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CHAPTER VI

GENERATION OF TOPOLOGICAL SPACES

(Sections 31— 35)

Section 31 is concerned with a development of some order properties of the ordered
class of all closure operations and of some of its ordered subclasses. The results obtained
are applied to the projective generation in Section 32 and the inductive generation
in Section 33. Sections 34 and 35 are closely related to 33. In Section 34 the theory
of upper and lower semi-continuous correspondences (“multivalued mappings”, “set-
valued mappings”) is developed and the results obtained are applied to two particular
kinds of quotient mappings, namely to mutually continuous and inversely lower or
upper semi-continuous mappings. In Section 35 the theory of convergence is deve-
loped; particular attention is given to spaces whose closure structure can be described
by means of convergent sefluences. The topological results obtained will be applied
to topologized algebraic structs, particularly to topological groups, rings and mo-
dules; while the projective generation can be given in 32 D, the inductive generation
requires a special kind of quotient mappings (each quotient-homomorphism of a
topological group is open) and therefore is not treated until 34 D. In Section 35
sequentially continuous groups (more generally, K-continuous groups) are introduced.

It should be remarked that the projective and inductive generation for semi-uni-
form spaces and proximity spaces will be studied in Chapter VII; there the projective
(inverse) and inductive (direct) limits of presheaves of closure spaces, semi-uniform
spaces and proximity spaces will be also introduced and discusszd.

The delopment of projective and inductive generation is rather lengthy and there-
fore a detailed introduction illustrated by many examples seems to be appropriate.

Let P be a set and let {f,} be a family, each f, being a mapping of P into a closure
space 2,. Let us consider the set I' of all closures u for P such that all the mappings

(*) f.:{P,u) > 3,

are continuous. The set I' contains the discrete closure for P because a mapping of
a discrete space is continuous, whatever the closure structure of the range carrier,
and if u € I' then each closure finer than u also belongs to I" because the composite
of two continuous mappings is a continuous mapping. It turns out that I" has a
greatest element, say u. Thus u is the coarsest closure for P such all the mappings (*)
are continuous. This closure u and also the space (P, u) are said to be projectively
generated by the family {f,}, and the family {f, : (P, u) — 2,} is said to be a pro-
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jective generating family. E.g. the product 2 of a family {#,} of closure spaces is
projectively generated by the family of all projections pr, : Z — £, a subspace 2 of
a space 2 is projectively generated by ] : 2 — 2, the greatest lower bound of a family
{u,} of closure operations for a set P is projectively generated by the family {) : P —
> (P up})

Let P be a set and let {f,} be a family, each f, being a mapping of a closure space
4, into P, and let us consider the set I" of all closures u for P such that all the map-
pings

(**) fa:12,— (P, u)

are continuous. The set I' contains the accrete closure because a mapping into an
accrete space is continuous, whatever the closure structure of the domain carrier,
and each closure coarser than an element of I' belongs to I'. It turns out that I" has
a least element u which is the smallest (i.e., the ﬁnest) closure for P such that all
the mappings (**) are continuous. This closure u and also the space (P, u) are said
to be inductively generated by the family {f,}; the family {f, : 2, » (P, u)} is said
to be an inductive generating family for closure spaces. E.g. the sum £ of a family
{2} of closure spaces is inductively generated by the family of all canonical embed-
dings {inj, : #, > 2}, and the least upper bound of a family {u,} of closures for a
set P is inductively generated by the family {] : (P, u,) — P}.

Similarly we define projective and inductive generating families for semi-uniform
spaces and proximity spaces; e.g. a semi-uniform space (P, %) is said to be projective-
ly generated by a family {f,} if % is the uniformly coarsest semi-uniformity for P
such that all the mappings f, : (P, %) — E*f, are uniformly continuous (of course,
E*f, are assumed to be semi-uniform spaces). A subspace 2 of semi-uniform (pro-
ximity) space 2 is projectively generated by ) : 2 — 2, and the product of a family
{#,} of semi-uniform spaces is projectively generated by the family of projections
{pr,: ? - 2,}. We have not defined the product of a family of proximity spaces.
In Section 39 we shall define the product of a family {#,} of proximity spaces as
the space projectively generated by the family of projections {pr, : H{I.@al} - 2.}

In supplementary Notes a general definition of a “continuous structure”, including
the closure operations, semi-uniformities and proximities, is given, and the concepts
of a projective and an inductive generating family are introduczd.

Before proceeding to further examples we shall state the main theorems for pro-
jective and inductive generation of closure spaces. It is to be noted that similar results
hold for semi-uniform and proximity spaces; it 1s only needed to replace expressions
such as e.g. continuous, fine by the corresponding expressions for semi-uniform or
proximity spaces. In addition, it is shown in the Notes that, in terms of theory of
categories, the notions of projective and inductive generation can be introduced in
such a manner that the main theorems are carried over.

(a) A family {f,} of mappings of a space P is a projective generating family if
and only if the following condition is fulfilled:
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A mapping f into 2P is continuous if and only if all the mappings f,. f are continu-
ous.

(b) A family {f,} of mappings into a space 2 is an inductive generating family
if and only if the following condition is fulfilled:

A mapping f of P is continuous if and only if all the mappings f. f, are con-
tinuous.

The first theorem is a generalization of the fact that a mapping f of a space into
a product IT{#,} is continuous if and only if all the mappings pr,of: D*f - 2,
are continuous. The second theorem is a generalization of the fact that a mapping f
of a sum Z{2,} into a space is continuous if and only if all the mappings f . inj, :
: #, — E*f are continuous.

From theorems (a) and (b) one can deduce the following results which state a certain
associativity property of projective and inductive generations:

(¢) If{f;,} is a projective generating family and E*f, is projectively generated
by {ga | b € B,}, then {g,, o f,} is a projective generating family.

(d) If {f.} is an inductive generating family and each D*f, is inductively gener-
ated by a family {g,,} then {f, o gu} is an inductive generating family.

Of course, (c) and (d) are generalizations of the facts that II{,,} is homeomorphic
to TLI1,2,, and £{#,,} is homeomorphic to X,Z,2,;.

The projective (inductive) progeny of a class K of spaces, denoted by proj K
(ind K) is defined to be the class of all spaces projectively (inductively) generated
by mappings with range carriers (domain carriers) in K. It follows from (c) and (d)
that

projproj K = projK, indindK =ind K,

If proj K = K (ind K = K) then K is said to be projective-stable (inductive-stable).
The last theorems can be stated as follows:

(e) The projective progeny of any class is projective-stable.

(f) The inductive progeny of any class is inductive-stable.

It is to be noted that () implies that the projective progeny of any class is hereditary
and completely productive.

The supplementary remark of 28 A.6 can be stated as follows: a space 2 is
uniformizable if and only if & is projectively generated by functions; stated in
other words, £ is uniformizable if and only if 2 belongs to the projective progeny
of (R). Now it follows from (e) that the class of all uniformizable spaces is hereditary
and completely productive. Another example: the class T of all topological spaces
is projective-stable, moreover, T is the projective progeny of any two-point non-
discrete and non-accrete space. Consequently, T is hereditary and completely pro-
ductive. An example on inductive generation may be in place. By 16 ex. 6 a net N
converges to a point x in a space £ if and only if the mapping associated with
(N, x> is continubus. Let .4~ be a collection of pairs (N, x> such that N is a net
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with limit points x in £. It turns out that the collection of associated mappings in-
ductively generates 2 if and only if 4" uniquely determines the closure structure of 2
in the sense that x e X — X if and only if there exists a pair (N, x> in 4" such that
N ranges in X.

We have noticed that the product is defined “projectively”” and the sum is defined
“inductively”. A subspace is defined “projectively”, namely 2 is a subspace of &
if ] : 2 > 2 is a projective generating mapping. The corresponding “inductive’® concept
is the quotient of a space which is defined as follows: A space 2 is the quotient of
a space 2 under f if f is a surjective inductive generating mapping such that D*f = &
and E*f = 2. (Notice that each quotient of a discrete space is discrete.) It turns out
that quotients inherit very few of the properties of the original spaces, e.g. every
space is a quotient of a paracompact space (in particular, a quotient of a topological
space need not be topological). There are two important additional assumptions on
the mappings f which guarantee preservation of some properties, namely inverse upper
semi-continuity and inverse lower semi-continuity which will be treated in Section 34
in a more general situation.

If we wish to restrict our attention to a certain class K of spaces (e.g. topological,
uniformizable) then it is natural to introduce the concepts of a K-projective gener-
ating family and a K-inductive generating family; e.g. {f, : (P, u) — 2,} is a K-pro-
jective. generating family if u is the coarsest closure such that all the mappings are
continuous and {P, u) € XK.

It turns out that basic theorems (a) and (b) are not true in general, (a) is true if
and only if K is inductive-stable, (b) is true if and only if K is projective-stable.

The theory of K-inductive generation is outlined in 33 B (in connection with the
fact that the quotient space of a topological space need not be topological) and the
theory of K-projective generation is outlined in 35 D.

The main results will be proved independently of each other, e.g. statements (c)
and (d) will be proved without any reference to statements (a) and (b) although (c)
or (d) immediately follow from (a) or (b), respectively. The projective generation in
a given class K (35 D) will be treated without such repetitions.
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31. ORDERED SETS OF CLOSURE OPERATIONS

The results of this section will be applied in Sections 32 and 33 to two fundamental
constructions of spaces and continuous algebraic structs, namely to projective and in-
ductive constructions, which generalize the construction of the product and the sum.

This subsection is concerned with the development of order properties of the
class C of all closure operations ordered by the relation {u -0 | u 1s finer than v},
and of its important subclasses. A great deal of the results will be formulated for
ordered subsets C(P) of C consisting of all closures for P, P being an arbitrary set,
instead of for C. The advantage of this lies in the fact that closures for different sets
are not comparable and therefore, while C(P) is order-complete, the ordered class €
is not order-complete. We leave to the reader as a simple task the statement for C of
all the results formulated and proved for C(P).

The ordered class C will be considered to be ordered “upwards™ (see 10 D.2) but
not from left to right and therefore we shall say upper bound, a greatest lower bound,
upper saturated, etc., but not a right bound, etc. On the other hand, instead of greatest,
a lower bound, upper saturated, etc., we shall occasionally say coarsest, a fine bound,
coarse saturated, etc. Finally, we shall often employ lattice-theoretical terminology,
e.g. meet instead of infimum, join instead of supremum and meet-stable, completely
lattice-stable, etc.

In subsection A we shall prove that every C(P) is order-complete and we shall
describe suprema and infima in C(P) by means of neighborhoods and the convergence
of nets. Particularly significant is theorem 31 A.7 asserting that the mappings f:
(P, sup {w,}> = <Q, sup {v,}> and f: (P, inf {w,}> - <Q, inf {v,}) are continuous
provided that all the mappings f : <P, w,> — {Q, v,) are continuous.

In subsection B we shall examine properties of the classes of all topological and
uniformizable closure operations. A particularly significant statement is given in the
non-topological lemma 31B.2, which enables us to reduce the order properties of
sets of topological and uniformizable closures to those of C.

Subsection C is devoted to an investigation of the order properties of the set of all
closures rendering continuous or inductively continuous a given internal composition
or a given external composition over a closure space. As a corollary we obtain the
order properties of the ordered set of all closures admissible for a given group,
ring, or module over a topological ring.
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The closing subsection deals with various classes of closure operations introduced
earlier. Particular attention is given to separated closures.

A. ORDERED CLASS C

Recall that a closure u is finer than a closure v if and only if both closures are for
the same set, say P, and uX < vX for each X — P; often we shall need various de-
scriptions of the relation {u — v l u is finer than v} proved earlier, and therefore,
for convenience, we shall summarize them in the proposition which follows.

31 A.1. Let u and v be closures for a set P. By definition 16 A1 of continuity, u is
finer than v if and only if ,

(1) the identity mapping of {P, u) onto {P, v) is continuous.

According to description (1) and characterizations 16 A.8 and 16 A.4 of continuity
by means of convergence of nets and neighborhoods, we obtain the following two
necessary and sufficient conditions:

(2); (3) if x is a limit point (an accumulation point) of a net N in (P, u), then x is
a limit (accumulation) point of N in (P, v).

(4) for each x e P, each neighborhood of x in (P, v) is a neighborhood of x in
(P, u).

Next, by 16 A.6 the following condition is necessary, and by 16 A.10, if v is topo-
logical, then it is also sufficient, for u to be finer than v:

(5) each v-open set is u-open; and in addition, the word open can be replaced by
the word closed. '

Finally, sometimes it is convenient to make use of the following form of condi-
tions (4) and (5). Let {#", | x € P} be a family such that %", is a local sub-base
at x in (P, v) for each x. Then the following condition is necessary and sufficient
for u to be finer than v:

(4') every element of ¥, is a neighborhood of x in (P, u) for each x in P.

If v is topological and #” is an open (closed) sub-base for (P, v) then also the fol-
lowing condition is also necessary and sufficient for u to be finer than v:

(5") Each element of ¥" is open (closed) in (P, u).

Now we proceed to the proper object of this section. We begin with the basic
theorem which asserts that C(P) is order-complete, and describes suprema.

31 A.2. Theorem. Let P be a set. The ordered set C(P) is order-complete, the
discrete closure for P (= the identity relation on exp P) is the least ( = the finest)
element of C(P) and the accrete closure for P (the closure of each non-void set
is P) is the greatest (= coarsest) element of C(P). If {u,|ae A} is a non-void
family in C(P), then

(6) (sup {u,|ae A}) X = U{u,X | a e 4}
for each X < P.
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Proof. The facts that the discrete and the accrete closures for P are the finest and
the coarsest elements of C(P) are self-evident, and moreover they have been verified
at the beginning of Section 14. Since C(P) possesses a greatest and least element,
to prove that C(P) is order-complete it is enough to show that each non-void family
{u,} in C(P) has a least upper bound (= supremum). Thus the proof of the theorem
will be accomplished if we prove that, for each non-void family {u,} in C(P), the
relation

(7) u={X - U{uX}|X c P}

on exp P ranging in exp P is the least upper bound of {u,} in C(P). The proof of the
fact that u is a closure operation, that is, the verification of conditions (cl 1), (cl 2)
and (cl 3), is straightforward and may be left to the reader. Next, since {u,} is a non-
void family, we have uX o u,X for each X and each a, which means that the closure u
is coarser than u, for each index a. Thus u is an upper bound of {u,}. To prove that
u is the least upper bound, let us consider an upper bound v; since v is coarser than
each u,, we have vX o u,X for each index ¢ and X = P and hence vX > Y{u,X}=
= uX for each X = P which means that v is coarser than u.

Remark. If {u,} is a void family, then uX = @ for each X < P, where u is given
by (7), and hence u is not a closure operation whenever P is non-void. It is to be noted
that -

(8) v={X - N{u.X} | X = P}
need not be a closure operation for P. If {u,} is an empty family, then vX = P for
each X < P and hence v is not a closure operation for P whenever P + @ because
the closure of the empty set is always empty. If the relation v is a closure operation
then v is the greatest lower bound of {u,} (this can be proved easily as in the proof
of 31 A2, formula (7)). However, v need not be a closure operation even if the
family {u,} is non-void; in fact, » need not be additive, that is, condition (cI 3),
o(X U Y) = (vX L vY), need not be fulfilled. Of course, we always have (X U Y) o
> (vX U vY) which follows from the fact that vX < vX, if X < X,. The converse
inclusion need not be fulfilled; for example, let P be the three-point set (1, 2, 3) and
let u;, i = 1, 2, be the closures for which u,(1) = (1,3), u,(2) = (2,3) and u(j) = (j)
in the remaining cases. Then v(j) = (j) for each j = 1, 2, 3 (where v is given by (8))
but v(1,2) = (1, 2, 3) and hence (1) U v(2) + v(1,2).

Nevertheless, there is an important type of families in C(P) such that the greatest
lower bound is given by (8).

31A3. If P is a set and {u,} is a range down-directed family in C(P), then the
v from (8) is the greatest lower bound of {u,}, that is,

©) (inf {u,}) X = N{uX}
for each X < P.

Proof. Of course we say that {u,} is range down-directed if the set of all u,is down-
directed. In view of the foregoing remark it is enough to show that vX, U vX, o
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> (X, u X,) for each X,,X, c P. Suppose x¢vX, uvX, By the definition
of v there exist a;, i = 1,2, such that x ¢ u, X;. Since {u,} is range down-directed,
we can pick an a so that u, is finer than both u,,. Clearly x ¢ u, X, i = 1, 2, and
hence x ¢ u,(X; U X,) o v(X; U X,).

For the construction of (inf {u,}) X in the general case see 31 ex. 2. Now we
proceed to a description of suprema and infima in terms of neighborhoods. We
begin with the description of suprema; the proof will depend on Theorem 31 A.2,
formula (6). '

31 A4. Let x be a point of a set P and let {u,, | a € A} be a non-void family in
C(P). For each a in A let %, be a local base at x in (P, u,). Let % be the collection
of all sets of the form U{U,, | ae€ A} where U e U, for each a in A. Then % is
a local base at x in (P, sup {u,}>. If, in addition, %, is the neighborhood system
at x in {P,u,> for each a in A, then % is the neighborhood system at x in
(P, sup {u,}>, and

(9) U =N{U,|aeA}.

Proof. Let u stand for sup {u,}.In view of 14 B.7, to prove % is a local base at x
in (P, u) it is sufficient to show that, foreach X < P,xeuX ifandonlyifUn X + 0
for each U in %. First suppose x euX and U e %. We must prove U n X =+ 0.
According to (6) the relation x € uX implies x € u, X for some « in A. By definition
of 4, the set U is the union of a family {U, | a € A} where U, € %,. Since x € u,X,
by 14B.7 we have U, n X % { and hence U n X =+ ( because U, < U. Now suppose
x ¢ uX. We must find a U in % so that U n X = 0. According to (6) we have x ¢ u,X
for each a in A. Since %, are local bases at x we can choose a family {U, | a € A}
so that U, n X = @ and U, € %, for each a in A. If U is the union of {U,}, then
clearly U n X = @ and, by definition of %, U belongs to %. Thus % is a local base
at x in (P, u>. Now let %, be the neighborhood systems at x in (P, u,). Since %,
are filters, if X €« Y < P and X € %, then also Ye %,, and consequently % < %,
for each a in 4. Thus # < N{%,}. Conversely, if U € N{#,}, then U = Y{U, | aeA}
where U = U, for each a in 4 and hence U € %. Thus % is the intersection of {#%,}.
Since all %, are filters, their intersection % is also a filter. But a local base is the
neighborhood system if and only if it is a filter. Thus % is the neighborhood system
at x in {P, u) (and (9) holds as we have already shown).

Corollaries. Let {u, | a € A} be a non-void family in C(P) (where P is a set).
Then

(a) the neighborhood system of a set X < P in (P, sup {u,,}) is the intersection
of the neighborhood systems of X in (P, u,), ae A; and

(b) aset X = Pisopen (closed) in (P, sup {u,}> if and only if X is open (closed )
in {P, u,y for each a in A.

Proof. For each x in P and a in 4 let %,(x) be the neighborhood system at x in
{P,u,Y,and for each x in P let %(x) be the neighborhood system of x in (P, sup {u,}>.
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By 14 B.2 a set U is a neighborhood of a set X in a space if and only if U is a neigh-
borhood of each point of X. In consequence, if X < P, then {#,(x) | x € X} is the
neighborhood system of X in (P, u,), and N{%(x)|xe X} is the neighborhood
system of X in (P, sup {u,}>. According to (9) we have %(x) = N{%.(x) | aed}
for each x in P and hence

n{%(x)lxeX} = N{%(x) I xeX,ae A} = ﬂ{n{%a(x)lxeX} I aeA}.

The left side of the preceding equality is the neighborhood system of X in
P, sup {u,}> and the right side is the intersection of neighborhood systems of X
in (P, u,», a € A. The proof of (a) is complete. To prove the assertion of (b) con-
cerning open sets it is sufficient to keep in mind that X is open if and only if X is
a neighborhood of itself and to apply (a). The assertion concerning closed sets follows
from that concerning open sets and the fact that X is closed if and only if P — X is
open.

The proof of the description of infima which follows does not depend upon the
preceding results.

31 A.5. Theorem. Let P be a set and let {u,|ae A} be a non-void family in
C(P). For each x in P and a in A let U (x) be a local sub-base at x in {P, u,). Then,
for each x in P, the union %(x) of {#/x)|ae A} is a local sub-base at xin
(P, inf {u,}>. If U ,(x) are local bases and the Sfamily {u,} is range down-directed,
then %U(x) are local bases.

Proof. I. Since %(x) are, obviously, filter sub-bases and x € (%(x) for each x
in P, by 14B.11 (b) there exists a closure operation v for P such that %(x) is a local
sub-base at x in (P, v) for each x in P. It will be shown that v = inf {u,}. First it is
evident that v is a lower bound of {u,} (use, for instance, (4')) and consequently,
v is finer than inf {u,}. Conversely, every u,, is coarser than inf {u,}, and consequently
every set from %,(x) is a neighborhood of x in (P, inf {u,}) for each a in 4; it follows
that every set from %(x) is a neighborhood of x in (P, inf {u,}> for each x in 'P. But
%(x) is a local sub-base at x in (P, v). By (4') the closure v is coarser than inf {u,};
this completes the proof of the first assertion. — II. Now suppose that %,(x) are
local bases and the family {u,} is range down-directed. Fix x in P and pick U, and U,
in %(x). We muts find a U in %(x) so that U = U; n U,. There exist a;, i = 1, 2,
in A such that U; € %, (x). If u, is finer than both u,, then U, are neighborhoods of x
in (P, u,» and, %,x) being a local base at x in (P, u,», %,(x) is a filter base and
hence there exists a U in %,(x) such that U = U, n U,; clearly U € %(x).

Corollary. Let {u, | a € A} be a non-void family in C(P). For each x in P let fx
be the element {x,|ae A} of the product space TI{<P,u,>|ae A} such that
x, = x for each a in A. Then the mapping f = {x — fx} of (P, inf {u,} ) into the
product space TI{{P, u,»} is an embedding.

From 31 A.5 one can deduce at once the following description of infima in terms
of convergence of nets.
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31 A.6. Theorem. Let {u,} be a family (not necessarily non-void) in C(P).
A point x € P is an aosmwikstion=point (a limit point) of a net N in (P, inf {u, })
if and only if, for each a, the point x is onesccwnuatiorspeiut (a limit point) of
the net N in (P, u,).

Remark. Let u be the least upper bound of a non-void family {u,} in C(P), N be
a net in P and x be a point of P. If x is an accumulation or a limit point of N in
{P,u,> for some a,then x is, respectively, an accumulation point or a limit point of N
in (P, u) because u is coarser than u, Nevertheless, if x is an accumulation point
or a limit point of N in {P, u), then x may be an accumulation point of N in (P, u,)
for no a. This may be shown by examples.

Summarizing, we can say that the least upper bound admits “natural” simple de-
scriptions in terms of closures and neighborhoods, but not in terms of convergent
nets; and the greatest lower bound admits “‘natural’’ simple descriptions in terms
of neighborhoods and convergent nets but not in terms of closures.

The first part of the section is concluded with the following simple but very im-
portant result, the straightforward proof of which is left to the reader.

31 A.7. Theorem. Let f be a mapping of a set P into another one Q. If A is a set,
{u,|ae A} is a family in C(P) and {v,|ae A} is a family in C(Q) such that
all mappings f: (P, u,) — {Q, v,y are continuous, then the mappings

<P, inf {u}> — <Q, inf {1,}>
and
S <P, sup {u;}> — <@, sup {v,}>

are also continuous.
B. TOPOLOGICAL AND UNIFORMIZABLE CLOSURES

If u is a closure for a set P then there exists a finest topological closure for P
coarser than u, the so-called topological modification of u (16 B.1), and, similarly,
there exists a finest uniformizable closure for P coarser than u, the so-called uni-
formizable modification of u (24 B.13,28 C). Using these facts one can reduce some
order properties of the ordered set of all topological closures for a set P or uniformiz-
able closures for a set P to those of C(P). Since this situation occurs frequently it will
be convenient to derive some results for general ordered sets. We begin with a de-
finition.

31 B.1. Definition. Let <X, <) be an ordered set and let Y be an ordered subset
of (X, £). The upper modification of an x € X in Y is the least element of Y gre-
ater than or equal to x, that is the element y of Y with the following property:
x < y,and if y, €Y and x < y,, then y < y,. Similarly, the lower modification
of x € X in Y is the greatest element of Y less than or equal to x, that is, the ele-
ment y of Y with the following property: y < x, and if y, € Y and y, < x, then

Y=y



31. ORDERED SETS OF CLOSURE OPERATIONS 561

For example the topological modification of a closure u for a set P is the upper
modification of u in the set of all topological closures for P. Of course, the upper
and lower modification of an x € X in an ordered subset Y of X need not exist, for
instance if Y=0. If X =R and Y =] 0, 1[, then the elements 0 and 1 possess
neither an upper modification nor a lower modification in Y. If X = R and
Y = Q, then no xe(X — Y) possesses an upper or lower modification in Y, while
each x e Y, as always, coincides with its upper modification as well as its lower
modification.

Before stating the main lemma we review some definitions and proposition about
ordered sets (see Section 10). Let ¥ be an ordered subset of an ordered set (X, <),
Z < Y. The following cases can appear (where the infima in X are denoted by inf
and the infima in Y by infy): (a) there exists inf Z but not infy Z; (b) there exists infy Z
butinf Z does not exist; (c) there exists neither inf Z nor infy Z; (d) both infima exist but
inf Z =+ infy Z (of course, infy Z < inf Z); (¢) both infima exist and they are equal.
If X is order-complete, then cases (b) and (c) must be omitted but all remaining
cases may appear. If inf Z exists and belongs to Y, then inf Z is the infimum of Z
in Y (case (e)). Of course, all assertions remain true if inf is replaced by sup. The
set Y is said to be completely meet-preserving in <X, <) if infy {y,} = inf {y,} for
each non-void family {y,} in ¥ such that the infimum in Y exists (thus @ is completely
meet-preserving), and Y is said to be completely meet-stable in X if inf {y,} e Y
for each non-void family {y,} in Y such that the infimum exists, i.e., infy {y,} =
= inf {y,} whenever {y,} is a non-void family in Y such that the infimum in X
exists. A mapping of an ordered set into another ordered set is said to be completely
meet-preserving if it preserves infima of non-void families; thus ¥ < X is completely
meet-preserving in (X, <) if and only if the identity mapping of Yinto X is complete-
ly meet-preserving. Replacing inf by sup we obtain the definition of completely join-
preserving and completely join-stable sets. Finally, Y is completely lattice-preserving
(lattice-stable) if it is simultaneously completely join-preserving (completely join-
stable) and completely meet-preserving (completely meet-stable). A mapping f is
said to be idempotent if fof = f.

31 B.2. Lemma. Let Y be an ordered subset of an ordered set (X, <). The fol-
lowing two conditions are equivalent:

(a) for each x in X there exists the upper modification of x in Y;

(b) there exists an order-preserving idempotent mapping v of <X, <) into itself
such that v[X| = Yand x < vx for each x in X.

If the equivalent conditions (a) and (b) are fulfilled, then
(1) vx = infy {y|ye ¥, x £ y}

for each x, i.e., v is uniquely determined by Y, and

(2) infy {)’a} = infy {,Va}

36—Topological Spaces
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whenever E{y,} = Y and one of the infima exists; hence Y is completely meet-stable
and completely meet-preserving in X, and

(3) supy {vx,} = vsupy {x.}
whenever the supremum in X exists; in particular, if X is order-complete or bounded-
ly order-complete then Y has the same property. Finally, if (X, £) is order-
complete, then the equivalent conditions (a) and (b) are equivalent to the following
condition (which is always necessary):

(¢) Yis completely meet-stable in X, and the maximal elements of X belong to Y.
Similar results hold for the lower modification.

Proof. I. Suppose (a). If vx denotes the upper modification of x in Y, then clearly
the mapping v = {x - vx} : (X, £) — (X, <) fulfils the condition (b), and further-
more (1) holds.

II. Conversely, suppose (b). We shall prove that vx is the upper modification of x
in X. Given xe X, if x £ y, y € Y, then vx < vy, because v is order-preserving, and
vy = y because y = vz for some z (since v[X] = Y); hence vy = vvz = vz (vis
idempotent) and finally vy = y. Thus vx £ y which shows that vx is indeed the
upper modification of x in Y.

III. The mapping v is umquely determined by Y because the upper modification
of an x is unique.

IV. Now suppose that the equivalent conditions (a) and (b) are fulfilled and v is
a mapping satisfying (b). Let { Ya} be a non-void family in Y. We know (see II)
that Y is the set of all y€X such that vy=y. If y is the infimum
of {y,} in Y, then y is the infimum of {y,} in X. Indeed, y is a lower bound of {va}
in X and if x is any lower bound of {y,} in X, then vx < vy, = y, for each a, and
hence vx is a lower bound of {y,} in ¥ which implies vx < y and thus x £ y. If x is the
infimum of {y,} in X, then vx < vy, = y, for each a and hence vx < x which
implies vx = x; thus x € Y and hence x is the infimum of {y,} in Y.

Finally, let x be the supremum of a family {x,} in X and let y = vx; we shall prove
that y is the supremum of {vx,} in Y. Evidently y is an upper bound of {vx,}, and if z
is any upper bound of {vx,} in Y, then x < z and hence y = vx £ vz = z, ie.
y £z

"V. It remains to show that if (X, £) is order-complete then (c) is equivalent to
conditions (a) and (b). It has already been shown that conditions (a) and (b) imply (c)
(without the assumption that (X, <) is order-complete). "Conversely suppose that
(c) holds and X is order-complete. The ordered set X has the greatest element, which
is, of course, 2 maximal element and hence belongs to Y by (c). Now if x is any element
of X and z is the infimum in X of all y e ¥, x < y, then z € Y by (c) (because this set
is non-void) and clearly z is the upper modification of x in Y. Thus (a) holds.

VI. It is to be noted that the lernma for the lower modification is obtained by ap-
plying the lemma for the upper modification to the inversely ordered set.
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31 B.3. Remark. Given a set P, the ordered set of all topological closures for P
will be denoted by tC(P) and the ordered set of all uniformizable closures will be
denoted by vC(P).

Recall that the topological modification is denoted by t© and hence t[C(P)] is
the set of all tu, ue C(P), i.e., the set of all topological closures for P. Similarly, v
is the uniformizable modification and hence v[C(P)] is the set of all vu, u € C(P),
i.e., the set of all uniformizable closures for P.

31 B.4. Theorem. Let P be a set. The ordered sets tC(P) and vC(P) are order-
complete, the sets 1C(P) and vC(P) are completely meet-stable in C(P) and the
mappings 1t : C(P) = tC(P) and v : C(P) > vC(P) are surjective and completely
meet-preserving.

Proof. By 16 B.3 the topological modification tu of u is the upper modification
of u in the set of all topological closures for P and tu exists for each u. From lemma
31B.2 we obtain all statements for topological closures. Similarly, by 24 B.13
vu is the upper modification of u in the set of all uniformizable closures for P and vu
exists for each u.

31 B.5. The least upper bound in C(P) of a family of uniformizable closures for P
need not be topological. For example, let P = (0, 1, 2) and let us consider the closure

,i = 1,2, for P such that uj(0) = (0, i) = u,(i) and u {J) = jfor0 % j + i.Evident-
ly, both u; are unlformlzable closures for P. On the other hand the supremum u of

{u;|i = 1, 2} not topological. Indeed, u(1) = u,(1) U uy(1) = (0,1) and
u(0, 1) = u(0) = ul'(O) v uZ(O) (0,1,2) and hence uu(l) % u(1). Now it follows
from lemma 31B.2 that neither the “lower” topological modification nor the
“lower” uniformizable modification need exist; more precisely',‘ if a set P has at
least three elements, then there exists a closure u for P which has no lower modification
in the set of all topological (uniformizable) closures.

Because of the great importance of topological and uniformizable closures it will
be convenient to describe suprema and infima in the ordered set tC(P) of all topolo-
gical closures for P and in the set vC(P) of all uniformizable closures for P directly.

31 B.6. Theorem. Let {u,} be a non-void family in ©C(P) where P is a set, and
let U, be the collection of all open sets in (P, u,) for each a. Then the intersection
U of {U,} is the collection of all open sets in the set P endowed with the supremum
of {u} in ©C(P) and the union ¥ of {%,} is an open sub-base for the set P endowed
with the infimum of {u,} in TC(P).

Proof. This is an immediate consequence of 31 B.4 and the description of open
sets with respect to the supremum taken in C(P) (Corollary (b) of 31 A.4) and the
description of neighborhoods with respect to the infimum (see Theorem 31 A.5).
It may be in place to give a proof which does not depend on properties of C(P). It is
evident that % is the collection of all open sets for a topological space (P, u)>
(15 A.6) and ¥" is an open sub-base for a topological space <P, v) (15 A.9). Since

36*
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¥ > 9, > % for each a, v is a lower bound of {u,} in tC(P) and u is an upper bound
of {u,} in TC(P). If w is an upper bound (lower bound) of {u,} in tC(P) and ¥ is
the set of all open sets in (P, w), then necessarily %, > # (%, = #°) for each a
and hence N{#%,} =% > # (U{#%,} = ¥ = #); this implies that w is coarser
(finer) than u(v).

Corollary. Let P be a set and let w be the single-valued relation on tC(P) which
assigns to each u the collection of all u-open sets. Then the mapping w : tC(P) —
— {exp exp P, o) is one-to-one, order-preserving and completely join-preserving
(but it need not be meet-preserving ).

31B.7. Theorem. Let P be a set and let {u,} be a non-void family in vC(P).
For each a let &, be the collection of all exact open sets in (P, u,>. Then the inter-
section A" of {N,} is the collection of all exact open sets in (P, u) where u is the
supremum of {u,} in vC(P) (" is an open base for (P, u)), and the union # of
{A 4} is an open sub-base for {P, v), where v is the infimum of {u,} in vC(P).

Proof. We know that a space is uniformizable if and only if it is topological and
the collection of all exact open sets is an open base. Since vC(P) is completely meet-
stable in C(P) (31 B.4) the statement concerning infima follows easily from Theorem
31 A.5. To prove the statement concerning suprema it is sufficient to show that
a function f : (P, u> - R is continuous if and only if the function f, : (P, u,> - R
is continuous for each a. “Only if”’ is evident, and to prove ““if”” let us consider the
supremum u’ of {u,} in C(P). By 31 B.4 u is the uniformizable modification of 4’ and
hence, by 28 C, f : (P, u) - R is continuous if (and only if) f : (P, u’) — R is con-
tinuous. By 31 A7, if a mapping g : (P, u,> - 2 is continuous for each a, then
g : {P,u’> — 2is also continuous. The statement follows.

Corollary. Let P be a set and let ¢ be a single-valued relation on vC(P) which
assigns to each u the collection of all exact open sets in (P, u). Then the mapping
¢: vC(P) - (expexp P, o) is one-to-one, order-preserving and completely join-
preserving (but it need not be meet-preserving).

C. CLOSURES FOR ALGEBRAIC STRUCTS

The purpose of this subsection is to prove that, given a group, ring, module over
a topological ring or an algebra over a topological ring, say %, then the set of all
closures admissible for % is completely meet-stable in the set C(|%|) of all closures
for |g| (31 C11,31 C.16). It is to be noted that projective and inductive constructions
of topological algebraic structs will be based on the results of this subsection.

"The proof will be given in a sequence of propositions, each of which will be of
interest in itself.

We begin with a theorem which will not be needed for 31 C.11 or 31 C.16 but
which completes the results of this subsection and which will be needed for a
general theorem on internal algebraic structs 31 C.10.
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31 C.1. Theorem. Suppose that {a',,} is a family of internal compositions for a
set P. Let I be the ordered set of all closures u for P such that each topologized
internal composition {o,, u) is inductively continuous. Then the set I" is completely
lattice-stable in C(P) and contains the accrete and the discrete closure for P, and
hence I’ is order-complete and every closure for P has an upper modification as
well as a lower modification in T'.

Proof. By 19 A.3 a topologized internal composition (o, u) on P is inductively
continuous if and only if each left translation {x — yox} : (P,u) — (P, u), yeP,
and also each right translation {x — xay} :{P,u) —» (P, u), y € P, is continuous.
Hence Theorem 31 C.1 is an immediate consequence of the following proposition.

31 C.2. If {f,} is a family of mappings of a set P into itself and I' is the ordered
set of all closures u for P such that each mapping f,,: {(P;u) — (P, u) is continuous,
then I is completely lattice-stable in C(P) and contains the accrete and the discrete
closure for P, and hence I' is order-complete and every closure for P has an upper
and lower modification in I

Proof. Since C(P) is order-complete (31 A.2), by lemma 31 B.2 it is sufficient to
show that I' is completely lattice-stable in C(P) and contains the accrete and dis-
crete closures for P, i.e. that if u is the supremum (infimum) in C(P) of a family {u,}in T,
then u € I'. However, this follows immediately from theorem 31 A.7 asserting that
if fy : (P, u,y - {P,u,> is continuous for each a, then f, : (P, u) — (P, u) is also
continuous (even if the index set is empty).

The case of the continuity of a topological internal composition is not too simple.
By definition, a topologized internal composition (o, u,» on P is continuous if the
mapping ¢ : {P, u,y x {P, u,> = {P, u,) is continuous. We shall write the product
(P,ugy x {P,uy,y as (P x P, u, x ugy. If each (g, u,> is continuous then, by
theorem 31 A7, the mappings ¢ : (P x P, sup {u, x u,}> — (P, sup {u,}> and
o:<{P x P, inf {u, x u,}> - (P, inf {u,}> are also continuous; but we do not
know whether sup {u, x u,} = sup {u,} x sup {u,} and inf {u, x u,} = inf {u,} x
x inf {u,}. It turns out that the latter equality holds but the former is false as shown
in the example which follows.

31 C.3. The mapping of the ordered set C(P) into C(P x P) which assigns to
each closure u for P the product closure u x u is not join-preserving. Perhaps the
simplest example may be obtained as follows. Let P = (0, 1,2) and let u;, i = 1,2
be the closure for P such that ui) = (i, 0) = u,(0) and uj) = (j) for i & j + 0.
If u =sup (u;, uy) (in C(P)), then the product closure u x u is strictly coarser
than the supremum v of the product closures u, X u;and u, X u, in C(P x P).Indeed,
Pis the only neighborhood of 0in {P, u) and hence P x P is the only neighborhood
of €0,0) in (P x P, u x u). On the other hand (0, i) is a neighborhood of 0 in
(P, u;) and hence (0, i) x (0, i) is a neighborhood of <0, 0) in <P x P, u; x u;),
and finally, U{(0, i) x (O, i) | i=1,2} + P x P is a neighborhood of (0,0} in
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{P x P,v).Itis to be noted that this example may be used to show that the mapping
in question is not join-preserving whenever the cardinal of P is at least 3. In 31 C.13
we shall show that the mapping {u — u x u} : C(P) > C(P x P) is not countably
monotone join-preserving, i.e. the equality sup {u, x u,} = sup {u,} x sup {u,}
need not be true for a range-monotone countable family (whereas evidently this
equality holds for every finite range-monotone family).

Now we shall prove that the mapping {u — u x u} of C(P) into C(P x P)is
completely meet-preserving and in fact we shall prove essentially more. First recall
that the product IT{<X,, §,)} of ordered sets is defined to be the ordered set
{IO{X,}, £), where <, the so-called product order, is defined by letting x < y if

and only if pr,x £, pr, y for each g, i.e. < is the relational product of the family
<o}-

31 CA4. Theorem. Let {P,,| ae€ A} be a non-void family of non-void sets. The
mapping f = {{us} - M{u,}} : I{C(P,)} - C(TII{P,}) is completely meet-pre-
serving, in particular, order-preserving.

Proof. Let {v, | a € A} be the infimum of a non-void family {{u,, | a € A} | b € B}
in I{C(P,)}, uy = M{uy, |ac 4}, v = I{v, | @ € A}. We shall prove that v is the
infimum of {u,} in C(TI{P,}). It is sufficient to show (by 31 A.6) that a net N converges
to x with respect to v if and only if N conveiges to x with respect to each u,. Next,
since u, and v are product closures, by 17 C.9 N converges to x with respect to u,(v)
if and only if pr, « N converges to pr, x with respect to u,,(v,) for each a € 4. Finally,
by definition of the product order, v, is the infinum of {u,, | b € B} in C(P) for each a
in A, and hence, by 31 A.6, pr, o N converges to pr, x with respect to v, if and only if
pr,o N converges to pr, x with respect to u,, for each b € B. The statement follows.

Remark. The foregoing theorem will become a corollary of the associativity
of projective generation (32 A.9).

31 C.5. Let o be an internal composition on a set P and let I' be the ordered set
of all closures u for P such that the topologized composition {o, u) is continuous.
Then the accrete and the discrete closures for P belongs to I’ and I' is completely
meet-stable, and hence I' is order-complete and every closure for P has an upper
modification in I, ‘

Proof. If P = @ then the statement is trivial. Suppose P # (. Evidently the ac-
crete and the discrete closures belong to I'. If {ua} is a non-void family in I', then
each mapping ¢ : (P x P,u, x u,) - {P,u,) is continuous, by theorem 31 A7
the mapping o : (P x P, inf {u, x u,}> - <P, inf {u,}) is continuous, and by the
foregoing theorem 31 C.4inf {u, x u,} = inf {u,} x inf {u,} and hence also (o,
inf {u,}> is continuous, i.e. inf{u,} € I'. The remaining statements follow from
lemma 31 B.2.

It will be shown in 31 C.12 that I' need not be join-stable. For an examination of
the continuity of the inversion of an internal composition we shall need the follo-
wing simple result.
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31 C.6. Theorem. Let Q be a subset of a set P. The mapping f of C(P) into
C(Q) which assigns to each u its relativization to Q, is surjective and completely
lattice-preserving. The mapping f:tC(P) —» tC(Q) is surjective and completely
lattice-preserving. "

Proof. I. Let {u,} be a non-void family in C(P). If X is any subset of Q, then
(fsup {u,}) X = Q n U{u,X} and (sup {fu,}) X = U{fu, X} = U{Q@ n u,X} =
= @ n U{u,X}, and hence fsup {u;} = sup {fu,}. Let xe Q and let %, be the
neighborhood system at x in (P, u,) for each b. Then the union % of {%,} is a local
sub-base at x in (P, inf {u,}), [%,] » @ = ¥, is the neighborhood system at x in
Q, fu,y and the union ¥~ of {¥#7,} is a local sub-base at x in <Q, inf {fu,}>. But
clearly ¥" = [#%] n Q and hence inf {fu,} is a relativization of inf {u,}. Clearly
fis surjective. — II. Let {u,} be a non-void family in ©C(P) and %, be the collection
of all open sets of (P, u,); the collection ¥", = [#,] N Q is the set of all open sets
of <Q, fu,>. By 31 B.6 the intersection %(¥") of {%,} ({¥}) is the set of all open
sets of the space (P,sup {u,}> (<Q, sup {fu,}>). But clearly ¥ = [#] n Q. The
statement concerning infima follows from I and the fact that the infimum in C(P)
of topological closures is a topological closure.

