fe be the single-
valued relation on the underlying set of the space associated with the ordered domain 
of N such that N is a restriction of fc and the value of fc at the ideal point is x. It 
is almost self-evident that 

(c) a net N converges to x in a space * if and only if the mapping f^.x) °f the 
space associated with the ordered domain of N into * is continuous (i.e. the mapping 

f(N,x) '• SP -> * is continuous). 
If M is a generalized subnet of a net N under the relation g and if / is the mapping 

of spaces associated with ordered domains of M and N which is associated with g, 
then /<m,jc) — f{N,x) °f a n d therefore we obtain a new proof of the fact that if N 
converges to x in SP, then M converges to x in SP. Indeed, / : sp DM sp DN is 
always continuous (by (a)); if N converges to x in SP, then f^,x): sp DN -y * is 
continuous (by (c)) and hence f^M.x) SP DM —> * is continuous as the composite 
of two continuous mappings, which implies that M converges to x (again by (c)). 

We know that M may converge to x in a space SP even if N does not converge to x 
in On the other hand, if / is an inductive generating mapping, then f^M,xy '• 
: sp DM -y SP is continuous if and only if f(n,x) : sp DN SP is continuous, and 
therefore, N converges to x in * if and only if M converges to x in SP. It is easy to find 
necessary and sufficient conditions for / to be an inductive generating mapping. 

35 F.l. Let <6 be a generating convergence relation for a space SP, and for each 
c = <N, x) in <6 let gc be the mapping fc : sp DJV -> 9. 

The following result is evident: 
(a) If is a generating convergence relation for SP, then {gc | c e is an indu-

ctive generating family of mappings for SP. 
If {gc | c e is an inductive generating family of mappings for SP, then # need 

not be a generating convergence relation. E.g., if <A, iS> is any directed set, a is 
the ideal point of * = sp <A, ) and N = }A, then f(N,x) = i\<?\ and g^^y = 
= J : * SP. Thus is an inductive generating mapping for SP but, evidently, 
(<iV, a>) need not be a generating convergence relation for SP (e.g. if (A, ^ ) is the 
ordered set of integers). On the other hand it is easily seen that 

(b) If {gc | c e is an inductive generating family for SP, then {gc | c e is a 
generating convergence relation for * provided that the following condition is ful-
filled: If <N, x> e % and M is a subnet of N, then <M, x> e <€. 

Of course, the condition can be replaced by the following weaker condition: If 
(N, x> e <€ and M is a subnet of N, then there exists a subnet M' of M such that 
<M', x> e V. 

35 F.3. Definition. A feeble generating convergence relation for a space SP is a 
convergence relation # such that the closure structure of SP is the finest closure 
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for \3P\ with N converging to x for each x> e <€\ stated in other words, if u is 
a closure for \0>\ coarser than the closure structure of then # c= Lim u>. 

35 F.4. Theorem. A convergence relation # is a feeble generating convergence rela-
tion for 0 if and only if {gc | c e is an inductive generating family of mappings 
for&. 

The proof is very simple and therefore left to the reader. 
35 F.5. Theorem. Let Qi be a non-void class of directed sets and let K be the class 

of all spaces associated with directed sets of S>. Then the inductive progeny of K 
coincides with the class of all spaces admitting a determining relation such that 
the ordered domains of nets from belong to Si. 

Proof. Let K t be the class of all spaces admitting a determining convergence re-
lation # such that the ordered domains of nets of D^ belong to S>. By 35 C.4 the class 
Ki is inductive-stable, i.e. ind Kj_ = K1. By 35 F.2 (a) the class Kt is contained in the 
inductive progeny of K, i.e. Kt c ind K. To prove the inverse inclusion it is sufficient 
to show that K <= Kt. Indeed, K Kt implies ind K c ind Kx (= Kt). We shall 
prove somewhat more (remember that 3) 4= 0). 

35 F.6. If <A, is a directed set, then the space (A', u> associated with <A, 
and also each of its subspaces admits a determining convergence relation <6 such 
that the ordered domain of each net of Dtf is <A, 

Proof. If x e A then the constant net {a -> x | a e A} converges to x in (A', u). 
If x e uX — X, then x is the ideal point of <A', u> and X <= A; since A' — X is not 
a neighborhood of x in <A', u>, X is cofinal in <A, ^ > and we can choose a single-
valued relation N on A ranging in X such that a ^ Na for each a. Clearly the net 
(N, ^ > converges to x in <A', u>. 

35 F.7. Corollary. The class S is the inductive progeny of (2), where 2 is the 
space of ordinals less than a>0 + 1. 

Indeed, M is a homeomorph of the space associated with the ordered set of natural 
numbers. 

35 F.8. Theorem. Let 2 be a class of directed sets and let Kt be the class of all 
spaces admitting a determining convergence relation <6 such that the ordered do-
mains of nets of belong to Then is hereditary. 

Proof. If S) = 0, then Ki is the class of all discrete spaces which is hereditary. 
Assuming S> =1= 0 let us consider the class K consisting of spaces associated with 
directed sets of 3>. By 35 F.6 the subspaces of spaces of K belong to Since = 
= ind K and ind K contains subspaces of spaces of K, ind K is hereditary. 