31 C.7. Remark. In the notation of 31 C.6, the mapping f does not commute
with t, i.e. ftu = tfu in general. This was proved in 17 A.6. Of course, ftu is always
coarser than tfu. It follows that the second statement cannot be obtained from the
first statement and properties of the topological modification 7.

31 C.8. Suppose that P is a set and {f,} is a family of single-valued relations
such that Df, = P, Ef, = P for each a, and let I' be the ordered set of all closures u
Jfor P such that the mapping f, of the subspace Df, of (P, u) into the subspace Ef,
of {P; u) is continuous for each a. Then the set I' is completely lattice-stable in
C(P), the accrete and the discrete closures for P belong to I', and hence, I is
order-complete and each closure for P has a lower and upper modification in I.

Proof. Evidently the discrete and the accrete closures belong to I'. If {u,} is
a non-void family in I and u = sup {u,} (4 = inf {,}) in C(P), then by 31 C.6, for
each Q < P the relativization of u to Q is the supremum (the infimum) in €(Q) of
{v,}, where v, is the relativization of u, to Q. Applying 31 A.7 we obtain u € I'. The
remaining statements follow from lemma 31 B.2.

31 C9. Corollary. If P is a set, {0,} is a family of semi-group structures on P
and I' isthe setof allu e C(P) such that the inversion of each {c,, u) is continuous,
then I' is completely lattice-stable in C(P), I' contains the discrete and the accrete
closure, I is order-complete and every closure for P has its lower and upper modific-
ation in I,

Proof. The inversion of each g, is a single-valued relation in. P ranging in P.

Now we are prepared to state the main result concerning internal algebraic structs.
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31 C.10. Theorem. Let P be a set, let {o,}, {0,} and {u.} be families of internal
compositions on P and let each y, be a semi-group structure. Let I be the ordered
set of all closures u for P such that each {a,, u) is continuous, each {g,, u) is
inductively continuous and the inversion of each {u,, u) is continuous. Then the
discrete and the accrete closures for P belong to I', I' is completely meet-stable in
C(P), and hence I is order-complete and every closure u for P has an upper
modification in T. If the family {c,} is empty, then I is completely lattice-stable
and every closure u for P has a lower modification in I.

Proof. Apply 31 C1, 31 CJ5, and 31 C.9.

31 C.11. Corollary. Let & be a group (ring, field) and let I’ be the ordered set
of all closures admissible for % (i.e., compatible with the structure of %). Then the
discrete and the accrete closures for ]‘?I belong to I', I is completely meet-stable
in C(P), and hence I is order-complete and every closure for P has an upper modific-
ation in I'.

31 C.12. Example. We shall show that I" from 31C.11 need not be join-stable.
Let {G, 6) be any commutative group containing at least two elements, let u be
the discrete closure for P and v be a non-discrete closure admissible for (G, o),
e.g. the accrete closure for G. Consider the product group {(H, ¢) = (G, o) x
x {G, o). Let 0 be the neutral element of (G, ¢); thus {0, 0) is the neutral element
of (H, ¢).

(a) <H,@,u x vy and (H, g, v x u) are topological groups by 19 A.12 because
H,o,u xv) = (G,0,uy x {G,0,v), {H,9,v x u) = {G,a,v) x (G, o, u).

(b) If w =sup (u x v,v x u), then (H, ¢, w) is an inductively continuous group
with continuous inversion (by 31 C.10).

(c) The closure w is the inductive product of v and v, i.e., w = ind (v x v). Indeed,
if V is a neighborhood of 0 in {G, v), then (0) x ¥ is a neighborhood of <0, 0> in
(H,u x v), ¥V x (0) is a neighborhood of <0,0) in (H.v x u) and hence W =
= ((0) x V) u(V x (0)) is a neighborhood of <0,0) in (H, w), and clearly the
sets Wform a local base at {0, 0> in (H, w).

(d) Since v is not discrete and w = ind (v x v), the closure w is not topological
and consequently (H, g, w) is not a topological group because every topological
group is topological. It may be appropriate to prove directly that (g, w) is not a con-
tinuous internal composition.

By 19 A4 it is sufficient to show that [W] o[ W] is contained in (G x (0)) u
v ((0) x G) for no W= ((V x (0)) u ((0) x V)), where Vis any neighborhood of 0
in (G, v). However, this is almost evident because we can choose an x in (V — (0))
and then <0, x>, {x,0> e W and (0, x) g{x, 0) = {x, xD> belongs to the set J; —
— <0, 0) which is disjoint with (G x (0)) U ((0) x G).

(e) If (G, v) is separated, then the diagonal Jg of G x G is closed in (G x G)
ind (v x v)) and hence in (G x G, ww). It follows that U = (H — Jg) U (0, 0,
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is a neighborhood of <0, 0) in (H, tw). The proof of the second part of (d) can be
used to show that o, Tw) is not a continuous internal composition. As a consequence,
the set I is not join-stable in tC(H).

31 C.13. Example. We shall construct an increasing sequence {u,} of admissible
closures for the additive group of reals, which will be denoted by {G, + ), such that
the closure u = sup {u,} is not admissible for (G, + (it will follow that sup {u, x
x u,} # u x u; indeed, if sup {u, x u,} = u x u then the proof of 31 C.5, applied
to sup instead of to inf, yields that {4, u) is a continuous composition, and since
the inversion of {+, u) is continuous by 31 C.9, u must be admissible for the group
{G, +)). For each positive integer n let G, be the subgroup of (G, + ) generated by
the element n~%, i.e. G, consists of all k.n~! with k varying over Z, and let
Go = (0). Let v be the usual closure for (G, +), i.e. v is the order closure, and let %
be the local base at 0 in {G, +, v). For each n let %, be the set of all' [U] + [G,]
(=E{x+y | xeU, yeG,}), Ue. It is easily seen that %, is a filter base fulfilling
conditions (gnb i) of 19 B.7, and consequently there exists a unique closure u, admis-
sible for (G, +) such that %, is a local base at 0. Clearly {u,} is an increasing se-
quence in €(G), (the filter gencrated by %, always contains %,.,) and uo = v. Let
u = sup {u,}. The set H = Y{G,} is dense in {G, v) and hence in {G, u). But each
neighborhood of 0 in (G, u) tontains H, and consequently each neighborhood of 0
in G, u) is dense in {G, u), and hence the closure of each neighborhood of 0 is G.
Thus, if u were admissible for (G, + > then necessarily u would be the accrete closure
for G; but u is not accrete. Indeed, if x, y€ G, y ¢ x + [H] (such x and y exist
because card H = N, and card G > ¥,) then there exists a neighborhood U of y
such that x ¢ U, i.e., y ¢ u(x). Indeed, the distance (in R) of y to each x + [G,] is
positive, say r,, and if ¥, is the open r,-sphere about 0 in R, then [V,] u [G,] is a nei-
ghborhood of 0 in (G, u,), and W, = y + [V,] + [G,] is a neighborhood of y in
(G, u,) which does not contain x; it follows that (J{W,} is a neighborhood of y in
<G, u) (by 31 A.4) which evidently does not contain x.

Remark. If (G, +) is a finite group, then the set C(G) is finite and therefore the
set I' of all closures compatible for {G, + ) is countably monotonically join-stable.
On the other hand, if G is infinite, then there exists a group structure for G such that
the set I' is not countably monotonically join-stable. Actually, in 31 C.13 it is enough
to take for (G, +) any subgroup of the additive group of reals, containing a H
such that the quotient group G [H has at least three elements. Of course the group G
can be taken countable.

Now we proceed to external compositions. We shall need the following simple
result the proof of which is elementary and therefore left to the reader.

31 C.14. Let P be a non-void set and & = {R, v) be a closure space. The mapping
fi{u—v xu}:CP)-> CR x P)

is injective and completely lattice-preserving.
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31 C.15. Theorem. Let P be a set, {0}, {¢;} and {u.} families of internal
compositions on P, each p, being a semi-group structure, and {{,, v} and
{4, w,> families of domain-topologized external compositions on P. Let I" be
the ordered set of all closures u for P such that each {o,, u) is continuous, each
<@y, u) is inductively continuous, the inversion of each {u., u) is continuous, each
topologized external composition (u, x4 v;) is continuous, and finally, every
{u, 4, w,» is inductively continuous. Then the set I' is completely meet-stable in
C(P), the accrete closure belongs to I', and hence every closure u for P has an
upper modification in C(P).

The proof based on 31 C.10 and 31 A.7, 31 C.14 is left to the reader.

31 C.16. Corollary. Let & be a module (algebra) over a topological ring # and
let I' be the ordered set of all closures admissible for £. Then I is completetely
meet-stable in C(I,‘Z’I), the accrete closure for ].?I belongs to I', and hence every
closure for |$| has an upper modification in I.

Remark. It is easily seen that I' need not be join-stable (take 2 discrete and use
the method from 31 C.12).

D. EXAMPLES

Here we shall investigate the properties of the ordered sets of all semi-separated,
locally connected, quasi-discrete, semi-separated and separated closures for a given
set P, Particular attention is given to separated closures. We shall examine maximal
elements of the ordered class of all (topological) separated closures. It turns out
that maximal elements of the class I" of all separated closures are just the compact
elements of I' (31 D.8). Characterization of maximal elements of the ordered class
of all topological separated closures is more complicated (31 D.9). It should be noted
that although compact spaces will be studied in Section 41, they have already been
introduced in 29 B.2 and the exercises to Section 17.

31 D.1. Semi-uniformizable closures. Let P be a set. The ordered set I’
of all semi-uniformizable closures for P is completely lattice-stable in C(P), and the
discrete closure for P and the accrete closure for P belong to I'. As a consequence,
I is order-complete, every closure for P has a lower modification and an upper
modification in T and I is a completely lattice-preserving subset of C(P).

Proof. Clearly the discrete closure for P and the accrete closure for P are semi-
uniformizable and hence belong to I'. Now by virtue of lemma 31 B.2 it is sufficient
to show that I' is completely lattice-stable in C(P). Since every closure for P has an
upper modification in I' (by 23 B.2), again by 31 B.2 the set I' is necessarily com-
pletely meet-stable in C(P). To show that I' is completely join-stable, take any
non-void family {u,} in I' and let us prove that the supremum u of {u,} in C(P)
belongs to I'. Remember that a closure w for P is semi-uniformizable if and only if
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x € w(y) implies y € w(x). Assuming x € u(y) we shall prove y € u(x). Since x € u(y),
by 31 A.2 there exists an index a so that x € u,(y). Since u, € I, necessarily y € u,(x),
and u being coarser than u,, we obtain y € u(x). Thus x € u(y) implies y € u(x) and
henceuel.

Remark. In the proof of the preceding theorem we used the fact that each closure
for P has an upper modification in I', and this follows from the existence of a fine
semi-uniformity of a closure space. It is to be noted that one can prove directly
that I' is completely meet-stable. Indeed, if u is the infimum in C(P) of a family {u,},
then x € u,X foreach a does not imply x € uX, but if X is finite, then the implication
does hold (see ex. 2).

31 D.2. Locally connected closures. The ordered set I' of all locally
connected closures for a set P is completely join-stable in C(P), and the accrete
closure for P as well as the discrete closure belong to I'. As a consequence, each
closure for P has a lower modification in I' and I' is completely join-preserving
in C(P).

Proof. Since the discrete closure and the accrete closure obviously belong to I,
by lemma 31 B.2 it is enough to show that I' is completely join-stable in C(P). Let u
be the supremum in C(P) of a non-void family {ua} in I'. We must prove u eI,
i.e. given a neighborhood U of a point x in (P, u) we must find a connected neighbor-
hood V of x in (P, u) such that V' < U. Since U is a neighborhood of x in each
space (P, u,» we can choose a family {V,} such that V, is a connected neighborhood
of x in (P,u,y and V, c U. Put V= (J{V,}. Clearly V= U and by 31 A4 Vis a
neighborhood of x in (P, ©). Finally, since u is coarser than €ach u,, each set V, is
connected in (P, u), and consequently V is connected in (P, u)> as the union of
a family of connected sets containing a common point, namely x.

Remark. It is easy to see that the set I need not be meet-preserving.

31 D.3. Quasi-discrete closures. Let P be a set. The ordered set I' of all quasi-
discrete closures for P is completely join-stable in- C(P), the discrete and the accrete
closures for P belong to I', and consequently I' is ‘an order-complete set, each
closure for P has a lower modification in I and I' is completely join-preserving
in C(P). Next, I' is order-dense in C(P), more precisely, each closure for P is the
infimum in C(P) of a family in I. Finally, I = C(P) if and only if P is a finite set.

Proof. I. Clearly the discrete and the accrete closures for P belong to I'. If {u,}
is a non-void family in I' and u = sup {u,} in C(P), then uX = Y{u,X} for each
X < P (by 31 A2), and hence if x euX then x € u,X for some a; since u,eT,
x eu,Y for some finite subset Y of X and hence x e uY. Thus u is quasi-discrete,
i.e. ueI'. Now the remaining statements of the first part of theorem follow from
lemma 31 B.2. — II. Let u be a closure for P. We shall construct a family in I' so that
u will be its infimum. For each family {U, | x € P} such that U, is a neighborhood
of x in (P, u) let U = Z{U, | x € P} and vy = {X -» U '[X]| X < P}. Since U is
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a reflexive relation (x € U, for each x), each vy is a quasi-discrete closure for P (see
26 A2), and if xeuX then U, N X # 0 and hence x € vy(X n U,) = vpX. Thus
each vy is coarser then u. We shall prove that u is the infimum of {v} in C(P). It is
enough to show that if y ¢ uX then y ¢ vy X for some U. Suppose y ¢ uX and
take {U,|x e P} with Uyn X = @ and U, = P for x # y. If U = Z{U,}, then
clearly y ¢ vy X. — III. The last statement is evident.

31 D.4. Semi-separated closures. Let P be a set and I' the set of all semi-
separated closures for P. The set I is the closed interval [ u, v ] in C(P) where u is
the discrete closure for P and v is the topological closure for P such that X < P
is closed if and only if X is finite or X = P. It follows that I is down-saturated,
completely lattice-stable, completely lattice-preserving and every closure for P
has a lower modification in I'. The ordered set I is order-complete.

Proof. By 26 B.8 v is the coarsest semi-separated closure for P and by 26 B.7 I is
down-saturated (i.c. fine-saturated). Thus I" indeed is the indicated closed interval. The
remaining statements follows from lemma 31 B.2 (and order-completeness of C(P)).

31 D.5. The set T of all separated closures for a set P is down-saturated (i.e. fine-
saturated). If P is finite,then I' coincides with the set of all semi-separated closures
Jfor P. — Obvious.

31 D.6. Example. Let P be an infinite set and I' the set of all separated
closures for P. Then I is not join-stable, and the supremum of an increasing sequence
of separated closures need not be separated.

Proof. I. Fix two distinct elements x, and x, of P and let us consider the closure
u;, i = 1,2 for P such that each x € P, x * x; is isolated in (P, u) and a subset
U of P is a neighborhood of x; in (P, u;) if and only if x;e U and P — U is finite.
Clearly u; are separated closures for P but the supremum u of (u,, u,) in C(P) is
not separated; indeed, the points x; and x, are not separated. — II. To prove the
second statement we can assume P to be countable and hence, for convenience, we
can take for P the set of all rational numbers. Choose a sequence {y,-} inR—-P
such that the range of {y,} is dense in the space R of reals, and let us define a sequence
{u,} of closures for P as follows: if x € (P — (0)), then U is a neighborhood of x in
{P, u,» if and only if U u (R — P) is a neighborhood of x in R and U is a neighbor-
hood of 0 in (P, u,) if and only if U u (R—P) is a neighborhood of the set (0, y,,
..., yn)in R. Clearly each u, is a separated closure for P. On the other hand, the sup-
remum u of {u,} is not separated. Indeed, it is easily seen that each neighborhood
of 0 in (P, u) is dense in (P, u) because it is dense in R.

Remark. If {u,} is the sequence from the second part of the proof of 31 D.6, then
sup {u,} x sup {u,} =+ sup {u, x u,}. Indeed, since each u, is separated, the
diagonal Jp of P x P is closed in {P x P, u,x u,> for each n, and consequently
the diagonal is closed in (P x P, sup {u,x u,}>; on the other hand the diagonal
is not closed in (P x P, sup {u,} x sup {u,}>, because sup {u,} is not separated.
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31 D.7. Definition. A coarse separated closure (a coarse separated topological
closure) is a separated closure u (a separated topological closure u) such that no
separated closure (separated topological closure) is strictly coarser than u. Thus
coarse separated closures (coarse separated topological closures) are maximal elements
of the ordered class of all separated (separated topological) closures.

It turns out that there exists a separated closure (topological separated closure)
which is not finer than any coarse separated closure (coarse separated topological
closure). Evidently every topological closure which is a coarse separated closure is
a coarse separated topological closure, but the converse is not true. First we shall
give a characterization of coarse separated (topological) closures.

31 D.8. Theorem. A separated closure u for a set P is a coarse separated closure
if and only if the following condition is fulfilled:
(a) If & is a proper filter of sets on P, then N{uX | X e X} * 0.

Remark. The closures satisfying the condition of 31 D.8 are said to be compact.
Thus a separated closure u is 2 coarse separated closure if and only if u is a compact
closure. It should be remarked that compact closures will be investigated in Section 41.

Proof. 1. First suppose that there exists a separatcd closure » which is strictly
coarser than u. There exists an element x of P such that the neighborhood system ¥~
of x in (P, v) is strictly smaller than the neighborhood system % of x in {P, u).
Choose a U in % — ¥ and consider the set & of all V — U with Ve ¥". By our as-
sumption & is a filter base of sets in P. Since (P, v) is separated, the interszction of
the collection v[#7] is (x), hence the intersection of the collection u[¥"]is (x) (because
uX < vX for each X = Pand each Ve ¥ contains x). Asa consequence, Nu[Z] < (x).
But clearly x € uX for no X € Z and hence Nu[ %] = @. — IL. Now suppose that condit-
jon (a)is not fulfilled and takea filter & on P such that Nu[ %] = 0. Foreach yin Plet%,
be the neighborhood system of y in (P, u). Fix an element x in P and let us consider
the closure v for P such that %, is the neighborhood system at y in (P, v) for each
yeP,y+x,and ¥ = [%,] v [%] (= E{U U X |Ue,, X € Z})is the neighbor-
hood system at x in (P, v) (such a closure v exists by 14 B.11 (a) because each %, as
well as 7" is a filter). It is almost evident that ¥~ < %, but ¥~ % %, (there exist
Xe% and Ue%, such that Un X =0). Thus v is strictly coarser than u.
We shall prove that v is separated. It is enough to show that, for each y e P, the
intersection of closures of neighborhoods of y in (P, v) is (y). If y € P — (x), then
%, is the neighborhood system of y in the space (P,v), and we shall prove that
then necessarily (o[%,] = (y). If z € P — (), then there exists a U in %, such that
zeP —uU, ie. P — U is a neighborhood of z in (P,u);if z & x, then P — U
is also a neighborhood of z in (P, v) and hence z ¢ N[#,]. If z = x, then we
can choose a X in % such that ye P — uX and clearly U; = (P — X)n U is
a neighborhood of y in (P, u) and hence in {P, v, and x ¢ vU,. It remains to take
the gase y = x. However, if Ve¥", then obviously uV = vV, and consequently
No[*"] = Nu[*] = Nu[Z] v Nu[%,] = ® U (x): The proof is complete. One may
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notice that v is a topological closure whenever u is a topological closure and the filter
Z has a base consisting of open subsets of {P, u).

31 D.9. Theorem. A topological separated closure for a set P is a coarse separ-
ated topological closure if and only if the following two conditions are fulfilled:

(@) If % is a filter base of sets in P consisting of open sets in {P,u), then
Nu[%] + 0.

(b) For each point x of (P, u) the regular open neighborhoods of x form a local
base at x.

Remark. Topological spaces satisfying condition (a) of 31 D.9 are said to be
H-closed spaces; this term will be clear from proposition 31 D.10 (remember that
a separated space is called a Hausdorff space). The topological spaces satisfying con-
dition (b) are said to be semi-regular. It is to be noted that, evidently, every regular
topological space is semi-regular. On the other hand, a semi-regular topological
space need not be regular. This will be shown in 31 D.13 (d).

Proof.I.Given a fopological space {P, u), the collection v of all regular open sets
in (P, u) is a base for the open sets of a topological space (P, v} (see 14 C.10 and
15 A.5) which is separated if and only if the space (P, u) is separated; moreover,
v is always coarser than 4 and 4 = v if and only if condition (b) is fulfilled. It follows
that condition (b) is necessary. If condition (a) is not fulfilled and if % is a filter base
of sets in P consisting of all open subsets of (P, u) such that Nu[%] = 9, and finally,
if Z is the smallest filter containing %, then the construction of the second part of the
proof of 31 D.8 leads to a topological closure v for P. Thus condition (a) is necessary.

I1. Now suppose thatu fulfils conditions (2) and (b) and let v be a separated topological
closure coarser than u. We shall show that v = u. Since, by (b), the regular open subsets
of (P, u) form an open base for {P,u), it is enough to prove that each regular open
subset of (P, u) is open in (P, v). Let U be a regular open subset of {P, u), i.c.
U =int,uU = P — u(P — uU). The set P —uU = G is open in {(P,u) and
U = P — uG. Thus it is sufficient to show that uG = vG for each open subset G
of (P, u). Since v is coarser than u, we have uG < vG, and it remains to prove
vG = uG. Suppose x € vG — uG and take the collection ¥~ of all open neighbor-
hoods of x in {P, v); thus ¥V~ G # @ for each Vin ¥". It follows that % = [“//'] NG
is a filter base of sets in P and moreover, each element of % is an open subset of
{P, u) as the intersection ¥ n G where G is open in (P, u) by our assumption and V
is open in (P, u) because Vis open in (P, v) and v is coarser than u. By condition
(a) we obtain Nu[%] * 0. On the other hand clearly Nu[#%] = No[¥"]; but Nw[7] =
= (x) because v is a separated closure, and x ¢ uG by our assumption, and hence
Nu[#%] = @ which is a contradiction. The proof is complete.

31 D.10. A separated closure space {P,u) is a coarse separated closure space
(i.e. {P,u) fulfils condition (a) of 31 D.8) if and only if the following condition
is satisfied: if {Q,v) is a separated closure space such that (P, u) is a subspace of
{Q, v), then P is closed in {Q, v). A separated topological space {P, u) fulfils con-
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dition (a) of 31 D.9 if and only if the following condition is satisfied: if {Q,v) is
a topological separated space such that (P, u) is a subspace of {Q, v), then P is
closed in {Q, v).

Proof. I. Let {P, u) be a subspace of a separated space (@, v) such that P is not
closed in {(Q, v), and let us choose an x in vP — P. If " is a local base at x in {Q, v),
then No[¥"] = (x) because v is separated and % = [#"] n P is a filter base because
x € vP. Clearly Nu[%] = P n (W[¥] = P n (x) = 0. Thus condition (a) of 31 D.8
is not fulfilled and (P, u) is not a coarse separated closure. If, in addition, {Q, v)
is topological, then we can take the collection of all open neighborhoods of x in
{Q,v) as ¥"; then % is a collection of open subsets of (P, u), and consequently
{P, u) does not fulfil condition (a) of 31 D.9.

II. Conversely, let % be a filter base of sets in (P, u) such that Nu[%] = 0.
Let Q be a set consisting of all elements of P and a further point, say x. Let us define
a closure v for Q such that (P, u) is an open subspace of {Q, v) and ¥~ = (x) u [#]
is a local base at x in (@, v). It is almost self-evident that {Q, v) is separated when-
ever (P, u) is separated, and {Q, v)> is topological whenever (P, u) is topological
and the sets of % are open in (P, u). Since clearly x e vP — P, the sufficiency of
the conditions in both statements follows.

Remark. By 31 D.10, roughly speaking, a separated closure space (separated
topological space) (P, u) fulfils condition (a) of 31 D.8 (31 D.9) if and only if (P, u)
is closed in every separated (separated topological) space.

The next proposition clarifies the relationship between topological coarse separated
closures and coarse separated topological closures.

31 D.11. A coarse separated topological closure is a coarse separated closure
if and only if it is regular.

Proof. I. To prove “if”* we shall prove somewhat more: every regular topological
space <P, u) satisfying condition (a) of 31 D.9 satisfies condition (a) of 31 D.8. Re-
member that in a regular topological space each closed set is the intersection of clo-
sures of its open neighborhoods. Thus, in a regular topological space, if & is a filter
base of sets in P and if % is the set of all open U such that U o X for some X € &,
then Nu[%] = Nu[Z]. The statement follows.

II. To prove “only if”” we must show that a topological separated space (P, u)
satisfying condition (a) of 31 D.8 is regular. If (P, u) is not regular then there exists
a point x of (P, u) and an open neighborhood U of x such that the closure of each
neighborhood of x intersects P — U; thus, if ¥~ is the neighborhood system at x
in (P, u), then & = E{uV - U l Ve¥'} is a filter base in P and uX <« P - U
for each X in & (U is open), and hence Nu[Z] = (P — U) n Nu[#"] = 0 because
Nu[?"] = (x) (since u is separated) and x e U. The proof is complete.

31 D.12. No non-void countable separated topological space (P, u) without isol-
ated points fulfils condition (a) of 31 D.9.
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Corollary. If (P, u) is a non-void countable separated closure space without
isolated points, then u is finer than no coarse separated topological closure.

Proof of 31 D.12. Let (P, u) be a non-void separated topological space without
isolated points. Evidently each non-void open set is infinite. There exists a single-
valued relation g which assigns to each pair {x, X, where x € P and X is a non-void
open subset of P, an open set ¥ such that x ¢ uV and Vn X % 0. Indeed, given
{x, X, we can choose a y in X — (x) (because X is infinite) and an open neighbor-
hood V of y such that x ¢ uV (because u is topological and separated). Now if, in
addition, P is countable, then there exists a sequence {x,,} ranging on P. Put U, =
= o{x0; P), U, = U,_{ n @{%,, U,_> for n > 0. Clearly {U,} is a decreasing se-
quence of non-void open sets and N{uU,} = @ because x, ¢ uU,,.

In closing we shall give an example of a separated topological space satisfying
condition (a) of 31 D.9 but not condition (b) of 31 D.9, and an example of a space
satisfying both condition (a) and (b) of 31 D.9 but not condition (a) of 31 D.8.

31 D.13. (a) Every bounded closed interval of the reals fulfils condition (a) of 31 D.8.
Indeed, by 17 ex. 5, every order-complete ordered space fulfils condition (a) of 31 D.8.

(b) Let (P, v)> be the closed interval [ 0, 1 ] of the reals endowed with the order-
closure and let u be the closure for P such that the subspace P — (0) of (P, u)
coincides with the subspace P — (0) of (P, v), P — (0) is open in (P, u) and U is
a neighborhood of 0 in <P, ) if and only if U U E{n™" | ne N, n + 0} is a neigh-
borhood of 0 in (P, v).

It is easily seen that (P, u) is a topological space satisfying condition (a) but not
(b) of 31 D.9.

() Let P=([0,1] x [ =1,1]) v (<1,1)) u (<1, —1)) and let u be the closure
for P such that u agrees on [ 0, 1 [ x [ —1, 1] with the relativization of the closure
structure of R x R, the one-point sets (<1, 1)) and (1, —1)) are closed in (P, u)
and the collection of all sets of the form (1, 1> u(Jr, 1[ x J0,1])(<1, =1) U
u(r1[ x[-10[)) 0=r<1,is alocal base at (1, 1) ({1, —1)) in <P, u).

It is easily seen that (P, u) satisfies condition (b) of 31 D.9 and does not satisfy
condition (a) of 31 D.8 (consider the collection of all the sets [, 1 x (0),0 < r <
< 1). It is more difficult to show that (P, u) fulfils condition (a) of 31 D.9. First
notice that if U is an open set the closure of which contains neither {1, —1) nor
{1,1),thenU <= [0,r] x [ —1,1] for some r < 1. Now if % is a filter base of
sets in P consisting of open subsets of (P, u) and if the closure of some U € # contains
neither {(1,—1) nor (1, 1), then there exists an r, 0 < r < 1, such that [#] n Q
is a filter base of sets in Q, where @ = [0, ] x [ —1, 1 ]. However, the subspace Q
of (P, u) coincides with the product of intervals [0,r] and [ —1,1 ] endowed
with the order closure, which fulfil condition (a) of 31 D.9 (as we needed in (a)).
By 17 ex. 5, the subspace Q fulfils condition (a) of 31 D.9 and hence Q@ n Nu[[#] n
N Q] # 0 and hence Nu[#%] + 0.

(d) The space (P, u) of (c) is semi-regular but not regular.
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32. PROJECTIVE GENERATION
FOR CLOSURE SPACES

Let {f,} be a family, each f, being a mapping of a set P into a closure space Z,.
It turns out that there exists a coarsest closure u such that the mappings f, : <P, u) —
— 9, are continuous; this closure is said to be projectively generated by the family
{f.}. For example, the product closure is projectively generated by the family of all
projections (17 C.6), and a closure u for a set P is projectively generated by the col-
lection of all continuous functions if and only if u is uniformizable (this requires
proof). This section is devoted to the investigation of projectively generated closures.

In the first subsection we shall be concerned with various descriptions of pro-
jectively generated closures by means of closure operations, neighborhoods and the
convergence of nets in the range carriers of the generating mappings, and with general
theorems on the projective construction which generalize the corresponding results
for product closures. We shall also prove that the projective construction can be
reduced to the construction of the product closure and the construction of the closure
projectively generated by a single mapping.

In subsection B we shall study, for a given class of spaces K, the class proj K of all
spaces projectively generated by a family of mappings with range carriers in K. Here
we shall see that the general theorems of Sections 31 and 32 are rather profound and
that many theorems of chapters III, IV and V are their immediate consequences. In
subsection C we shall examine projectively generated algebraic structs; all results
will be consequences of the theorems of 32 A, B and 31 C. The closing subsection D
is devoted to examples. '

It should be noted that projective constructions will also be provided for semi-
uniform spaces and proximity spaces and therefore the terminology might seem to
be somewhat complicated at this stage. Finally, it should be pointed out that all
the results of Section 31 are assumed known. '

A. GENERALITIES

32 A.1. Definition. A projective family of mappings*) with a common domain
carrier 2 is a family {f,} such that each f, is a mapping of £ into a struct; if the

*) In the theory of categories such a family is sometimes said to be coinital. A family with a
common range carrier (in categorial terminology with a common end-object) is called cofinal;
in our exposition such a family is termed an inductive family.

37—Topological Spaces
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range carrier of each f, belongs to a class K, then {f,} is said to be a projective family
of mappings for K with a common domain carrier 2. If we say that {f,} is a
projective family of mappings for K then it is to be understood that {f,} is a pro-
jective family for K with 2 common domain carrier 2 which either belongs to K
or is a set. We shall see that this ambiguity does not lead to any confusion.

In this section we shall be concerned with projective families for closure spaces,
i.e. families {f,} such that each f, is a mapping into a closure space and all the map-
pings f, have a common domain carrier which is a set or a closure space. For
example, if (P, u) is the product of a family {(P,, u,»} of closure spaces then the
family {pr, : (P, u) — (P, u,»} as well as the family {pr, : P — (P, u,>} is a pro-
jective family for closure spaces.

Now we are prepared to introduce those concepts which are basic to the proper
subject of the section.

32 A.2. Definition. A closure u for a set P is said to be projectively generated
by a family of mappings {f,|a e A} if {f,} is a projective family of mappings for
closure spaces with a common domain carrier P or {P, u) and u is the coarsest
closure for P such that all the mappings f, : <P, u) — E*f, are continuous; the family
{f,,} is said to be a projective generating family for (P, u). A closure space {P, u)
is said to be projectively generated by a family of mappings {f,} if {f,} is a projective
generating family for (P, u) and (P, u) is the common domain carrier of all f,.
The definitions just stated will be carried over to collections of mappings and single
mappings as follows: a collection & has a property P if and only if the family
{r |fe Z} has the property P, and a mapping f has a property P if and only if the
singleton (f) has the property . Thus, if we say that f is a projective generating
mapping (for closure spacs, for a closure space) it is to be understood that the family
{f | f € (f)} has the corresponding property.

32 A.3. Examples. (a) A closure space projectively generated by an empty family
of mappings is an accrete space. — Obvious.

(b) A closure space projectively generated by a family of constant mappings is
an accrete space. Indeed, a constant mapping of a closure space £ into another
closure space is always continuous (disregarding the closure structures in question).

(c) A closure space projectively generated by a family of mappings into accrete
spaces is an accrete space. Indeed, a mapping of any closure space 2 into an accrete
closure space is continuous.

(d) A homeomorphism is a projective generating mapping. — Obvious.

(e) If {u,} is a family of closure operations for a set P, then inf {u,} is projectively
generated by the family of mappings {J : P — (P, u,)}; stated in other words, the
family {j: <P, inf {u,}> > (P, u,>} is a projective generating family for closure
spaces. — Obvious.

(f) The product (P, u) of a family {{P,, u,)} of closure spaces is projectively
generated by the family {pr, : (P, u) - (P,, u,»} of all projections; stated in other
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words, the family of all projections of a product space is a projective generating family
for closure spaces. — This is a restatement of Theorem 17 C.6.

Now we proceed to the general theory. We begin with a description of projectively
generated closures.

32 A.4. Theorem. Every projective family in the class C with a common domain
P generates exactly one closure operation for P. If u is projectively generated
by a single mapping f: P - {Q, v), then

e uX = f~'[of[X]]
for each X < P.If uis projectively generated by a family of mappings {fa | a eA}
and u, is the closure projectively generated by the mapping f,, a € A, then u is the
greatest lower bound of the family {u,}.

Proof. I Let {f,} be a projective family in C and let a set P be the common do-
main of all f,. Obviously there exists at most one closure for P generated by {f,}.
We shall prove the existence. Let us consider the collection ¥ of all closures w for P
such that all mappings f, : {(P, w) — E*f, are continuous. According to 31 A7
sup ¥ (in C(P)) belongs to ¥. By definition 32 A.2 the closure sup ¥ is projectively
generated by {f,}, that is, sup ¥ is the coarsest closure for P making all mappings f,
continuous. — II. Now let u be the closure for a set P projectively generated by
a family of mappings {f,} (thus P is the common domain of all the f,) and, for each
a, let u, be the closure projectively generated by the mapping f,. We shall prove
u = inf {u,}. For each a let us consider the set ¥, of all closures w for P such that
the mapping f, : (P, w) — E*f, is continuous. By the first part of the proof we have
sup ¥ = u and sup ¥, = u, for each a. Obviously ¥ = N{¥,}. It follows that
sup ¥ = inf {sup ¥,} which is precisely the equality 4 = inf {u,}. — IIL It remains
to prove (1). Let u be projectively generated by a mapping f : P — {Q, v), and let
us consider the single-valued relation w on exp P ranging in exp P which assigns
to each X the set f~'[of[X]]. The reader will find no difficulty in verifying that
w is a closure operation for P. Clearly f[wX] < vf[X] and hence the mapping
f (P, wd> = <{Q,v) is continuous. To prove u = w it remains to show that u is
finer than w. The mapping f : {P, u> — {Q, v) is continuous and hence f[uX] =
< of[X] for each X < P, and consequently uX < f[f[uX]] = f'[of[X]] =
= wX for each X «— P; this implies that u is finer than w and concludes the proof.

Corollary. If f is an embedding of a space 2 into a space 2, then the space P
is projectively generated by f.If a space P is projectively generated by a mapping
fand if fis a one-to-one mapping, then f is an embedding. .

It may also be in place to notice that, in view of the preceeding theorem, Theorem
28 A.9 can bz restated as follows:

32 A.5. Each of the following two conditions is necessary and sufficient for a
closure space 2 to be uniformizable:

(a) 2 is projectively generated by a mapping into some uniformizable space.

(b) 2 is projectively generated by a mapping into some cube [ 0,1 ]".

37*
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From 32 A.4 and the results of subsection 31 A we shall derive descriptions of
projectively generated closures in terms of neighborhoods and convergent nets.

32 A.6. Theorem. Each of the following two conditions (a) and (b) is necessary
and sufficient for a closure u for a set P to be projectively generated by a non-void
family of mappings {fa | a € A}. Condition (b) is necessary and sufficient even if
A=0

(a) if x € P and, for each a, %, is a local sub-base at f,x in E*f,, then the collection
ofall f7'[U), ae A, U e, is a local sub-base at x in (P, u).

(b) A point x of P is a limit point of a net N in (P, u) if and only if the point
f.x is a limit point of the net f, o N in E*f, for each a in A.

Proof. Write 2 = (P, u). If A =0 and 2 is projectively generated by {f,},
then 2 is an accrete space (as has already been noted), and the condition (b) is
fulfilled because, in an accrete space, each point is a limit point of each net. If 4 =9
and condition (b) is fulfilled, then each point of 2 must be a limit point of each net
in 2 which implies that & is an accrete space. Thus condition (b) is both necessary
and sufficient whenever A = 0. To prove the theorem for the case A + @ we shall
verify these descriptions tor spacés generated by a single mapping.

32 A.7. Lemma. Each of the following two conditions is necessary and sufficient
for a closure u for a set P to be projectively generated by a mapping f:P—
- {Q, v):

(@) if % is a local base (sub-base) at fx in {Q,v), then f~'[%] is a local base
(sub-base) at x in (P, u);

(b) a point x of P is a limit (accumulation) point of a net N in (P, u) if and
only if the point fx is a limit (accumulation) point of the net fo N in {Q, v).

Proof. First it is easy to see that the two statements of (a) and the two statements
of (b) are cquivalent. We shall prove that the statement of (a) concerning bases is
necessary and implies the statement of (b) concerning limit points, and the statement
of (b) concerning limit points is sufficient. — I. First suppose u is projectively gener-
ated by f (thus (1) holds, by 32 A.4) and % is a local base at fx in {Q, v). In view of
14 B.7 to show that f ~*[%] is a local base at x m P, u} it is enough to prove: xeuX
if and only if f~'[U] n X + 0 for each U 1n "%. Since % is a local base at fx in
{Q, v), we again have by 14B.7 that fxevYif and only if U n Y % @ for each U
in %. Since obviously U n f[X] #+ 0 if and only if f~'[U] n X * @, formula (1)
implies that x € uX if and only if X n f~![U] #+ 0. — II. Now assume the state-
ment (a). Clearly a net N in P is eventually in each f~![U], U e %, if and only if
f o N is eventually in each U € #. It follows that x is a limit point of N in (P, u) if
and only if fx is a limit point of f o N in {(Q, v). — III. Finally, assume the statement
(b); we shall prove that (1) holds. Suppose X < P. If x € uX, then x is a limit point
of a net'N in X and by condition (b), fx is a limit point of f - N. Since clearly f o N is
in f[X], we have fx € of [X]. Thus uX < f~'[of[X]]. Conversely, if xef ~*[of[X]],
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then fx is a limit point of a net M in f[X]. Let us choose a net N in X such that M =
= fo N. Since fx is a limit point. of f o N, x is a limit point of N. Since N is in X,
xeukX.

Proof of 32 A.6 for the case A & Q. For each a in A let u, be the closure project-
ively generated by f,. By virtue of 32 A.4, inf {u,} is the closure projectively generated
by the family {f,}. Combining Lemma 32 A.7 with the descriptions of local sub-bases
and convergent nets relative to the infimum of a family of closures (31 A.5 and
31 A.6) we obtain the theorem.

Remark. From the description 17 C.9 of convergent nets in the product spaces
and the foregoing theorem we can obtain a new proof of the fact that the product
closure is projectively generated by the family of all projections (32 A.3 (f)).

Now we are prepared to prove two fundamental properties of projectively generated
closures (32 A.8 and 32 A.9). The remaining statements will be corollaries of these
two theorems.

32 A.8. Theorem. If a space P is projectively generated by a family of mappings
{_ﬁ,}, then a mapping f of a space 2 into @ is continuous if and only if all com-
posites f, o f are continuous.

Proof. If f is continuous then each mapping f, - f is continuous as the composite
of two continuous mappings. Conversely, suppose that all composites f, - f are con-
tinuous and let x be a limit point of a net N in 2. We must show that fx is a limit
point of foN in 2. Each mapping f,.f being continuous, the point (f,.f)x
(= ffx)) is a limit point of the net (f, o f) s N (= f, o (f - N)) in E*f, (= E*f, o f)
for each a and consequently, by 32 A.6, the point fx is a limit point of f o N.

It may be noted that the last theorem is a generalization of Theorem 17 C.10
which states that a mapping f of a space into a product is continuous if and only if
the composites of f with all projections are continuous.

32 A.9. Theorem on associativity. Let us suppose that {2,|ae A} is a family
of closure spaces and, for each a € A, the space 2, is projectively generated by a
family of mappings {g,, | b € B,}. Then a family {f.}, each f, being a mapping of
a given space 2 into 2,, projectively generates the space 2 if and only if the family

{gapofu|acA, beB,}
projectively generates 2.

Proof. According to Theorem 32 A.6, condition (b), it is enough to prove that
the following two statements (2) and (3) are equivalent for each point x of 2 and each
net N in £:

(2) for each a in A, f,x is a limit point of the net f, - N in 2,;

(3) for each a in A4 and b'in B, the point g, o f,x is a limit point of the net
(9ab o fa) o N in E¥(gap o f2) = EX*(g)-

Fix an a in A. The space 2, being projectively generated by the family
{9a5 | b € B}, again by 32 A.6 (b), f,x is a limit point of the net f, o N if and only if,
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for each b in B,, the point g,,(f,X) (= (gapo f,)x) is a limit point of the net g ;0 (f,oN)
(= (gap o f2) o N) in the range of g,,. Since the index a was chosen arbitrarily in 4,
the equivalence of (2) and (3) follows.

It may be noted that the preceding theorem is a generalization of Theorem 17 C.19
which asserts that the canonical mapping of the product space II{P, | a € 4} onto
the product II{II{P, | be B} | ce C} is a homeomorphism where A is the union
of {B.}, and {B.} is a disjoint family consisting of non-void sets.

Now we shall prove that the property of projective generating families stated in
32 A.8 is characteristic.