According to the foregoing results the theory of convergence can be reduced, in 
a certain sense, to the theory of inductive generating families of mappings such that 
the domain carriers are spaces associated with directed sets. Each space associated 
with a directed set has exactly one cluster point. On the other hand, a space with 
exactly one cluster point need not be a homeomorph of a space associated with 

42* 
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a directed set. For example, the local character of a space * associated with a directed 
set is at most card |* | whereas the local character of a space * with one cluster point 
may be exp card |* | , e.g. if X is countable infinite and * is a subspace of jiX such that 

=Xv(x),xtX. 
Now we turn to the proper subject of this subsection. 
By 35 F.7 the class S of all S-spaces is the inductive progeny of (2) where 2 is the 

ordered space of ordinals less than co0 + 1. It is easily seen that 2 is a coarse separated 
space (see definition 31 D. 7). Indeed, the complements of neighborhoods, of a>0 

are finite, and therefore, if u is any separated closure coarser than the closure 
, w>, and \2\ - (a), 
,U) = 2. One can 

structure of 2, then each point a =|= co0 must be isolated in < 2 
a 4= co0, must be a neighborhood of co0 in (\2\, u); thus < 2 
show that every countable coarse separated space is an S-space. On the other hand 
there exists a countable space which is not an S-space. E.g. let * be a subspace of p x 
such that |* | = X u (x), x e (IX — X, where I is a countable infinite set. We 
know that no sequence ranging in X converges to x in * (15 B.7) and hence * is not 
an S-space. Now we shall examine the basic properties of the inductive progeny of 
the class of all countable spaces. 

35 F.9. Definition. A fine non-discrete closure operation is a closure u for a set P 
such that the discrete closure for P is the unique closure for P strictly finer than u. 
A fine non-discrete space is a space whose closure structure is a fine non-discrete 
closure. 

35 F.10. Theorem. Let P be a set. A closure u for P is a fine non-discrete closure 
if and only if <P, u> has exactly one accumulation point, say x, and if is the 
neighborhood system at x, then "f = \1l\ n (P — (x)) is an ultrafilter on P — (x). 

Remark. The subspace P — (x) of <P, u) is discrete and u is separated if and only 
if "V is a free ultrafilter = 0)- If « is not separated, then V is fixed, and if 
(y) = ( \ r , then x e w(z) if and only if z = y. 

Proof. I. First let u be a closure such that a point x is the unique accumulation 
point of <P, w> and the neighborhood system °U at x has the property that "V = 
= [*%] n (P — (x)) is an ultrafilter on P — (x). If ux is a closure finer than u and 

is the neighborhood system at x in <P, Uj), then => and if iTj = n 
n (P — (x)) is a proper filter, i.e. if x is a cluster point of <P, ux), then necessarily 
•f"l = ~f because y is an ultrafilter. But, evidently, t<i is not discrete if and only if 
x is a cluster point of <P, «!>. — II. Now let u be a fine non-discrete closure for P. 
Obviously, there exists exactly one accumulation point of <P, u>, say x. Let 11 be the 
neighborhood system a t x , y = \fU\ n (P — (x)). Since x e u(P — (x)), y is a filter. 
Choose an ultrafilter "V x on P — (x) containing^ and let = (x) u Consider 
the closure ut for P such that all points y e P — (x) are isolated and is the neigh-
borhood system at x. Clearly u t is a non-discrete closure finer than u and wt = u 
if and only if 11 = H u i.e. Y = V B u t tT = if and only if i r

l is an ultrafilter 
in P — (x). — The remark is obvious. 
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35 F. l l . Corollary. Any separated non-discrete closure is coarser than a separat-
ed fine non-discrete closure. If P is an infinite set then there exists a separated fine 
non-discrete closure for P. 

35 F.12. Theorem. Let K be the inductive progeny of all countable spaces. Then 
K is the inductive progeny of all countable separated fine non-discrete spaces, and 
a space 0 belongs to K if and only if 0 is inductively generated by its countable 
subspaces. 

Proof. Evidently it is sufficient to prove that any space of K is inductively generated 
by a family of mappings the domain carriers of which are separated fine non-discrete 
spaces, and to prove this it is sufficient to show that any countable space is inductive-
ly generated by a family of mappings the domain carriers of which are separated fine 
non-discrete spaces. Let <P, u> be a countable space. For each pair (X, x) such that 
x e uX — X we shall construct a continuous mapping fXx, or simply / , of a separated 
fine non-discrete space 2 X x , or simply 2, into <P, u> which assigns to the only cluster 
point of 2 the point x and which maps the remaining points into X. If x e «(xj) for 
some xx e X, then we take any countable separated fine non-discrete space 2 and the 
mapping / which maps the only cluster point of 2 into x and the remaining points 
into x t . Evidently/ is continuous. Notice that this is the case if <P, u) is not semi-
separated. In the other case, if is the neighborhood system at x, then ' f = [ f ] n l 
is free proper filter on X and we can take an ultrafilter 'W on X containing "V and 
then the separated fine non-discrete closure v for Q = X u x such that (x) u [iT] 
is the neighborhood system at x. By definition/ = J : (Q, v) <P, u) is continuous 
and xevX. Evidently, { f x X\x e(uX — X)} is the required inductive generating 
family for <P, u>. 

35 F.13. Let K be the inductive progeny of the class of all countable spaces and 
L be the class consisting of closure structures of spaces of K. Since K is inductive-
stable, the class Lis order-complete and completely join-stable in c€. On the other 
hand L is not completely meet-stable. 

E.g. the closure structure of the space of all ordinals less than co1 + 1 does not 
belong to L but it is the infimum of S-closures (see 35 C.11). Next, any closure, say u, 
for a set P, has a lower modification v in Land clearly 

vX = (J{UY\Y <= X , Y countable} 

for each X c: P. Finally, the class K contains the class S but K #= S because no 
separated fine non-discrete space belongs to S (in such a space each sequence is 
eventually constant). 

35 F.14. The class of all semi-separated S-closures coincides with the class of all 
spaces inductively generated by a family of injective mappings of the space of all 
ordinals less than co0 + 1. The class of all semi-separated spaces of the inductive 
progeny of countable spaces coincides with the class of all spaces inductively gener-
ated by families of injective mappings of countable separated fine non-discrete spaces. 
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