32 A.10. Theorem. A projective family {f,} of mappings for closure spaces
with a common domain carrier P is a projective generating family if and only
if the following condition is fulfilled:

A mapping f of a closure space into the closure space 2 is continuous if and only
if all the mappings f, o f are continuous.

Proof. The condition is necessary by 32 A.8. Conversely suppose that the condi-
tion is fulfilled. Write 2 = (P, u)>. If v is any closure for P then, by the condition,
the identity mapping J : (P, v> — (P, u) is continuous, i.e. v is finer than u, if and
only if all the mappings f, : (P, v) — E*f, are continuous. As a consequence, u is
proj:ctively generated by the family {f,}.

32 A.11. Projective factorization. For every projective family {f,} of map-
pings for closure spaces with common domain carrier 2, which is a space, there
exists a unique projective generating family {ga} for closure spaces with common
range carrier 2 such that |?| = |2| and f, = g, o h for each a where h is the
identity mapping of P into 2. The mapping h is continuous if and only if all the
mappings f, are continuous.

Proof. Write # = (P, u). Take the closure v projectively generated by the family
of mappings f,:P — E*f, and put g, =f,:{P,v) - E¥,, h=]):{P,u) -
- (P, v).

Remark. In accordance with the general rule regarding the use of square brackets

we can write {fo} = [{ga}] o k(= {gao h})

and this formula js sometimes named the projective factorization of the projective
family {f,} (of course f,, g, and h are the mappings from 32 A.11).

It has already been shown that the product closure is projectively generated by the
family of all projections, that is, the construction of the product closure is a special
case of the projective construction. Now we will show that the construction of a pro-
jectively generated closure can be reduced to the construction of a product closure
and a closure projectively induced by a single mapping. If a space 2 is projectively
generated by an empty family, then & is an accrete space, and consequently & is
projectively generated by any constant mapping. If the family is non-void, then the
reduction is described in the theorem which follows.
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32 A.12. Theorem. A non-void projective family {f,,} of mappings for closure
spaces is a projective generating family if and only if the reduced product f of the
Samily {f,} is a projective generating mapping for closure spaces.

Proof. Let £ be the common domain carrier of all the f, and let 2 be the product
of the family {E*f,,} of closure spaces. Recall that f is the mapping of £ into 2 which
assigns to each x the point {f,,x}. If g, is the projection of 2 into E*f,, then f, = g, o f
for each a. Since {g,} is a projective generating family, by 32 A.9, f is a projective
generating mapping if and only if {f,} is a projective generating family.

32 A.13. Theorem. If a closure space P is projectively generated by a family
of mappings {f,} and 2 is a subspace of 2, then 2 is projectively generated by the
Sfamily {g,} where each g, is the domain-restriction of f, to 2.

Proof. If h is the identity mapping of 2 into & then g, = f, - h for each a. Since
h is a projective generating mapping and {f,} is a projective generating family, {g,}
is a projective generating family by 32 A.9.

The preceding theorem states that the projective construction commutes with the
operation of taking of subspaces. In conclusion we shall prove the following corollary
to 32 A.9 (associativity).’

32 A.14. Theorem. Let P be.a set, {Q,|a € A} a family of sets and {f,} a fa-
mily of single-valued relations such that Df, = P and Ef, = Q, for each a. Let k
be the mapping of the product ordered set I1{C(Q,)} into the ordered set C(P)
which assigns to each {u,,} the closure projectively generated by the family
{f,, P> {Q,, u,,)}. Then the mapping x is completely meet-preserving.

Remark. Before proceding with the proof let us notice that this theorem is a gene-
ralization of Theorem 31 C.4 asserting that the mapping of the product ordered set
I{€(Q,)} into the ordered set C(II{Q,}), which assigns to each {u,} the product
closure IT{u,}, is completely meet-preserving. Indeed, it suffices to take P = I1{Q,}
and f, = pr,n (P x Q,).

Proof. Suppose that u = {u,} is the infimum of a non-void family {v, | b € B}
in TI{C(Q,)}, v, = {vsa | a € A}. According to the definition of the product order,
for each a in A, the closure u, is the infimum of the family {v,,| b€ B} in C(Q,)
and hence u, is projectively generated by the family of mappings {J:Q, —
— { Q. Vpay l be B}. Since ku is projectively generated by the family {f,:P —
= {(Q, u> | a € A}, by theorem 32 A.9 the closure xu is projectively generated by the
family of mappings{f, : P — {Q,, vpo) I a € A, b e B}. Next, inf {kv, I b e B} is pro-
jectively generated by the family of mappings {) : P — (P, kv, | b e B} and each
space {P, kv,) is projectively generated by the family { Ja i {P kv = (Qg, v4,) ] ae
€ A} and hence, by 32 A9, inf {kv, | b € B} is projectively generated by the family
of composites, i.e. by the family {f, : P - {Q,, v;,) ] a € A, b € B}. Thus the closures
ku and inf {kv, I b e B} are projectively generated by the same family and hence
xu = inf {kv, | b € B}. The proof is complete.
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Remark. The mapping x in 32 A.14 need not be join-preserving, e.g., in the
particular case described in the remark folloving 32 A.14 (see 31 C.3).

B. PROJECTIVE-STABLE CLASSES

We shall investigate properties of the class of all spaces projectively generated by
a family of mappings with range carriers in a given class of spaces. The theory will
be applied to the classes of all topological, uniformizable and pseudometrizable
spaces. Further examples will be given in the closing subsection 32 D. For con-
venience we shall agree on some special notation which will be used only in this
section.

32 B.1. Definition. If K is a class of closure spaces and N is a cardinal, then the
symbol proj, K will stand for the class of all closure spaces projectively generated by
families of mappings with range carriers in K such that the cardinal of the index set
is at most N, and the symbol proj K will stand for the class of all closure spaces pro-
jectively generated by families of mappings with range carriers in K; thus proj K
consists of all spaces belonging to at least one proj, K. As usual, this notation will
be applied to classes of closures, i.e. if Lis a class of closure operations and if K is
the class of all closure spaces (P, u) such that u € L, then projy L (proj L) stands for
the class consisting of the closure structures of all 2 € projy K (2 € proj K). The class
proj K is called the projective progeny of K. If K = proj K, then K is said to be
projective-stable.

32B.2. For any class of spaces K and ¥ = 0 the class projy K consists of all
the accrete spaces. If K and K’ are classes of closure spaces and if ¥ and WX’ are
cardinals, then

(a) X £ N, K c K’ implies
projx K < projy.- K’ < proj K’ o proj K ,

(b) if R + 0, then projy K o K,

(¢) if X =1 or X 2 N, then projy projy K = projy K,

(d) proj proj K = proj K,

(e) the class projy K is hereditary,

(f) if N = 1or N = Ny, then the class projy K is closed under products of families
of cardinal £N,

(g) the class proj K is hereditary and completely productive,

() if ¥ = Ry, then proj, projy K = projy K.

Proof. Every accrete space is projectively generated by the empty family and
a space projectively generated by the empty family is accrete. Thus proj, K is the
class of all accrete closure spaces. Statements (a) and (b) are evident. Statements (c)
and (d) follow immediately from 32 A.9. Statement (e) follows from 32 A.13.
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Statement (f) follows from the fact that the product space is projectively generated
by the family of projections. Statement (g) follows from (e) and (f). Finally, if f is
a projective generating mapping and E*f is projectively generated by a non-void
family {f,}, then clearly {f, - f} is a projective generating family. The last statement
follows.

Remark. It is to be noted that proj, proj, K # proj, K in general. For example,
if K is a singleton () where 2 is a two-point discrete space, then every discrete space
consisting of eight points belongs to proj, proj, K but not to proj, K.

32 B.3. Theorem. Let K be a class of closure spaces and let X = 1 be a cardinal.
A space P belongs to projy K if and only if either # is an accrete space or 2 is
homeomorphic with a subspace of a product space 2 x # where 2 is an accrete
space (which can be chosen so that |.@| = Ig’l) and R is the product of a family in
K of cardinality at most N.

First we shall prove

32B.4. If 2 is a non-void accrete space and & is any space, then the projection
of the product space 2 x & onto & is a projective generating mapping.

Proof. Let {f, I a € A} be a projective generating family for closure spaces and
let B be a subset of A such that the range carrier of each f,, a e A — Bis an accrete
space. Then clearly { e l a eB} is a projective generating family. Since the product
space is projectively generated by projections, the statement follows.

Proof of 32B.3. 1. By 32 B.2 the class proj, K is hereditary and contains all accrete
spaces. Since proj; projy K = projy K (by 32 B.2 (b)), every homeomorph of a space
from projy K belongs to projy K, and if 2 is an accrete space and £ is a space from
projy K, then the product space 2 x £ also belongs to projy K (by 32 B.4).
Finally, it £ is the product of a family in K of a cardinal at most N, then & belongs
to proje K because the product space is projectively generated by projections. Thus
all spaces described in the theorem belong to proj, K.

II. Conversely, let (P, u) € projy K. If (P, u) is not an accrete space, then (P, u)
is projectively generated by a non-void family of mappings {f, | a € 4}. Let f be
the reduced product of the family {f,} and let # be the range carrier of f (thus
grf={x->{fx} l x € P} and £ is the product of {E*f,}). By 32 A.12 the mapping f
is a projective generating mapping. Let 2 be the set P endowed with the accrete
closure and let g be the identity mapping of (P, u) onto 2. Clearly g is continuous
and hence (g, f) is a projective generating collection of mappings (because (f) is
such a collection); by 32 A.12 the reduced product & = g X ..o f (= {x = {(x, fx)} :
:(P,u) - 2 x &) is a projective generating mapping. But clearly h is injective
and hence h is an embedding. The proof is complete.

As an immediate conseéquence we obtain the following theorem:

32 B.5. Theorem. Let K be a class of closure spaces. A space 2 belongs to the
class proj K if and only if either 2 is an accrete space or P is homeomorphic with
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a subspace of a product space 2 x R, where 2 is an accrete space (which can be
chosen so that | 2| = |?|) and 2 is the product of a family in K.

32 B.6. Example. If & is the empty space, then the class projy (&) as well as the
class proj () coincide with the class of all accrete spaces.

32 B.7. Theorem. Let & be a non-void space and let ¥ = 1 be a cardinal. Then
a closure space P belongs to proj, & if and only if P is homeomorphic with a sub-
space of 2 x & where 2 is an accrete space (which can be chosen so that |2| =
= |g’|)_ A space P belongs to proj & if and only if P is homeomorphic with a sub-
space of a space 2 x &™ for some accrete space 2 (which can be chosen so that
|2| = |2|) and for some cardinal N.

Proof. The second statement follows from the first one and the first statement fol-
lows from 32 B.3; it is enough to show that every accrete space is a subspace of a
product space in the theorem, but this is evident since & is non-void, and &®’ with
®’ £ N is homeomorphic with a subspace of &%,

32 B.8. Examples. (a) Suppose that we know that the class tC of all topological
spaces is hereditary, completely productive and contains all accrete spaces (all this
has already bzen proved). By 32 B.5 we obtain proj tC = ¢C. (b) Suppose that
we know that the class vC of all uniformizable spaces is hereditary, completely pro-
ductive and contains all accrete spaces. By 32 B.5 we obtain proj vC = vC. (c) Let
K be the class of all pseudometrizable spaces. If we know that K is hereditary,
countably productive and K contains all accrete spaces, then Theorem 32 B.3 yields
projy, K = K. (d) By 32 B.7 the class proj (R) consists of all spaces which are homeo-
morphic with a subspace of a space of the form 2 x R® where 2 is an accrete space
and N is an appropriate cardinal. If the class of all uniformizable spaces is defined
as proj (R), then theorem 32 B.2 states that the class of all uniformizable spaces is
hereditary, completely productive and contains all accrete spaces, and theorem 32B.7
gives a description of uniformizable spaces.

32 B.9. Theorem. Let K be a class of spaces and let L be the class consisting of
closure structures of all spaces from K. In order that proj K = K it is necessary
and sufficient that (a) proj; K < K, and (b) the class L is completely meet-stable
in the ordered class C.

Remarks. Evidently condition (a) can be replaced by the following condition:
K contains a non-void space, and if f is a projective generating mapping with E*f e K,
then also D*fe K. Next, it follows from (a) and (b) that, if proj K = K, then
every closure has an upper modification in L; in particular, L is order-complete
and completely meet-preserving in C.

Theorem 32B.9 is an immediate consequence of the following more general
result:

32B.10. Let N =1 be a cardinal, K a class of closure spaces and L the
class consisting of closure structures of spaces of K. In order that proj, K = K it is
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necessary and sufficient that (a) proj, K < K and (b) if u is the infimum in C of a
non-void family {u, l aeA}inL andcard A £ N, thenue L.

Proof. Clearly both conditions are necessary (for (b) remember that inf {u,} is
projectively generated by the family of mappings {J: (P, inf {u,}> - (P, u,)},
where P is the set such that all the u, are closures for P). Conversely, assuming con-
ditions (a) and (b) let us consider any space (P, u) € projy K, and take a family
of mappings {f, | a € A} which projectively generates (P,u) and such that
card A £ N, E*f, e K for each a in A. If the cardinal of A is at most 1, then (P, u)
belongs to proj, K and hencs to K by condition (a). If the cardinal of A is at least 1,
let us consider the family {u,} such that each u, is projectively generated by the
mapping f, : P — E*f,. By 32 A.4 the closure u is the infimum of {u,}, by condition (a)
each closure u, belongs to L,and by condition (b) the infimum of {u,} also belongs to L.

Remark. Evidently if projy K = K, then L is N-meet-stable in. C and every
accrete closure belongs to L; on the other hand L need not be completely meet-stable
in € and the upper modification -of an element of € in Lneed not exist. For example,
if K is the class of all pseudometrizable spaces, then projy, K = K (32 D.2) but
proj K is the class of all uniformizable spaces, and the upper modification of an ele-
ment of Cin K need not exist. Finally, note that it follows from 32 B.9 that proj, K =
<K, proj K + K imply that at least one closure has no upper modification in L.

32 B.11. The class ©C of all topological spaces. One has that proj 1€ =1C
and if P is a two-point non-discrete and non-accrete space (equivalently,non-discrete
and feebly semi-separated) then proj (2) = 1C. Stated in other words, if a space 2
is projectively generated by a family of mappings into topological spaces, then 2
is a topological space, and moreover 2 is projectively generated by a family of
mappings into the space 2 described above.

Proof. I. The class of all topological closures is completely meet-stable and con-
tains all accrete closures (31 B.4); hence, by 32 B.9, to prove proj 1€ = tC it is enough
to show that a closure space {Q, v) projectively generated by 2 mapping f into a topo-
logical space {R, w) is topological. If X = Q, then vX = f~'[wf[X]] by 32 A4,
and the set wf[X] being closed in (R, w) (w is topological) and the mapping f being
continuous, we find that the set vX is closed in (Q, v>. Thus {Q, v) is topological. —
II. To prove proj (#) = tC it is sufficient to show that proj (%) o tC, because 2 is
topological (every two-point space is topological)and hence by I proj(#) < projtC =
= tC. Under an appropriate notation of points of 2 by x and y we have (x) = (x)
and (_y) =(x,y) = [9| Let {(Q,v> be a topological space and 4 an open base
for <Q, v). The reader will find no difficulty in showing that the space {(Q, v) is
projectively generated by the family {f,, | U e #}, where f, is the mapping of (Q, v)
into 2 which assigns to each point z € U the point y and to each point ze Q — U
the point x (compare with 26 B.9(b)).

32 B.12. Pseudometrizable spaces. Suppose that we know that the class of all
pseudometrizable closures is countably meet-stable (see 31 ex. 4). Since clearly
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every accrete space is pseudometrizable, to prove that the class of all pseudometriz-
able spaces is invariant under countable projective construction, by 32B.10 it is
enough to show that if f is a projective generating mapping and the range carrier
{Q, v) of f is pseudometrizable, then the domain carrier (P, u) of f is also pseudo-
metrizable; this can be proved as follows: if a pseudometric d induces v, then D =
= do(grf x grf)is a pseudometric for P inducing the closure u. But this is evident
because the mapping f: (P, D) — <Q, d) is distance-preserving (i.e. d{fx, fy) =
= D{x, y); that D induces u may be shown by noting that a net D{x,, x> converges
to zero if and only if the net d{fx,, fx) converges to zero). It should be remarked
that other proofs will be given in 32 D.

Every class proj, K contains all accrete spaces. Sometimes it is convenient to omit
from projy K those accrete spaces which are obtained trivially, i.e. as projectively
generated by the empty family or by constant mappings.

32 B.13. Definition. A distinguishing projective family of mappings is a pro-
jective family {f,} with a common domain & such that for all distinct elements x
and y of |y| there exists an index a such that f,x =+ f,y.

Now given a class K of spaces and a cardinal X one can consider the class, say
Projy K, of all spaces projectively generated by a distinguishing family {f, | ae A}
with range carriers in K such that the cardinal of A is at most N, and the class Proj K
defined similarly. Then the accrete spaces mentioned above are avoided, except
for the void space.

32 B.14. A distinguishing projective family {j;} of mappings for closure spaces
is a projective generating family if and only if the reduced. product f of {j;,} is an
embedding. — 32 A.4 Corollary, 32 A 12,

We leave to the reader as a simple task the formulation and proof of propositions
for the classes Proj, and Proj similar to those for proj, and proj.

C. TOPOLOGIZED ALGEBRAIC STRUCTS

We shall investigate projective constructions for topologized algebraic structs.
Roughly speaking, this subsection is related to subsections A and B as subsection
31Cis to 31 A and 31 B.

32 C.1. Let o be an internal composition on a set P, u be an internal composition
on a set Q and f be a single-valued homomorphism-relation under o and u such
that Df = P. Let v be a closure for Q and let u be the closure projectively generated
by the mapping f:P — {Q,v). Then, if {u,v) is a continuous or inductively
continuous composition, then {c, u) has the same property.

Proof. Since f is a homomorphism-relation we have fo ¢ = o (f x f) and hence
flod" =po(f x fywhere f' =f:<{P,u) »<Q,0), 0 =0:{P,u) x (Pu) >
= (P,ud and p' = pu:{Q,v) x{Q,v) = {Q, v)>. By our assumption f’ is a pro-
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jective generating mapping, and hence f’ x f’ is continuous. Now if (g, v is con-
tinuous, i.e. 4’ is a continuous mapping, then u’ o (f* x f) is continuous and hence
f' o ¢’ is continuous, and finally, f* being a projective generating mapping, ¢’ is
continuous by 32 A.8, i.e. (o, u) is continuous. Similarly, if x4’ is inductively continu-
ous, then g’ o(f’ x f') and hence f’ oo’ is inductively continuous, and f’ being
a projective generating mapping, ¢’ is inductively continuous by 32 A8, i.e. (o, u)
is an inductively continuous composition.

32 C.2. Under the notation and assumptions of 32 C.1, if ¢ and p are semi-group
structures, then the inversion of {o,u) is continuous whenever the inversion of
{u, vy is continuous.

Proof. If g is the inversion of ¢ and h is the inversion of u, then fog = hof.
Let 2 be the subspace Dg of (P,u), g’ =g : 2% — &, & the subspace Dh of (Q, v),
hW=h:%—>% and finally, f'=f:%—- % By 32A13 f' is a projective
generating mapping. Clearly f' o g’ = h’ o f'. If b’ is continuous, then h' o f’ and
hence f’ o g’ is continuous, and f’ being a projective generating mapping, g’ is con-
tinuous by 32 A8.

As an immediate corollary of 32 C.1 and 32 C.2 we obtain the following important
theorem.

32 C.3. Theorem. Let f be a \homomorphism of a group (ring) % into a group
(ring) #. If v is a closure admissible for #, and u is the closure projectively
generated by f: |€4| — (|3€”|, v), then u is admissible for 4.

Using the theorems of 31 Cand Theorem 32 A.4 we obtain at once from 32 C.1—
32 C.3 the following important result.

32 C.4. Theorem. Let {#,|ac A} be a family, and let % and all the #, be
semi-groups, groups or rings. Let {f,} be a family, each f, being a homomorphism
of 9 into 3#,. Finally, let {v,} be a family such that v, is a closure for |#,| and let
u be the closure projectively generated by the family of mappings {f,, : |.‘9| -
- (lf,,l, v,0}. Then, if all the (A, v, are either continuous or inductively con-
tinuous semi-groups, or topological groups, or topological rings, then {(%;u) has
the same property.

Proof. By 32 C.1—3 the theorem is true for the case where the cardinal of the index
set is one. In the general case let u, be the closure generated by f,, : |€4 | - <|9f,,|, U5
by 32 A.4 the closure u is the infimum of {u,}. Finally, by the theorem 31 C.10, the set
of all closures making % a continuous or inductively continuous semi-group or topo-
logical group or topological ring, respectively, is completely meet-stable in C(l? |) and
contains the accrete closure.

32CS. Let f:{P,u)> - {(Q,v) be a projective generating mapping and let
{u,0,w) and {(v,0,,w) be topologized external compositions such that grf is a
homomorphism-relation under ¢ and g,. If v, @1, w) is continuous or inductively
continuous then {u, g, w) has the same property.
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Proof. Let o' = g:<{A, w) x <P, ud = <P, ud, 0} =0;:<{A,w> x {(Q, v> —
— <Q, v (i.e. o’ and g} are associated topologized external multiplications). Clearly

f°QI=Q’1°((J:<A’W>_’<A3W>) Xf)

If (v, @,, w) is continuous or inductively continuous, i.e. if the mapping g} is
continuous or inductively continuous, then the right side of the above equality has
the same property, and hence, f being a projective generating mapping, ¢’ has the
same property.

32 C.6. Theorem. Let # be a topological ring, ¥ a module over & and {5,",,}
.a family of modules over #. Let {f,,} be a family, each f, being a homomorphism
of Z into Z,.If {v,} is a family such that each v, is a closure admissible for the
module £, over & and if u is the closure projectively generated by the family
{fo: 12| = {|Za|s vap}, then u is admissible for the module & over &. The same
holds on replacing modules by algebras throughout.

.Proof. By 32 C.4 the closure operation u is admissible for the underlying group
(ring) of & and hence it remains to show that the external structure of . is continu-
ous under u. If u, is the closure projectively generated by the mapping f, : I.S:”| -
- (I.Sf’,,l, v,>, then u = inf {u,} by 32 A4, the external structure of & is continu-
ous under each u, by 32 C.5, and hence, by 31 C.16, under u.

In the concluding part we shall be concerned with projective constructions for
topological modules. Recall that by our convention 19 E.3 all the properties defined
for mappings for closure spaces are carried over to mappings for topological algebraic
structs; e.g., if f is a mapping of a topological module into another one then we say
that f is a projective generating mapping provided that the mapping f regarded as
a mapping of the underlying closure spaces is a projective generating mapping.

32 C.7. Theorem. Every topological real module is projectively generated by
a family of homomorphisms into pseudometrizable topological real modules.

Proof. Let . be a topological real module and let I" be the set of all pseudometriz-
able closures compatible for the underlying module of % which are coarser than
the closure structure of . By ex. 16, each neighborhood of the zero in £ is
a neighborhood of zero with respect to a closure of I'. As a consequence £ is pro-
jectively generated by the family { 10 ¥ -2, | u € I'} where £, denotes the under-
lying module of £ endowed with u.

A real topological module % is said to be locally convex if convex neighborhoods
of the zero of % form a local base. Recall that a set X is convex in a real module if
rx + sy belongs to X wheneverxe X, ye X,r 2 0,s =2 0,r + s = 1. For properties
of convex sets see the exercises to Section 19.

32 C.8. Theorem. A topological real module is locally convex if and only if it is
projectively generated by a family of homomorphisms into normed spaces.
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Proof. Let K be the class of all locally convex real modules. Since the inverse
image under a homomorphism of a convex set is a convex set, we find immediately
that each space projectively generated by a family of homomorphisms whose range
carriers lie in K belongs to K. Next, in a normed space the spheres about the zero
are convex and hence each normed space is locally convex. It remains to show that
every locally convex space is projectively generated by a family of mappings into
normed spaces. Let . be a locally convex space. It will suffice to show that for each
neighborhood U of the zero there exists a continuous norm ¢ for % such that
¢x < 1 implies x € U and this follows from the following proposition the proof
of which was given in 19 ex. 4.

32 C.9. Let X be an absorbing balanced convex neighborhood of zero in a real
topological module #. For each x in & let A, be the set of those positive real r such
that x € r[X]. Then A, is non-void (because X is absorbing), and

¢ ={x—>infd |xe|ZL[}

is a continuous norm for & such that ¢x < 1 implies x € X, and x € X implies
ox =< 1.
Remark. By 19 ex. 5, there exists a metric linear space which is not locally convex.

32 C.10. Definition. A topological #-module ¥ is said to be weak if ¥ is pro-
jectively generated by a family of homomorphisms into the topological £-module
associated with £.

32 C.11. Theorem. Every weak real topological module is locally convex but
no infinite-dimensional normed separated space is weak.

Proof. The first assertion follows from 32 C.8 because R is a normed module,
Let % be a normed real module. If % is infinite-dimensional and separated, then the
set {7 '[0]} is unbounded for each finite family {;} of linear functionals(27 ex. 15),
and hence a bounded neighborhood of the zero contains no set of the form
N{f:*[U:]} where {f;} is a finite family of functionals and U; are neighborhoods
of the zero in R. As a consequence (32 A.6), £ is not projectively generated by linear
functionals.

32 C.12. Remark. It follows from 19 ex. 2 that each finite dimensional topological
real module is weak and normable.

32 C.13. Locally convex modification. Let &£ be a topologized real module
(the norm is denoted by ||), &’ the underlying module of #. Denote by &, the
module .#’ endowed with a norm ¢ for .#’ over R. Let % be the set of all norms for
£’ such that the mapping ) : & — &, is continuous and let us consider the closure u
projectively generated by the family of mappings {J : &' - &, | pe¥}. By 33Cé
u is admissible for %’ over R. The closure u will be called the locally convex modific-
ation of the closure structute of %, and the resulting topological module over R will
be called the locally convex modification of % and will be denoted by Ic Z.
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32 C.14. Theorem. The locally convex modification Ic & of a topologized real
module & is the unique locally convex space with the same underlying module as &
and with the following property:

If fis a homomorphism of & into a locally convex module X, then f is continuous
if and only if the mapping g = f:1c & — A is continuous.

Proof. Evidently there exists at most one space Ic.# satisfying the condition.
We shall prove that Ic .# satisfies the condition. By definition lc # is locally convex
and the mapping h = ] : & — lc & is continuous. It follows that if g is continuous
then f = g - h is continuous. Conversely, suppose that f is continuous and let us con-
sider the set 4" of all continuous norms for #'. If ¢ € A", then clearly ¢ grf is
a continuous norm for &, and therefore ¢ gr f is a continuous norm for Ic & (by
the definition of Ic &#). However, gr f = gr g and therefore ¢ gr g is a continuous
norm for Ic &£ for each ¢ in . Since X" is projectively generated by {J : o —
— (||, >}, g is continuous by 32 A.10.

32 C.15. Weak modification. Let & be a topologized module over a topological
ring & and let &’ be the underlying module of & over R. Let & be the set of all
continuous linear forms f on £, and let u be the closure projectively generated by
the family of mappings {f: |$| - R lfe }. By 32 C.6 the closure u is compatible
Jor £’ over R (& can be considered as a topological module over ). The closure u
will be called the weak modification of the closure structure of &, and the resulting
topological #-module will be called the weak modification of & and will be denoted
by weak Z.

The reader can prove without a difficulty the following characterization of weak .#.

32 C.16. Theorem. The weak modification &, of a topologized module & over
a topological module R is the unique weak space over &, with the same underlying
module as &, which satisfies the following condition:

Let f be a homomorphism of % into a weak topological module A" over 4.
Then f'is continuous if and only if the mapping f : &, — XA is continuous.

D. EXAMPLES

According to 32 B.7 a class K is projective-stable if and only if K is hereditary,
completely productive and contains all accrete spaces. A direct proof of proj K = K
is often more convenient than the proof of the facts that K is hereditary, completely
productive and contains all accrete spaces. For example we shall prove:

32 D.1. The class of all regular spaces is projective-stable.

Proof. Let 2 be projectively generated by a family of mappings { fa} such that
the range carriers of all the f, are regular. If {f,} is empty, then |#| is a unique
neighborhood of any point of 2 and |#| is closed. Suppose that {f,} is non-void
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and U is any neighborhood of a point x of 2. There exists a finite set B of indices
and a family {U, | a € B} such that U, is a neighborhood of f,x in E*f, and
N{f;'[U.] | a € B} = U.Choose a family {V, | a € B} such that V, is a neighborhood
of f,x and the closure of V, is contained in U, for each a, and put V = N{f; [V,] | ae
€ B}. Since the closure of V, is contained in U, and f, is continuous, the closure of
f2'[V.] is contained in f ~*[U,]; consequently, the closure of V is contained in each
S Y[U.] and hence in U.

We gave a complete proof to show that the proof of proj K = K is the same
as the proof of the fact that K is completely productive, i.e. that the special
properties of projections of a product space into coordinate spaces plays no important
part in the proof. On the other hand, a completely productive class containing all
accrete spaces need not be hereditary and therefore need not be projective-stable,
e.g. the class of all compact spaces (41 A).

32 D.2. Let M be the class of all pseudometrizable spaces. Then projy, M = M,
and proj, M, where N = N, consists of all uniformizable topological spaces each
of which has an N-locally finite open base (i.e. a base which is the union of N locally
finite families).

Proof. I. Suppose that a space £ is projectively generated by a family of mappings
{f. | a € A} such that the cardinal of 4 is N. By 30 B.2 each space E*f, has og-locally
finite open base 4,. For each a let %, be the collection of all f; '[B], B € 4,. Since
f. is continuous, %, is a ¢-locally finite collection in £, and hence ¥ = J{¥,| a e A}
is R-locally finite. Since {f,} is a projective generating family, % is an open sub-base
for 2. If ¢ = U{9, l b € B}, the cardinal of B is N and each 9, is locally finite, then
the smallest multiplicative collection & containing % is an open base for £, and clearly
& = Y{&r | F is a finite subset of B}, where & is the smallest multiplicative collection
containing all 9,, b € F. Clearly, each & is locally finite and the set of all the sets F
has cardinal N. Thus each space of proj, M has a N-locally finite base. Each space
of M is uniformizable and hence each space of projy M < proj M is uniformizable.
In particular, each space of projy, M has a o-locally finite open base and hence is
pseudometrizable by the pseudometrization theorem 30 B.2.

II. Assume that {U,|a € A} is an open N-locally finite base for a uniformizable
space 2. Let A = UY{4, | b e B}, where the cardinal of B is N and each family
{U; | ae A,} is locally finite. For each a in A and each b in B let V,, be the union
of all U,, c € A,, such that U, and |.@| — U, are functionally separated. It is easily
seen that the sets V,, and |9’| — U, are functionally separated (see 28 ex. 9). From
the fact that £ is uniformizable we derive immediately that U, = J{V,, | b € B} for
each a. Indeed, if G is a neighborhood of x in 2, then the sets (x) and |9’| — G are
functionally separated and hence a neighborhood of (x) and |9’| — G are functionally
separated.

For each (a, b> € A x B let f,, be a continuous function on & which is 1 on V,,,
0 on |9’| — U, and which fulfils the inequality 0 £ f,, < 1. The family {f, I ae A}

38—Topological Spaces
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is locally finite. For each b and b’ in B let
dyyr = {(x, ¥ - Z{lfubx - faby] I ac Ab'}

Clearly each dg,. is a continuous pseudometric for £, and it follows from U, =
= U{Va | b e B} that U, contains an open 1-sphere about x with respect to some
dy,-- It follows that £ is projectively generated by the family

():2 - 2|, dyp|<b,b'>eB x B}.

32 D.3. Separated spaces. If a separated space P is projectively generated by
a family of mappings {f,}, then {f,} is a distinguishing family, i.e. if x + y, then
Jfox £ f,y for some a (indeed, if f,x = f,y for each a then the closure of (x) contains
y). On the other hand, if {f,} is a distinguishing projective generating family for
a space P and if the range carrier of each {f,} is separated, then clearly 2 is
separated. Consequently, if {f,,} is a projective generating family for # and the
range carriers are separated, then & is separated if and only if the family is
distinguishing.

xel|?,ye|?|}.
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33. INDUCTIVE GENERATION
FOR CLOSURE SPACES

In the preceding section we studied the coarsest closure for a set P making all given
mappings f,: P — {Q,, v,) ({Q,, v, being closure spaces) continuous. Here we
shall concern ourselves with the dual situation. Let there be given a family {f,},
each f, being a mapping of a closure space 2, into a set P which does not depend
on a, and we shall study the finest closure u for P such that all mappings f, : D*f, -
— (P, u) are continuous. It turns out that, roughly speaking, the operation of form-
ing the sum of a family of closure spaces plays the same part in the theory of in-
ductively generated closures as the operation of forming products in' the theory of
projectively generated closures. Fundamental theorems are proved in subsection A.

We shall also see that inductively generated closures inherit very few of the pro-
perties from the closure structures of domain carriers of the mappings of the ge-
nerating family. Closures projectively generated by a family of mappings into topo-
logical, uniformizable or regiilar spaces are topological, uniformizable or regular, re-
spectively; every closure operation is inductively generated by a family of mappings
whose domain carriers are hereditarily paracompact spaces (33 B.2); in particular, a
closure inductively generated by a family of mappings from topological spaces need
not be a topological closure. Because of the great importance of topological closures
we shall introduce (in 33 B) the notion of a closure topologically inductively generated
by a family of mappings {f,} as the finest topological closure making all the f,
continuous. The main results are proved without any reference to the theory of induct-
ively generated closures. On the other hand, evidently the closure topologically in-
auctively generated by a family {f,} is the topological modification of the closure
inductively generated by the family {f,}, and this fact enables us to reduce the theory
of topologically inductively generated closures to the theory of inductively generated
closures. For convenience, this reduction will be given in a more general situation,
namely for “K-inductively generated closures” where K is a projective-stable class
of spaces. Thus we obtain, e.g., the theory of inductive generation for uniformizable
spaces and regular spaces.

As in the case of projective generation, inductive generation can be reduced to the
construction of the sum of a family of spaces and construction of the closure inductive-
ly generated by a single mapping only (namely, the corresponding reduced sum).
In subsection C we shall study closures inductively generated by a single mapping

38+
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and the related notions of a quotient mapping and a decomposition space, and the
class of spaces stable under the inductive construction, the so-called inductive-stable
classes of spaces.

The closing subsection (33 D) is devoted to various examples; e.g. we shall introduce
the inductive product of a family of closure spaces which generalize the inductive
product of two spaces and we shall explain ““pasting’ and *“‘sewing’ of closure spaces
which often occur in the theory of functions.

It should be remarked that two special cases of inductive generating mappings
will be considered in the next section, and various important examples related to
inductive construction will be given in Section 35 devoted to the examination of
convergence which can be regarded as a part of the theory of inductive generation.

A. GENERALITIES

For convenience we shall introduce the following concept (compare with 32 A.1).

33 A.1. Definition. An inductive family of mappings with a common range
carrier 2 is a family {f,} such that each {f,} is a mapping of a struct into 2; if the
domain carrier of each f, belongs to a class K, then {f,} is said to be an inductive
family in K with a common range carrier 2. If we say that {f,} is an inductive
family of mappings for K then it is to be understood that {f,} is an inductive family
in. K with a common range carrier 2 which either bzlongs to K or is a set. We
shall see that this ambiguity does not lead to any confusion.

Notice that @ is a projective as well as an inductive family of mappings for each
class K. In this section we shall study inductive families for closure spaces, i.e. families
{fa} such that each f, is a mapping of a closure space and all the mappings f, have
a common range carrier which is a set or a closure space. For example, if (P, u)
is the sum of a family {{P,, u,>} of closure spaces, then the family {inj, : {P,, u,> -
—{P, u)} as well as {inj, : {P,, u,» — P} are inductive families for closure spaces.

33 A.2. Definition. A closure operation u for a szt P is said to be inductively
generated by a family of mappings {f,|a e A} if {f,} is an inductive family of
mappings for closure spaces with the common range carrier P or (P, u) and u is the
finest closure for P such that all the mappings f, : D*f, — (P, u) are continuous; the
family {f,} is said to be an inductive generating family for (P, u). A closure space
(P, u) is said to be inductively generated by a family of mappings {f,} if {f,} is
an inductive generating family for (P, 4> and {P, u) is the common range carrier
of all f,. The definitions just stated will be carried over to-collections of mappings and
single mappings as follows: a collection % has a property B if and only if the
family {f|fe Z} has the property B, and a mapping f has a property P if and
only if the singleton (f) has the property 9. Thus, if we say that f is an inductive
generating mapping (for closure spaces, for a space (P, u)) it is to be understood
that the family {f | f € ()} has the corresponding proparty.
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33 A.3. Examples. (a) The empty family  is simultaneously a projzctive family
and an inductive family. We know that every accrete space is projectively generated
by the empty family. It is evident that every discrete spacc is inductively generated
by the empty family.

(b) If a closure spacz £ is inductively generated by a family of constant mappings,
then 2 is discrete. Indeed, a constant mapping into any space is continuous.

(c) A space inductively generated by a family of mappings of discrete spacss is
discrete. Indeed, a mapping of a discrete space into any space is continuous.

(d) If {u,} is a family in C(P), then sup {u,} is inductively generated by the famlly
{J:<P,uy > P}.

(¢) The sum 2 of a family {#,} of closure spaces is inductively generated by the
family {inj, : #, — 2} of canonical embeddings. — This is a restatement of 17 B.3.

Now we proceed to the general theory. The first theorem corresponds to an analog-
ous result (32 A.4) for projectively generated closures.

33 A4, Theorem. Every non-void inductive family of mappings for the class C
generates exactly one closure operation. If a closure u for a set P is inductively
generated by a family of mappings {f, | a€ A} and if, for each a in A, u, is the
closure inductively generated by the mapping f,, then u = sup {u,, | ae A} If u is
a closure for a set P inductively generated by a mapping f: {(Q, v) - P, then

(%) uX = X v flof'[X]]

Jor each X < P. Finally, if u is inductively generated by a family of mappings
{(f:n <Qn1 Uﬂ)’ P> | ae A}, then

(%) uX = X v U{fi[vfs '[X]] | a € 4}

Jor each X < P; stated in other words, x € uX if and only if x € X or f '[x] inter-
sects v, f [ X] for some a in A.

Proof. I. The uniqueness is obvious. We shall prove the existence. Let {f, | ae A}
be an inductive family-in C with E*f, a set P and let us consider the set ¢ of all
closures w for P making continuous all mappings f,. By 31 A.7 the closure inf &
(in C(P)) belongs to @, and from definition 33 A.2 it is obvious that inf @ is the
closure inductively generated by {f,}.

II. Now, for each a, lst u, be the closure inductively generated by the mapping f,.
According to I, u, = inf ¢, where @, is the set of all closures for P making
continuous the mapping f,.
= sup {inf @,} which implies the equality u = sup {u,}

III. Now let u be the closure for P inductively generated by a mapping f :
: {Q, v) = P. We shall prove that (%) is true for each X < P. Consider the single-
valued relation w on exp P ranging in exp P which assigns to each X < P the set
X U f[vf"'[X]]- The reader can verify without difficulty that the relation w is
a closure for P. By definition of continuity, 2 mapping f : <@, v> — (P, u;) is con-



598 VI. GENERATION OF TOPOLOGICAL SPACES

tinuous if and only if ;X > f[vf~'[X]] for each X < P, that is, if and only if u,
is coarser than w. It follows that w = u. '

IV. It remains to prove the formula (+%). But this follows from the facts which
have already been proved. Indeed, by II u = sup {u,}, and by III 4, X =X U
flva f7Y[X]] for each X = P. Since u =sup {u,}, by 31 A2 uX = U{uX}
whenever the indexed set A is non-void; this yields (x+) under the assumption
A + 0. If A = 0, then obviously u is the discrete closure for P, that is uX = X for
each X < P, and obviously (*#*) is also fulfilled.

Corollaries. (a) In order that a space (P, u) be inductively generated by a map-
ping f:4{Q,v> - (P, u) it is necessary and sufficient that f[vY] = u f[Y] for
eachY=f"'[X], XcPanduX =X if X < P — f[Q].

(b) Let f be a mapping of {Q, v) onto (P, u). If f is a projectively generating
mapping, then f is an inductive generating mapping. Stated in other words, if
f:0Q — (P, u) projectively generates v, then f: {Q, v> — P inductively generates u.

(b') If f is an injective inductively generating mapping, then f is projectively
generating.

() If f is an inductive generating mapping then the set |E*f| — Ef is an open and
closed discrete subset of E*f; in particular, each point of IE*f] — Ef is isolated.

(d) If {u,} is a family in C(P) and if I, is the identity mapping of {P, u,) onto
(P, sup {u,}>, then {I,} is an inductive generating family for (P, sup {us}).

(e) The assertion of 33 A3 (e).

Proof. Statement (a) is a straightforward consequence of the description (*),
statement (b) follows from the description () and the description (1) from 32 A.4
of projectively generated closures. Statement (c) follows from (%) or perhaps more
easily from (a).

The next three corollaries of description (x*) of inductively generated closures
express basic properties of inductively generated spaces and therefore they will be
formulated as theorems. It is to be noted that these theorems are analogues of Theo-
rems 32 A.10, 32 A.9 and 32 A.13 for projectively generated spaces. Their proofs
are a matter of a relatively simple calculation based on the description (*#) of
generated closures. The reader will find no difficulty in providing these without
reading the proofs which follow Theorem 33 A.7.

33 A.S. Theorem. Let {f;, l a € A} be a family of mappings of closure spaces into
a closure space 2. In order that the space P be inductively generated by the family
{f,,} it is necessary and sufficient that a mapping f of the space P into a space & be
continuous if and only if all mappings f . f, are continuous (compare with 32 A.10).

33 A.6. Theorem. Let {f,, | a€ A} be a family of mappings from closure spaces
into a space # and the domain space D*f, of each f, be inductively generated by
a family of mappings {ga,,l b e B,}. Then the space 2 is inductively generated by
the family {f,} if and only if it is inductively generated by the family {faoGm | be
€ B,, ae A} (compare with 32 A.9).
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33 A.7. Theorem on partial commutativity. If a closure space 2 is inductively
generated by a family of mappings {f,} and if 2 is a subspace of 2, then 2 is in-
ductively generated by the family {g,}, where each g, is the restriction of f, to
a mapping of the subspace f;'[|2|] of D*f, into 2, ie. Dg,= f;'[| 2],
E*g, = 2 and g,x = f,x for each x € Dg,. (Compare with 32 A13.)

Proof of 33 A.5. I. First let us suppose that £ is inductively generated by {f,} and
f is 2 mapping of £ into a space £. If f is continuous, then each composition f - f, is
continuous as the composition of two continuous mappings. Conversely, suppose
that all compositions f o f, are continuous. If {Y,} is any family such that ¥, < Df,
then by continuity of f . f,

. f°fa[Ya](=f[fa[Y-a]]) Cfc’fa[Ya]a'
In particular, if X < |9’| and Y, = f;'[X] then from (**) we obtain

f1X7] = f[X] v V[ T]T} = FIXT?
which establishes the continuity of f.

II. Suppose that the condition is fulfilled. If f is the identity mapping of £ onto 2,
then f is continuous and by assumption all fof, are continuous. But f . f, = f, and
hence all f, are continuous. Thus the closure structure of £ is coarser than the closure
inductively generated by the family of mappings {f,} considered as mappings into
the underlying set IQ’| of 2. If u is any closure for the set Iﬂl such that all g, =
= {gr f,, D*f,, (|9|, u>)> are continuous, and if f is the identity mapping of the
space £ onto (I@I, uy, then g, = f o f, for each a and hence each f . f, is continuous.
Hence, by the condition, f is continuous; this means that the closure structure of 2
is finer than u. It follows that the closure structure of & is the finest closure for the
szt |9| making all the mappings f, continuous; this concludes the proof.

Proof of 33 A.6. By formula (#x) of 33 A.4 we have

(1) Yo' = Y, 0 U{gu[ga [Y]™**] | b € B}
for each a € 4 and Y, < Df,. By formula (%x) the fact that £ is inductively generated
by {f,} is equivalent to

(2) X < |2| = X% = X v U{f.[f. '[X]°/] | a € 4},
and the fact that 2 is inductively generated by {f, o g} is equivalent to

B)X c|?2| =X =XV U{fsogul(foo9a) ' [X]°**]|ac 4, beB,}.
According to (1), the conditions (2) and (3) are equivalent (put ¥, = f;'[X] and
notice that (f, o gs) ™' [X] = g'[Ya])-

Proof of 33 A.7. The fact that 2 is inductively generated by {f.} is equivalent to

(2). By the definition of relativization closures we have X? = X? n | 2| for each
X c |.@| and hence

X? =X uU{g.g, '[X]%] | ac 4}

for each X < |.@|; this means that 2 is inductively generated by {g,}.
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In the preceding section we saw that the projective generation can be reduced to
the construction of the product closure and the closure projectively generated by
a single mapping. Now it will be shown that the construction of the inductively
generated closure can be reduced to the construction of the sum closure and the
closure inductively generated by a single mapping. If a space £ is inductively generated
by the empty family, then £ is a discrete space and hence 2 is inductively generated
by any constant mapping into 2. For spaces inductively generated by a non-void
family the reduction is described in the theorem which follows.

33 A.8. Theorem. Let {f, l a € A} be a non-void inductive family of mappings for
closure spaces with a common range carrier ? and let f be the reduced sum of the
Samily {f,} i.e. f = {Ka, x) — f,x} : Z{D*f,} — 2. Then {f,} is an inductive gener-
ating family if and only if the mapping f is an inductive generating mapping.

Proof. Let i, denote the canonical embzdding of D*f, into the sum space Z{D*f,},
ie. i, = inj, : D*f, > Z{D*f,}. Clearly f, = f . i, for each a in A. Since {i,} is an
inductive generating family (e.g. by 33 A.3 (e)), the statement follows from 33 A.6.

33 A.9. Inductive factorization theorem. Let {f, | a € A} be an inductive family
of mappings for closure spaces with a common range carrier ? which is a space.
There exists a unique inductive generating family {g,} for closure spaces with a
common range carrier 2 such that |9’| = |.@| and f, = h - g, for each a where h is
the identity mapping of 2 onto ?. The mapping h is continuous if and only if all
the mappings f, are continuous.

Proof. Write 2 = (P, u) and let us consider the closure v inductively generated
by the family {f,:D*f,—» P}. If g, =f,:D*, - (P,v) and h = ):{P,v) >
— (P, u), then {g,} is an inductive generating family for closure spaces and f, =
= h o g, for each a. By 33 A.5 the mapping h is continuous if and only if all the
mappings f, are continuous.

Remark. Since f, = h o g, for each index a, we can write

{fa} =ho [{ga}] (= {h ° ga})

and this formula is sometimes termed the canonical inductive factorization of the
inductive family {f,} (compare with 32 A.11).

33 A.10. Remark. Let {f,,} be an inductive family of mappings for closure spaces
with common range carrier 2 and let

(*) b =nio[{g}]. i=12

where h; are bijective mappings and {g;}, i =1, 2, are inductive generating families
of mappings for closure spaces. If k = hj' o hy, then k™' = h;' o hy, gl = kog?
and g2 = k™', g} for each a; hence k as well as k™! is continuous by 33 A5, and
consequently is a homeomorphism. Thus the factorization (%) with {g.} an inductive
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generating family is unique up to a homeomorphism k. It is to be noted that if weare
given {g;}, then the mapping h; need not bz completely determined unless {Egi}
is a cover of the common range carrier of all g/.

In 33 A.4 we described the closure inductively generated by a family of mappings
{f.} by a simple formula depending on closures of domain spaces of mappings f,.
We shall often need descriptions of neighborhoods, open sets and closed sets in
a space 2 inductively generated by a family of mappings {f,,} in terms of the corres-
ponding notions for the domain spaces of the mappings f,. The required results are
listed in the following proposition, the proof of which depends on 33 A.4 and the
descriptions of suprema of families of closure operations.

33 A.11. Theorem. Let 2 be a closure space inductively generated by a family
of mappings {fa} A subset U of 2 is a neighborhood of a point x of ? if and only if
x €U and f]'[U] is a neighborhood of f; '[x] in the domain D*f, of f, for each a.
A subset U of ? is open if and only if the setf,_'[U] is open for each a, and finally,
a subset X of 2 is closed if and only if the set f; [ X] is closed for each a.

Proof. According to 33 A.4 the closure structure of 2 is the least upper bound
of the family {u,} where u, is the closure inductively generated by the mapping f,
considered as a mapping of D*f, into the underlying set of 2. By 31 A4 aset X < |9|
is a neighborhood of x in 2, is open or is closed if and only if it has the corresponding
property relative to the closure u, for each a. Hence it remains to prove that if f :
:{Q,v> » (P, u) is an inductive generating mapping, then X < P is a neighbor-
hood of x in (P, u) or X is open in (P, u) or X is closed in (P, u) if and only
if xe X and f~'[X] is a neighborhood of f~'[x] or f~![X] is open in {(Q, v) or
S7'[X] is closed in (Q, v}, respectively. It will suffice to prove the first statement be-
cause the second one is an immediate consequence of the first (a set is open if and only
if it is a neighborhood of all its points) and the third follows from the second (a set
is closed if and only if its complement is open). To prove the first recall that, ac-
cording to 33 A4, we have uY = YU f[vf~![Y]] for each Y < P. By definition,
X < P is a neighborhood of x in (P, u) if and only if xe P — u(P — X), that is,
if and only if xeP — (P — X)u f[vf~'[P — X]]), i.e. if and only if xeX
and f~'[x] = @ — vf '[P — X]. However, the last inclusion means that f ~'[X]
is a neighborhood of f ~'[x] in (Q, v) (because of the trivial equality f '[P — X] =
= Q — f7'[X]), which accomplishes the proof.

Usually a space inductively generated by a family of mappings {f,} inherits very
few of the properties of the domain spaces of the mappings f,. This explains the fact
that the inductive construction of spaces occurs so frequently. Indeed, often very
complicated spaces with many extraordinary properties can bz constructed by a
suitable choice of an inductive generating family of mappings, usually with very
simple and reasonable domain spaces, and conversely, an examination of a complicat-
ed space can be simplified by a suitable inductive generating family of mappings.
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B. INDUCTIVE CONSTRUCTION FOR TOPOLOGICAL SPACES

We know that a closure space projectively generated by a family of mappings
into topological spaces is a topological space. It turns out that a closure space in-
ductively generated by a family of mappings of topological spaces need not be topolo-
gical. For example, if u = sup {u,} in C(P), then u isinductively generated by the family
of mappings {] : (P,u,) - P}andifallthe u, aretopological, then u need not be topolo-
gical. It may be in place to give the simplest example. If a space (P, u) is not topological
then necessarily the cardinal of P is at least 3 because there exists a subset X of P
such that X =# 0, uX — X + 0 and uuX — uX + 0. Consider the set P = (1, 2, 3)
and define a closure u for P as follows: u(1) = (1, 2), u(2) = (2, 3) and u(3) = (3).
Obviously the closure u is not inductively generated by any mapping whose domain
is a topological three-point space. Nevertheless, u is inductively generated by a map-
ping f whose domain is a topological four-point space. Such a mapping f can be
constructed as follows: let Q = (x;, x,, Xa, x4) be a four-point set, v the closure
for Q such that v(x,) = (x,, x3), v(x3) = X3, v(x3) = (x3, x,) and v(x,) = (x,); and
fxy =1, fx, = 3 and fx, = fx; = 2. Clearly {(Q, v) is a topological space and the
above closure u is inductively generated by the mapping f : {Q, v> — P.

Now we shall show that every closure space is inductively generated by a family
of mappings whose domain carriers are topological.

33B.1. Example. Let (P, u) be a closure space. For each ae P x exp P,
a = (x,X), let Q, be the set X U (x), v, the closure operation for @, such that
yeyY—Yifandonly if Ye Q,, y = xeuY — Y and finally, let f, be the ident-
ity mapping of {Q,, v,> into (P, u). It follows from formula (*+) of 33 A4 that a
family {f, I a eA} where A < P x exp P inductively generates (P, u) whenever
the set A has the following property:

x) if yeuY — Y then there exists a {y, X)> € A such that ye u(X n Y).
y

In particular, the space (P, u) is inductively generated by the family {f, | ae
€ P x (P)}; in this case each mapping f, is bijective and u = sup {o, | aeP x (P)}.
Each space {Q,, v,> has at most one cluster point, namely x if a = {(x, X), and
evidently every space with at most one cluster point is topological. Therefore each
space {Q,, v,> is topological. Thus we have proved that

(a) Every space is inductively generated by a family of injective mappings
whose domain carriers are topological spaces (each with at most one cluster point).

If the space (P, u) is quasi-discrete, then the set of all {x, X) such that X is a one-
point set and x € uX — X possesses the property (*), and therefore

(b) Every quasi-discrete space is inductively generated by a family of one-to-one
mappings whose domain carriers are two-point feebly semi-separated spaces (and
hence topological).

If the space {P, u) is semi-separated, then each space {(Q,, v,) is semi-separated
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(because v, is finer than a relativization of a semi-separated closure, namely u).
Evidently every semi-separated closure space possessing at most one cluster point is
paracompact (29 ex. 7). It follows that

(c) Every semi-separated closure space is inductively generated by a family of
bijective mappings the domain carriers of which are paracompact separated
spaces.

By an appropriate modification of the construction of 33 B.1 we shall prove the
following interesting result.

33 B.2. Theorem. Every closure space is inductively generated by a family of
mappings the domain carriers of which are paracompact separated spaces, each
possessing at most one cluster point.

Proof. Let ¢(P,u) be a closure space. For each ae(P x exp P), a = (x, X),
let R, be the set X U (x), and v, be the closure for R, such that y € v,Y — Y if and
only if Y= R,, y = x and x e u(Y — F) for each finite subset F of ¥, and finally, let
£, be the identity mapping of (R, v,) into {P, u). It is evident that each (R, v,) is
a semi-separated space with at most one cluster point, and hence each (R, v,) is
a paracompact separated space. Let v be the closure inductively generated by the
family {f, | a e (P x exp P)}. Clearly v is finer than u and, in addition, x € vX — X
if and only if x € u(X — F) — X for each finite subset F of X. As a consequence, if u is
semi-separated then u = v and we obtain a new proof of statement (c) of 33B.1,
and if (P,u) is not semi-separated then v * u because x € u(y) for some ye
eP — (x) but x¢0 = u((y) — (¥)) = v(y) — (»). Thus, if (P,u) is not semi-
separated, then we must add some further mappings. Let B be the set of all ((x, y)),
{x,y>€P x P, such that x + y and x € u(y). Notice that BN (P x expP) = 0
because the elements of B are one-point sets but the elements of P x exp P are pairs,
and hence not classes. For each a € B let (R,, v,» be any semi-separated space with
exactly one cluster point, say r, (e.g. we can take the subspace of reals consisting of all
n~l,n=1,2,..., and the point 0 as r,), and let us consider the mapping f, of (R,, v,>
into (P, u) which carries r, into x and R, — (r,) into y, where a = ({x, y)). Now
it follows from 33 A.4 (x+) that the closure space (P, u) is inductively generated by
the family {f, | aeBu (P x exp P)}.

Remark. Notice that in 33 B.1 (c) the space (P, u) is assumed to be semi-separated
and the mappings f, are bijective, and hence injective, but in 33 B.2 the space {P, u)
is not assumed to be semi-separated so that the mappings f, need not be injective; in
fact, if (P, u) is not semi-separated and {P, u) is inductively generated by a family
of mappings f, whose domain carriers are semi-separated, then at least one f, is not
injective.

Topological spaces are of principal importance and a closure inductively gener-
ated by a family of mappings of topological spaces need not be a topological closure.
Therefore we shall study the finest topological closure making continuous all map-
pings of a given inductive family of mappings. For convenience we shall consider
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any class of spaces K and we shall try to carry over the theory presented in 33 A.
In conclusion direct proofs will be given for the case where K is the class of all
topological spaces. It is to be noted that theorems for general projective-stable K
may be applied to various classes of closure spaces.

33 B.3. Definition. Let K be a class of closure spaces. A closure u for a set P is
said to be K-inductively generated by a family of mappings {f,} if {f,} is an in-
ductive family of mappings for closure spaces with common range carrier P or (P, u),
and u is the finest closure such that (P, u) € K and all mappings f, : D*f, - (P, u)
are continuous; the family {f,} is said to be a K-inductive generating family for
{P, u). These definitions are applied to a collection of mappings % as to the family
{f |fe #}, and to a single mapping f as to the collection (f). If K is the class of all
topological spaces then we shall say “topologically inductively generated” and
“topological inductive generating family” instead of “K-inductively generated”
and “K-inductive generating family”, respectively.

From the definition we obtain immediately

33 B.4. Theorem. Let K be a class of spaces and let L be the class consisting of the
closure structures of spaces of K. Let {f,} be an inductive family of mappings for
closure spaces with the common range carrier {P,u). Then u is the closure K-
inductively generated by the family {f,} if and only if u is the upper modification
in Lof the closure v inductively generated by the family {f, : D*f, - P}.

33 B.5. Corollary. If the closure K-inductively generated by a family {f,} exists
for each inductive family {f,} for closure spaces, then every closure u has its upper
modification in L, and consequently L is order-complete and completely meet-
stable in C. Conversely, if every closure has an upper modification in L, then
the closure K-inductively generated by an inductive family {f,} JSor closure spa-
ces exists for each {f,}.

33 B.6. Suppose that K is a class of spuaces and L is the class consisting of the
closure structures of spaces of K. Let u be a closure for a set P and v a closure
Srom L~ C(P) such that the following condition is fulfilled:

(¥) A mapping f: (P,ud> - 2, 2 €K, is continuous if and only if the mapping
g = f:{P,v> > 2 is continuous.

Then v is the upper modification of u in L. Conversely, if K = proj K, i.e. if K
is projective-stable, then the upper modification v of u in L is the unique closure
satisfying condition ().

Proof. L. Suppose that a closure v € L fulfils (). Since J: (P, v) — (P, v) is con-
tinuous and (P, v) € K, by condition () the mapping ] : (P, u) — (P, v) is continu-
ous, i.e. v is coarser than u. If we Lis a closure coarser than u, then the mapping
J:{P,uy - (P, w) is continuous, and hence by condition (x), the mapping ] :
: (P, v> — (P, w) is continuous, i.e. w is coarser then v. Thus v is actually the upper
modification of u in L.



33. INDUCTIVE GENERATION 605

II. Conversely, suppose that K is projective-stable and u € C(P). By 32 B.9 there
exists the upper modification v of u in L. We shall prove that v fulfils (). If g is
continuous, then f is continuous because v is coarser than u. Conversely, if f is continu-
ous and if w is the closure projectively generated by the mapping f: P — 2, then
we Lbecause 2 € K and K is projective-stable, and clearly w is coarser than u. But
v is the finest closure of L coarser than u and hence v is finer than w. Since f : (P, w) ->
— 2 is continuous, g = f : (P, v) — 2 is also continuous.

Remark. Notice that 33 B.6 is a generalization of Theorem 16 B.4 on topological
modification, and of Theorem 24 B.15 on uniformizable modification.

33 B.7. Let K be a projective-stable class of closure spaces and let L be the class
of closure structures of spaces of K. In order that an inductive family of mappings
{j:,} with the common range carrier (P, u) be a K-inductive generating family it
is necessary and sufficient that

a mapping fof (P, u) into a space 2 from K is continuous if and only if all the
mappings f o f, are continuous.

Proof. L. Let us consider the closure v for P inductively generated by the family
{f.: D*f, — P}, and let u bz K-inductively generated by {f,}. By 33 B.4 the closure u
is the upper modification of v in L and hencz, by 33 B.6, if 2 € K, then a mapping
f of (P, u) into 2 is continuous if and only if the mapping f : (P, v) — 2 is continu-
ous; but v is inductively generated by {f,, : D*f, —» P} and consequently f : (P, v) —
— 2 is continuous if and only if all the mappings (f : (P, v) — 2)(f, : D*f, -
— (P, v) are continuous. Since (f : (P, v) = 2) o (f, : D*f, = (P, v)) = f o f,, we
find that f is continuous if and only if all the mappings f - f, are continuous. — II. We
have proved that the condition is necessary. But evidently at most one u € L fulfils
the condition and hence the condition is sufficient.

Remark. Notice that Theorem 33 A.5 is obtained for K = C.

Now we shall prove that 33 B.7 implies the theorem on associativity. It is to be
noted that, for the case € = K we obtain Theorem 33 A.6 which was proved inde-
pendently of theorem 33 A.S.

33 B.8. Theorem on associativity. Suppose that K is a projective-stable class of
closure spaces and {f,, | ae A} is an inductive family of mappings for closure spaces
with the common range carrier (P, u). For each a in A let D*f, be K-inductively
generated by a family {g,,,,] beB,}. Then {},} is a K-inductive generating family
ifandonly if the family {fa o Gab l ac A, be B,,} is a K-inductive generating family.

Proof. Notice that both inductive families have the same common range carrier,
namely (P, u). By 33 B.7 the statements that {f,} or {f, o g,;} are K-inductive gener-
ating families are equivalent to the statements that, if 2 € K and f is a mapping of
{P, u) into 2, then f is continuous if and only if all f . f, are continuous or all f .
o(fao gas) are continuous, respectively. But each {g,, | be B,} isa K-inductive generating
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family and therefore, again by 33 B.7, all (f . f,) . g, are continuous if and only if
all the f o f, are continuous; since (f o f,) o gop = f o (fa o ga), the proof is complete.

33 B.9. K-inductive factorization theorem. Let K be a projective-stable class of
closure spaces. If {f,} is an inductive family of mappings for closure spaces with
the common range carrier (P, u) belonging to K, then there exists a K-inductive
generating family {g,} and an identity mapping h such that f, = h . g, for each a.
All the mappings f, are continuous if and only if the mapping h is continuous.

Proof. Let v be the closure K-inductively generated by the family {fa:D%, > P},
h =JZ<P,D>'—’<P,M>, and ga=fa:D*fa_><P’v>'

Remark. Theorem 33 A.7 on partial commutativity for inductive generation for
closure spaces is not true for K-inductive generation. This will be shown for the case
K = 1C in 33 B.15.

33 B.10. Theorem. Let K be a projective-stable class of closure spaces and let x
be the single-valued relation on C which assigns to each closure space P its upper
modification in K, i.e., k{P,u) = {P, ku) where xu is the upper modification of u
intheclassof closure structuresof spacesof K. Let {f,, | ae A} be a non-void inductive
Sfamily of mappings for closure spaces with the common range carrier (P, u).
Each of the following two conditions is necessary and sufficient for {f,} to be a
K-inductive generating family:

(a) the reduced sum f of {f,} is a K-inductive generating family,

(b) the mapping g = f: kD*f — (P,u) is a K-inductive generating mapping.

Proof. It is almost self-evident that the two conditions are equivalent. Let i, stand
for the mapping inj, : D*f, - xD*f. Since f, = g . i, for each g, to prove that (b) is
necessary and sufficient, it is enough to show (by 33 B.8) that {i,} is a K-inductive
generating family; this follows from 33 B.4 and the fact that {inj, : D*f, > D*f}isan
inductive generating family.

Remark. It is natural to define the K-sum of a family {#,} of closure spaces as
the upper modification of the sum space Z{?a} in K. It is to be noted that the K-sum
of {#,} may actually be distinct from Z{,}, e.g. for K take the class of all accrete
spaces.

33 B.11. Theorem. Every non-void inductive family topologically inductively
generates exactly one closure operation. If a closure u for a set P is topologically
inductively generated by a family of mappings {f,} and for each a the mapping f,
topologically inductively generates u,, then u is the least upper bound of {ua} in
the ordered set vC(P) of all topological closures for P.If a closure u is topologically
inductively generated by a mapping f then a set X < E*f is open (closed) if and
only if f~![X] is open (closed) in D*f. If a closure u for a set P is topologically
inductively generated by a family {f,} then X < P is open (closed) in (P,u) if
andonly if f;'[X]isopen (closed) in D*f, for each a.
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Proof. I. Uniqueness is clear and existence can be proved in the same way as in
I3A4

II. The formula u = sup {u,} (in TC(P)) can be proved in the same way as in
33A4.

III. Let f be a mapping of a space 4 into a set P. Consider the collection % of all
U < P such that f~'[U] is open in 2. It is easy to verify that % is the collection of
all open sets for some topological closure u for P (use 15 A .6 ). Now, as in the proof
of 33 A.4, one can show that u is topologically inductively generated by f. The state-
ment concerning closed sets follows from the one concerning open sets.

IV. The description of open and closed sets of a space topologically inductively
generated by a family {f,} is an immediate consequence of IL, III and the description
31 B.6 of open sets relative to the least upper bound in t©C(P) of a family of topological
closures.

33 B.12. Theorem. Let 2 be a topological space and for each ae A, let f, be a
mapping of a space into 2. Then P is topologically inductively generated by the
Sfamily {f,} if and only if the following condition is fulfilled:

If fis a mapping of 2 into a topological space &, then fis continuous if and only
if fo f, is continuous for each a in A.

Proof. I Firstlet {f,} be a topological inductive generating family. If f is continuous,
then all f. f, are continuous as compositions of continuous mappings. Conversely
suppose that all compositions f » f, are continuous. Since £ is topological, to prove
/ is continuous it is enough to show that ¥ = f~'[X] is open in P for each open
subset X of #. Since £ is topologically inductively generated by {f,}, to prove Yis
open in 2 itis enough to show that f;*[Y] is open in D*f, for each a. Since f o f, is
continuous, the set (fof,)~' [X] = f5'[f~'[X]] must be open for each a. The
continuity of f follows. — II. The proof of sufficiency of the condition follows the
proof of 33 A5,

33 B.13. Theorem. Let us suppose that & is a topological space and {fa [ a e A}
is a family, each f, being a mapping of a topological space 2, into #. For each a
in A let 2, be topologically inductively generated by a family of mappings
{9 | b€ B,}. Then P is topologically inductively generated by {f,} if and only
if it is topologically inductively generated by the family {f, o ga,|a€ 4, b= B,}.

Proof. The proof proceeds as that of 33 A.6; instead of the description (##) of
inductively generated closures we must use the description of open sets from 33 B.11.

33 B.14. Factorization theorem for topological inductive generating families.
Suppose that {j:, | ae A} is a family, each f, being a continuous mapping of a space
2, into a space P. There exists a topological inductive generating family {h,, l ae A}
and a one-to-one continuous mapping g such that f, = g o h, for each a in A.

By 33 A.7 the operation of taking the inductively generated closure commutes, in
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a certain sense, with the operation of taking a subspace. The analogue for topologically
inductively generated closures is not true as we shall now show.

33 B.15. If a space 2 is topologically inductively generated by a mapping f (from
a topological space, or even a normal space) and if £ is a subspace of 2, then Z need
not be topologically inductively generated by the mapping g where g is a mapping of
the subspace f~'[|2|] of D*f into # which coincides with f on D*g. Moreover, if
a mapping <{f, (Q, v), P) inductively generates a closure u which is not topological,
then there exists a subset R of P such that the restriction g of f to a mapping of the
subspace f “'[R] of <Q, v) into R topologically inductively generates a closure which
is not the relativization to R of u. In fact, if (P, u) is not topological, then (by
17 A7) there exists a subset R of P such that the topological modification tw of the
relativization w of u to R is not a relativization of tu to R. On the other hand the clo-
sure w is inductively generated by g and tw and tu are topologically inductively
generated by g and f, respectively.

C. QUOTIENT SPACES

An embedding is a projective generating injective mapping. In a certain sense,
which will not be made precise, the “dual” concept is an inductive generating surjective
mapping. A space 2 is a homeomorph of a subspace of a given space £ if and only if
2 is the domain carrier of a projective generating injective mapping f whose range
carrier is #. The dual concept of ‘““a homeomorph of a subspace of 2 is ‘“‘a quotient
of space 2”’; 2 is a quotient of # if 2 is the range carrier of an inductive generating
surjective mapping with domain carrier 2.

The first part of the subsection concerns quotients and related concepts. The second
part is devoted to an examination of the inductive progeny of a given class (and cor-
responds to 32 B).

33 C.1. Definition. If f is a mapping from a closure space 2 (i.e. # = D*f), then
the quotient of ? under f (the topological quotient of 2 under f, respectively), de-
noted by 2/f (2[+f, respectively), is defined to be the set Ef endowed with the closure
inductively (topologically inductively, respectively) generated by the mapping
[P — Ef. A quotient (topological quotient) mapping is a mapping of a space 2
into a space 2 such that the space 2/f (2| f, respectively) is a subspace of 2.

Thus a surjective mapping is a quotient or a topological quotient mapping if and
only if it is, respectively, an inductive or topological inductive generating mapping.
Evidently each inductive generating mapping is a quotient mapping and each topo-
logical inductive generating mapping is a topological quotient mapping. The con-
verse is not true. Indeed, if f is an inductive generating mapping then |E*f| — Efis
an open discrete subset of E*f (by Corollary(c) of 33 A.4) but this need not be true if fis
only a quotient mapping. Moreover, if f is a quotient (topological quotient) mapping
of # into 2 and if 2, is any space such that Ef = 2, and the subspaces f[|9‘|] of 2
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and f[|2[] of 2, are canonically homeomorphic, then the mapping f : # — 2, is
also a quotient (topological quotient) mapping.

It has already been noted that an embedding is a projective generating mapping
but not an inductive generating mapping. It is clear that an embedding is always
a quotient mapping and if the domain carrier is topological, then it is also a topo-
logical quotient mapping.

For convenience we review some propositions about quotient sets under equival-
ences. Let ¢ be an equivalence relation on a P + @, that is, ¢ is a symmetric reflexive
and transitive relation for P such that o[ P] = P. The quotient of P under g, denoted
by P/g, is the set of all equivalence classes, i.e. the sets of the form ¢[x], x e P.
Thus P/p is a disjoint non-void cover of P and each of its elements is also non-void;
stated in other words, P/g is a decomposition of P. The mapping {x — ¢[x]} of P
onto P/ will becalled the canonical mapping of P onto P/g and will usually be de-
noted by #. If 2 is any decomposition of P then there exists exactly one equivalence
¢ on P such that 2 = Pfg; itis ¢ = U{D x D | D € 2}. Now we are prepared to
introduce the concept of the quotient of a space under an equivalence or a decomposi-
tion.

33 C.2. Definition. Suppose that {P, u) is a closure space, ¢ is an equivalence
relation on P and = is the canonical mapping of P onto P/g. The quotient of (P, u)
under g (the topological quotient of (P, u) under g), denoted by (P, u)/e ({P, u)/re,
respectively) is the set P/o endowed with the closure inductively (topologically in-
ductively) generated by the mapping = : (P, u) — P/o; stated in other words,

<P7 u>/Q = <P, u>/n
(P, up[re = (P, up/rm.

It follows from the definition that the quotient of a space P under an equivalence ¢
can be always considered as the quotient of P under the canonical mapping = of P
onto P/g. Conversely, it is easy to verify that every quotient P/f can be obtained by
a canonical homeomorphism from P/{fx = fy} onto P/f. More precisely,

33 C.3. Theorem. Let f be a quotient mapping of a closure space P onto another
one 2 (thus 2 = P|f) and let n be the canonical mapping of P onto the quotient
space 2|{fx = fy} (thus P[{fx = fy} = P|n). There exists a homeomorphism f
such that f = fom.

Proof. Clearly there is exacily one mapping f sach that f = f . 7, that this mapping
is one-to-one and @ = f ', f. Both mappings f and 7 being quotient mappings onto,
they are inductive generating mappings. In consequence, the mappings fo 7 (= f)
and f~'of(= n) being continuous, the mappings f and f~! are continuous by
33 A5 :

33 C.4. Theorem. Let f be a topological quotient mapping of a closure space ?
onto another one 2 (thus 2 = P/ f, in particular, 2 is topological) and let © be
the canonical mapping of 2 onto the topological quotient space .@/T{fx = fy}

39—Topological Spaces
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(thus P|{fx = fy} = P|r n). Then there exists a homeomorphism f such that
f=fom.

The proof proceeds as that of 33 C.3; instead of 33 A.5 we apply 33 B.12.

Remark. Let X be a subset of a space P and let ¢ = (X x X) u U{(¢x, x)) | xe€
€ P — X}. The spaces P/g and P/ ¢ are often said to be obtained by identifying or
topologically identifying the points of the set X.

Often we shall need earlier results adapted for (topological) quotients and (topo-
logical) quotient mappings. For easier references we summarize these in two pro-
positions which follow.

33 C.5. A) Let 2 be a closure space, g be an equivalence on P and n be the canon-
ical mapping of & onto the quotient space g’/g. Then

(@) = is an inductive generating mapping for P|o.

(b) A mapping f of .@/g into a space is continuous if and only if the compositibn
f o m is continuous.

() A mapping f of 9/9 into a space is a quotiént mapping if and only if fom is
a quotient mapping.

(d) If 2 is a subspace of P such that |2| = n~'[Y] for some Y and ¢ = ¢ N
N (12| x |2|), then 2[c is a subspace of Pe.

(e) If o is an equivalence on P such that ¢ < o, then the canonical mapping of
2P|o onto P|[a is a quotient mapping, that is Plo = (2|o)|f.

() If X = n"'[Y], then n[X] = V.

(8) Y <= |2/o| is open (closed) in P[g if and only if the set n™'[Y] is open (closed)
in 2. _

B) Let f, g and h be mappings such that h = g o f and f is an inductive generating
mapping. If one of the mappings g and h is a quotient mapping or an inductive
generating mapping, then the other also has the corresponding property.

C) The composition of two quotient mappings need not be a quotient mapping.

33C.6. A) Let P be a closure space, ¢ be an equivalence on 2 and n be the canon-
ical mapping of 2 onto the topological quotient ?|0. Then
" (a) = is a topological inductive generating mapping for 2.

(b) A mapping f of P[re into a topological space is continuous if and only if the
composition f o is continuous.

(c) A mapping f of P|re into a space R is a topological quotient mapping if and
only if f o m is a topological quotient mapping.

(d) Partial commutativity with formation of subspaces does not hold (see
33B.15).

(¢) If o is an equivalence on P such that ¢ < o, then the canonical mapping f
of P|ro onto P[ro is a topological quotient mapping, that is, P|;o = (P[r0)/1f-
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(f) W/TQ = t(g’/g).
(8) Y = |2/10| is open (closed) if and only if n~'[Y] is open (closed) in 2.

B) Let f, g and h be mappings such that h = g o fand f'is a topological inductive
generating mapping. If one of the mappings g and h is a topological quotient map-
ping or a topological inductive generating mapping, then the other mapping also
has the corresponding property.

C) The composition of two topological quotient mappings need not be a topologic-
al quotient mapping.

The concluding part is devoted to various examples. We begin with the spaces of
components and quasi-components of a space; for earlier results needed, see 20 B
and 21 B. D

33 C.7. If 2 is a closure space and ¥ is the collection of all components of 2, then
the union o of {C x C I Ce %} is an equivalence on 2 (20B.4). The quotient
spaces /o and #[,0 are called the component space of 2 and the topological com-
ponent space of 2. Similarly the union o, of all C x C, C being a quasi-component
of 2, is an equivalence (20 B.9). The quotient spaces 2/o, and 2[ro, will be called
the quasi-component space and the topological quasi-component space of 2. As
always, ?[r0 = t(P|c) and P10, = 1(P[a)).

(a) Since o = o, (20 B.9), there exists a mapping f of #/o onto #[s, and f; of
P[0 onto P[ro, such that n, = fon and m,; = fro nqy, where =, ng, ©;, Tip
are canonical mappings of # onto /g, ?[;0, P[6,, P[0, respectively. Since 7, and
are quotient mappings, the mapping f is a quotient mapping by 33 C.5. Since 7, rand np
are topological quotient mappings, the mapping f is a topological quotient mapping
(33 C.6); stated in other words, Z[a; = (2[0)/f and 2[r6; = (P[10)/1f1-

(b) A space 2 is feebly locally connected if and only if one, and then all, of the
spaces P[0, P[o,, P|rc, P|ro,, are discrete.

(c) The associated mappings {X — n[X]|} and {X — =,[X]} carry quasi-com-
ponents into quasi-components. In particular, quasi-components of 2/s,, and hence
of ?|10,, are one-point sets if |2| + 0.

(d) The components of #/o are one-point sets if |9| £0:if Cc |.@/a| is connected
and 2 is the subspace =~ ![C] of 2, then the quotient 2/(n | 2) is a subspace of #/s.
But 2/(n | 2) is the component space of 2. Hence, to prove that C is a one-point set
it is enough to notice that the component space of a space is connected if and only if
the space is connected.

It should be remarked that the range carrier of an inductive generating mapping
inherits very few of the properties of the domain carrier. There are two very significant
special cases of inductive generating mappings which preserve more properties; they
will be considered in the next section. Here we shall investigate properties of classes
of spaces invariant under inductive constructions (compare with 32 B).

39¢
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33 C.8. Definition. If K is a class of spaces and L is the class of closure structures
of spaces of K, then ind K denotes the class of all spaces inductively generated by
families of mappings with domain carriers in K, and ind L denotes the class of closure
structures of spaces of ind K. A class K is said to be inductive-stable if ind K = K.
The classes ind K and ind L are called the inductive progeny of K and L, respectively.

33C.I9. IfK is any class of spaces then the class ind K contains all discrete spaces.
Next, K < ind K andind ind K = ind K, i.e. ind K is inductive-stable and contains
K. Finally,if K < K’ thenind K < ind X'.

. Proof. The empty family inductively generates every discrete space and hence
ind K contains all-discrete spaces. A homeomorphism is an inductive generating
mapping and therefore K < ind K. The formula ind ind K = ind K follows from the
associativity theorem 33 A.6. The last statement is evident.

33 C.10. Let K be a class of spaces. A space P = {P,u) belongs to the class
ind K if and only if 2 is the quotient space of a space & under a mapping f, where
R is the sum of a family {Z, | a € A} such that all R,, excepting at most one, say
R,, belong to K and &, = {P, v) where v is the discrete closure for P.

Proof. Every such space belongs to ind ind K = ind K. Conversely, suppose
P, u) eind K and take an inductive generating family {f, | b € B} for <P, u) such
that D*f, e K for each b in B. Choose an element o, a ¢ B, put A = B U («), and
let f, be the identity mapping of (P, v) onto {P, u), where v is the discrete closure
for P. It is evident that {f, | a € A} is an inductive generating family for (P, u) and
the reduced sum f of {f, | aed},ie f:{{a, x) - f,x} : Z{D*,} > (P, u), is a sur-
jective inductive generating mapping (33 A.8). Thus (P, u) = Z{D*f,}/f.

33 C.11. Let K be a class of closure spaces and let L be the class of closure struc-
tures of spaces of K. In order that K be inductive-stable (i.e. ind K = K) it is
necessary and sufficient that

(a) if f is an inductive generating mapping and D*f e K, then E*f e K; and

(b) every closure has its lower modification in L.

Remark. Recall that, by lemma 31 B.2, condition (b) is equivalent to the following
statement: L contains all discrete closures and L is completely join-stable in C. In
the proof we shall use this equivalence.

Proof. Ifind K = K, thenclearly (a) is fulfilled; also, L contains all discrete closures
(33 C.9) and L is completely join-stable in € because sup {u,} in C, where {u,} is
a family in some C(P), is inductively generated by the family {J : (P, u,) - P},
and hence, by the foregoing remark, (b) is fulfilled. Conversely, assuming (a) and (b)
let us consider a space (P, u) inductively generated by a family {f,} with domain
carriers in K. If {f,} is empty, then u is discrete and hence, by (b), belongs to L.
If {f,} is non-void, then consider the family {u,} where each u, is inductively generated
by the mapping f, : D*f, - P. By (a) u, € Lfor each a and hence u = sup {u,} (by
33 A.4) belongs to L(by (b)). Thus (P, u) e K.
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33 C.12. Examples. (a) 1t follows from 31 B.5 that neither the class of all topo-
logical spaces nor the class of all uniformizable spaces is inductive-stable.

(b) The class of all discrete spaces is inductive-stable.

(c) The class of all quasi-discrete spaces is inductive-stable (show that each quotient
of a quasi-discrete space is quasi-discrete and the sum of a family of quasi-discrete spa-
ces is a quasi-discrete space).

(d) An important inductive-stable class will be considered in Section 35 (S-spa-
ces, i.e. spaces which can be described by means of the convergence of sequences).

(e) Let L consist of all accrete and all discrete closures. Clearly every closure has
a lower as well as an upper modification in L, and quotients and subspaces of spaces
from K belong to K. On the other hand, K is neither inductive-stable nor projective-
stable, and in fact K is not closed under products or sums.

In conclusion to point out the duality between the concepts considered, we shall
state a description of the projective and inductive progeny of a given class of spaces;
the proof follows from earlier results.

33 C.13. Let K be a class of spaces. A) Let K, be the class of all discrete spaces.
The inductive progeny of K consists of quotients of sums of spaces of K U K.
In particular, K is inductive-stable if and only if K contains all discrete spaces,
K is closed under sums, and quotients of spaces of K belong to K.

B) Let K, be the class of all accrete spaces. The projective progeny of K consists
of all subspaces of productsof spaces of K U K,. In particular, K is projective-stable
if and only if K contains all accrete spaces, K is closed under products (i.e. K is
completely productive), and subspaces of spaces of K belong to K (i.e. K is here-
ditary).

D. EXAMPLES

We shall introduce the following concepts: the inductive product of a family of
closure spaces, a closure space inductively generated by a collection of its subspaces,
a strictly inductively generating family. Then we shall define the meaning of commonly
employed expressions as e.g. a space obtained by identifying the points of prescri-
bed sets, a space obtained by pasting together pairs of prescribed points, a space ob-
tained by sewing together spaces of a given family of spaces along a given family
of homemorphisms or subspaces.

The subsection ends with an exposition of some constructions which can be used
to obtain an example of a regular separated topological space which is not uniform-
izable (33 D.6) and an example of an infinite regular separated topological space such
that each continuous function on it is constant (33 D.7) — of course, such a space
is not uniformizable,

33 D.1. Inductive products. In 17 D.1 the inductive product of two spaces 2
and 2, denoted by ind (# x 2) or # x4, 2, was defined by specifying neighbor-
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hoods of points (the “crosses”). In terms of this section, Theorem 17 D.3 can be re-
stated as follows: The space ind (# x 2) is inductively generated by the family of all
canonical embeddings, i.e. the mappings {x = {x, y)} P - |9‘[ |!2| yE€ |.@| and
{y > <x 0} 2-|2| x |2, xe|2?|. Now we shall introduce the concept of the
inductive product of a family of closure spaces.

Let {P, | a € A} be a family of sets and let P be the product of {P,}. For each x
in P and « in 4 there is a one-to-one map f, , of the set P, into P, called the canonical
embedding of P, into P corresponding to x, which assigns to each z € P, that point
of P whose a-th coordinate is z and the other coordinates coincide with correspondmg
coordinates of x. Thus f, , = f, , whenever x, = y, for each a # a.

(a) Let {u, I a€ A} be a family, each u, being a closure for P,. There is defined
the product closure IT{u,} for P, which is, as it has already been shown, projectively
generated by the family of all projections pr, : P = (P,, u,>. This closure will be
sometimes called the projective product of {u,}. Now we shall define the inductive
product of {u,} and the topological inductive product of {u,} to be the closure ge-
nerated inductively or topologically inductively, respectively, by the family of all
canonical embeddings f, ,: (P, u,) = P,xe€ P,ae A. The space (P, u), where
u is the inductive or the topological inductive product, will be denoted accordingly by
ind TI{(P,, u,»} or zind II{(P,, u,>}. (Thus the letter 7 can be taken as the topologic-
al modification.) Now, since {f,,} is an inductive generating family for ind II{P,}
and {f. .} is also a topological inductive generating family for tind II{P,}, we obtain
the following result:

(b) If {#,} is a family of spaces then a mapping g of ind I1{#,} into a space Z is
continuous if and only if each composite g « f, , is continuous, and a mapping g of
zind TI{#,} into a topological space is continuous if and only if all composites
g o f.., are continuous. Roughly speaking, a mapping from ind H{.@,,} is continuous
if and only if it is continuous in each coordinate separately, and similarly for mappings
from tind IT{Z,}.

(c) Mappings from products which are not continuous (relative to the projective
product closures) but which are continuous relative to the inductive product closures
frequently occur in mathematics. The fundamental problem is the following: “to
express” a given “inductively” continuous mapping in terms of “projectively’’ con-
tinuous mappings. For example, it may be shown that if f is a continuous mapping
of the inductive product ind ( x 2) of spaces 2 and 2 into a pseudometrizable
space 4, then there exists a sequence {f,} of continuous mappings of the projective
product 2 x 2 into # such that for each x the sequence {f,x} converges to fx,
stated in other words, f is of the first Baire class on 2 x 2.

(d) We leave to the reader the task. of defining the canonical embeddings into
P, x P, x ... x P, and the inductive product ind (#; x ... x 2,). It is easily seen
that

ind (#; x ... X 2) = (...((21 Xind P2) Xiaa P3)---) Xing P -



33. INDUCTIVE GENERATION 615

33 D.2. Spaces inductively generated by a given family of subspaces.
Let us consider a closure space (P, u) and a collection & of subspaces of (P, u).
For each X € & let fy be the canonical mapping of X into P. The family {fy} in-
ductively generates a closure v for P which is finer than u. If v = u, then the space
{P, u) is said to be inductively generated by the collection & of its subspaces. If-
(P, u) is topological, then also the closure topologically inductively generated by
{fx} is finer than u and if it coincides with u, then (P, u) is said to be topologically
inductively generated by the collection ¥ of its subspaces.

(a) In order that a closure space 2 be topologically inductively generated by a col-
lection & of subspaces of £ it is necessary and sufficient that a set U < & be open
if and only if the set U n X is openin X for each X € &.

(b) In order that a closure space 2 be inductively generated by a collection & of its
subspaces it is necessary that, for each ye # and Y < ].@I, yeYifandonlyif ye Y

oryeX n X  Yfor some X in Z. (Notice that X n X n Yis the closure of X N Y
in X.)

(c) If & is an interior cover of a space 2, then £ is inductively generated by %,
and if £ is topological, then 2 is also topologically inductively generated by Z. —
Obvious.

(d) Of course, the condition from (c) is not necessary. For example, every metriz-
able space is inductively generated by the collection of all countable subspaces with
exactly one accumulation point. Indeed, if x € ¥ — Y, then there exists a sequence
{x,} in Y which converges to x. Clearly X = (x) u E{x,} is a countable subspace
with exactly one accumulation point, namely x. Such spaces will be investigated in
Section 35 devoted to convergence, in particular the L-spaces and S-spaces (that is,
spaces such that their closure structure can be described in terms of convergent
sequences).

(e) A space is feebly locally connected if and only if it is inductively generated by
the collection of all open connected subspaces. A topological space is locally connected
if and only if it is inductively (topologically inductively) generated by the collection
of all locally connected open subspaces. (Trivial.) The “if””.part of the latter statement
of () can be strenghtened as follows:

(f) If a space 2 is inductively generated by a collection of its locally connected
subspaces, then £ is locally connected.

For the proof of (f) and a further discussion of local connectedness, see the
exercises. '

In the last two examples 33 D.1 and 33 D.2 all inductive generating families {f,}
were formed by embeddings.

33 D.3. Definition. An inductive (topological inductive) generating family
{f.} is said to be strict if all f, are embeddings. The meaning of the expressions of
the type “‘strict inductive generating family for a set or a space” is obvious and there-
fore the definitions are omitted.
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Let {f,} be a strict inductive (topological inductive) generating family for a space
2. For each g and b in A let &,, be the subspace of 2 whose underlying set is Ef, n
n Ef,, and 4, be the subspace of 2 whose underlying set is Ef,. Thus the mappings
Ja: D*f, > &, are homeomorphisms, and &,, = #;,. Let %,, denote the subspace
of D*f, with underlying set f 1[|%,,b|]. Clearly f, : Z,, = 2,3, is a homeomorphism.
Hence the mapping f; * o f, : #., — %, which will be denoted by I(f,, f,), is also a
homeomorphism. Clearly I(f,, f;) = 7 *(fs, f2)-

If K is any class then {f,} might be termed a K-structure if each I(f, f») belongs
to K; if, in addition, {Ef,} is an interior cover of 2, then {f,} might be termed a strong
K-structure. For example, if n € N and K is the set of all analytic homeomorphism
of open subsets of " onto open subsets of €”, i.e. such homeomorphisms which are
simultaneously analytic, then a pair {2, {f,}>, where £ is a separated connected
closure space and {f,} is a strong K-structure for &, is called an n-dimensional
analytic manifold. Similarly real k-differentiable n-dimensional manifolds are defined.
Of course a K-structure need not be a strong K-structure.

The next two examples concern the operations of pasting and sewing together of
spaces which occur frequently e.g. in function theory.

33 D.4. Suppose that 2 is a closure space. If ¢ is an equivalence relation on %
then there is defined the quotient space 2/¢. We may say that 2[g is obtained from P
by pasting together all points of each equivalence class. Now let us suppose that
we are given a relation ¢ for 2, that is, ¢ = |.@| X I.@ ; we want to find the smallest
equivalence on £ containing o, in other words, there is prescribed which points must
be pasted to which points, and we want to describe all pairs {x, y) of points which
must be necessarily pasted together. The required equivalence ¢ is obviously the inter-
section of all equivalences containing o. There is a direct construction of o. First
recall that (see 1 C) a relation « for P is an equivalence on P if and only if « > 4,
(reflexivity and o[P] =P), a =a~! (symmetry) and oo.o = o (transitivity).
Now the construction goes as follows: put ¢, = 4, U (¢ U 67 ') and by induction
0,41 = 0,00, neN; it is easily seen that ¢ = (J{s,}. Indeed, by induction we
have ¢ = 6, = g for each n and hence ¢ = ¢’ = (J{0,} = ¢; on the other hand ¢’
is an equivalence because ¢’ = 4, ¢’ is symmetric as the union of symmetric relations,
and finally clearly ¢’ o ¢’ = ¢'.

Now let {#,|ae A} be a family of spaces and let 2 be the sum of {#,|ae A}.If ¢
is an equivalence on £, then the quotient space /g is sometimes said to be obtained
from the family {ﬂa | a eA} by pasting together all pairs of points {x, y) € ¢. Some-
times there is given a relation ¢ in 2 which prescribes which points must be pasted
together with which points; and if we want to construct the resulting quotient space
we must find the smallest equivalence on £ containing ¢. This can be done as above.

33 D.5. There is a special case of pasting which will be called sewing. Let 2, and
#, be closure spaces and let f be a homeomorphism of a subspace 2, of #; onto
a subspace 2, of #,. Let 2 be the sum of 2, and 2,, g the mapping of the subspace
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inj; [2,] of 2 onto the subspace inj, [ 2,] of 2 “induced’ by f, and let ¢ be the small-
est equivalence on £ containing the graph of g. Evidently ¢ = g U g~' U 4. The
quotient space 2[g is said to be obtained from spaces 2, and 2, by sewing together
along the homeomorphism f. If the homeomorphism f mentioned above is uniquely
determined by subspaces 2, and 2, and the context then we say that the space £ is
obtained from spaces 2, and £, by sewing together along subspaces 2, and 2,.

The reader will find no difficulties in adapting the construction to obtain the con-
cept of a space obtained by sewing together a given family of spaces along a given
family of homeomorphisms.

33D.6. An example of a regular topological space which is not
uniformizable. Let Q and P be infinite sets and let the cardinal of P be greater
than the cardinal of Q. Choose a £ in P and an # in Q. Let u be the closure for P
such that £ is the only cluster point of 2 = (P, u) and the complements of neighbor-
hoods of ¢ are finite, and let v be the closure for Q such that the point # is the only
cluster point of 2 = {Q, v) and the complements of neighborhoods of the point #
are finite. We know that the product space (P, u) x {Q, v) is normal (29 B.8) and
hence the subspace 2 = (R, w) of (P, u) x {Q, v),whereR = P x Q — (<&, n)),
is uniformizable. Let X = (P — (&) x (1), Y = (¢) x (@ — (n)). Clearly X and Y are
closed in £ and we have shown in 29 B.8 that X and Y are not separated in £ and
hence £ is not normal. We shall need the following property of continuous functions
on %, ? and 4.

(a) Let f be a continuous function on (P, u). For each positive real r there exists
a neighborhood U of ¢ such that | fx — fél < r for each x in U. The complement
of U is finite and thus the inequality is true for each x in P except for a finite
number of x’s. If A is a countable set of positive reals such that 0 = inf 4, then
fx = f€if and only if [fx — fé| < r for each r in A, and hence fx = f¢ for all x
except for a countable number. Of course a similar result holds for continuous func-
tions on {Q, v).

(b) Let f be a continuous function on %. There exists a real number ¢ such that

(1) f<{x, n) = ¢ for each x e P except for a countable number of x’ s;

(2) If {y,} is a one-to-one sequence in @ — (1), then the sequence {f<&, y,>}
converges to c. As a consequence, the number c¢ is determined by values of f on any
countably infinite subset of Y.

(3) There exists a subset P’ of P containing ¢ and a subset Q' of Q containing #
such that the cardinal of P — P’is at most card Q, the cardinal of Q — Q’is couniable
and fz = c foreach z € P’ x Q' — (<, ) and hence f is constant on P’ x Q" — (<&, 7).

(c) Let us consider the sum & of the family {# | n e N}. Thus |#| = N x |#]
and the closure structure of & is inductively generated by the family {inj,: # —
- | ne N}. Let ¢ be the smallest equivalence on & such that:

(1) ¢n,x) g{n + 1, x) for each x € X and each even n
(2) <n, y) e<{n + 1, y) for each y € Y and each odd n.
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It is evident that two distinct points are equivalent only in cases (1) and (2) (re-
member that X n Y = 0). Let 7 be the quotient of & under g, i.e. 7 = ¥/o. The
subspace (n) x # of & will be termed the n-th sheet and denoted by #,, the set
(n) x X the main row of the n-th sheet, and the set (n) x Y the main column of the
n-th sheet. By (1) each even sheet and the following odd sheet are sewed together along
the main rows (i.e. by the homeomorphism {<n, x) - <n + 1,x) | x € X}) and,
by (2), each odd sheet and the following even sheet are sewed together along the main
columns (i.e. by the homeomorphism {{n, y> = {(n + 1, y> | y € Y}). Let h denote
the canonical mapping of & onto 7 and h, the mapping hoinj,: Z — J. First
we shall show that

(3) {h,}isa strict inductive generating family for 7~ and the family {Eh,} is a closed
locally finite and star-finite cover of J (i.e. each member intersects only a finite
number of members).

Since h is an inductive generating mapping and {inj, : % — &} is an inductive
generating family, by 33 A.6 {h,} is an inductive generating family. Clearly each h, is
injective. Since # is a topological space, to prove that h, is an embedding, it is suf-
ficient to prove that h,[F] is closed for each closed F = #; and this follows from the
fact that M, = hy *[ h,[F]]is closed for each k (clearly M, = F, M, isQif [k — n| > 1
and M, is F n X ot F n Yin the remaining cases) because {h,} is an inductive gener-
ating family. We have also proved that Eh, is closed for each n. If |k - n| > 1
then Eh, n Eh, = 0 and therefore {Eh,} is clearly star-finite. If z is any point of 7
then the star U of z in {Eh,} is a neighborhood of z because h, ![z] % @ implies
h U] = |92| As a consequence, {Eh,} is locally finite.

(4) 7 is a semi-separated totally disconnected space (sets simultaneously open and
closed form a base for 7). As a consequence, J is a separated uniformizable space.

Clearly £ is a totally disconnected space, and using this fact the reader find without
difficulties that & is totally disconnected. Finally, the space is semi-separated because
h; '[2] is a one-point set for each n and £ is semi-separated.

The space J is separated and uniformizable but for each continuous function f
on 7 we have N{f[h,[R]]} + 0. We shall prove somewhat more.

(5) If f is a continuous function on 7, then there exist a real ¢ and a countable subset
X' of X such that fo h,x = ¢ for each x e X — X’ (remember that the cardinal of
X — X’ is infinite).

The composite f, = f o h, is a continuous function on £ and therefore, by (b) (1),
there exists a real ¢, and a countable subset X, of X such that f,z = ¢, for each
zeX — X,. Put X’ = {X,}; of course, the cardinal of X" is countable and f,z = ¢,
for each z e X — X’. We shall prove that ¢, = ¢, for each n and k. It is sufficient
to show ¢, = ¢,,, for each n. If n is even and z € X, then clearly h,z = h,,,z and
therefore ¢, = ¢,.,. Assuming that n is odd, choose a one-to-one sequence { y,,} in
Y. By (b) (2), the sequence {f,yy | k} converges to c, and the sequence {f,.,y | k}
converges to ¢, .. Since h,y, = h,. ¥, weobtainf,y, = f,+y.and hencec, = ¢, ;.
It should be noted that if Q is uncountable then (5) follows immediately from (b) (3).
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Now we are prepared to exhibit the required example.

(d) Let Tp be a set consisting of all points of |.9' | and one further point, say (.
Let 7, be the space whose underlying set is Ty, such that 7 is an open subspace of
o and the complements in T, of sets of the form Eh, form a local sub-base at {. We
shall prove that 7, is a separated regular topological space but 7, is not uniformiz-
able. First let us notice that the sets

U, = ({) v U{Eh, | k ='n}

form a local base at {. If f is a continuous function on 4, which is zero on |.9'0| —
— U,,n > 0, then 0€ef[Eh,] for each k (by (c)(5)) and therefore f{ = 0. Con-
sequently, 7, is not uniformizable. Clearly each set U, is closed and N{U,} = ({).
Using the facts that  is an open subspace of 9 3 and J is a separated regular space
the reader will find without difficulties that  is a regular separated space. Evidently
T o is a topological space.

33 D.7. A regular separated topological space without non-constant
continuous functions.

(a) Let £ be a closure space and let L, and L, be two equipollent subsets of %
such that L, is dense in .#, L, n L, = @ and each continuous function on & is con-
stant on L,. Let ¢ be a bijective relation for L, and L, and let ¢ be the smallest equi-
valence on % containing ¢. If f is a continuous function on the quotient space #/o,
then f is constant because f is constant on the dense set g[L,] where g is the canonical
mapping of & into #/a. If & is regular, separated and topological, then the quotient
Z[o need not be regular or topological but ¥[o is always separated. If ., is the
topological regular modification of #/s, then every continuous function on %, is
constant but %, need not be separated. However, as we shall see later, there exist
spaces ¥/o such that &, is separated.

We want to construct a space & and an equivalence ¢ such that #/¢ possesses
some additional properties which will allow us to prove that &, is separated.

(b) Suppose that we are given a topological regular separated space ¢, a closed
subset Z of )", a proper filter & of sets on Z, a point { of A and a dense subset M
of X such that

(1) MnZ = @ and { non e M; and

(2) £ ¢ Z but for each continuous function f on " there exists an A in & such that
(f¢) = f[A], i.e. fC is the only value of f on A.

Remark. Such a space ¢ exists and, in addition, 2#" may possess many additional
properties. As an example, let " be the space 7, from 33 D.6, Z be the set ho[X |, o be
the filter having for a base the collection of all subsets of Z whose complements in Z
are of cardinal less than the cardinal of Z, { be the point { of 7, and M be the set of
all h,(x, y), {x, y> € (P — (&) x (@ — (n)-

Let us consider the sum space &'y = E{" | m e M}. Thus M x || is the under-
lying set of 2", and ', is inductively generated by the family of mappings {inj,, :
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: A - A1} Let © be the smallest equivalence on X, containing all the pairs
m, z),{n, z)), ze Z, m€ M, n € M, and consider the quotient & of »"; under 7,
ie. & = A'y[r, and the canonical mapping g of #°; onto £. Roughly speaking,
& is obtained from 2" by sewing together card M copies of 4" along Z; more precisely,
& is obtained from 'y by sewing together all the subspaces (m) x Z, m € M. The
space % has the following two properties:

(3) The mapping g is one-to-one on M x M and L, = g[M x M]is densein &.
(4) The mapping g is one-to-one on M x ({)and each continuous function f on &
is constant on L, = g[M x ({)].

Proof. Clearly g is one-to-one on M x M. The set M is dense in o and therefore
the set M x M is dense in J",. Since g is continuous, L, is dense in £. Evidently
g is one-to-one on M x ({). Let f be a continuous function on &. Let us consider
the continuous function h = fog on & ;. We shall prove that h is constant on
M x () (which implies that f is constant on L,). Let h,, = h o (inj,: " — A',). We
must show that h,, { = h,, ( for each m; and m, in M. By (2) we can choose 4; € o/
such that h,[A4] = (h,{). If A = A, 0 A,, then (h,{) = h,[A] and clearly
hm,[A] = h,,[ A], which implies that (h,, ) = (h,,{) and hence h,, { = h,¢{.

(¢) If A" is the space T, of 33 D.6 and if {, Z, & and M are defined as stated in
Remark subsequent to (b) (2), & is the space defined in (b) and Z, is the space de-
fined in (a), then &, is a separated regular topological space such that each continu-
ous function on %, is constant.

We have proved that every continuous function on %, is constant. The fact that
&, is separated is left to the reader as an exercise on topological modification. We
want to point out that the set L, is isolated; this can be used to give a very simple
proof. It is to be noted that (c) is due to J. Novdk (who made the assumption that
the cardinal of both spaces 2 and 2 of 33 D.6é are uncountable).

(d) If &, is an infinite countable regular topological space, then &, is para-
compact (because each cover has a o-locally finite refinement) and hence &, is
uniformizable. Therefore a space which is regular and topological but not uni-
formizable, is necessarily uncountable. Since the space £ of 33 D.6 can be taken
with cardinal N, the cardinal of the space &, of (c) may also be taken as N;.
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34. HYPERSPACES AND CONTINUITY
OF CORRESPONDENCES

This section is devoted to an examination of the “continuity” of correspondences
for closure spaces. It is natural to introduce three kinds of continuity, namely upper
semi-continuous, lower semi-continuous and continuous correspondences. For map-
pings all three kinds of continuity coincide with the usual one (in the sense of De-
finition 16 A.1). The definitions will be based on hyperspaces of a given space which
are introduced and studied in subsection A. Subsection B is concerned with defining
and developing the properties of correspondences. In subsection C an important
result of B enables us to prove, e.g., that the quotient of a topological group under
a homomorphism is a topological group. In the last subsection some special kinds
of correspondences are considered, mainly inversely upper or lower semi-continuous
quotient mappings.

A preliminary comment seems to be necessary.

Let f be a mapping of a closure space # = (P, u) into another one 2 = {Q, v).
We know that the following two conditions are necessary and sufficient for the map-
ping f to be continuous:

(1) If Vis a neighborhood of y in 2, then f~'[V] is a neighborhood of the set
S y]in2.

(2) If y ¢0Y, then f~'[y] nuf~![Y] = 0. Evidently condition (i) implies the
following condition (i'), i = 1, 2:

(1) If Vis open in 2, then f ~*[ V] is open in 2.

(2') If Yis closed in 2, then f ~![Y] is closed in 2.

If 2 is topological, then (i'} implies (i), i = 1, 2. Now let f be a domain-full cor-
respondence of 2 into 2. Thus f = {grf, #, 2) where gr f is a relation such that
Dgrf =|#| and Egrf < |2|. It is easy to sce that (1) implies (1) and (2) implies
(2'). On the other hand condition (1) is not equivalent to condition (2), and, in addi-
tion, (1) does not.imply (2), and (2) does not imply (1). Evidently it is sufficient to
show that in the class of all topological spaces (1') does not imply (2') and (2') does
not imply (1'). If = is the projection of a product space 2 onto one of its coordinate
spaces, say 2, then = carries open sets into open sets (by 17 C.7) and hence the cor-
respondence =~ ! : 2 — 2 fulfils condition (1'). On the other hand, = need not carry
closed sets into closed sets (27 ex. 5) and hence the correspondence ™' : 2 — 2 need
not fulfil condition (2"). An example of a (continuous) mapping g (for topological
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spaces) which carries closed sets into closed sets but which does not carry open sets
into open sets was given in 27 ex. 4; the correspondence g~ fulfils (2') but not (1.

A domain-full correspondence satisfying condition (1) (condition 2) is said to be
lower (upper) semi-continuous and a correspondence satisfying both conditions is
said to be continuous. It is to be noted that the theory developed will usually be ap-
plied to a correspondence f~! where f is a continuous mapping. Therefore it is con-
venient to introduce the following terminology: a correspondence f is said to be
inversely lower semi-continuous if the inverse correspondence f~! is lower semi-
continuous, and similarly we define inversely upper semi-continuous correspondences
and inversely continuous correspondences. Thus, e.g., a mapping f of a closure space
2 into a closure space 2 is inversely lower semi-continuous if (and only if) x € int U
implies f[x] < int f[U], and if 2 is topological, then this condition can be replaced
by the requirement that f carry open sets into open sets. A mapping which carries
open (closed) sets into open (closed) sets is termed open (closed). Thus a mapping f
of a topological space into a closure space is inversely lower (upper) semi-continuous
if and only if f is open (closed).

It turns out that a simultaneously continuous and inversely upper or lower semi-
continuous mapping is a quotient mapping and quotient mappings of this kind have
many important properties. We mention two: The product of inversely lower semi-
continuous quotient mappings is a quotient mapping, and this is the result which is
needed for the proof of the fact that quotients of a topological group are topological
groups. A domain-restriction of a quotient mapping need not be a quotient mapping;
on the other hand a domain-restriction of an inversely upper (lower) semi-continuous
quotient mapping to a closed (open) subspace is a quotient mapping. Next, a quotient
of a space 2 inherits very few of the properties of 2. Inverse lower or upper semi-
continuity of the canonical mapping onto a quotient often enter as essential addi-
tional assumptions. ' '

The examination of the continuity of correspondences can be reduced to an examin-
ation of continuous mappings as follows. Given a space &, we define certain spaces
H.(#), H_(2) and H(2) whose underlying set is the collection of all non-void sub-
sets of (2|, and then we define: a correspondence ranging in & is upper semi-continu-
ous, lower semi-continuous or continuous if the mapping {x — f[(x)]} of the sub-
space Df of D*f into the space H,(2), H_(2) or H(2) respectively, is continuous.

It is to be noted that the terms lower and upper semi-continuous historically
originate from semi-continuous functions introduced in 18 D (see ex. 15). Keep in
mind that an upper semi-continuous function in the sense of 18 D need not be con-
tinuous, but an upper semi-continuous function in the sense introduced here is con-
tinuous. We hope that this ambiguity will not lead to any confusion. In this section
functions semi-continuous in the sense of 18 D will be not considered.
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A. HYPERSPACES

In 12 A the star of a set in a cover was introduced. Here we shall need the so-
called combinatorial star of a set Y in & which is defined to be the set of all X € &
intersecting Y and which will be denoted by star (Y, Z). We shall simply say a star
because the star in the sense of 12 A will not be needed. For convenience let us
agree to denote by exp’ X the set of all non-void subsets of X, that is, exp’ X =
=expX — (D).

34 A.1. Definition. Let <P, u) be a closure space. The hyperspace of upper semi-
continuity H, (P, u) of {P, u) is defined as follows: the underlying set of H (P, u)
is the set exp” P and

(1) E{exp' U I U is a neighborhood of X in (P, u)}
is a local base at X in H,.(P, u) for each X. The hyperspace H_(P, u) of lower semi-
continuity is defined as follows: the underlying set of H_(P, u) is exp’ P and

(2) E{star (U, exp’ P) | X nintU =+ 0}
is a local sub-base at X in H_(P, u). Finally, the hyperspace H(P, u) of continuity
is defined to be the set exp’ P endowed with the infimum of closure structures of
spaces H. (P, u) and H_(P, u).

If 2 = (P,u) then we shall write H(#) instead of H(P, u) and similarly for
H,.(#) and H_(2).

Of course it must be shown that (1) and (2)is a local base and a local sub-base at X
for some closure operations for exp’ P; that is, according to 14 B.10, 11 it must be
shown that each element of (1) and also each element of (2) contains X, and in
addition, the intersection of two elements of (1) contains an element. The former
statement is obvious and the latter follows from the obvious equality

exp’ (U; nU,) = (exp’ U,) n (exp’ U,)

and the fact that the intersection of two neighborhoods is a neighborhood.
From the definition we obtain at once

34 A.2. Let (P, u) be a closure space and f be the relation E{(x, (x)) | x € P}.
Then the mappings f: (P,u) - B (P, u), f:{P,u) > H_(P,u) and f: (P, u) ~
— H(P, u) are embeddings (which will be called the canonical embeddings of
(P, u) into H.(P,u), H_(P,u) and H(P, u) respectively).

Now let X e H_(P, u) and let star (U,, exp’ P), i < n, be canonical neighborhoods
of X. Then {star (U, exp P)} is a neighborhood of X and clearly

(3) N{star (U, exp P)} = E{Y|' YeP, U;n Y # 0 for each i}.

Since (2) was a local sub-base at X in H_(P, u), the collection of all sets of the
form (3) form a local base at X in H_(P, u).

Now we shall describe a certain type of local bases in H(P, u). According to 31 A,
if w is the infimum of two closures w; and w,, say for a set Q, and %, and %, are
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local bases at a point x in (@, w,» and {Q, w,) respectively, then %, U %, is a local
sub-base at x in {Q, w). It follows that the sets of the form

@) E{Y|Y<U, YAU; %0 fori=0,..,n}
formalocal sub-baseat X in H(P, u), where U is a neighborhood of X in P, n € N and
U, are sets such that X nint U; & 0 for each i < n. But clearly the sets of the
form (4) form a filter base, and consequently, the collection of all sets of the form (4)
is a local base at X in H(P, u). The set (4) coincides with the set

(5) E{Y|Y< U%, YAV =+ foreach Vin %}
where % consists of U and all sets U; n U, i £ n. In addition, % is finite and interiorly
covers X. Conversely, if % is any finite collection which interiorly covers X in (P, u)
and if U = % and {U;} is any finite sequence whose range is %, then the set (5)is
equal to the set (4). It follows, exactly the sets of the form (4) can be of the form (5).

34 A.3. Theorem. Let (P, u) be a closure space and let X € exp’ P. The collection
of all sets of the form (5) isalocal basc at X in H(P, u) where % varies over all finite
subcollections of exp’ P such that {intU|Ue%} covers X and intU nX + 0
Jor each U in %.

34 A.4. Theorem. If (P, u) is a topological space, then all three hyperspaces
H.(P,u), H_(P, u) and H(P, u) are also topological spaces and the collection of
all exp’ U, U open in {P, u), is an open base for H,(P, u); the collection of all
star (U, exp’ P), U open in (P, u), is an open sub-base for H_(P, u); and finally, the
collection of all sets of the form

(6) {Y| Yc U%, Ue % =UnY + 0}
where 4 is a finite collection of open subsets of (P, u), is an open base for H(P, u).

First we shall prove

34 A.5. Let {P,u) be a closure space. If U is open in (P, u) then the set exp’ U
is open in H.(P, u) and the set star (U, exp’ P)isopen inH_(P,u).If % is a finite
collection of open sets then the set (6) is open in H(P, u).

Proof of 34 A5. Let U be an open subset of (P, u)>. If @ + X < U then X n
NnintU = X n U = X = @ and hence, by definition, exp’ U is a neighborhood of X
in H,(P, u). The set X was chosen arbitrarily, and hence exp’ U is a neighborhood
of each of its elements which means that exp’ U is open. Similarly, if X nU + 0
then X nint U + @ (U = int U), and hence star (U, exp’ P) is a neighborhood of X
in H_(P, u). Since X was arbitrarily chosen in star (U, exp’ P), star (U, exp’ P) is
open in H_(P, u). Using 34 A 3 it is easily seen that the set (6) is a neighborhood of
each of its points in H(P, u).

Proof of 34 A.4. Let (P, u) be a topological space; thus int U is open for each
U < P. We shall only prove the statement for H (P, u); the statements for H_(P, u)
and H(P, u) can be proved in a similar way. By 34 A.5 the sets exp’ U, U open in
(P, u), are open in H (P, u). It remains to show that every neighborhood # of any
X e H.(P, u) contains an exp’ U containing X with U open in {P, u). By definition
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there exists a neighborhood V. of the set X in (P, u) such that exp’ V = #%. Put
U = int V. The set U is an open neighborhood of X and clearly exp’ U < exp’ V.

34 A.6. If 2 is a subspace of a closure space 2 then H . (2), H_(2) and H(2) are
subspaces of H.(#), H_(2) and H(P) respectively.
The straightforward verification is left to the reader.

34 A.7. Theorem. Let 2 be a subspace of a closure space P, & be the collection
of all sets X c |.¢’| intersecting |.@| and let f be the single-valued relation on R
which assigns to each X the set X n |2|. If 2 is closed in 2 then the mapping f of
the subspace # of H (2) into H.(2) is continuous. If 2 is open in P, then the map-
ping f of the subspace  of H_(2) into H_(2) is continuous.

Corollary. Under the assumptions of 34 A7, if 2 is simultaneously open and closed
in P, then the mapping of the subspace & of H(2) into H(2) is continuous.

Proof of 34 A.7. 1. Let 2 be closed, X be any point of £, and % be any neighbor-
hood of fX in H+(.@). By definition, there exists a neighborhood U of the set fX in 2
such that exp’ U = %.Put V = (|2| — |2|) u U. Since 2is closed, V is necessarily
a neighborhood of the set X in #. By definition of H,(2), exp’ V is a neighborhood
of the point X in H.(P). In conscquence #" = % n (exp’ V) is a neighborhood of
the point X in the subspace # of H,(P). Clearly f[#"] < exp’' U < %. Thus we
have proved: if X € # and % is a neighborhood of fX, then there exists a neighbor-
hood # of X such that f[#°] = %. By definition, the mapping f is continuous.

II. Now let 2 be open, X be a point of #Z and % be a neighborhood of fX in
H_(2). By definition of H_(2) there exist subsets U, of 2 such that (int, U)nfX + 0
and (; star (U, exp’ |.@|) < 9. Since 2is open, we have int, U; = int, U;; consequent-
ly (ints U;) 0 X =+ 0, which implies that star (U;, exp’ |#]) is a neighborhood of X
in H_(#). Hence #"; = &  star (U, exp’ |2|) (= star (U,, exp’ |2|), but we'need not
this) is a neighborhood of X in the subspace # of H_(#). Clearly

N f[#] = Nistar (U;, exp’ |2)) = %,
which establishes the continuity.

Remark. Let 2 be a closed (open) subspace of a space 2. The collection of all
X = |2|, X n|2| + 0,is an open (closed) subset of H.(#) (H_(2), respectively).

B. CONTINUITY OF CORRESPONDENCES

A correspondence for closure spaces ? and 2 is a correspondence f such that
D*f = 2 and E*f = 2, i.e.,, f = {grf, #, 2) where gr f is a relation for |ﬂ| and |.@|
(ie. Dgrf c |9|, Egrf c |.@|) which is called the graph of f. Thus every mapping
for closure spaces is a correspondence for closure spaces. Correspondences and related
concepts were introduced in subsection 7 B. For convenience we recall the terminology
and conventions needed. Asin the case of mappings we often write f instead of gr £, e.g.

40—Topological Spaces
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f[X], Ef, and occasionally, gr f instead of f. A correspondence f is domain-full if
|D*f| = Df, range-full if |[E*f| = Ef,and full if it is range-full and domain-full. A cor-
respondence f for Z and 2 is said to be for 2 ranging on 2 if |E*f| = Ef, on2?
ranging in 2 if ID*fI = Df, and on & ranging on 2 or on P onto 2 if it is both on
2 ranging into 2 and for £ ranging on 2.

34 B.1. Definition. A correspondence f for closure spaces & and 2 is said to be
upper semi-continuous, lower semi-continuous or continuous if the mapping
{x — f[x]} of the subspace Df of £ into H,(2), H_(2) or H(2), respectively, is
continuous (in the usual sense, that is, in the sense of Definition 16 A.1). A corre-
spondence f for closure spaces is said to be inversely upper semi-continuous, in-
versely lower semi-continuous or inversely continuous if the inverse correspondence
is, respectively, upper semi-continuous, lower semi-continuous or continuous.
Finally, a correspondence f will be termed bilaterally upper semi-continuous, bi-
laterally lower semi-continuous or bilaterally continuous if both f and f~! are
upper semi-continuous, lower semi-continuous or continuous, respectively. Instead
of bilaterally continuous we shall usually say bicontinuous.

First we shall prove that the continuity of a correspondence f depends on subspaces
Df of D*f and Ef of E*f only.

34 B.2. Theorem. Let f be a correspondence for closure spaces # and 2, let 2,
be a subspace of ? such that Ig‘ll = Df, and 2, be a subspace of 2 such that
|2,| = Ef. Then f is upper semi-continuous, lower semi-continuous or continuous
if and only if the correspondence f:%?, — 2, has the corresponding property.
Roughly speaking, the upper or lower semi-continuity or the continuity of a cor-
respondence f only depends on the relativization of the closure structure of D*f to
Df and the relativization of the closure structure of E*f to Ef.

Proof. It is self-evident that f is upper or lower semi-continuous if and only if the
correspondence f : 2, — 2 has the corresponding property. Since 2, is a subspace
of 2, by 34 A.6 H.(2,), H_(2,) and H(2,) is a subspace of H,(2), H_(2) and
H(2) respectively, and therefore, ¢.g., the mapping {x — f[x]} : 2, > H,(2,)is con-
tinuous if and only if the mapping {x — f[x]} : #, - H(2) is continuous.

According to the preceding theorem we may restrict our attention to full corres-
pondences.

Every struct-mapping is a struct-correspondence, in particular, a mapping for
closure spaces is a correspondence for closure spaces. Thus for mappings we have
two definitions of continuity, the one introduced in 16 A.1 and the second one intro-
duced in 34 B.1. It is stated in the proposition to follow that the two definitions are
equivalent, and moreover, upper semi-continuity as well as lower semi-continuity
is equivalent to continuity. ‘

34 B.3. The following properties of a mapping f for closure spaces are equi-
valent: f is continuous in the sense of Definition 16 A1, f is continuous in the sense
of Definition 34 BA, f is upper semi-continuous, f is lower semi-continuous.
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Proof. Let f be a mapping of a closure space £ into a closure space 2. By 34 A2
the canonical mappings, say g., g and g, of 2 into H,(2), H_(2) and H(2) re-
spectively, are embeddings. By Definition 34 B.1 the mapping f is upper semi-con-
tinuous (lower semi-continuous, continuous) if and only if the mapping g, of
(g9- of, g - f) is continuous in the usual sense, i.c. in the sense of Definition 16 A.1;
since g4 (g_, g, respectively) is an embedding, g+ of (g- of, g o f, respectively) is
continuous in the usual sense if and only if the mapping f is continuous in the usual
sense.

Remark. A direct proof is probably simpler.
Now we shall give direct descriptions of lower and upper semi-continuity.

34 B.4. Theorem. Suppose that f is a correspondence for closure spaces # and 2.
Each of the following two conditions is necessary and sufficient for the correspond-
ence f to be lower semi-continuous:

(a) If V is a neighborhood of y in 2, then f~'[V] is a neighborhood of the set
f7[y] in the subspace Df of 2.

(b) If xeDf and V is a neighborhood of a point of f[x] in 2 (i.e. if f[x] N
N int V < ), then there exists a neighborhood U of x in 2 such that V n f[z] + 0
for each ze U.

Each of the following two conditions is necessary and sufficient for the correspond-
ence f to be upper semi-continuous:

(c) If x e Df and V is a neighborhood of the set f[x]in 2, then the set E{z | f[z] =
< V} is a neighborhood of x in the subspace Df of 2.

(d) If x e Df and Vis a neighborhood of the set f[x] in 2, then there exists a neigh-
borhood U of x in P such that f[z] < V for each z in U.

Proof. Evidently (a) is equivalent to (b), and (c) is equivalent to (d). We shall
prove that condition (a) (condition (c)) is necessary and sufficient for f to be lower
(upper) semi-continuous. Clearly we may and shall assume that f is domain-full.
Consider the mappings

g={x~f[x]): 2 > HL(2), h={x-f[x]}:2 - H(D).

By definition, the correspondence f is lower or upper semi-continuous if and only if
the mapping g or h, respectively, is continuous. Evidently one has f‘l[V] =
= g~! [star (V, exp’ |2|)] and E{z|fz = V} = h™*[exp’ V] for each V c |2].

Now, the equivalences immediately follow from Definition 34 A.1 of the closure
structures of H_(2) and H.(2) (given @ + Y = | 2|, the sets star (¥, exp’ I.@l),
Ynint V % @, form a local sub-base at Y in H_(2) and the sets exp’ V, Y < int ¥,
form a local base at Yin H,(2)).

It follows immediately from the preceding theorem that if a full correspondence f
is lower (upper) semi-continuous then the inverse correspondence f ™! carries open
(closed) sets into open (closed) sets.

40°
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34 B.5. Definition. A correspondence f for closure spaces is said to be open
(closed) if the image of each open (closed) subset of the subspace Df of D*f is open
(closed) in the subspace Ef of E*f. A correspondence f is said to be inversely open
(closed) if the inverse correspondence f ! is open (closed).

Now the corollary of 34 B.4 mentioned above can be stated as follows:

34 B.6. Every lower semi-continuous correspondence is inversely open and every
upper semi-continuous correspondence is inversely closed.

It is easily seen that an inversely open (closed) correspondence need not be lower
{upper) continuous. For example, if 2 is the topological modification of a space 2,
then the mapping ] : 2 — 2 is both inversely open and inversely closed, but it is
continuous if and only if 2 = 2, i.e.if 2is topological. On other hand, for topological
spaces the equivalence is true as stated in the following theorem.

34 B.7. Theorem. In order that a correspondence f ranging in a topological
space be lower (upper) semi-continuous it is necessary and sufficient that f be
inversely open (closed).

Proof. Recall that, in a topological space, the interior of a set is open and apply
34B.4. An alternate proof follows from the fact that hyperspaces of a topological
space are topological spaces.

Remark. It should be noted that an open (closed) correspondence is often defined
to be a correspondence f which carries open (closed) subsets of D*f into open (cldsed)
subsets of E*f. In functional analysis the term closed correspondence (usually closed
mapping) often means that the graph is closed in the product of the domain carrier
with the range carrier.

We leave to the reader the task of the formulation of results for inversely lower
and upper semi-continuous correspondences which are obtained by applying 34 B.4,
34B.6 and 34 B.7 to the inverse of a correspondence. We restrict ourselves to map-
pings.

34 B.8. In order that a mapping f of a closure space 2 into another closure
space 2 be inversely lower semi-continuous it is necessary and sufficient that f[U]
be a neighborhood of fx in the subspace Ef of 2 for each neighborhood U of any
point x of 2. In order that a mapping f of a closure space P into another closure
space 2 be inversely upper semi-continuous it is necessary and sufficient that for
each y in Ef and each neighborhood U of f~![y] in # there exist a neighborhood
Vofyin 2 such that f~[z] < U for eachzeV (i.e. f"'[V] < U). Any inversely
lower (upper) semi-continuous mapping is open (closed), and an open (closed)
mapping of a topological space in a closure space is inversely lower (upper) semi-
continuous.

34B.9. Examples. (a) The projections of the product of a family of closure
spaces onto coordinate spaces are inversely lower semi-continuous. This is obvious
(and was stated in 17 C.7). By 17 ex. 5, the projections need not be closed and thus
certainly need not be inversely upper semi-continuous.
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(b) Every projective generating mapping f is inversely continuous. In fact, if U
is a neighborhood of a point x of D*f, then there exists a neighborhood V of fx such
that f ![V] < U;since f[U] = Ef n f[f~[V]] = Ef n ¥, f[U] is a neighborhood
of fx in Ef, which establishes the inverse lower semi-continuity of f (by 34 B.8); now U
is also an arbitrary neighborhood of f~![fx], and y e V implies f~*[y] < U, which
establishes the inverse upper semi-continuity.

(c) Every continuous inversely upper semi-continuous mapping as well as every
continuous inversely lower semi-continuous mapping is a quotient mapping.lndeed,
let f be a continuous and inversely lower or upper semi-continuous mapping. Without
loss of generality we may and shall assume that f is surjective. (Under this as-
sumption the mapping f is a quotient mapping if and only if f is an inductive gener-
ating mapping.) We shall show that f is an inductive generating mapping, that is,

ye Y(in E*f) < f~[y] n f7[Y] # 0 (in D¥f).

The implication < means the continuity of f. The implication = is proved as fol-
lows. Assuming f~![y] n f~'[Y] = @ we must show y ¢ Y. By our assumption the
set U = |D*f| — f7'[Y] is a neighborhood of f~![y]. Now, if f is inversely lower
semi-continuous, then f[U] = |E*f| — Yis a neighborhood of y in E*f which does
not intersect Y, and hence y ¢ Y; and if f is inversely upper semi-continuous then
there exists a neighborhood Vof y in E*f such that f "![V] <« Uand hence Vn Y = 0
which implies that y ¢ Y.

(d) Not every quotient mapping is inversely lower or upper semi-continuous, and
in fact, inversely lower or upper semi-continuous quotient mappings form a very
small but important class of quotient mappings. Subsection C will be devoted to
an examination of this kind of quotient mappings and also to its generalization to
families of mappings. Here we want to show that a quotient mapping need not be
inversely lower or upper semi-continuous. Since the quotient of a topological space
need not be a topological space it is sufficient to prove the following proposition.

() If f is a surjective continuous and inversely lower or upper semi-continuous
mapping, then E*f is topological provided that D*f is topological.

Suppose that f is continuous and surjective, and D*f is topological. Assuming
that f is inversely upper semi-continuous, and hence closed, we shall prove that the
closure Y of any subset Y of E*f is closed. By the continuity f we have f[f'[Y]] <
< Y; since D*f is topological, the set f~![Y] is closed in D*f, and consequently,
f being closed and surjective, f[f~'[Y] is closed in E*f, which implies that Y is
closed in E*f. Assuming that f is inversely lower semi-continuous (and hence open)
we shall prove that intV is open in E*f for each V < Ef. According to the continuity
of f we have int f~![V] > f~![int ¥]. The set U = int f~![V] is open in D*f
and hence, f being an open surjective mapping, f[U] is open in E*f. Clearly int V <
< f[U] <= V, which shows that int ¥ = f[U] and concludes the proof.
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The remainder of the subsection is devoted to an examination of composites, restric-
tions and products of lower and upper semi-continuous and continuous correspond-
ences.

34 B.10. If g is a domain-restriction of a correspondence f and f is upper semi-
continuous, lower semi-continuous or continuous, then g has the corresponding
property.

Proof. Let f be a correspondence for closure spaces # and 2, and let g be the
domain-restriction of f to a subspace £, of £, ie. D*g = 2, E*g = 2, Dg =
= |9’1| n Df and grg = grf n(Dg x Ef). The statements follow from definition
34B.1 and from the fact that the restriction of a continuous mapping is a conti-
nuous mapping. E.g., the mapping {x — g[x]} : Dg - H,(2) is a domain-
restriction of the mapping {x — f[x]} : Df -» H.(2) where Dg is considered as
a subspace of 2, and Df is considered as a subspace of 2 (remember that 2, is
a subspace of #); it follows that if the latter mapping is continuous, i.e. f is upper
semi-continuous, then the former mapping is continuous, i.e. g is upper semi-
continuous.

A similar result for range-restrictions is not true. This will be seen from the proof
of the following important theorem. '

34 B.11. Theorem. Let g be the range-restriction of a correspondence f for closure
spaces. If f is upper semi-continuous and Eg is closed in Ef, then g is also upper
semi-continuous. If f is lower semi-continuous and Eg is open in Ef, then g is also
lower semi-continuous.

Proof. Let g be the range-restriction of f, i.e. E*g is a subspace of E*f, D*g = D*f
and grg = grf n(Df x Eg). Thus Dg is the set of all x e Df such that f[x] n
~ Eg + 0 and g[x] = Eg n f[x]. We shall only prove the statement concerning
upper semi-continuity, leaving the similar proof for lower continuity to the reader.
Suppose that f is upper semi-continuous. According to 34 B.2 we may assume that f
is range-full, and it is sufficient to prove that the correspondence g : D*g — E*f
is upper semi-continuous, i.e. to verify that the mapping g, = {x - g[x]} : Dg —
— H,(E*f) is continuous. Consider the subspace 2 of H+(E*f) consisting of all
f[x], x e Dg, i.e. of all f[x] such that f[x] N Eg # 0, and the mapping h, = {x —
—f[x]}:Dg > &, h, = {X > X nEg} : & - H.(E*f). Clearly g, = hy o hy. The
mapping h, is continuous because {x — f[x]} : Dg - H . (E*f) is continuous by
34B.10, and & is a subspace of H . (E*f) containing the actual range of g. The map-
ping h, is continuous by 34 A7,

Remark. A proof without hyperspaces is probably more clear. If D*f is a topo-
logical space then it is sufficient to prove that f is inversely closed or open and this
is almost evident.

Corollary. Under the assumptions of 34B.A1, if Eg is simultaneously open and
closed in Ef and if f is continuous, then g is also continuous.
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We leave to the reader the task of formulation of the results for inverse upper and
lower semi-continuity and inverse continuity which are obtained by applying the
results of 34B.10 and 34B.11 and Corollary of 34 B.11 to the inverse of a corres-
pondence. Nevertheless, we shall state and prove these results for mappings.

34 B.12. Theorem. Let f be a mapping of a closure space & into a space 2 and
let g be the domain-restriction of f to a subspace @, of 2. If |?,| = f~'[f[|2:|1]
(i.e. |.@1| = f'[Eg]) and f is inversely upper semi-continuous, inversely lower
semi-continuous or inversely continuous, then g has the corresponding property.
If |#,| is closed (open) in @ and f is inversely upper (lower) semi-continuous,
then g is also inversely upper (lower) semi-continuous. If |g‘1| is simultaneously
open and closed in P and f is inversely continuous, then g is also inversely con-
tinuous. :

Proof. The first group of statements follows from 34 B.10, the second one from
34 B.11, and the last statement follows from Corollary of 34 B.11 or from the second
group of statements.

34 B.13. If fis a mapping simultaneously continuous and inversely upper (lower)
semi-continuous, then the domain-restriction of f to any closed (open) subspace
of D*f is a simultaneously continuous and inversely upper (lower) semi-continu-
ous mapping, and in particular, by 34B. 9 (c), a quotient mapping.

Proof. Any restriction of a continuous mapping is a continuous mapping, and
therefore the results follow from 34 B.12,

If f and g are correspondences such that E¥f = D*g, then the composite g o f is
defined to be the correspondence gr g o gr f : D*f — E*g (7 C.1). It is not true that
the composite of two upper (lower) semi-continuous correspondences is an upper
(lower) semi-continuous correspondence. The composite of two continuous cor-
respondences may fail to be a continuous correspondence. The theorem which fol-
lows gives the best positive results.

34 B.14. Theorem. The composite g o f of two upper (lower) semi-continuous
correspondences is upper (lower) semi-continuous provided that the set Ef n Dg
is closed (open) in the subspace Ef of E*f, in particular, if Ef = Dg, e.g. if g is
domain-full.

Proof. Let h = g o f. 1. Suppose that both f and g are lower semi-continuous
correspondences. By 34 B.4 it suffices to show thatif z € h[x] and Wis a neighborhood
of z in E*h (= E*g), then U = h™![W] is a neighborhood of x in D*h (= D¥f).
Choose a y such that y € f[x] and z € g[y]. Since g is lower semi-continuous, the set
V = g~'[W] is a neighborhood of y in Dg, and hence V n Ef is a neighborhood
of y in Ef n Dg. Now, if Ef n Dg is open in Ef, then ¥V n Ef is a neighborhood of y
in Ef, and hence f~![V n Ef] is a neighborhood of x because f is lower semi-
continuous. Since f~'[g7'[W] n Ef] = h™![W], the proof is complete. — IL. Sup-
pose that both f and g are upper semi-continuous and Dg n Ef is closed in Ef. By
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34B.4 it suffices to show that if x e Dh and W is a neighborhood of h[x] in E*h,
then there exists a neighborhood U of x such that h[U] = W. Put X = f[x] n Dg.
Clearly g[X] = h[x]. Since g is upper semi-continuous, by 34 B.4 there exists a neigh-
borhood ¥ of X in Dg such that g[ V] = W. Put V; = (Ef — Dg) U V. Since Ef — Dg
is open in Ef (its complement Ef n Dg is closed in Ef by our assumption) and
Vis a neighborhood of X = f[x] n Dg, V; is a neighborhood of f[x] in Ef. By
34 B.4 there exists a neighborhood U of x in Df such that f[U] = V. Since g[V] =
= g[V,] we obtain h[U] = g[f[U]] = g[V,] = g[V] = W. The proof is complete.

Remark. Notice that theorem 34 B.11 is an immediate consequence of the pre-
ceding theorem. If h is a range-restriction of f, let us consider the correspondence
g = Jg, : E¥f > E*f which is bicontinuous. Clearly h = g . f; apply 34 B.14.

The preceding theorem was proved without using hyperspaces. Notice that f is
upper semi-continuous if and only if the mapping h; = {x — f[x]} : Df - H,(E*f)
is continuous, and g is upper semi-continuous if and only if the mapping h, =
= {y - g[y]} : PDg » H.(E*g) is continuous. Clearly the composite h, o h, does
not exist even if both f and g are full (with a trivial exception) because the elements
of E*h, are subsets of D*h, (if |E*f| = Dyg). Nevertheless, a proof based on hyper-
spaces is very simple but requires the following ‘“‘symmetric” characterizations of
semi-continuous and continuous correspondences by means of hyperspaces.

34 B.15. Theorem. Let f be a domain-full correspondence. Then f is upper
semi-continuous if and only if the mapping

by = {X — [[X]} : HL(D*) — M, (E%)

is continuous; f is lower semi-continuous if and only if the mapping
b = {X = f[X]} : H.(D%) > H_(E%)
is continuous; and finally, f is continuous if and only if the mapping

hy = {X - f[X]} : H(D*f) > H(E*f)
is continuous.

Proof. Evidently the last statement is an immediate consequence of the first two
statements. We shall prove the first statement only. If h; is continuous then {x —
- f[x]} : D*f - H.(E*f)is continuous as the composite of two continuous mappings,
namely the canonical embedding of D*f into H,(D*f) followed by h,. Conversely,
assuming that {x — f[x]} : D*f —» H.(E*f) is continuous, we shall show that h,
is continuous. Let X be any element of H(D*f) and Y = h,X, i.e. Y = f[X]. Let
9 be a neighborhood of Y in H,(E*f). We must find a neighborhood ¥~ of X in
H_(D*f) such that h,[¥"| « %, i.e. Ze ¥ = f[Z] € %. Choose a canonical neigh-
borhood exp’ U = # of Y in H,(E*f); thus U is a neighborhood of Y. Since
{x - f[x]} : D*f > H,(E*f) is continuous, we can choose a neighborhood V of X
such that f[x] € exp’ U for each x eV, i.e. f[x] = U for each x € ¥, and hence
fI[V] = U. The collection ¥ = exp’ V is a neighborhood of X in H,(D*f), and
evidently h,[#"] = exp’ U « % which completes the proof.
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34 B.16. Definition. The product of a family {f,} of correspondences for closu-
re spaces is defined to be the correspondence f such that

D*f = I{D¥}, E*f = II{E¥)
and that the graph of f is the relational product of the family {gr f,}; thus

H{fa} = <Hrel{grfa} s H{D*fa} ’ H{E*fa}> .
The definition of the product f x g is evident.
Remark. It is obvious that

({f})™t = m{fe'},
1.e. the inverse of a product is the product of inverses.

It turns out that the product of upper semi-continuous correspondences need not be
an upper semi-continuous correspondence. For example let f be the mapping of the
space Q of rational numbers into the one-point space (0) Clearly f~1! is an upper
semi-continuous and inversely continuous full correspondence. On the other hand
the product correspondence ¢ = f~! x (J : Q = Q) is not upper semi-continuous
because its inverse g~!' = f x (J:Q —» Q) followed by the homeomorphism
{€0, x) - x} : (0) x Q - Q s the projection of Q x Q onto Q which is not closed
(by 27 ex. 5) and therefore is not inversely upper semi-continuous. On the other hand,

34 B.17. The product of a family of lower semi-continuous correspondences is
a lower semi-continuous correspondence. The product of inversely lower semi-
continuous correspondences is an inversely lower semi-continuous correspondence.

Proof. By virtue of the remark following 34 B.16 the two statements are equi-
valent. We shall prove the first one. Let f be the product of a non-void family
{f, l ae A} of lower semi-continuous correspondences. Without loss of generality
we may and shall assume that all the f, are full,and hence that f is full. Let x € Df,
y € f[x], and let ¥ be a neighborhood of y in E*f. We must show that f~![V] is
a neighborhood of x in D*f. Choose a canonical neighborhood W of y such that
W < V; thus

W=E{z|zeEf, acd =>pr,zeW,},
where A4’ is a finite subset of 4 and W, is a neighborhood of pr, y in E*f, for each a.

By our assumption f, [ W,]is a neighborhood of pr, x in D*f, for each a in A’. Since
each f, is full we have f7 '[|E*f,|] = |D*f,| for each a. Consequently

U=E{t|teDf, acd =pr,tef;'[W,]}
is a neighborhood of x in D*f. But clearly U = f~![W] = f~'[V]. The proof is
complete.

Remark. A correspondence f is said to be proper if f is a lower semi-continuous
correspondence such that,for each simultaneously lower semi-continuous and inversely
upper semi-continuous correspondence g, the product correspondence f x g is in-
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versely upper semi-continuous. It turns out that the product of any family of proper
correspondences is a proper correspondence. It should be noted that proper map-
pings are often called perfect mappings. We do not intend to present the theory of
proper correspondences though this theory is very important and interesting. We
only note that a full proper correspondence carries over many properties of the
domain carrier to the range carrier and conversely.

C. QUOTIENTS OF TOPOLOGIZED ALGEBRAIC STRUCTS

A surjective inductive generating mapping f need not be inversely lower semi-
continuous. On the other hand if the closure structures in question are compatible
for some group structures such that f is 2 homomorphism, then f is inversely lower
semi-continuous and, in fact, the following somewhat more general result is true.

34 C.1. Theorem. Let f be a qdotient homomorphism of a topologized group
%4 = (G, o,u) onto a topologized group # = (H, u,v), i.e. the mapping f:
:{G,u) » {H,v) is a quotient mapping and f:{H,o) - (H, p) is a homo-
morphism. If the inversion of 9 is continuous then the inversion of # is also conti-
nuous. If ¥4 is inductively continuous, then # is inductively continuous and f is
inversely lower semi-continuous, in particular, fis open. If 9 is continuous, then #
is continuous. If % is a topological group, then # is a topological group.

Proof. I. Since f is a homomorphism, we have

(*)foa=uo(fxf),

and if g is the inversion of ¢ and h is the inversion of 5, then

(#*) fog =hof.

If g is continuous, then f o g is continuous, by (**) h o f is continuous, and f being
a surjective quotient mapping, h is continuous. Thus, if the inversion of ¢ is conti-
nuous, then the inversion of 3 is continuous.

II. Suppose that {e, u) is inductively continuous, i.e. let the mapping ¢’ = o :
tind ({G, u) x <G, u)) -» <G, u) be continuous, y’ = u :ind ({H, v) x {H,v)) -
— (H,v) and f’' = f:{G, uy - {H,v). The equality () implies f’ o ¢’ = p’ o ind
(f' x f) where ind (f' x f’) is the inductive product of f’ and f’. Since f’isa
quotient mapping, ind (f* x f') is a quotient mapping and therefore, to prove that
y' is continuous, it is sufficient to show that g’ o ind (f* x f’) is continuous and this
follows from the above equality because ¢’ and f* are continuous. Thus (g, v) is
inductively continuous.

IIL. If f x f is a quotient mapping then the equality (*) implies that {u, v) is
continuous whenever {¢, ) is continuous. The product of quotient mappings need
not be a quotient mapping but the product of two continuous inversely lower semi-
continuous mappings is a continuous inversely lower semi-continuous and hence a
quotient mapping, and this is our case.
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IV. Assuming that {o, u) is inductively continuous we shall prove that f is in-
versely lower semi-continuous. Let U be a neighborhood of a point x of {G, u); we
must show that f[U] is a neighborhood of fx, and f being a quotient mapping, it is
sufficient to prove that f ~'[ f[U]] is a neighborhood of f ~![ fx]. Clearly f ~'[fx] =
= xo[K] and fT'[f[U]] = [U] ¢[K] where K is the inverse image under f of the
neutral element of 5. If y is any element of K then [U] oy is a neighborhood of
xay because U is a neighborhood of x and the mapping {z — zoy} : (G, u) —
— {G, u) is a homeomorphism which carries U into [U] oy and x into xoy. Since
[U] ey = [U] o[K], [U] 6[K] is a neighborhood of each element of xo[K].

V. If ¢ is a topological group, then the inversion of # is continuous By I and 5 is
continuous by III, and therefore 5# is a topological group.

Remark. Remember that a surjective quotient mapping is an inductive generating
mapping and therefore we may apply the theorems of Section 33, in particular, of
subsection 33 C.

Assume that (G, o) is a group; now if H is any subgroup of (G, &) such that
xo[H] = [H] ox for each x, then the relation ¢ = E{(x, y) | xoy~' e H} is stable
under ¢ and hence there exists a unique group structure p on the quotient set G/g
such that the mapping {x — xo[H]}:<G, o) — {G/¢, u> is a homomorphism.
Such a subgroup H (which is an ideal in the sense of 8 D.4) is often said to be an
invariant subgroup of (G, ¢) and the group {(G/g, p) is said to be the quotient of
{G, ¢) under H and is denoted by {G, o)/H.

34C.2. Let 4 = (G, 0,u) be a topological group and let H be an invariant
subgroup of (G, a). Let v be the closure inductively generated by the canonical
mapping {x — [H] ox} of G onto {G,o)/H. By 34 C.1 the topologized group
{{G, 6)/H; v) is a topological group which will be denoted by 4/H and will be
called the quotient of % under H. The mapping {x — [H] ox} of % onto 4/H will
be called the canonical mapping of 4 onto 4/H. By 34 C.1 the canonical mapping
of % onto %|H is inversely lower semi-continuous, i.e. open (% is a topological
space).

A topological group is separated if and only if it is semi-separated, and therefore
the following proposition holds.

34 C.3. A quotient 4/H of a topological group 4 is separated if and only if H
is closed in 4.

34 C4. Let 9 be atopological group and let H be the closure of the neutral ele-
ment eof 4. Then H is an invariant subgroup of ¥ and the quotient group 4/H is
separated.

Proof. Let us consider an inner automorphism f of 4. Since fe = e and f is continu-

ous we have that f(?) < (fe) = (e), which shows that H is stable under each auto-
morphism of &. Since (e) is a subgroup, the closure H of (e) is a subgroup also.
Thus H is an invariant subgroup of 4. The quotient group %/H is separated by 34 C.3.
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34 C.5. The quotient group %/H is discrete if and only if H is open in 4.

34 C.6. Let f be the canonical mapping of a topological group G (written
multiplicatively) onto its quotient group G/H. If K is any subgroup of G, then
fIK] is a subgroup of G/H, [K] . [H] a subgroup of G, H is an invariant subgroup
of [K].[H] and the topological groups [K].[H]/H and f[K] are isomorphic.

Proof. Evidently f[K] = f[[K] . [H]] and therefore without loss of generality
we may and shall assume K = [K].[H], ie. K > H. We have K = f~'[f[K]]
and therefore, by 33 A.7, the restriction g of the inductive generating mapping (see
the remarks following 34 C.1) f to a mapping of K onto f[ K] is an inductive gener-
ating mapping and hence a quotient mapping. Now if h is the canonical mapping
of K onto K/H then there exists a unique mapping k such that h - k = g; in addition
k is bijective. Since h and g are inductive generating mappings, k is a homeomorphism
(33 C.5).

34 C.7. Theorem. Let f be a quotient homomorphism of a topological ring
R, = {Ry, 64, li1, u,y onto a topologized ring A, = (R,, 05, Uy, U,». Then X is a
topological ring.

Proof. By 34 C.1 the group (R,, 0,, u,) is topological and f isinversely lower semi-
continuous. Since fis 2 homomorphism we have grfo pu; = p; o (grf x grf) and
consequently f’op; = pyo(f x f'), where f'=f:{Ry,u>— (R, uy), and
= p; Ry uy x {Ryuy = (R, u;», i =1,2. Since uj is continuous, f' o uj
is also continuous and therefore, by the above equality, u3 o (f* x f’)is continuous.
Since f' is continuous and inversely lower semi-continuous, the product f* x f' has
the same property and hence f* x f’is a quotient mapping. Since f* x f is surjective,
f' x f' is an inductive generating mapping and the continuity of p}o(f’ x f')
implies that p} is continuous. Thus the multiplication of £, is continuous and hence
R, is a topological ring.

Remark. We leave to the reader the simple task of defining the concept of
a quotient of a topological ring.

34 C.8. Theorem. Let f be a quotient homomorphism of a topological module
(algebra) &, over a topological ring & onto a topologized module (algebra) &,
over R. Then &, is a topological module (algebra) over A.

Proof. According to 34 C.7 it remains to prove that the external multiplication
of £, is continnous. Denoting by g; the topologized external multiplication of %,
we have fo 0y = 03 0(() : 2 > &) x f). Since f and ) : # — # are simultaneously
continuous and inversely lower semi-continuous, this product has the same property
and the continuity of g}, follows by the same argument as the continuity of uj in the
proof of 34 C.7,

Remark. We leave to the reader as a simple task the definition of the concept
of a quotient of a topological module or algebra.
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D. EXAMPLES AND REMARKS

We know that each of the following conditions is necessary and sufficient for
a mapping f of a closure space (P, u) into a closure space {Q, v) to be continuous:
*) X « P = f[ux] < yf[X]
(+#) Yo Q@=uf '[Y] = f'[vY].
If f is a correspondence then the conditions (*) and (#x) are not equivalent because ()

is equivalent to the lower semi-continuity of f and () is equivalent to the upper semi-
continuity of f as stated in the following theorem.

34 D.1. Theorem. Let f be a correspondence on a closure space (P, u) ranging
in a closure space {Q, v). Then f is lower semi-continuous (upper semi-continuous)
if and only if condition (x) (condition (xx)) is fulfilled.

Proof. I. Assuming (*), if x e u(P — f~*[V]), then f[x] = of[P — f~*[V]] and
clearly VA f[P — f'[V]] = 0. Consequently, if Vis a neighborhood of a point y
of f[x], then f ~'[ V] is a neighborhood of x, which shows that f is lower semi-continu-
ous (by 34 B.4). Conversely, if f is lower semi-continuous, then f ~![ V] is a neighbor-
hood of each x such that V is a neighborhood of a point of f[x] (by 34B.4). If
y¢of[X], then V= Q — f[X] is a neighborhood of y, and hence U = f~'[Q —
— f[X]] is a neighborhood of each point of f~![y]. Since clearly U n X = 0, no
point of £ ~![y] belongs to uX, and hence y ¢ f[uX]. — II. Assuming (**) we shall
prove that, for each x € P and each neighborhood V of f[x] in (@, v), there exists
a neighborhood U of x such that f[U] < V. By 34 B.4 f will be upper semi-continuous.
Put U=P — f~'[Q — V]. Clearly f[U] n(Q — V) = 0 and hence f[U] < V. Since
fIx] nv(Q — V) =0, (x+) gives x ¢ uf "'[Q — V] which means that U is a neigh-
borhood of x. Finally, suppose that f is upper semi-continuous and x ¢ f ~![vY].
We must show that x ¢ uf ~'[Y]. Clearly the set ¥ = Q — Y is a neighborhood of
each point of f[x]. By 34 B.4 we can choose a neighborhood U of x such that f[U] <
< V. Clearly U n f~[Y] = @ which shows that x ¢ uf "![Y].

34 D.2. Theorem. Let f be a correspondence on a closure space {P, u) ranging
on a closure space {Q,v). Then f is simultaneously lower semi-continuous and
inversely upper semi-continuous if and only if

X <« P implies f[uX] = of[X],
and fis simultaneously upper semi-continuous and inversely lower semi-continuous
if and only if
Y<c Q implies f~'[vY]=uf"'[Y].
Proof. We shall prove only the first statement. Let X — P. If f is lower semi-

continuous, then f{uX] = of[X](by 34 D.1). If f is inversely upper semi-continuous,
i.e. f~1 is upper semi-continuous, then applying the foregoing theorem to f~! we

obtain f[uX] > vf[X] (of course (f ~1)~! = f).



638 VI. GENERATION OF TOPOLOGICAL SPACES

Remark. A mapping f of a space (P, u) onto a space {Q, v) is a quotient map-
ping if and only if vf[X] = f[uX] for each set X such that f~'[f[X]] = X. Now
it is evident from 34 D.2 that every simultaneously continuous and inversely upper
or lower semi-continuous mapping is a quotient mapping.

Now we restrict our attention to mappings. We have shown (34 B.9 (c) or the pre-
ceding remark) that every continuous inversely upper or lower semi-continuous map-
ping is a quotient mapping. On the other hand we have shown (34B.9(d)) that a
quotient mapping need not be inversely upper or lower semi-continuous. Inversely
upper or lower semi-continuous quotient mappings form a very important class of
quotient mappings because many properties of domain carriers are carried over to
range carriers and conversely. First we shall introduce the current terminology for
quotient spaces under an equivalence and we shall give an interesting characterization
of the concepts introduced.

34 D.3. Definition. An equivalence g on a closure space & is said to be upper
semi-continuous, lower semi-continuous or continuous if the canonical mapping
of 2 onto P|g is, respectively, inversely upper semi-continuous, inversely lower semi-
continuous or continuous. A decomposition 2 of a non-void space 2 (i.e. a disjoint
cover of 2 which is a collection consisting of non-void sets) is said to be upper semi-
continuous, lower semi-continuous or continuous if the equivalence (J{D x D | De 2}
possesses the corresponding property.

34 D.4. Theorem. An equivalence g on P is upper semi-continuous, lower semi-
continuous or continuous if and only if the quotient P[g is a subspace of H (2),
H_(2) or H(2) respectively.

It is more convenient to prove the following somewhat more general statement.

34 D.5. A continuous mapping f of a closure space 2 onto a closure space 2 is
inversely upper semi-continuous, inversely lower semi-continuous or inversely con-
tinuous if and only if the mapping {y - f~'[y]}: 2->H(?), {y > []}:
:2-H_(?) or {y - f'[y]} : 2 > H(P) respectively, is an embedding.

Proof. Denote by o the relation {y — f~*[(y)] | » €|2|}. By definition, regardless
of the continuity of f, the mapping ¢ : 2 » H () is continuous if and only if the
mapping f is inversely upper semi-continuous, and similarly for ¢ : 2 > H_(2) and
o : 2 - H(2). Consequently “if”” is evident in all three statements. “Only if” will be
proved for inverse upper semi-continuity only. Suppose that the mapping g =
= ¢ : 2 - H,(2) is continuous. Let j be the canonical embedding of 2 into H,(2)
and let 2’ be the subspace of H ,(2) whose underlying set is Ej. Let g’ be the mapping
of 2’ into H,(#) such that gy = g’jy for each y in I.@I Since j is an embedding, g’
is continuous, and to prove that g is an embedding it is sufficient to show that g’ is
an embedding. Since the mapping f is continuous, f is upper semi-continuous and
therefore, by 34 B.15, the mapping

h = {X > f[X]} { H(?) > H,(2)



34. HYPERSPACES AND CORRESPONDENCES 639

is continuous. If n € |.@'|, ie.n={(y),ye I.@ , then hg'n = 5. Thus ¢’ is an embed-
ding.
Remark. If the mapping {y — f ~![y]} : 2 > H.(2) in an embedding then f need

not be continuous.

34 D.6. By 34 B.9 (¢) the quotient of a topological space 2 under an upper or lower
semi-continuous equivalence g is a topological space. A new proof can be obtained
from 34 D.4. Indeed, by 34 A.4 the hyperspaces of a topological space are topological,
and hence 2/g is a topological space as the subspace of a topological space.

The domain-restriction of a quotient mapping f to a subspace £ of D*f need not
be a quotient mapping even if £ is both closed and open in D*f. E.g., if a closure u
for a set P is the supremum of a family {u,} and u, + u for each a, then (P, u) is
inductively generated by the family of mappings {J : (P, u,> — <P, u)} and hence
the reduced sum f of this family is an inductive generating mapping for (P, u» and
the domain carrier of f is the sum space 2 = Z{(P, u,»}. Clearly the restriction f,
of f to each subspace (a) x P of 2is an injective mapping which is not an embedding
and hence f, is not a quotient mapping. Clearly (a) x P is both open and closed in 2.

On the other hand, if f is an inversely upper (lower) semi-continuous quotient
mapping and £ is a closed (open) subspace of D*f; then f I% is both continuous and
inversely upper (lower) semi-continuous mapping (34 B.13) and therefore a quotient
mapping. .

Let f be a mapping of a space {P, u) onto a space {Q, v), Y; and Y, be subsets
of Qand let X; = f~[Y;], i = 1, 2. If f is continuous and Y; and Y, are separated
or semi-separated in {Q, v), then X, and X, have the same property in (P, u). If f is
a quotient mapping and X, and X, are semi-separated in (P, u), then Y, and Y, are
semi-separated in (Q, v); however, a similar result for separated sets is not true.

34 D.7. Let f be an inversely upper semi-continuous mapping of a space & onto
a space 2, Y, and Y, be subsets of 2 and X; = f~[Y,],i = 1,2. If X, and X, are
separated in P, then Y; and Y, are separated in 2.

Proof. Let U; be a neighborhood of X; in 2, i = 1, 2, such that U, n U, = 0.
Let V, be the set of all y e |.@| such that f~![y] = U,. Since U; n U, = @ we have
Vi n ¥V, = 0. Since f'[f[X;]] = X; we have f[X,] = Y, = V,. Finally, since f is
inversely upper semi-continuous, V; is a neighborhood of Y;in 2 (by 34 B.8).

From this fact we shall derive the following results.

34 D.8. Let g be an upper semi-continuous equivalence on a space 2. Then

(@) P|g is separated if and only if each two distinct fibres are separated in 2.

(b) If any neighborhood of any fibre g[x] contains the closure of a neighbor-
hood of o[x] and each fibre is closed, then P|g is regular and separated.

(¢) If each fibre is closed and P is normal (hereditarily normal) then P[g is
a separated normal (hereditarily normal) space.

Proof. Let f be the canonical mapping of £ onto 2/e.
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I. The “only if”” part of (a) follows from continuity of f and “if” follows from
34D.7.

II. The assumptions of (b) imply that any two distinct fibres are separated; by (a)
P|o is separated. Next, if ¢[x] does not belong to the closure of a set Z in 2/g then
|| — £~'[%] is a neighborhood of ¢[x] in 2 and hence the sets f ~'[2] and ¢[x]
are separated (by our assumption). By 34 D.7 the sets Z and (¢[x]) are separated in
2o, which shows that 2/g is regular.

III. Let & be normal and let the fibres be closed. By 34 D.6 2/g is topological,
and by (b) 2/¢ is a separated regular space. If Y; and Y, are disjoint closed subsets
of o, then X, = f~*[Y, ] and X, = f~'[Y,] are disjoint closed subsets of 2 (because
f is continuous) and hence, 2 being normal, X; and X, are separated. Since f is
inversely upper semi-continuous, the sets Y; and Y, are separated (by 34 D.7)
which shows that /g is normal.If 2 is hereditarily normal, then /g is normal (this
was just proved) and hence by 30 A.4, it remains to show that any two semi-separated
subsets Y; and Y, of 2/ are separated in P[g. The sets X; = f~![Y;] and X, =
= f7![Y,] are semi-separated in 2 because f is continuous. Again by 30 A.4 the
sets X, and X, are separated, and finally, by 34 D.7 the sets Y; and Y, are separated.

34 D.9. Let g be a lower semi-continuous equivalence on a closure space 2. Then:

(a) The local character of P[g is less than or equal to the local character of 2.

(b) If 2 is topological then P[g is topological and the total character of Pfo
is less than or equal to the total character of 2.

(¢) If o is a closed subset of P x P, then P|g is separated.

Proof. Denote by f the canonical mapping of £ onto 2[p. L. If % is.a local base
at x, then clearly the set of all f{U], U € %, is a local base at fx. — IL If 2 is topo-
logical then 2/g is topological (35 D.6). If 4 is an open base for 2, then clearly the
set of all f[ B], Be 4%, is an open base for 2[g. — III. The mapping f x f is continuous
and inversely lower semi-continuous and g is the inverse image under f x f of the
diagonal of 2[g x P[g. Consequently the diagonal is closed which implies that 2/g
is separated.

Remark. If 2/g is separated, then g is closed because g is the inverse image under
f x f of the diagonal of 2/p x 2/p, and the diagonal is closed because 2[g is
separated.
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35. CONVERGENCE.

This section is devoted to questions related to the definition of a closure space by
specifying which nets converge to which points.

We know that a closure space £ is entirely determined by the relation Lim &
(called the convergence class of 2) consisting of all (N, x) such that N is a net which
converges to x in #: namely x € X if and only if there exists 2 net N in X which con-
verges to x in 2. In subsection A we shall give a necessary and sufficient condition
for a relation to be the convergence class of a closure space, and also a necessary and
sufficient condition for a relation to be the convergence class of a topological space.
A subclass € of Lim £ is said to be a determining convergence relation for 2 provided
that x € X if and only if there exists a pair (N, x> in € such that N ranges in X and N
converges to x in 2. In subsection A we shall also study the following question: given
a determining convergence relation % for a closure space &, how can one reconstruct
the convergence class.of # from ¥.

Subsection B is concerned with the development of the properties of those closure
spaces, the so-called S-spaces, which permit a determining convergence relation whose
domain consists of sequences, and of a special kind of S-spaces, the so-called L-spaces,
which are characterized among all S-spaces by the condition that each sequence has
at most one limit point. Roughly speaking, L-spaces are related to. S-spaces as separ-
ated closure spaces to closure spaces.

In subsection C the class S of all S-spaces will be studied. It turns out that the class
S is inductive-stable and hence every space £ has a lower modification in S, which
is denoted by 62 and called the sequential modification of 2. Tn 33 B we investigated
inductive constructions in a projective-stable class of spaces (e.g. topologically in-
ductively generated closure operations). Here we are in an appropriate situation to
introduce projective constructions in an inductive-stable class K, in particular, the pro-
ductin K of a family of spaces in K. If K = S then the productin K is called the sequential
product. It is easily seen that the sequential product of a family {#,} of spaces is the
sequential modification of the usual product, i.e. o II{Z,}. The sequential product
will be used in the definition of a sequential group, i.e. of a topologized group such that
the inversion is continuous and the group multiplication is continuous as a mapping
of 6(% x ¥)into 4. This will be performed in subsection D.

In subsection E the spaces which are sequential modifications of uniformizable

41—Topological Spaces
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spaces are investigated. The class of all these spaces is projective-stable in the class S
and consists of all spaces which are projectively generated by a mapping into c(R“).
Let (N, £) be a net in a closure space £ and let x be a point of 2. Let Q be a set
consisting of the points of DN and a further point, say y, and let us consider the clo-
sure v on @ such that DN is a discrete open subspace of (Q, v) and U = @ is a neigh-
borhood of y if and only if y € U and U n DN is residual in (DN, < ). Finally, let f
be the mapping of {(Q, v) into & which assigns to each z € DN the point Nz, and
fy = x. It is easily seen that N converges to x in & if and only if the mapping f is
continuous. Consequently, subsections A —D can be regarded as a part of the theory
of inductive constructions. This statement will be made more precise in subsection F,
where also the spaces inductively generated by countable subspaces will be studied.
Recall that all nets are assumed to be directed.

A. CONVERGENCE CLASSES

35 A.1. Definition. The convergence class of a closure space 2 (of a closure
operation u) denoted by Lim 2 (Lim u) is the relation consisting of all pairs N, x)
such that N is a net converging to x in & (relative to u). A convergence class is the
convergznce class of a space. A convergence relation is a relation % ranging in a set
such that D% is a class of nets.

Of course every convergence class is a convergence relation and Lim (P, u) = Limu
for any space <P, u). It is sometimes convenient to denote the convergence class
of a space 2 by Lim, instead of by Lim 2; then Lim [ N] denotes the set consisting
of all limit points of N in £, and if Limy is single-valued, i.e. if £ is separated, then
we can write Limg N to denote the unique element of Lim, [N], and this is the usual
notation. Of course, if £ is uniquely determined by the context, then £ is not in-
dicated and both notations coincide; we write Lim, Lim [N] and Lim N.

First let us recall the main properties of convergence classes.

35 A.2. Theorem. Let € be the convergence class of a closure space (P, u).
Then

(a) If N is a constant net in E¥ and x is the only value of N, then {(N,x)» €.
(b) E€ = P.

(c) xeuX ifand only if X < E¥ and there is a (N, x) in € such that EN c X.
(d) If M is a generalized subnet of N and (N, x> € €, then also (M,x) € ¥.

By statement (c) of this theorem a space can be reconstructed from its convergence
class, that is, a space is completely determined by its convergence class. As a con-
sequence, every concept based on the concept of a closure space can, in principle, be
described in terms of convergence classes, and in particular a space 2 can be de-
termined by specifying Lim 2. Of course, the descriptions in terms of convergence
classes are not always convenient and appropriate, though in some cases they are
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of great importance; recall, e.g., the simple description (cf. 32 A.6) of projectively
generated closure operations. Further examples of such convenient descriptions are
listed in the theorem which follows. The reader will easily find that all of these are
merely restatements of earlier results.

35 A.3. Theorem. (a) A mapping f of a space P into a space 2 is continuous if
and only if the relation {{N, x) - {f N, fx) | (N, x) e Lim 2} ranges in Lim 2.
In particular, if €, and €, are convergence classes such that E¢; = E%,, then
%, = ¥, if and only if the closure corresponding to €, is finer than that corres-
ponding to €., and more generally, the inclusion Lim? < Lim 2 is equivalent
to this statement: the underlying set of P is a subset of that of 2 and the closure of 2
is finer than the relativization of the closure of 2.

(b) If {u,} is a non-void family of closures for a set P, then (see 31A.6)
Lim (inf {u,}) consists of all (N, x) such that (N, x> € Limu, for each a; sug-
gestively but incorrectly (Lim u, is non-comprisable and hence {Lim u,} does not
exist),

Lim (inf {u,}) = N{Lim 4.} .

(c) A space 2 is separated if and only if the convergence class of P is single-
valued (27 A.6).

(d) A space 2 is topological if and only if the convergence class of P satisfies
the condition on iterated limits (15 B.13)}.

If we want to define a concrete space by specifying the convergence class we must
find a convenient sufficient condition for a given convergence relation to be a con-
vergence class. Such conditions will be given in Theorem 35 A.17, and for topological
spaces in Theorem 35 A.18. It is sometimes convenient to prescribe not the whole
convergence class but only a sufficiently large subclass of the convergence class which
completely determines the convergence class. The procedure is similar to that of the
description of closure spaces by neighborhoods which has already been treated in sub-
section 14 B, and therefore we recall the main results in a formal fashion to point out
the main ideas. The terminology introduced will be used only here.

35 A4, Let us term the neighborhood relation of a closure u and denote by fu
the relation consisting of all pairs (U, x> such that U is a neighborhood of x in the
space (P, u) (P is uniquely determined by u). We know that the relation {u — fu | u
is a closure} is one-to-one. Next, if u is a closure then the relation fu has the following
properties: (a) x € U for each U, x) € fu, (b) (fu)~' [x] is a filter in E(fu) for each
x € E(fu), and (c) E(fu) is a set. Conversely, if a relation f possesses the properties
(a), (b) and (c), then f = fu for some u.

Notice that this fact has been often used to define a closure by specifying the neigh-
borhood systems at points. We know that it is often convenient to specify not the
entire neighborhood systems but local bases or local sub-bases only. The latter
method is based on the following result: If ¢ is any relation ranging in a set such that
x € U = Eo for each (U, x) € g, then there exists a smallest neighborhood relation

~

41+
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¢ such that ¢ o ¢ and Eg = Eg. This neighborhood relation can be described as
follows: (U, x> e ¢ if and only if U belongs to the smallest filter in Es containing
o~ [x]. The definition of spaces by specifying local bases is based on the following
result: let o be a relation as above, u the corresponding closure operation; hence fu
is the corresponding smallest neighborhood relation containing ¢. The following
conditions are equivalent:

(a) xeuX <X c Eg, xeEo, (U,xd)ea=>UnX 0

(b) fu = {<U, x> | V = U < Eg for some (V, x) € a}

(¢) o7 [x] is a filter base in Eq for each x € Eo.

Thus the relation ¢ describes u ““directly”, that is, in the sense of (a), if and only if
the neighborhood relation fu of u can be reconstructed from ¢ by (b). Condition (c),
which is formulated in terms relating to ¢ only, is 2 characterization of those ¢ which
directly describe a closure operation. We want to introduce a similar notion for con-
vergence and obtain a similar result.

35 A.S. Definition. A determining convergence relation for a closure space
(P, u) (for a closure operation u) is a convergence relation ¥ < Lim (P, u) such
that x € uX if and only if X = P and (N, x) € ¥ for some net N ranging in X.
A determining convergence relation is a determining convergence relation for some
space.

Every convergence class is a determining convergence relation, and a determining
convergence relation % is a determining convergence relation for exactly one space
{P, u); indeed, P = E¥, and x € uX if and only if (N, x) € € for some N ranging
in X. No characterization of determining convergence relations is known. Never-
theless, there are very simple and natural sufficient conditions which are given in
the theorem which follows. Further comments will be given after the proof.

35 A.6. Theorem. The following three conditions are sufficient for a convergence
relation € to be a determining convergence relation:

(a) EN < E% for each N € D%.

(b) If x € E®, then there exists a net N in (x) such that (N, x> € %.

(c) If {N, x> €€ then (M, x) €€ for each subnet M of N.

Remark. Conditions (a) and (b) are also necessary.

Proof. Put P = E% and consider the single-valued relation u which assigns to each
subset X the set uX consisting of all points x such that {N, x> € € for some net N
ranging in X, in symbols uX = E{x | there exists (N, x) € ¢ with EN < X}. It will
be shown that u is a closure operation for the set P and % is a determining convergence
relation for (P, u). It follows from the definition that up = 0. From condition (b) we
obtain at once X < uX for each X <« P. Since clearly X = Y implies uX < uY, we
have uX, U uX, < u(X, uX,) for all X;, X, c P. To prove the converse in-
clusion, suppose x € u(X, U X,); it is to be proved that x e (uX,; U uX,). By de-
finition of u there exists a met N in (X; U X,) such that {N, x) € 4. Consider the
sets 4; = E{a|aeDN, N,eX,}, i = 1,2. Since 4; U A4, = DN, at least one of
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the sets A, or A,, say A;, must be cofinal in DN, and hence directed by the relativized
order. Now the restriction M of N to A4; is a subnet of N ranging in the set X;. By
condition (c) the pair {M, x) belongs to ¥, and finally, by definition of u, x € uX,.
Thus u is indeed a closure for P. To show that % is a determining convergence rela-
tion for (P, u) we must show that ¥ = Lim (P, u) and x € uX if and only if (N, x> €
€ % for some net N in X. The latter fact follows from the definition and the former
one is proved as follows: Suppose that (N, x} € € but N does not converge to x
in (P, u). By (a), EN < P. There exists a neighborhood U of x such that N is not
eventually in U, that is, N is frequently in P — U. It follows that the restriction M
of N to the ordered subset A = E{a l aeDN, N,e(P — U)} of DN is a subnet of N,
and M ranges in P — U. By condition (c) {M, x> € ¢, and by definition of u we obtain
x € u(P — U) which contradicts our assumption that U is a neighborhood of x. This
concludes the proof; the remark is evident.

It may be noted that the condition (c) is not necessary. The reader can easily find
a corresponding example. Obviously condition (c) cannot be omitted. Some weakened
form of condition (c) will be discussed in the exercises.

A special sort of determining convergence relations which will be introduced in the
definition which follows is very important in practice.

35 A.7. Definition. A convergence relation ¥ will be termed a convergence struc-
ture if the following conditions are fulfilled: (a) EN < E¥ for each N e D%; (b) If N
is a net in E¥ such that N, = x for each a in DN, then (N, x)> € %; and (c) If
{N, x> € % then {M, x> € ¥ for each subnet M of N. A convergence structure for
a space & is a convergence structure which is a determining convergence relation
for 2.

As a corollary of 35 A.6 we obtain:

35 A.8. Theorem. Every convergence structure is a determining convergence
relation.

Now let € be a determining convergence relation for a space . It is natural to
inquire about a description of the convergence class of 2 in terms of €. Such a de-
scription will be given for a special class of determining relations. First we shall give
a sufficient condition for {8, x) € Lim £.

35 A9. Let % be a determining convergence relation for a space 2. If S is a net
in® and x € P is such that each subnet N of S has a generalized subnet M with
{M, x> €¥, then S converges to x in 2, i.e. {S, x) e Lim#.

Proof. Suppose that x and S fulfil the condition and S does not converge to x in
2. There exists a neighborhood U of x such that S is not eventually in U, and hence,
S is frequently in |9| — U. 1t follows that some subnet N of S ranges in I?l - U.
By the condition we can choose a generalized subnet M of N such that (M, x> € %.
Since N ranges in |9‘| — U, M also ranges in IQ’I — U . But M converges to x and
hence x belongs to the closure of the set Ig’l — U, which contradicts our assumption
that U is a neighborhood of x.
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Example. The condition of 35 A.9 is not necessary; e.g. let # be an infinite accrete
space and let € be the class of all pairs (N, x) such that x € 2 and N is a constant
net in 2. Clearly € is a determining convergence relation for 2. Next, if S is a one-to-
one net in 2 the domain of which does not have a greatest element, then no general-
ized subnet of S is constant. Since £ is infinite, we can choose a one-to-one sequence
{x,} in 2 and an x in 2. Since 2 is an accrete space, {x,} converges to x in #. On
the other hand, no generalized subnet of a subnet of {x,,} is constant.

Let € be a determining convergence relation for a space 2 and let # be the class
of all {S, x) satisfying the condition of 35 A.9. By 35 A.9 we have # = Lim £, and
the example following 35 A9 shows that in general # + Lim 2. There is an
important kind of pairs {8, x> € Lim £ which bzlong to 4 for each . The result
is given as a corollary of 35 A.11. Recall that if N converges to x in (P, u> and A is
cofinal in DN, then x € uN[A].

35 A.10. Definition. We shall say that a net N converges regularly to a point x

in a space 2 if N converges to x and x ENW implijes that A is a cofinal subset
of DN.

Of course, not every net converging to a point x converges to x regularly. For
example if a constant net converges regularly to a point then its domain is one-point.
Next, in an accrete space, every net converges to each point but a net converges re-
gularly if and only if its domain is one-point. In a discrete space a net N convergzs
regularly to a point x if and only if the domain of N possesses a greatest element,
saya, N, = x and N, # x for a + o. Evidently a generalized subnet M of a net regul-
arly convergent to a point x need not converge regularly to x. On the other hand
a subnet of a net regularly convergent to a point x converges regularly to x.

35 A.11. Let € be a determining convergence relation for a space 2. If a net N
regularly converges to a point x in P, then there exists a generalized subnet M
of N such that {M,x)eé%.

Proof. Since x € EN we can choose a (M, x) in € such that EM < EN. We shall
prove that M is a generalized subnet of N. Since EM = EN we can choose a single-
valued relation ¢ ranging in DN such that M = N, ¢ and Dg = DM. It will be
shown that M is a generalized subnet of N under g, that is, given an « in DN, there
exists a # in DM such that 8 < b (in DM) implies « < b (in DN).

The set A of all a € DN such that « non £ a is not cofinal in DN, Since N converges

regularly to x, x élV[T], and consequently there is a neighborhood U of x disjoint
with N[A]. Thus N, e U implies & < a. Since M converges to x in P, there exists
a fin DM such that M, e U for each be DM, 8 < b. If § < b in DM, then M, =
= N, €U and hence gb = o in DN.

Corollary. If € is a determining convergence relation for a space # and a net S
converges regularly to x in P, then each subnet of S has a generalized subnet M
such that {M, x) € 4. (Compare with 35 A2 (d).)
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35 A.12. Example. Suppose that £ is a semi-separated space and N is a sequence
converging to x in 2. Then either the sequence N possesses a subsequence regularly
convergent to x or N is constant for sufficiently large indexes. — Evident.

A similar result for nets is not true. The example which follows clarifies the situation.

35 A.13. Example. Let 4 be a non-void sct and let {#, | a € A} be a family of
spaces and {x, | a € A} be a family such that x, € [#,| for each a. Finally, let 2 be
the space obtained from the family {2, | a € A} by identifying the points of the family
{x,}. That is, 2 is the quotient of the sum space X{#,} under the smallest equivalence
containing the set X x X where X is the set of all {a, x,), a € A.

Suppose that, for each a, S°is a sequence in 2, converging to the point x,, and < is
an order directing the set A. Let S be the net the domain of which is the directed set
{4, £) x I1{Ds* | a € A} and the value of which at a point <a, {n,}) is {«, S}, Se
€ 2. One can prove without difficulty that

(a) The net S converges to the point X in 2.

(b) The net S does not converge regularly to X provided that {4, <) does not
have a greatest element; moreover,

(c) no subnet of S converges regularly to X in & provided that (4, <) does not
have a greatest element.

(d) If all the spaces 2, are semi-separated, S2 # x, for each a € A and each ne N,
and (A4, £) is the directed set of all natural numbers, then no diagonal sequence
{Ca, S2.> | a € A} converges to the point X in 2.

Now we return to our subject. Under the notation of the remark preceding De-
finition 35 A.10, we want to find a sufficient condition on € for # = Lim& such that
any convergznce class always fulfils this condition. In 35 A.13 we have given, in
a special case, a construction of non-regularly convergent nets from regularly con-
vergznts nets. Now we shall show that one such condition consists of requirements
that & be stable under this construction.

35 A.14. Theorem. Let € be a determining convergence relation satisfying the
following condition, which will be called the condition of diagonalization.

If Ais a directed set and {M* I a € A} is a family such that (M®, x) € € for each a
in A, then {M, x) € € where M is a net the domain of which is the product ordered
e A x TI{DM*| a e 4}
and the value of which at a point {a, {b,}> is M}..

Then, if S converges to x in P then each subnet of S has a generalized subnet M
such that (M, x) e %.

Remark. It should be noted that the condition of diagonalization is a weakened
form of the condition on iterated limits. Nevertheless, although the condition on
iterated limits characterizes convergence classes of topological spaces in the class
of all convergence classes, the assumption of diagonalization is fulfilled by every
convergence class, as will be proved in 35 A.16.
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Proof. Suppose that a net S converges to x in £ and that N is a subnet of S.
Therefore N also converges to x in 2. Let A denote the directed domain
of N. For each « in A let X, be the set of all N,, « £ a. Since N converges
to x, the point x belongs to the closure of each X,, ae 4. Since ¥ is a deter-
mining convergence relation for 2 we can choose a family {M*°|a € 4} such that
{M"* x> € ¥ and M* ranges in X, for each a in 4. Let M be the net in the condition
of diagonalization; thus {M, x> € ¢. We shall prove that M is a generalized subnet
of N. Let ¢ be a single-valued relation on DM into DN which assigns to each point
o, {b,}> a point a such that « < a, N, = M; . Clearly M = N o ¢. To prove that
M is a generalized subnet of N under g it remains to show that for each a in 4 (= DN)
there exists y € DM such that y < ¢ in DM implies« < gc in 4. But this is almost
self-evident. Indeed, putting y = {«, {b,}) where {b,} is arbitrarily chosen, then y
has the required property; since if y < ¢, ¢ = {ay, {b.}), then « £ a, in 4 and
oc 2 a, (by the choice of g), and hence gc 2 a.

Combining 35 A.14 and 35 A.9 we obtain at once the following description of con-
vergent nets in terms of a determining convergence relation satisfying the condition
of diagonalization.

35 A.15. Theorem. Suppose that & is a space and € is a determining convergence
relation for P satisfying the condition of diagonalization (see 35 A.14). Then
a net S in |2| converges to a point x of |?| in P if and only if each subnet N of S
possesses a generalized subnet M such that {M, x> €%,

Now we are prepared to give a characterization of convergence classes.

35 A.16. Theorem. The following conditions are necessary and sufficient for
a convergence relation € to be a convergence class.

(@) € is a determining convergence relation.

(b) ¥ fulfils the condition of diagonalization.

(¢) If S is a net in E¥ and x is a point of E¥ such that each subnet of S has a
generalized subnet M with (M, x> € € then {S,x) € %.

Remark. Condition (c) is equivalent to the following condition
(¢')if Sis a net in E¥, x is a point of E¥ and (S, x) ¢ %, then there exists a subnet
N of S such that (M, x) ¢ € for no generalized subnet M of N.

Proof. The sufficiency is a straightforward consequence of 35 A.14. We shall
prove the necessity. Suppose that € is the convergence class of a space 2. Condition
(¢') is fulfilled by 35 A.2 (d). Obviously € is a determining convergence relation for 2.
It remains to show that € satisfies the condition of diagonalization. Suppose that 4
is a directed set, {M* | a € A} is a family of nets each of which converges to x and M
is the net from the assumption of diagonalization (see 35 A.14). We must show that
M converges to x. Given a neighborhood U of x we can choose a family {b, | a € A}
such that b, < b in DM* implies Mj e U. Now if o is any element of A and
<o, {bs}> < (a, {bs}> = ¢, then M, = Mj_and b, < b, in DM?, and consequently
M_e U by the choice of {b,}.
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35 A.17 Theorem (a characterization of convergence classes). The fol-
lowing conditions are necessary and sufficient for a convergence relation € to
be a convergence class:

(a) € is a convergence structure.

(b) € fulfils the condition of diagonalization.

(c) Condition (c) of 35 A.16.

Proof. The sufficiency is a consequence of the previous theorem and of Theorem
35 A.8 asserting that a convergence structure is a convergence determining relation.
The necessity of the condition again follows from the previous theorem and the fact
that every convergence class is a convergence structure, :

35 A.18. Theorem (characterization of convergence classes of topol-
ogical spaces). The following conditions are necessary and sufficient for a conver-
gence relation € to be a convergence class of a topological space:

(a) ¥ is a convergence structure.

(b) € fulfils the condition on iterated limits.

(c) Condition (c) of 35 A.16.

Proof. Since condition (b) of 35 A.18 implies condition (b) of 35 A.17, and the
other conditions are identical, a convergence relation satisfying the conditions of
35 A.18 is a convergence class of a space 2 (by 35 A.17) which is topological by
15B.13, because it fulfils the condition on iterated limits, Conversely, if € is the
convergence class of a topological space, then the condition (b} is fulfilled by 15 B.13,
and the remaining are fulfilled by the foregoing theorem.

Subsection A is ended by examples. First we shall show that many of the results
of previous sections can be easily proved by means of the results of this subsection.

35 A.19. (a) If {u,} is a non-void family in C(P) then u = inf {u,} exists and
% = E{A | A €Limu, for each a} is Lim u; if all the u, are topological, then
so is u.

Proof. Let € be as above. It follows from 35 A.17 that % is a convergence class,
say of a space (P, u); if all the u, are topological then u is topological by 35 A.18
(because ¥ fulfils the condition on iterated limits). It follows from the character-
ization of continuity by means of nets that u = inf {u,}.

(b) If f is a mapping of a set P into a space 2, then there exists a unique closure
projectively generated by f, say u, and Lim (P, u) consists of all {N, x) such that
{fo N, fx)eLim 2; if 2 is topological, then (P, u)> is topological.

Proof. Consider the convergence relation ¥ consisting of all (N, x) such that
{foN, fx) e Lim 2. Ii follows from 35 A.17 that % is a convergence class for a space
(P, u) which is topological whenever 2 is topological (by 35 A.18). It is easily seen
that u is projectively generated by f.

It follows from (a), (b) that

(c) if {f,} is non-void family, each f, being a mapping of a set P into a space 2,,
then there exists a unique closure u projectively generated by { fa}; the convergence
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class of (P, u) consists of all pairs (N, x) such that N is a net ranging in P, x € P
and {f, < N, f,x) e Lim 2, for each a.

In particular, defining the product closure as the closure projectively generated by
projections, we obtain that a net converges to a point x in a product space if and only
if it converges pointwise to x.

It follows immediately from (c) that:

(d) if {f.} is a projective generating family for a space 2, then a mapping f into 2
is continuous if and only if all the composites f, o f are continuous.

35 A.20. Convergence closure for the collection of all closed subsets
of a closure space. Let & be the collection of all closed subsets of a topological
space {P,u). Let € be the set of all pairs (S, X) such that S is a net in & and X
is the topological limit of S in {(P,u) (for the definition see 15 ex. 10). The class €
is a convergence structure for & satisfying the condition (c) of 35 A.16.

35 A.21. Convergence closure for an ordered set. Suppose that (P, £>
is an ordered set (not necessarily monotone). An eventual upper (lower) bound of
a net N in (P, £) is an element x such that N, < x (x < N,) for all sufficiently
large indices. A net N is said to be eventually bounded if it has both these bounds.
If N is eventually bounded, then the infimum (supremum) of the set of all eventual
upper (lower) bounds of N, if it exists, is called the upper limit (lower limit) of N,
and is denoted by Lim sup N (Lim inf N). Evidently, always Lim inf N < Lim sup N.
If equality holds, then we write Lim N for the common value and say that N is order-
convergznt to Lim N. Let € be the class of all pairs (N, Lim N) where N varies over
all order-convergent nets. It is easily seen that % is a convergence structure. The
closure determined by & will be called the convergence closure of (P, ). If (P, £>
is order-complete, then Lim sup N and Lim inf N exist for each net N in (P, <) and

Lim sup N = inf {sup {N,|« < a} | a € 4}
Liminf N = sup {inf {N,|x < a}|axeA4}.
If (P, £) is monotonically ordered then the convergence closure coincides with
the order closure.

35 A.22. Convergence closure for the ordered set of subsets of a set.
Let £ be the collection of all subsets of a set P ordered by inclusion, and let & be the
class described in the preceding example 35 A.21. Thus (N, X) € € if and only if
N is a netin £ and

X =N{U{N, |« = a}|aeDN} = U{N{N, |« < a} |« e DN} .

Let the symbols Lim N, Lim sup N and Lim inf N have the meaning from
35 A.21. We shall prove that then the convergence relation % fulfils condition (c) of
35 A.16, that is, if S is a net in 2 and X € 2 such that (S, X) ¢ %, then there exists
a subnet N of S such that (M, X) € € for no generalized subnet M of N. If Lim S
exists, then Lim M = Lim S for each generalized subnet M of S and hence we can put
N = S. Now suppose that Lim S does not exist and pick a point x in Lim sup S —
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— Lim inf S. If x € X let N be the restriction of S to the set 4 of all a € DS such that
x ¢ N,, and if x ¢ X then let N be the restriction of S to the set A of all a € DS such
that x € N,. In both cases, by the choice of x, the set A is cofinal in DS, and hence N is
a subnet of S. If M is a generalized subnet of N, then x ¢ Lim sup M in the first case
and x € Lim inf M in the second case by the choice of N. It follows N has the required
property. It is easily seen that € fulfils the condition on iterated limits, and hence ¥
is the convergence class of a space {exp P, u). These results can also be derived from
the fact that {exp P, u) is a homeomorph of the product 2° where 2 is a two-point
discrete space.

B. SEQUENTIAL DETERMINING RELATIONS

In this subsection we shall be concerned with questions related to the possibility of
description of spaces in terms of convergent sequences. For convenience we shall
introduce further terminology.

35 B.1. Definition. A sequential relation is a convergence relation the domain
of which consists of sequences. A sequential determining relation is a determining
convergence relation which is simultaneously a sequential relation. The sequential
convergence class of a space 2 is the class (in fact a set) of all pairs ¢S, x) such that S
is a sequence converging to x in &. A sequential convergence class is the sequential
convergence class of a space. Finally, a sequential structure is a sequential relation ¥
satisfying the following three conditions:

(a) If (S, x) € %, then ES = E%.

(b) If x € E¥ and S is a constant sequence {x | n € N}, then (S, x) € 4.

(c) If {S, x> € € and N is a subsequence of S, then (N, x) € 4.

35 B.2. Theorem. Every sequential convergence class is a sequential structure,
and every sequential structure is a sequential determining relation.

Proof. The first assertion is evident and the second one follows from 35 A.8.

35 B.3. Theorem. Let u be a closure for a set P and let € be the sequential con-
vergence class of the space {P, u). There exists a closure v for P such that € is a
sequential determining relation for {P,v). The closure v is the finest closure such
that S converges to x in {P, v) for each (S, x) €€, and € is the sequential con-
vergence class of (P, v).

Proof. By 35B.2 4 is a sequential determining relation, say for a space (Q, v).
Clearly @ = P. If wis any closure for P such that ¥ = Lim (P, w), then the identity
mapping of (P, v) onto (P, w) is continuous because ¥ is a determining convergence
relation for (P, v), and hence w is coarser than v; this proves the second statement.
Finally, to prove the last statement, notice that % is contained in the sequential con-
vergence class of (P, v) and, on the other hand, the sequential convergence class of
{P, v> 1s contained in that of (P, u), which is .
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35 B.4. Theorem. Every space with a countable local character admits a sequen-
tial determining relation, in particular, every semi-pseudometrizable space admits
a sequential determining relation.

Proof. Suppose that x belongs to the closure of a set X and {U, | n € N} is a local
base at x. Thus {X n U,|ne N} is a filter base and we can choose a sequence
{x,} so that x, € N{X n Uy | k £ n}. The sequence {x,} ranges in X and converges
to x.

The following example shows that the converse of this theorem is not true, that is,
there exists a space with an uncountable local character which admits a sequential
determining relation.

35B.5. Example. Let'P be a set consisting of all points of Q and a further point x.
Let us define a closure operation u for P such that the space Q is a subspace of (P, u)>
and x € uX if and only if either x € X or the closure of X () Q in the space R inter-
sects R — Q. Finally, let ¥ be the sequential convergence class of the space (P, u).
It can be verified that

(a) <P, u) is a semi-separated topological space;

(b) (P, u) is not separated because the closure of each neighborhood of each
point of Q contains x;

(c) (P, u) is of a countable local character at each point of Q but not at x;

(d) € is determining convergence relation for (P, u);

(e) ¥ is single-valued.

The verification of all assertions, perhaps except of the fact that (P, u) is not of
a countable local character at x, is straightforward and may be left to the reader.
The uncountability of the local character at x will follow from Theorem 35 B.12
asserting that a space 2 satisfying conditions (d) and (e) is separated provided that
it is of a countable local character. Nevertheless, a direct proof is not difficult.

Now we shall proceed to the following problem. Given a sequential determining
relation € for a space 2, to find a reasonable description of the sequential convergence
class of 2 in terms of . We shall restrict ourselves to the case when £ is semi-
separated, or equivalently, as will be shown, € is single-valued at constant nets.
Under this assumption no form of the condition of diagonalization will be needed,
and in fact the resulting theorem will follow by a slight modification of the result
35 A.11 for regularly convergent nets.

35 B.6. Theorem. Let ¥ be a determining sequential structure for a semi-separ-
ated space ?. Then a sequence S in IQ‘I converges to a point x in P if and only if
every subsequence N of S has a subsequence M such that (M, x> € %.

Proof. If a sequence S fulfils the condition, then S converges to x by 35 A.9. Con-
versely, suppose that S converges to x in 2 and N is a subsequence of S. It follows
that the sequence N also converges to x in £. According to 35 A.12, either N
possesses a constant subsequence or some subsequence of N converges to x regularly.
In the former case choose a constant subsequence M of N. Since P is semi-separated,
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M, = x for each n, and consequently (M, x> € ¥ because ¥ is a sequential determin-
ing relation. In the latter case choose a subsequence M of N which regularly converges

to x. The point x belongs to EM? — EM, and therefore there exists a pair (M’, x)
in € such that EM’ < EM. Since M converges regularly to x, one can easily construct
a subsequence M” of both M’ and M. Since ¥ is a sequential structure, (M", x> € ¥.
Clearly M" is a subsequence of N.

The fact the a space & admitting a sequential determining relation € is semi-
separated can be expressed in terms of ¥, as the proposition which follows asserts;
this will enable us to restate the foregoing theorem without any reference to the
space 2.

35B.7. Let € be a sequential determining relation for a space 2. In order that
P be semi-separated it is necessary and sufficient that € be single-valued at each
constant sequence.

Proof. The space 2 is semi-separated if and only if y € (x) implies y = x. On
the other hand, for each x in £ there exists exactly one sequence ranging in (x),
say S, and consequently, if y belongs to the closure of (x) then (S, y) € 4. The pro-
position follows.

By virtue of 35 B.7, Theorem 35 B.6 can be restated as follows.

35 B.8. Theorem. Let us suppose that € is a sequential structure, and let 9 be
the smallest sequential convergence class containing € (that is, 9 is the sequential
convergence class of the space determined by €). If € is single-valued at each
constant sequence, then {S, x) € @ if and only if S is a sequence ranging in E¥
and each subsequence N of S possesses a subsequence M such that (M,x)€ €.

35 B.9. Theorem. The following conditions are necessary and sufficient for
a sequential relation € to be the sequential convergence class of a semi-separated
space:

(a) € is a sequential structure single-valued at constant sequences.

(b) If S is a sequence in E¥, x € E¥ and (S, x) ¢ €, then there exists a subse-
quence N of S such that (M, x) € € for no subsequence M of N.

Proof. I. First suppose that € is the sequential convergence class of a semi-
separated space 2. Then condition (a) follows from 35B.2 and 35B.7, and condition
(b) follows from 15 B.21. — II. Now suppose that % fulfils the conditions. By (a)
the sequential relation ¥ is a sequential determining relation for a space 2 which is
semi-separated by 35B.7. By 35B.8 condition (b) implies that ¥ is the sequential
convergence class of 2.

We know that a closure space is semi-separated provided that it admits a sequential
determining relation which is single-valued at constant sequences and, on the other
hand, a space is separated provided that its convergence class is single-valued. It is
natural to ask whether a space is separated provided that it admits a single-valued
determining convergence relation, and if not, whether a space is separated provided
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that it admits a single-valued sequential determining relation. The answer is in the
negative. Indeed, the sequential class of the space (P, u) in 35 B.5 is a single-valued
determining convergence relation for {P, u) but (P, u) is not separated. It should be
noted that every space admits a single-valued determining convergence relation.

35 B.10. Definition. An L-space is a space & the sequential convergence class
of which is a single-valued determining convergence relation for 2. An L-structure
is a single-valued sequential structure.

35 B.11. Every L-space is semi-separated, but not necessarily separated.
An important class of separated L-spaces is described in the theorem which follows.

35 B.12. Every L-space with a countable local character is separated.

Proof. The proof is similar to that of the fact that a space is separated whenever
its convergence class is single-valued. Suppose that points x and y are not separated
and the space is of a countable local character at both points x and y. There exist
local bases {U, l ne N} and {V, I ne N} at x and y respectively, and U, " V,, = 0
for each n and m. Since both {U,} and {V,} are filter bases, we can choose a sequence
{x,} so that x,e N{U,n V;|k < n,1 < n} for each ne N. Clearly the sequence
{x,} converges to both x and y.

35 B.13. Theorem. The following two conditions are necessary and sufficient
for a sequential relation € to be the sequential convergence class of an L-space:

(@) € is an L-structure.
(b) If S is a sequence ranging in E¥, x € E€ and <S, x) ¢ ¢, then there exists
a subsequence N of S such that (M, x) € € for no subsequence M of N.

Proof. The conditions are sufficient by 35 B.9. The necessity is obvious.

35 B.14. Theorem. A space 2 is an L-space if and only if it admits a determining
L-structure.

Proof. The necessity is obvious. We shall prove the sufficiency. Suppose that an
L-structure ¢ is a determining convergence relation for a space . We must show that
each sequence S in & possesses at most one limit point. Suppose that x and y are
limit points of a sequence S. We shall prove x = y. It is enough to find a subsequence
M of S such that (M, x) € ¥ and {M, y) € ¥ because ¥ is single-valued. First notice
that £ is semi-separated, by 35 B.7. Now, since S converges to x, it follows from
35 B.6 that there exists a subsequence N of S such that (N, x> € 4. Since S converges
to y, N also converges to y. Applying once more 35 B.6 we obtain a subsequence M
of N such that {M, y) € €. But % is a sequential structure, and hence (M, x)>e ¥
because (N, x) € ¥ and M is a subsequence of N.

It is to be noted that “L-structure” cannot be replaced by “sequential relation™
in the foregoing theorem. The corresponding example is given in 35 B.17.

35 B.15. Definition. We shall say that a net N converges strictly to a point x in
a space 2 if it convergesto x in and no y € ]9] — (x) is a cluster point of N, that
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is, if it is eventually in each neighborhood of x and each point y + x has a neighbor-
hood V such that N is eyentually in I9| -V

35B.16. In a separated space every convergent net is strictly convergent. In an
L-space every convergent sequence is strictly convergent.

Proof. I. Suppose that a net N converges to a point x in a separated space £ and
ye Ig’l — (x). There exist neighborhoods U and V of x and y such that U n V = 0.
Since N converges to x, N is eventually in U « P — V. — II. Now suppose that
a sequence S converges to x in an L-space Zand y € [2| — (x) is a cluster point of S.
Since £ is semi-separated, |9”| — (y) is a neighborhood of x and hence S is eventually
in |.97’| — (), say n 2 n, implies that S, + y. Consider the set X of all S,, n = n,,.
Since y is a cluster point of S, y belongs to the closure of X in . Thus we can choose
a sequence N ranging in X and converging to y. Since ye |9| — X and 2 is semi-
separated, the sequence N contains no constant subsequence. Therefore we can con- '
struct a common subsequence M of both S and N. This sequence M must converge
to both x and y, which contradicts our assumption that £ is an L-space.

The following examples show that the assumption £ is separated and £ is an
L-space are essential in the foregoing theorem.

35B.17. Examples. (a) Let P be the set consisting of all natural numbers and
two further points x, and x,. Let us define a closure operation u for the set P so that
N is an open discrete subspace of (P, u) and x;cuX ifand onlyif x;,e X or X n N
is infinite. It is easily shown that

(1) <P, u) is a semi-separated space.

(2) The sequential convergence class of (P,u) is a determining convergence
relation for (P, u).

(3) If a sequence S ranging in N converges to x,, then it converges to x, as well.

(b) Let P be the set consisting of all points of the ultrafilter space SN (see 14B.12)
and a further point x. Define a closure u for P so that SN is an open subspace
of P and x belongs to the closure of a set X if and only if either x € X or X contains
an infinite number of elements of N. It is easy to show that

(1) <P, u) is a semi-separated space.

(2) A sequence S in P is convergent if and only if eitheritis eventually constant
or it converges to x.

(3) Any sequence S in (P, u) is either eventually constant or it has an infinite
number of cluster points.

(4) Only the eventually constant sequences converge strictly.

C. SEQUENTIAL MODIFICATION

Now we proceed to an investigation of properties of the class of all spaces admitting
a sequential determining relation and the class of all L-spaces. For convenience we
shall introduce further terminology.
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35 C.1. Definition. An S-space is a closure space & such that some sequential
relation is a determining relation for 2. An S-closure is the closure structure of some
S-space. The ordered class of all S-closures will be denoted by S. If P is a set then
S(P) denotes the ordered set of all S-closures for P. The class of all S-spaces will also
be denoted by S. The ordered class of all L-closures will be denoted by L, and L(P)
will denote the ordered set of all L-closures for P. The letter L also denotes the class
of all L-spaces.

By 35B.4 every space with a countable local character is an S-space. By 35 B.5 the
local character of an S-space need not be countable. Recall that an L-space is an
S-space £ such that the sequential convergence class of £ is single-valued (35 B.10).

35 C.2. A closure space 2 is an S-space if and only if the sequential convergence
class of P is a determining convergence relation for #. Next, a mapping f of an
S-space 2 into a closure space P is continuous if and only if f o S converges to fx
in P whenever S'is a sequence which converges to x in 2;in particular, an S-closure v
is finer than a closure u if and only if the sequential convergence class of v is con-
tained in the sequential convergence class of u. The class S is hereditary.

35 C.3. Theorem. The class S is inductive-stable and contains all accrete spaces.

Of course every accrete space is an S-space. The fact that S is inductive-stable will
be proved in a more general situation.

35 Cd4. Let O be a non-void class of directed sets and let K be the class of all the
spaces P which admit a determining convergence relation € such that the ordered
domains of nets from D% belong to @ (thus K = S provided that @ = (N)). Then K
is an inductive-stable class of spaces.

If 2 is any space, X < [97‘] and x € X, then we can choose an {4, £>e @ (becausé
0 #+ 0), and the constant net {a — x} ranges in X and converges to x in #. Now
35 C.4 will follow from a somewhat more general result 35 C.6 for which we need the
important concept of a generating convergence relation.

35 C.5. Definition. A generating convergence relation for a closure space
P = (P,u) is a convergence relation ¥ — Lim £ such that if x e uX — X then
there exists a (N, x) € ¥ with N ranging in X.

Thus a determining convergence relation for a space £ is a generating convergence
relation for . A generating convergence relation for £ need not be a determining
convergence relation for 2, e.g. @ is a generating convergence relation for each dis-
crete space. This example shows that a generating convergence relation for a space 2
does not determine 2.

35 C.6. Suppose that a space P = (P,u) is inductively generated by a family
of mappings {f,|ae A} and {%,} is a family such that €, is a generating con-
vergence relation for D*f, for each a in A. Then the class € of all {f,o N, f,x>,
ac A, (N,x)e%,, is a generating convergence relation for 2.
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Proof. Clearly ¢ < Lim 2. Assuming yeuY — Y we can pick an a in 4 and x
in Df,, such that f,x = y and x belongs to the closure of f; ![Y] in D*f, (by the de-
scription 33 A4 of inductively generated closures). Since %, is a generating con-
vergence relation for D*f, we can pick (N, x) in &, such that N ranges in f; '[Y].
Clearly f, « N ranges in Y.

According to 33 C.11, Theorem 35 C.3 implies the following proposition.

35 C.7. Let P be a set. Then
(a) For each u in C(P) there exists the lower modification of u in S(P).

(b) The ordered set S(P) is order-complete and contains the discrete and the
accrete closure for P.

(c) S(P) is completely join-stable and completely join-preserving in C(P).

35 C.8. Definition. The lower modification of a closure # in S will be termed the
sequential modification of u and will be denoted by eu. The sequential modification
- of a closure space ? = {P, u), denoted by 62, is defined to be the space {P, ou).
The letter o will be used to denote the relation {u — ou | u € C} as well as the relation
{? > 62 |2eCl

Since the class S is inductive-stable, by 35 D.8 (or ex 7) the sequential modification
of a closure operation can be characterized as follows.

35C.9. Let u be a closure for a set P. The sequential modification of u is the
unique closure v for P which satisfies the following condition:

A mapping f of an S-space into (P, u) is continuous if and only if the mapping
f:D*f — (P, v) is continuous.

35 C.10. The relation {? — 2|62 = 62} is an equivalence on the class of all
closure spaces, and 62 = 62 if and only if the sequential convergence classes of P
and 2 coincide. In particular, for every space P the sequential modification of P
is the unique S-space 2 such that the sequential convergence classes of # and 2
coincide.

Proof. Clearly it will be sufficient to prove the last statement. Let € be the se-
quential convergence class of a space 2. By 35B.3, € is a determining convergence
relation for a space 2 which is an S-space by definition, and the identity mapping
of 2 into 2 is continuous because ¥ — Lim £. Evidently 4 is the sequential con-
vergence class of 2. If £ is an S-space such that the identity mapping of £ onto 2 is
continuous, then the sequential convergence class 2 of £ is contained in Lim 2,
and hence in ¥, which implies that the identity mapping £ onto 2 is continuous
because £ is an S-space. Thus 2 = 62. The uniqueness is evident.

Remark. Notice that the proof of 35 C.10 does not depend on the results 35 C.3 —
35 C.9. In fact we have given an alternate proof of the existence of sequential modifi-
cation and hence a new proof of 35 C.7 (but not a new proof of 35 C.9).

The following example shows that the class S is not meet-preserving in C.

42—Topological Spaces
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35 C.11. Example. Let P be the ordered set of all ordinals less than or equal to
the first uncountable ordinal w;, u be the order closure for P, and let € be the se-
quential convergence class of (P, u). For each ordinal & < w, let u, be the finest clo-
sure for P coarser than u and such that the subspace of all ¢ = « is an accrete sub-
space of (P, u,». One can easily show that

(a) u is the infimum of {u, | a < w,} (taken in C(P));

(b) each closure u, is of a countable local character;

(¢) the sequential convergence class %, of (P, u,) consists of all pairs from &,
and all pairs (N, x) suchthat x = a and each § < a is an eventual strict lower bound
of N;

(d) ¢ =n{%.|a <o };

() the closure v for which % is a determining convergence class, is the infimum
of {u,} in S(P) and simultaneously it is the lower modification of « in S(P), and con-
sequently v is finer than u;

(f) the closure u does not belong to S(P) (no sequence ranging in P — ()
converges to @, in (P, u), and hence o, is isolated in (P, v)), which shows that v is
strictly finer than u. Consequently, u has no upper modification in S(P).

Now we shall give a rather interesting result. First let us recall that each closure has
an upper modification in the class of all topological closures (because tC is projective-
stable), and a closure need not possess a lower modification in tC (because tC is
not join-stable in C), and moreover a closure is topological provided it has a lower
modification in t€ (31 ex. 3). On the other hand, there exists a closure which is not
uniformizable but has a lower modification in vC.

35 C.12. Theorem. If a closure operation has an upper modification in S, then
it is an S-closure.

Proof. Let u be a closure for P having an upper modification v, in S(P). Consider
also its lower modification v, and denote by ¥, and ¥ the sequential convergence
classes of v, and v respectively. By 35 C.10, ¥ is also the sequential convergence class
of u. Suppose that v, & u. We shall derive a contradiction by constructing a v, € S(P)
coarser than u and strictly finer than v,. Clearly also v, ¥ v and hence there exists
a subset X of P and an x € P such that x e v,X but x ¢ vX. Choose a sequence S
ranging in X and converging to x in (P, v,). Clearly S, x) ¢ 4. In consequence,
there exists a subsequence N of S such that (M, x> € € for no subsequence M of N.
Since ¥ is also the sequential convergence class of (P, u), no subsequence M of N
converges to x in (P, u), in particular, N does not converge to x in (P, u). Therefore
there exists a neighborhood U of x in (P, u) such that N is not eventually in U, and
hence, some subsequence M of N ranges in P — U. Remove from €, all pairs (R, x>
such that R is a subsequence of M and denote the resulting set by &,. Obviously
%, o ¥, ¥, is a sequential structure and the closure v,, for which 4, is a determining
convergence relation, belongs to S(P) and is strictly finer than v, (because ¢, = %,
%, *+ %,). On the other hand v, is coarser than u. We shall prove that yeuY — Y
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implies that y e v, Y. If y =+ x, then evidently y € v, Yif and onlyif y € v,Y, and there-
fore y e v,Y because v, is coarser than u and hence y e v, Y. If y = x, then clearly
x e u(Y — EM), hence x € v,(Y — EM) which implies x € v, (Y — EM) because the
relativization of v, to P — EM coincides with the relativization of v; to P — EM.
The proof is complete.

Alternate proof. Clearly any quasi-discrete closure is an S-closure. By 31 D.3
every closure is a greatest lower bound of quasi-discrete closures. Hence v, = u.

By 35 C.11 or 35 C.12 the class S is not completely meet-stable in C. Now we shall
prove that the class S is not meet-stable in C.

35 C.13. There exist L-closures u and v for a countable set P such that the in-
fimum w of u and v is not an S-closure and the sequential modification of w is the
discrete closure for P, i.e. the infimum of u and v in S(P) is the discrete closure.
The space {P, w) (and hence both spaces {P, u) and (P, v)) can have the following
property: no two points are separated in (P, w), that is, any neighborhood of any
point is dense in {P, w). Consequently, no point of (P, u) or {P, v) is of a countable
local character.

Both spaces will be constructed by the same method (related to that used in
35B.5).

(a) Let P be a countable dense subset of the space R of reals and let {X,, [ xe P}
be a disjoint family of dense subsets of R such that Pn X, = 0 for each x (such P
and X, can be chosen by 22 ex. 7). Let us define a closure operation u for P as
follows: y e uY if and only if either y € Y or the closure of Y in R intersects the
set X,. It is easily seen that u is indeed a closure for the set P.

(o) A subset U of P is a neighborhood of a point y in (P, u) if and only if ye U
and U o P n G for some open set G in R containing X, (thus G is dense in R).

Indeed, if U fulfils the condition then clearly y ¢ u(P — U); and conversely, if
y¢u(P — U) then y e U and the closure F of P — U in R does not intersect the
X, and consequently we can put G = R — F. From («) we will derive:

(B) If {Y,| a € A} is a finite family of subsets of P such that each Y, is a neighbor-
hood of at least one point, then the intersection Y of {Y,} is an infinite set.

Indeed, let Y, be a neighborhood of y, in (P, u) and let G, > X, be an open
subset of R such that P n G, = Y,. Since X, is dense in R for each a, each G, is
also dense, and R being a topological space and G, being open, the intersection G
of {G, | a€ A} is also an open dense subset of R. Clearly P n G < Y. Since P is
dense in R, P n G is an open dense subset of the subspace (P, v) of R. But (P, v)
is infinite and semi-separated and hence the set P N G is infinite.

(Y) No two points of {P, u) are separated (see (B)).

(8) If a sequence S converges to a point y in {P, u), then the set Z of all accumula-
tion points of S in the spaceR is non-void and is contained in the set (y) v X,

First we shall prove that Z < (y) U X,. Let z be any accumulation point of S in

42+
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R; there exists a subsequence N of S converging to z in R. Moreover, N can be chosen
constant or one-to-one. If N is constant, then obviously N, = z for each n and con-
sequently z = y. If N is one-to-one, then z is the unique accumulation point in R
of the set Y of all N,,. On the other hand, since S converges to y in (P, u), the se-
quence N also converges to y in {P,u), and consequently yeuY, for each n
where Y, is the set of all N,, n £ k. Since N is one-to-one, there exists an » so that
y ¢ Y,. Since y € uY,, the closure of Y, in R must intersect the set X,. But the closure
of Y, in R is contained in that of Y which is contained in YU (z) = P u (z). Since
PnX, =0, zeX,; this completes the proof of the fact Z = (y) U X,.

It remains to show that Z # (. Suppose that Z = . Thenthe set Yof all S, n e N,
is discrete. Consider the sequence {Y,} where Y, is the set of all S, n < k. Since
S converges to y in (P, u) we have y e uY, for each n. The closure of Y, in R is
contained in that of Y in R, which equals Y since Y is discrete in R. But Y = Pc
< R — X, and consequently, by definition of u, y € ¥,. But this implies that y is
an accumulation point of S in R, which contradicts our assumption Z = 0.

(€) Suppose that a sequence S converges to a point y in (P, u) and y is the only
cluster point of S in the space R. Then S, = y for sufficiently large n.

Proof. I. Consider the sequence {Y,} where Y, is the set of all S;, k = n. Since y is
the unique accumulation point of S in R, the closure of ¥, in Ris ¥, U (y) for edch n.
Since S converges to y in (P, u) we have y e uY, for each n, and hence y € Y, for
each n because (Y, U (»)) n X, = 0. Thus S frequently equals y.

II. If N is any subsequence of S, then N converges to y in (P, u) as well and by
our assumption y is the unique accumulation point of N in R. By the first part of the
proof the sequence N frequently equals y.

I11. By II every subsequence of S frequently equals y. By a simple argument the
reader shows that S eventually equals y.

(m) <P, u) is an L-space.

By (8) the sequential convergence class € of <P, u) is single-valued. It remains
to show that % is a determining convergence relation of (P, u). Suppose yeuY — Y.
By definition of u the closure of Yin R intersects X, and consequently we can choose
a sequence S ranging in Y and converging to a point of X,. It is easily seen that S
converges to y in (P, u).

(b) Let us choose a countable dense subset P of R and disjoint families {X, | y € P}
and {Z,|yeP} of dense subsets of R such that PnX, =9, PnZ, =0 and
X,, nZ,, = 0 for each y, y, and y, in P. Let u be the closure for P constructed in (a)
and let v be the closure for P constructed in (a) with X, replaced by Z,. From the
assertions (8)and (g) of (a) it follows that the infimum of u and v in S(P)is the discrete
closure. Indeed, if a sequence S converges to a point y in both (P, u> and (P, v)
then the point y is the unique cluster point of S in the space R of reals by (8), and by
virtue of (g) the sequence S eventually equals y. On the other hand, by virtue of (B)
the infimum w of u and vin C(P)is not the discrete closure for P. It is sufficient to show
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that no two points of {P, w) are separated in (P, w) and to prove this it will suffice
to show that any neighborhood of every point contains a set of the form G n P,
where G is an open dense set in the space R. Indeed, if G, and G, are open and dense
in R, then G, N G, is also open and dense in R, and hence, P being dense in R,
(GynP)n(G;nP)=G;n G, n P+ 0. Let y be any point of (P, w). The col-
lection #” of all sets of the form U n V, U and V being neighborhoods of y in (P, u>
and <P, v) tespectively, is a local base at y in (P, w). Given U and V, by (o) we can
choose open dense sets G, and G, in R such that Gy, " P<c U and G, nP c V.
Put G = G, n G,. The set G is open and dense in R, and clearly GNP c U V.

Remark. Choose a point z in P. Consider the closure u, such that P — (z) is
discrete and the u,-neighborhoods and u-neighborhoods coincide, and also the closure
v, obtained similarly from v. If w; = inf (uy, v;), then w, is not discrete and the
S-modification of w, is discrete. Of course, u, and v, are S-closures. Since z is the
unique cluster point of u, as well as of v,, both spaces (P, u,) and {P, v,) are para-
compact. It should be noted that a direct construction of u; and v, is essentially
simpler than that of u and .

35 C.14. Corollary. The product of two L-spaces need not be an S-space.

Proof. Consider the product Z = (P, u) x (P, v) where u and v are the closures
constructed in 35 C.13. The mapping f = {x — {x, x)} : (P, inf (4, v)) > R is an
embedding and D*f is not an S-space by 35 C.13. Therefore the subspace Ef of &
is not an S-space and hence £ is not an S-space because the class S is hereditary.

The infimum of two L-closures need not be an S-closure. On the other hand the
following proposition follows immediately from the description of neighborhoods
relative to the infimum of a family of closures.

35 C.15. The greatest lower bound of a countable family of closures of countable
local character is a closure of a countable local character, in particular, an S-clo-
sure.

Now we proceed to an examination of the class L. First we shall state trivialities.

35 C.16. The class L of all L-closures is down-saturated in the class S. The class
of all L-spaces is hereditary and closed under sums.

By definition an L-space is an S-space whose sequential convergence class is single-
valued. Remember that a closure space £ is separated if and only if the convergence
class of # is single-valued. Thus L-spaces are characterized among all S-spaces
similarly as separated spaces among all closure spaces. It turns out that L-spaces
have properties similar to separated spaces, e.g. 35 B.16. On the other hand, in some
points the properties are rather different. E.g. we know that the supremum of a mono-
tone family of separated closures need not be a separated closure and a separated
closure may be finer than no coarse separated closure. For L-closures we shall prove

35 C.17. Theorem. The supremum of a non-void monotone family of L-closures
is an L-closure.
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Proof. Let {u,} be a monotone family in L(P), that is, {u,} is non-void and for each
a, and a, either u, is finer than u,, or u,, is finer than u, , and let u be the supremum of
{u,} in C(P). Since S is completely join-stable, u is an S-closure. Now, to prove that
u is an L-closure. it is enough to show (by 35 B.14) that there exists a determining
L-structure % for {P, u), that is, a single-valued sequential convergence structure ¢
for (P, u). Let % be the union of {%,} where %, is the sequential convergence class
of P, u,) for each a. Evidently % is a determining sequential structure for (P, u).
The fact that € is single-valued follows from the monotonicity of {u,}. First notice
that the family {%,} is also monotone (relative to the inclusion); now if N, x),
{N, y)» € €, then both {N, x> and (N, y) belong to some %,, and since %, is single-
valued, we obtain x = y.

35 C.18. Corollary. For any L-closure u there exists a maximal L-closure coarser
than u, i.e. an L-closure v such that v is coarser than u and that if an L-closure
w is coarser than v, then w = v.

35 C.19. A closure u is said be a coarse L-closure if u is an L-closure and each
L-closure coarser than u coincides with u.

The class of all coarse L-closures will be studied in the exercises. It is to be noted
that the supremum of two L-closures need not be an L-closure. For example, consider
the space (P, u) from 35 B.17 (a) and let u; be the closure for P obtained from u by
declaring the set (x;) to be open. Obviously both u; and u, are (separated) L-closures,
but the supremum of #, and u, is the closure ¥ which is not an L-closure. This example
also shows that there exists no coarsest L-closure finer than u. One can show that,
more generally, a closure u for a set P admits a lower modification in L(P) if and
only if its sequential modification is an L-closure.

In conclusion we shall introduce three important classes of L-spaces the properties
of which will be discussed in the exercises.

35 C.20.(a) Sequential convergence closure for an ordered set (P, ).
In 15B.16 we defined the order-limit of a net N in {P, £ which was denoted bylim N.
The set & of all pairs (S, lim S) where S runs over all order-convergent sequences in
(P, £>, is a single-valued sequential convergence structure for &, i.e. an L-structure
for P. The L-structure € determines an L-closure for (P, <) which will be called the
sequential closure for (P, £).

(b) Sequential closure for expP. The sequential closure for exp P, where P
is a set, is defined to be the sequential convergence closure for the ordered set
(exp P, ).

(c) Sequential closure for closed subsets of a closure space. Let & be
the set of all closed subsets of a space (P, u) and let € be the set of all pairs S, F)
such that S is a sequence in & topologically convergent to F. The relation % is an
L-structure for P. The closure determined by % will be called the sequential conver-
gence closure for closed subsets of {P, u).
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D. PROJECTIVE GENERATION IN A GIVEN CLASS

In subsection 33 B we studied inductive constructions in a given class K of closure
spaces (Definition 33 B.3), in particular, in a projective-stable class K. The theory
developed was applied to the inductive construction in the class of all topological
spaces. Up to present section we have considered no important and interesting
inductive-stable class which is not projective-stable. The class S is very interesting,
and possibly important, and it seems to be appropriate for illustrating general
theorems on projective constructions in an inductive-stable class.

In what follows let K be a class of closure spaces, L be the class consisting of closure
structures of spaces of K, A be the relation consisting of all pairs {u, v) such that
v is the lower modification of u in L, and finally, k = {{P, u) — (P, u)}.

Notice that the classes K and L were usually denoted by the same symbol, e.g.
tC denotes both the class of all topological spaces and the class of all topological
closure operations, the symbols vC, S and L were used similarly, and the relations
A and x were usually denoted by the same symbol, e.g. t, v, @.

We want to introduce all definitions without any assumption on K. Nevertheless,
the main theorems require some of the following additional assumptions on K which
are fulfilled if K = S: K is inductive-stable, Dx = K, K is hereditary. By 33 C.11
if K is inductive-stable, then Dx = K. If K is the class of all semi-separated closures,
then Dk = € but K is not inductive-stable. If K is the class of all locally connected
spaces, then K is inductive-stable, but it is not hereditary.

35 D.1. Definition. A closure u for a sel P is said to be K-projectively generated
(or projectively generated in K) by a family of mappings {f,} if {f,} is a projective
family of mappings for closure spaces with a common domain carrier P or {P, u),
and u is the coarsest closure such that (P, u)> € K and all the mappings f, : (P, u) —
— E*f, are continuous; the family {f, : (P, u> — E*f,} is said to be a K-projective
generating family for (P, u). The definitions just stated are carried over to collec-
tions of mappings and to single mappings in a standard manner. A class K, is said
to be K-projective-stable or projective-stable in K if K; < K and the common do-
main carrier of any K-projective generating family with range carriers in K, belongs
to K.

From the definition we obtain immediately

35D.2. Let f, be a projective family of mappings for closure spaces with a
common domain carrier {P,u). Then u is K-projectively generated by the family
{fa} if and only if u is the lower modification in L of the closure operation
projectively generated by the family {f,: P — E*f,}.

35 D.3. Corollary. If {f,} is a projective generating family for closure spaces
with a common domain carrier P and if kP exists, then {f,, : kP — E*f,} is a K-
projective generating family.
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Of course, a non-void family can K-projectively generate at most one closure oper-
ation. If K = @, then no family K-projectively generates a closure operation. From
the existence of projectively generated closures and from 35 D.2 we obtain at once
the following theorem.

35 D.4. Theorem. Dx = C (i.e. every closure has a lower modification in L)
if and only if every projective family for closure spaces K-projectively generates
a closure operation.

35 D.5. If f is a projective generating mapping for closure spaces then f : kD*f —
— kE*f need not be a K-projective mapping. For example consider a class K which
is not inductive-stable but which has the property Dk = C, e.g. one may take the
class of all semi-separated spaces. It is easily seen from 33 C.11 that there exists an in-
ductive generating mapping f such that D*f € K but E*f ¢ K. Thus the closure
structure of xE*f is strictly finer than the closure structure of E*f and consequently
the mapping f : D*f — xkE*f is not continuous; now only recall that D*f e K, i.e.
kD*f = D*f. Let 2 be the space projectively generated by the mapping f : Df — E*f.
Since f is continuous, the closure structure of ¥ is coarser than the closure structure
of kD*f = D*f. It follows that the mapping f : k2 — xE¥*f is not continuous. On
the other hand, f : k2 — E*f is a K-projective generating mapping.

35 D.6. Theorem. If K is inductive-stable and if {f,} is a projective generating
family for closure spaces, then {xf,} is a K-projective generating family, where
Kf, denotes the transpose of f, to a mapping for spaces from K, i.e. kf, = f,:
: kD*f, » kE*f,.

Proof. Let {f,} be a projective generating family for a closure space 2. By 35 D.3
{f.:xP — E*f,} is a K-projective generating family. Since the closure structure of
xE*f, is finer than that of E*f, for each a, to prove that {xf,} is a K-projective gener-
ating family it is sufficient to show that each xf,iscontinuous. Fix an arbitrary a and
consider the space 2 inductively generated by the mapping f, : k% — |E*f,,l. Evidently
the closure structure of 2 is finer than that of E*f, and thus finer than that of kE*f
because K is inductive-stable and k2 e K; this implies that xf, is continuous. It
should be remarked that the main step of the proof consisted in showing that xf
is continuous whenever f is continuous and K is inductive-stable.

The following characterization of K-projective generating families of mappings
in an inductive-stable class is a generalization of Theorem 32 A.10.

35 D.7. Theorem. Suppose that K is an inductive-stable class of closure spaces.
Then every projective family of mappings for closure spaces K-projectively gener-
ates a closure operation, and in order that a projective family of mappings for clo-
sure spaces {f,,} with a common domain carrier {P, v) € K be a K-projective gener-
ating family it is necessary and sufficient that a mapping f of a space 2€ K
into {P, v be continuous if and only if all the mappings f, - f are continuous.

We shall need the following characterization of the lower modification in an in-
ductive-stable class.
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35 D.8. Theorem. Let u be a closure for a set P and letv be a closure from Ln
NC(P) such that the following condition is fulfilled:

(*) A mapping f: 2 > (P,u), 2€K, is continuous if and only if the mapping
g =f:2 - (P, v) is continuous.

Then v is the lower modification of u in L, i.e. v = Au. Conversely, if K is in-
ductive-stable, i.e. ind K = K, then the lower modification in L of any closure u
for P is the unique closure v satisfying condition (*).

Proof. I. Assume that a closure v e L fulfils (). Since }:{(P,v) — (P,v) is
continuous and v € L, by () the mapping ] : (P, v) — {P, u) is continuous and hence
v is finer than u. If we L is finer than u, then the mapping J : (P, w) — (P, u) is
continuous, and by () the mapping ) : (P, w) — (P, v) is continuous, ie. v is
coarser than w. Thus v = Au.

II. Suppose that K is inductive-stable. By 33 C11 each closure has a lower
modification in L, i.e. DA = C. Given a closure u for P we shall prove that v = Au
fulfils condition (). If g is continuous, then f is continuous because v is finer than u.
Conversely, assuming that f is continuous, let us consider the closure w inductively
generated by the mapping f : 2 — P. Thus w is finer than u, and K being inductive-
stable, w belongs to L. Consequently w is finer than » = Au. Since f: 2 - (P, w)
is continuous, g is also continuous.

35 D.9. Proof of 35 D.7. Let us consider the closure u projectively generated by
the family {f, : P — E*f,}. Since K is inductive-stable, by 33 C.11 each closure has
a lower modification in L (i.e. DA = C). By 35 D.3 the closure v = Au is K-project-
ively generated by the family {f, : P — E*f,}. By 32 A.10 a mapping f into <P, u) is
continuous if and only if all the mappings f, - f are continuous. By 35 D.8 a mapping f
of a space of K into (P, u) is continuous if and only if the mapping f : D*f - (P, v)
is continuous. Combining these two results we find that the conditions is necessary.
It is evident that the condition is sufficient.

35 D.10. Remark. Proposition 35 D.8 can be extended as follows. A class K
is inductive-stable if and only if DA = € and u € C(P), v = Au imply (*). Indeed,
if K is not inductive-stable and if DA = C, then there exists an inductive generating
mapping f such that D*f e K, E*f ¢ K; clearly xkE*f &+ E*f. Thus the mapping f is
continuous but the mapping f : D*f — xE*f is not continuous, which shows that
condition (x) is not fulfilled. It is evident that Theorem 35 D.6 can be proved in
a similar way.

Now we shall prove that 35 D.7 implies the associativity of projective construction
in an inductive-stable class K. Notice that Theorem 32 A.9 is obtained for K = C.

35 D.11. Theorem on associativity. Suppose that K is an inductive-stable class
of closure spaces and {f, l a € A} is a projective family for closure spaces with com-
mon domain carrier 2. For each a let E*f, be K-projectively generated by a family
{gas | b € B,}. Then {f,} is a K-projective generating family if and only if the family
{gapofs| @€ A, beB,} is a K-projective generating family.
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Proof. Both the projective families in question have the same common domain
carrier. By 35 D.7 the statement that {f,} or {f,. g} is a K-projective generating
family is equivalent to the statement that if f is a mapping of a space of K into 2,
then f is continuous if and only if all the mappings f, o f or (g, o f,) o f respectively,
are continuous. Since each {g,, | b€ B,}, a € 4,is a K-projective generating family,
again by 35 D.7, all g,, o (f,f), b€ B,, are continuous if and only if the mapping
£, o fis continuous. Since g o (f, o f) = (gos o f,) o f the two statements are equivalent.

Corollary. If K is inductive-stable then a projective family {f,} is a K-projective
generating family if and only if {f, : D*f, — xE*f,} is such.

Remark. Neither “if”” nor “only if” hold in 35 D.11 whenever Dk = C and K is
not inductive-stable. Indeed, under these assumptions there exists a projective gener-
ating mapping f of a space £ into a space 2 such that the mapping kf = f : k2 — k2
is not continuous (by 35 D.5). Now | : 2 — 2 is a K-projective generating mapping,
the composite () : k2 > 2) - kf = f: kP — 2 is a K-projective generating mapping,
but kf is not a K-projective generating mapping, which shows that the “if” is not
true. Let us consider the space # which is K-projectively generated by the mapping
f:|2| - x2; thus f : # > k2 and ] : k2 — 2 are K-projective generating mappings
but their composite is not a K-projective generating mapping because # + k&
(remember that f : k2 — x2 is not continuous).

A subspace of closure space £ can be defined to be a space 2 such that the identity
mapping of 2 into 2 is a projective generating mapping (in particular |.@| < Ig‘l)

35 D.12. Definition. A K-subspace of a space 2 or a subspace of 2 in K is a space
2 such that |.@| c |.¢’| and the identity mapping of 2 into £ is a K-projective gener-
ating mapping.

35D.13. If 2 is a subspace of a space P, then k2 is a K-subspace of ?. If K is
inductive-stable and 2 is a subspace of 2, then k2 is a K-subspace of the space k2.

Proof. If J: 2 — 2 is a projective generating mapping, then ):x2 > 2 is a
K-projective generating mapping (by 35 D.3), and if, in addition, K is inductive-
stable, | : k2 — x2 is a K-projective generating mapping (by 35 D.6).

If 2 is a subspace of a space 2 then k2 need not be a subspace of k2 even if K is
inductive-stable. It is sufficient to show that a subspace of a space of K need not
belong to K even if K is inductive-stable; e.g. the class of all locally connected spaces
is inductive-stable but not hereditary.

35D.14. If K is hereditary and ? € K then 2 is a subspace of 2 if and only if
2 is a K-subspace of . — Evident.

35 D.15. Corollary. Let K be a hereditary inductive-stable class. If 2 is a subspace
of P, then k2 is a subspace of k2.

One can define a K-restriction of a mapping f for closure spaces to be a mapping
f:2? - 2 such that & is a K-subspace of D*f and 2 is a K-subspace of E*f, We
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leave the discussion of K-restrictions to the exercises. Here we shall only prove the
following generalization of theorem 32 A.13 on commutativity of projective construc-
tions with the operation of taking subspaces.

35 D.16. If K is inductive-stable, {f,} is a K-projective generating family for 2,
and 2 is a K-subspace of P, then {f,: 2 — E*f,} is a K-projective generating
Sfamily for 4.

Proof. Notice that

{fa:'@_’ E*fa} =fa°(.]:’@_’g)

and ) : 2 - 2 is a K-projective generating mapping, and apply 35 D.11.

Recall that the product of a family {#,} of closure spaces is the set P =
= I1{|#,|} endowed with the closure operation projectively generated by the family
{pr,: P > 2,}.

35 D.17. Definition. The K-product of a family {?,} of closure spaces is the set
P= H{[@a“ endowed with the closure operation K-projectively generated by the
family of mappings {pr,:P — 2,}.

Of course, the K-product of a family need not exist. On the other hand, from 35 D.2
we obtain immediately the following description of K-products by means of products
and .

35 D.18. Theorem. The K-product of a family {#,} exists if and only if k II{%,}
exists. If P = k I1{P,} exists, then P is the K-product of {?,}. If K is inductive-
stable then the K-product exists and x TI{?,} = k II{x2,}. '

Proof. The second assertion follows from 35 D.11.

If K is inductive-stable then the K-projective construction can be reduced to con-
struction of K-products and the closure K-projectively generated by a single map-
ping. The K-reduced product, which is needed for this, will not be introduced.

35 D.19. Theorem. Suppose that K is inductive-stable and {f,} is a projective
family of mappings with a common domain carrier #, which is a space. Then
{f.} is a K-projective generating family if and only if the mapping

f={x-{fx}}:2 > « I{E*f,}
is a K-projective generating mapping.

Proof. Let 2 be the space projectively generated by the family {f, : l@' - E*f .},
da = fo: 2 > E*f,and let g be the reduced product of {g,}. By 32 A.12, g is a pro-
jective generating mapping if and only if {g,} is a projective generating family. It
follows from 35 D.2 that g = f: # — II{E*f,} is a K-projective generating mapping
if and only if {f,} is a K-projective generating family. It remains to show that f is
a K-projective generating family if and only if g is such: apply 35 D.11, Corollary.

Alternate proof. f, = (pr, : k II{E*f,} — E*f,) o f for each a. Apply 35 D.11.
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35 D.20. Example. A K-continuous internal composition is a topologized-internal
composition {o, u) such that the mapping ¢ of the K-product of (DD, u> with
{DDg, u) into {DDog, u) is continuous, i.e. the mapping

o : {Do, A(u x u)> — {(DDg, u)

is continuous. A K-group is a topologized group <G, ¢, u) with continuous inversion
such that the composition {o, u) is K-continuous. If K = S then we shall speak
about sequentially continuous compositions and sequential groups. If {(o,u) is
a continuous internal composition, then {¢, ) is K-continuous provided that the
K-product of u with u exists. If {a, ©) is sequentially continuous and u is an S-closure,
then (o, u) is inductively continuous. Indeed, it is easily seen that ind (« x ) is finer
than o(u x u). For properties of S-groups see the exercises.

35 D.21. Definition. The K-projective progeny of a class H of spaces is the class
of all spaces K-projectively generated by a family of mappings with range carriers
in H. The class H is K-projective-stable if it coincides with its K-projective progeny.

35 D.22. Theorem. If H, is the projective progeny of a class H, then the K-pro-
jective progeny H of H consists of all spaces k?,PeH,,i.e. Hy = k[H,]. —35D.2.

We wish to describe the K-projective progeny of a given class without any reference
to the projective progeny. The following concept will be needed.

35 D.23. Definition. An L-accrete closure for a set P is the greatest L-closure
for P, i.e. the lower modification in L of the accrete closure for P. A K-accrete space
is a space whose closure structure is L-accrete, i.e. a space £ is a K-accrete space if
and only if # = k2 for some accrete space 2.

Example. If K is the class of all discrete spaces,thena space £ is K-accrete if and
only if £ belongs to K.

35 D.24. Theorem. Let K be an inductive-stable class and H be any class of
spaces. Then the K-projective progeny H, of H consists of all K-accrete spaces
and all K-subspaces of K-products of the form w(? x kII{#,}) where P is a
K-accrete space and P, € H for each a. If, in addition, K is hereditary, then H,
consists of all K-accrete spaces and all subspaces of K-products of the form
K(? x k I{P,}) where 2 is a K-accrete space and P, € H for each a.

Proof. Let H, be the K- projective progeny of H. By 32 B.5 H, consists of all accrete
spaces and all subspaces of products of the form # x II{#,} where £ is an accrete
space and #,e€ H for each a. If K is inductive-stable then x(2 x II{?,}) =
= k(k® X K H{g’,}) (by 35 D.18),and if f is a K-projective generating mapping, then
xf is a K-projective generating mapping (by 35 D.6). Now the first statement follows
from 35 D.22. The second statement follows from the first one and from 35 D.15.

35 D.25. Theorem. Let K be hereditary and inductive-stable. Each of the fol-
lowing two conditions is necessary and sufficient for a space 2 to be an element of
the K-projective progeny of (.@), where & is a non-void space:
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(a) 2 is K-projectively generated by a mapping into a cube Z".
(b) 2 is K-projectively generated by a mapping into k&".
(¢) 2 is a K-subspace of a space of the form 2’ x A%, where 2’ is an appropriate

accrete space (which can be chosen so that |2'| = |2|) and X is an appropriate
cardinal.

(d) 2 is a subspace of a space of the form k(2 x x@“), where 2 is an appropriate
K-accrete space (which can be chosen so that |2| = |2'|) and X is an appropriate
cardinal.

Proof: 35 D.24.

35 D.26. Theorem. Let K be an inductive-stable class and let H, be the K-projective
progeny of a class H. Then H, is K-projective-stable, in particular, H, is closed
under K-products,and K-subspaces of spaces of H, belong to H, (i.e. H, is K-hered-
itary). If H is hereditary, then H, is also hereditary.

Proof: 35 D.11, 35 D.13.

E. SEQUENTIAL MODIFICATIONS
OF UNIFORMIZABLE SPACES

Here we shall examine the basic properties of the class consisting of sequential
modifications of uniformizable spaces, i.e. the class 6[vC] which will be denoted by
ovC. Since vC is the projective progeny of the space R of reals, by 35 D.22 the class
ovC is the S-projective progeny of R; thus the theory developed in 35 D applies.
Since S is hereditary and inductive-stable, from the results of 35 D.22, 24, 25 we obtain
directly the following assertions.

35 E.1. Theorem. The class 6vC is hereditary and S-projective-stable, in parti-
cular, closed under S-products. — 35 D.26.

Since every accrete space is an S-space, every S-accrete space is necessarily an
accrete space.

35 E.2. Theorem. The following conditions on a space 2 are equivalent:

(a) 2 is the sequential modification of a uniformizable space.

(b) 2 is a subspace of a space of the form o(2 x oR™), where 2 is an appropriate
accrete space (which can be chosen so that |.@| = |9’|) and WX is an appropriate
cardinal.

(c) 2 is the sequential modification of a subspace of 2 x R® where 2 is an ap-
propriate accrete space (which can be chosen so that |?| = |9|) and N is an
appropriate cardinal.

(d) 2 is S-projectively generated by a mapping into a cube R¥.

(e) 2 is S-projectively generated by a mapping into 6R¥ for some appropriate
cardinal N.

Proof. 35 D.25.

From 35 E.2 (b) we shall derive the following characterization.
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35 E.3. Theorem. An S-space 2 is the sequential modification of a uniformizable
space if and only if 2P is projectively generated by a mapping into 6R® for some
appropriate cardinal N.

Proof. Clearly the conditions imply 35 E.2(e). Conversely, suppose that 2 belongs
to ovC. By 35 E.2(b), there exists an embedding f of Zinto 6(2 x 6R¥) where 2is an
accrete space and N is a cardinal. It is sufficient to prove that o(2 x o-R“) =
= 2 x oR¥, because then f followed by the projection of 2 x 6R™ into oR¥ will be
a projective generating mapping by 32 B.4. To prove the equality it is sufficient to
show that 2 x oR" is an S-space, i.e. 2 x 6R® admits a sequential determining re-
lation, and this will be proved in a more general situation.

35 E.4. The product of an S-space and an accrete space is an S-space.

Proof. Let Z = 2 x 2, where 2 is an accrete space and £ is an S-space. Consider
the projection 7 of # into £. If x belongs to the closure of a set X in £, then nx
belongs to the closure of z[X]in &, and therefore there exists a sequence {y,} in
7[ X] which converges to nx in 2 (because 2 is an S-space). Let {x,} be any sequence
in X such that nx, = y, for each n. Since 2 is an accrete space, the sequence {x,}
converges to any point z such that {nx,} converges to nz, in particular, {x,} converges
to x.

Now we shall give a direct description of spaces which are sequential modifica-
tions of uniformizable spaces.

35 E.5. Theorem. Each of the following conditions is necessary and sufficient
for an S-space P to be the sequential modification of a uniformizable space:

(a) There exists a set € of functions on P with 0 < f < 1 for each f in € such
that a sequence S in P converges to a point x in @ if and only if the sequence
f o S converges to fx in R for each fe @.

(b) If a sequence S in P does not converge to a point x € Iﬂ’l in P, then there
exists a bounded continuous function f on &P such that the sequence f o S does not
converge to the point fx in R.

Proof. I. If (a) is fulfilled, then each function of € is continuous (because 2 is
an S-space) and therefore (a) implies (b). Next, it is easy to show that (b) implies (a).
Indeed, assuming (b), take the set % of all continuous functions f on £ such that
0 < f £ 1foreach fin %. If a sequence S converges to x in P, then f - S converges
to fx in R for each f in & because each such f is continuous. If a sequence S in & does
not converge to x in 2, then f o S does not converge to fx for some f in % (by (b)).
Thus the two conditions are equivalent.

II. We shall prove that condition (a) is necessary and sufficient. If 2 is the se-
quential modification of a uniformizable space 2, then Ig‘l = |."2| and a sequence S
converges to x in 2 if and only if the sequence S converges to x in 2. Since 2 is uni-
formizable, 2 is projectively generated by the collection €’ of all continuous functions
on 2 whose values lie between 0 and 1, and hence a sequence S converges to x in 2
if and only if f - S converges to fx in R for each f in %’. Let ¥ be the collection of all
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f:? > R, fe¥'. Clearly condition (a) is fulfilled. Conversely, assuming (a) let us
consider the space 2 projectively generated by the family of mappings {f : ]g’| -
- R I fe ‘6} The space 2 is uniformizable and a sequence S converges to x in 2
if and only if the sequence f - S converges to fx in R for each f in . By condition (a)
a sequence S converges to x in 2 if and only if it converges to x in 2. Since £ is an
S-space, 2 is the sequential modification of 2.

35 E.6. If a closure space {P, v) is the sequential modification of a uniformiz-
ablespace, then (P, v) is the sequential modification of its uniformizable modifi-
cation.

Proof. The statement was proved, in fact, in the last part of the proof of 35 E.5;
however, a direct proof may be in place. Suppose that v is the sequential modification
of a uniformizable closure u. Clearly v is finer than u. Then the uniformizable modi-
fication w of v, which is the finest uniformizable closure coarser than v, is also
finer than u and consequently ow is finer than eu. Since w is coarser than 6u, ow is
coarser than e6u = 6u. Thus ew = ou.

Remark. In general, there are many uniformizable closures u such that eu = v,
and moreover a uniformizable S-space & may be tihe sequential modification of
a uniformizable space 2 3+ #. For example let (P, u) be a separated non-discrete
uniformizable space such that only the eventualiy constant sequences are convergent
(for example, one may take the ultrafilter space SN of an infinite set N), then ou is
the discrete closure for P which is, obviously, uniformizable.

35E.7. If 2 is a subspace of a space P, then 62 is a subspace of 6. If {P,} is
any family of closure spaces then

o [1{2,} = 6 I1{eZ,} .

Proof. The first statement follows from 35 D.15 because S is hereditary and in-
ductive-stable. On the other hand, a direct proof is evident. The second statement
follows from 35 D.18 b.cause S is inductive-stable. A direct proof is almost evident.
Indeed, a sequence S converges to x in ¢ II{2,} (6 TI{62,}, respectively) if and only
if the sequence pr, o S converges to pr, x in 2, (in 62, respectively) for each a; on
the other hand, a sequence S’ converges to x’ in £, if and only if S* converges to x’
in 62,.

From 35 E.3 we shall derive the following result:

35 E.8. Theorem. The following conditions on a space P are equivalent:

(a) 2 is separated and P is the sequential modification of a uniformizable space.

(b) 2 is an L-space and P is the sequential modification of a uniformizable
space.

(c) 2 is feebly semi-separated and P is the sequential modification of a uniform-
izable space.

(d) 2 is a homeomorph of a subspace of 6R® for some cardinal N.
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Proof. Evidently (a) = (b) = (c). The closure structure of 6R™ is finer than the
closure structure of the cube R™ which is separated, and therefore each subspace of
oR¥ is separated. Next, the sequential modification of a subspace is the subspace of
the sequential modification (by 35 E.7) and therefore (d) implies (a). It remains to
show that (c)implies(d). But thisfollows from 35 E.3 and the following simple lemma.

35 E.9. A projective generating mapping whose domain carrier is feebly semi-
separated is injective and hence an embedding.

Proof. If fx = fy, then x belongs to the closure of (y) and y belongs to the closure
of (x).

Remark. It is interesting to notice that if an L-space &£ is the sequential modifica-
tion of a uniformizable space 2, then 2 is separated. Indeed, if 2 is not separated,
then some point x belongs to the closure of a singleton (y) in 2, y % x and hence the
constant sequence {y I n e N} converges to x in 2 and hence in 2; this shows that 2
is not an L-space.

35 E.10. Corollary. The class L n ovC is hereditary and closed under S-products.

Proof. The class L n 6vC is the intersection of the class of all separated spaces
and of the class avC.

35E.11. In conclusion we shall give an alternate proof of 35 E.3 (which does not
depend on the results of 35 D). First suppose that h is a projective generating map-
ping of an S-space £ into oR¥.

If a sequence S does not converge to a point x in £ then the sequence h o S does not
converge to hx in 6R™ (because k is a projective generating mapping), and therefore
there exists a projection 7 of 6R™ onto one of coordinate spaces such that 7.
o (h o S) does not converge to nhx in R. Put g = 7 o h. Then g is a continuous function
on 2 and g - S does not converge to gx. Now it is easy to construct a bounded con-
tinuous function with this property. Thus condition (b) of 35 E.5 is fulfilled. Converse-
ly, assuming (a) of 35 E.5, let us take the set ¢ trom (a) and consider the mapping
h={x > {fx|fe¥€}} of Zinto 2 = 6R¥. It is evident that a sequence S converges
to x in 2 if and only if the sequence h o S converges to hx in 2. Since both £ and 2
are S-spaces, h is necessarily a projective generating mapping.

F. REMARKS AND EXAMPLES

If (P, u) is an S-space and x € uX, then x € uY for some countable subset Y of X,
and hence (P, u) is inductively generated by its countable subspaces (see 33 D.3).
If (P, u) is an L-space and x € uX — X, then there exists a countable subset Y of X
such that x is the only cluster point of Yin (P, u), i.e. {P, u) is inductively generated
by countable subspaces with only one cluster point in (P, u), or, equivalently, by
closed countable subspaces with exactly one cluster point. In this subsection we examine
the class of all spaces inductively generated by countable subspaces and the class
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of all spaces (P, u) inductively generated by closed countable subspaces with only
one cluster point. We begin with several rather general remarks which will enable the
reader to formulate and prove the results of this subsection in a more general
situation.

By 16 ex. 6 a net (N, <) ranging in a space £ converges to a point x of 2 if and
only if the mapping f defined by gr f = N U ({(, x)) is continuous; here o is the
filter of all residual sets in DN, & is the unique cluster point of D*f and (&) U [«]
is the neighborhood system at /. The theory of convergence can be reduced to the
theory of inductive generation of spaces by assigning to each 2, (N, <) and x the
mapping gr f : D*f > 2 with f defined above.

In agreement with the current approach to similar situations we have implicitely
assumed « ¢ DN; however it may well happen that & € DN. A similar situation
has occurred in 14 B where X had been defined, and will also appear in 41 C, where
a completion of a uniform space is constructed. Here one of the simplest correct
approaches to such situations will be described. For further possibilities see Remark
in the following item.

35 F. 1. Definition. For each set X let AX be the set exp JE{x | x € X, x is a set}.
It is easily seen that if x € X is a set, then card x < card AX, and hence AX ¢ X. Now,
given an arbitrary directed set & = {4, £, let ao/ be the filter &' of all residual
sets provided that ¢’ ¢ 4 and let oo/ = Ao/ x o otherwise. It follows that oo/ ¢ A,
and E(ase/) = o' if o’ € 4. Let sp o be the closure space with underlying set l.ﬂ | U ol
such that the point a2, called the ideal point of sp &, has the collection (a.e?) U [o']
for the neighborhood system, while all the other points are isolated. The space sp &/
will be termed the space associated with <.

Remark. It may be noted that this approach differs from the current one precisely
in those cases in which the latter is not correct. Next, observe that oo/ ¢ |.2¢ | is the
only property of a/ needed, and therefore .o/ might be introduced e.g. on the basis
of the Axiom of Choice. It should also be remarked that there are further very reason-
able approaches. If one resigns from the assumption that || < |sp &|, X < |BX],
then one can take sp & such that [sp #| = («') U E{(x) | x € ||} with &’ an ideal
point and similarly for SX.

First let us notice that

(a) if ¢ is a single-valued relation on a directed set (B, <) ranging in a directed
set (A, <> and if f is the mapping of sp (B, <) into sp {4, £)> which assigns
to each b € B the point gb, and to theideal point of sp (B, < assigns the ideal point
of sp {A, <), then f is continuous if and only if, for each residual set X in {4, £),
there exists a residual set Yin (B, <) such that [ Y] < X.

It follows immediately from (a) that, under the assumptions of (a),

(b) if f is continuous, then ¢[Y] is cofinal in {4, <) for each residual set Y in
(B, <.

43—Topological Spaces



674 VI. GENERATION OF TOPOLOGICAL SPACES

The mapping f just defined will be termed the mapping of associated spaces as-
sociated with g.

For each pair ¢ = (N, x> where N is a net and x is an element, let £, be the single-
valued relation on the underlying set of the space associated with the ordered domain
of N such that N is a restriction of f, and the value of f, at the ideal point is x. It
is almost self-evident that

(c) a net N converges to x in a space & if and only if the mapping Sin,xy of the
space associated with the ordered domain of N into £ is continuous (i.e. the mapping
fenxy 150 DN — 2 is continuous).

If M is a generalized subnet of a net N under the relation ¢ and if f is the mapping
of spaces associated with ordered domains of M and N which is associated with p,
then fip xy = f(n,xy o f and therefore we obtain a new proof of the fact that if N
converges to x in &, then M converges to x in #. Indeed, f :sp DM — sp DN is
always continuous (by (2)); if N converges to x in 2, then f(y ., :spDN - 2 is
continuous (by (c)) and hence fiy,y : sp DM — 2 is continuous as the composite
of two continuous mappings, which implies that M converges to x (again by (c)).

We know that M may converge to x in a space £ even if N does not converge to x
in #. On the other hand, if f is an inductive generating mapping, then fiy,yy :
:sp DM - 2 is continuous if and only if Sinxy 5P DN — £ is continuous, and
therefore, N converges to x in £ if and only if M converges to x in . It is easy to find
necessary and sufficient conditions for f to be an inductive generating mapping.

35F.1. Let € be a generating convergence relation for a space &, and for each
¢ = {N, x> in ¥ let g, be the mapping f, : sp DN —» 2.

The following result is evident:

(a) If € is a generating convergence relation for 2, then {g, | ce %} is an indu-
ctive generating family of mappings for 2.

If {g. | ce %} is an inductive generating family of mappings for 2, then € need
not be a generating convergence relation. E.g., if (4, <) is any directed set, « is
the ideal point of # = sp (4, <) and N = ], then fiyq = ljs; and gvq) =
= J:# —» 2. Thus gy q is an inductive generating mapping for & but, evidently,
((N, a)) need not be a generating convergence relation for 2 (e.g. if {4, <) is the
ordered set of integers). On the other hand it is easily seen that

(b) If {g. l c € ¥} is an inductive generating family for &, then {g, | ce¥} isa
generating convergence relation for & provided that the following condition is ful-
filled: If (N, x> € € and M is a subnet of N, then {M, x) € €.

Of course, the condition can be replaced by the following weaker condition: If
(N, x) e % and M is a subnet of N, then there exists a subnet M’ of M such that
M, x>e®.

35 F.3. Definition. A feeble generating convergence relation for a space £ is a
convergence relation ¥ such that the closure structure of £ is the finest closure
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for |.@| with N converging to x for each (N, x) € €; stated in other words, if u is
a closure for |.¢’| coarser than the closure structure of &, then ¥ < Lim (!@L u).

35 F.4. Theorem. A convergence relation € is a feeble generating convergence rela-
tion for 2 if and only if {g, | ¢ € ¥} is an inductive generating family of mappings
for 2.

The proof is very simple and therefore left to the reader.

35 F.5. Theorem. Let 9 be a non-void class of directed sets and let K be the class
of all spaces associated with directed sets of 9. Then the inductive progeny of K
coincides with the class of all spaces admitting a determining relation € such that
the ordered domains of nets from D% belong to 9.

Proof. Let K, be the class of all spaces admitting a determining convergence re-
lation % such that the ordered domains of nets of D% belong to 2. By 35 C.4 the class
K, is inductive-stable, i.e. ind K; = K;. By 35 F.2 (a) the class K, is contained in the
inductive progeny of K, i.e. K, < ind K. To prove the inverse inclusion it is sufficient
to show that K < K,. Indeed, K = K, implies ind K < ind K; (= K,). We shall
prove somewhat more (remember that 2 = ).

35F.6. If (A, £ is a directed set, then the space {A',u) associated with (4, £
and also each of its subspaces admits a determining convergence relation € such
that the ordered domain of each net of D% is {4, <).

Proof. If x € A then the constant net {a — x | a € A} converges to x in (A’ u).
If x euX — X, then x is the ideal point of {A’, u) and X < A; since A’ — X is not
.a neighborhood of x in (A4’, u), X is cofinal in (4, £) and we can choose a single-
valued relation N on A ranging in X such that a < N, for each a. Clearly the net
{N, £ converges to x in (A’, u).

35F.7. Corollary. The class S is the inductive progeny of (2), where 2 is the
space of ordinals less than wy + 1.

Indeed, 2 is a homeomorph of the space associated with the ordered set of natural
numbers.

35F.8. Theorem. Let 9 be a class of directed sets and let K, be the class of all
spaces admitting a determining contergence relation € such that the ordered do-
mains of nets of D¥ belong to 2. Then K, is hereditary.

Proof. If 2 = @, then K, is the class of all discrete spaces which is hereditary.
Assuming 2 + @ let us consider the class K consisting of spaces associated with
directed sets of 9. By 35 F.6 the subspaces of spaces of K belong to K. Since K; =
= ind K and ind K contains subspaces of spaces of K, ind K is hereditary.

According to the foregoing results the theory of convergence can be reduced, in
a certain sense, to the theory of inductive generating families of mappings such that
the domain carriers are spaces associated with directed sets. Each space associated
with a directed set has exactly one cluster point. On the other hand, a space with
exactly one cluster point need not be a homeomorph of a space associated with

43+



676 VI. GENERATION OF TOPOLOGICAL SPACES

a directed set. For example, the local character of a space & associated with a directed
set is at most card IQP| whereas the local character of a space £ with one cluster point
may be exp card |g’|, e.g. if X is countable infinite and £ is a subspace of fX such that
|.@l =X u(x), x¢X.

Now we turn to the proper subject of this subsection.

By 35 F.7 the class S of all S-spaces is the inductive progeny of (2) where 2 is the
ordered space of ordinals less than w, + 1. Itis easily seen that 2is a coarse separated
space (see definition 31 D.7). Indeed, the complements of neighborhoods of w,
are finite, and therefore, if u is any separated closure coarser than the closure
structure of 2, then each point ¢ + w, must be isolated in {|2|, u), and |.Q| - (),
o * w,, must be a neighborhood of wy in (I.@|, u); thus (2|, u> = 2. One can
show that every countable coarse separated space is an S-space. On the other hand
there exists a countable space which is not an S-space. E.g. let 2 be a subspace of fX
such that ]9’] =X u(x), xe BX — X, where X is a countable infinite set. We
know that no sequence ranging in X converges to x in 2 (15B.7) and hence 2 is not
an S-space. Now we shall examine the basic properties of the inductive progeny of
the class of all countable spaces.

35 F.9. Definition. A fine non-discrete closure operation is a closure u for a set P
such that the discrete closure for P is the unique closure for P strictly finer than u.
A fine non-discrete space is a space whose closure structure is a fine non-discrete

closure.

35 F.10. Theorem. Let P be a set. A closure u for P is a fine non-discrete closure
if and only if (P, u) has exactly one accumulation point, say x, and if U is the
neighborhood system at x, then ¥~ = [%] n (P — (x)) is an ultrafilter on P — (x).

Remark. The subspace P — (x) of (P, u) is discrete and u is separated if and only
if ¥ is a free ultrafilter (¥~ = @). If u is not separated, then ¥ is fixed, and if
(») = N, then x e u(z) if and only if z = y.

Proof. I. First let u be a closure such that a point x is the unique accumulation
point of (P, u) and the neighborhood system % at x has the property that ¥~ =
= [%] n (P — (x)) is an ultrafilter on P — (x). If u, is a closure finer than u and
9, is the neighborhood system at x in (P, u,), then %, > %; and if ¥"; = [%,] n
(P — (x)) is a proper filter, i.e. if x is a cluster point of (P, u,), then necessarily
¥, = ¥ because ¥ is an ultrafilter. But, evidently, u, is not discrete if and only if
x is a cluster point of (P, u;>. — II. Now let u be a fine non-discrete closure for P.
Obviously, there exists exactly one accumulation point of (P, u), say x. Let % be the
neighborhood system at x, ¥~ = [#] n (P — (x)). Since x € u(P — (x)), ¥ is a filter.
Choose an ultrafilter ¥°; on P — (x) containing ¥" andlet %, = (x) u [#",]. Consider
the closure u, for P such that all points y € P — (x) are isolated and %, is the neigh-
borhood system at x. Clearly u, is a non-discrete closure finer than u and u, = u
ifand only if % = %,,i.e. ¥ =¥ ,. But ¥ =¥, if and only if ¥, is an ultrafilter
in P — (x). — The remark is obvious.
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35 F.11. Corollary. Any separated non-discrete closure is coarser than a separat-
ed fine non-discrete closure. If P is an infinite set then there exists a separated fine
non-discrete closure for P.

35 F.12. Theorem. Let K be the inductive progeny of all countable spaces. Then
K is the inductive progeny of all countable separated fine non-discrete spaces, and
a space P belongs to K if and only if 2 is inductively generated by its countable
subspaces.

Proof. Evidently it is sufficient to prove that any space of K is inductively generated
by a family of mappings the domain carriers of which are separated fine non-discrete
spaces, and to prove this it is sufficient to show that any countable space is inductive-
ly generated by a family of mappings the domain carriers of which are separated fine
non-discrete spaces. Let {P, u) be a countable space. For each pair (X, x) such that
x € uX — X we shall construct a continuous mapping fy ,, or simply f, of a separated
fine non-discrete space 2y ., or simply 2, into (P, u) which assigns to the only cluster
point of 2 the point x and which maps the remaining points into X. If x € u(x,) for
some x, € X, then we take any countable separated fine non-discrete space 2 and the
mapping f which maps the only cluster point of 2 into x and the remaining points
into x,. Evidently f is continuous. Notice that this is the case if (P, u) is not semi-
separated. In the other case, if % is the neighborhood system at x, then ¥~ = [#]nX
is free proper filter on X and we can take an ultrafilter %" on X containing ¥~ and
then the separated fine non-discrete closure » for @ = X U x such that (x) U [#7]
is the neighborhood system at x. By definition f = ] : (@, v> — {P, u) is continuous
and x e vX. Evidently, {fy .|xe(uX — X)} is the required inductive generating
family for (P, u).

35F.13. Let K be the inductive progeny of the class of all countable spaces and
L be the class consisting of closure structures of spaces of K. Since K is inductive-
stable, the class L is order-complete and completely join-stable in €. On the other
hand L is not completely meet-stable.

E.g. the closure structure of the space of all ordinals less than w; + 1 does not
belong to L butit is the infimum of S-closures (see 35 C.11). Next, any closure, say u,
for a set P, has a lower modification v in Land clearly

vX = U{uY| Y = X, Y countable}

for each X < P. Finally, the class K contains the class S but K + S because no
separated fine non-discrete space belongs to S (in such a space each sequence is
eventually constant).

35 F.14. The class of ail semi-separated S-closures coincides with the class of all
spaces inductively generated by a family of injective mappings of the space of all
ordinals less than w, + 1. The class of all semi-separated spaces of the inductive
progeny of countable spaces coincides with the class of all spaces inductively gener-
ated by families of injective mappings of countable separated fine non-discrete spaces.
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