Index of terms

Terms of use:

© Zdeněk Frolík
© Miroslav Katětov

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
INDEX OF TERMS

In the index, the page number refers to the definition; occasionally, this is followed by the corresponding subsection number. Terms consisting of several words are often listed under one only; e.g. "Lipschitz mapping" is found only under "mapping".

Recall that the terminology introduced for closure spaces and their mappings is usually applied to semi-uniform and proximity spaces and their mappings (as to the induced closure spaces and the transposed mappings), e.g. a uniform space is separated if the induced closure space is separated, a mapping of uniform spaces is continuous if the transposed mapping is continuous. Similarly, the terminology introduced for classes is applied to structs, e.g. a correspondence is single-valued if its graph is single-valued, and in the obvious way the terminology introduced for families is applied to collections, e.g. \mathcal{A} is locally finite if $\{X \mid X \in \mathcal{A}\}$ is locally finite. Finally, the terminology introduced for closure or proximity or semi-uniform spaces is applied to closure or proximity or semi-uniform structures, respectively, and conversely; e.g. a closure operation is called connected if the corresponding closure space is connected, and a proximity space (P, p) is said to be fine if p is fine. In such cases the index contains terms only in their primary context.

A

absorbing: ~ class 96 (6 A), 108 (6 F), 129 (8 A), 133 (8 B); ~ element 95 (6 A), 129 (8 A)
accessible 822
accumulation point 247 (14 C), 258 (15 B); complete ~ 796
action-field 108
addition 59 (3 E), 146 (8 E), 149 (8 F), 155 (9 Q)
additive class of sets 68; completely, monotonically ~ 48
aleph 200, 201
algebra 134; normed ~ 347; topological ~ 344
anti-isomorphism 220 (13 A), 224 (13 B)
apposition 61
archimedean 189
associative 96 (6 A), 216 (13 A)
automorphism 122 (7 D), 135 (8 C); ~-relation 105; inner ~ 332

Baire: ~ class, classification, mapping 863; ~ measurable class 391; ~ set 388 (22 C), 860 (28—30 ex.); ~ space 388; property of ~ 388
base: ~ for a semi-uniformity 398; ~ of a neighborhood system 242; ~ of a power 59; ~ of
a presheaf 745 (40 A, 767 (40 C); closed ∼ 254; filter ∼ 208; local ∼ 242; open ∼ 253; uniform local ∼ 851

bijective 33 (1 D, 119 (7 B)

bimorphism 230

Boolean ring, structure 102

Borel: classification 851; measurable 391; set 391; exact ∼ set 860

bound (left, right, etc.) 168; eventual lower, upper ∼ 650; greatest lower ∼ 172; least upper ∼ 172; Lipschitz ∼ 303

boundary 358

box-product 429 (24 D, 837 (17—18 ex.)

C
cancellation: ring without ∼ 147

canonical: correspondence 123; embedding 287 (17 B), 297 (17 D), 410 (23 D), 448 (25 A, 623 (34 A); expansion 38; mapping 123 (7 D), 718 (38 B), 747, 750, 754 (40 A), 767, 769 (40 C); morphism 764; relation 37, 38 (1 E), 63 (3 F), 83, 84 (5 A), 85, 86 (5 B, 89, 90 (5 D), 123 (7 D)
cardinal 151; product 158; sum 157; addition, etc., for ∼ s 155, 156; finite ∼ 151; infinite ∼ 151; natural order for ∼ s 152
cardinality 60 (3 E), 151 (9 A)
carrier: abstract domain abstract range ∼ 117; domain ∼, range ∼ 116
categoroid 217; structure 217; structure of a category 223; contragredient ∼ = opposite ∼ 221; product of ∼ 221; underlying ∼ of a category 223
category 222; contragredient ∼ = opposite ∼ 226; product of categories 226; product-admitting ∼, etc. 876

Cauchy: filter 780; net 786 (41 A), 849 (22 ex.)

Čech: Stone compactification 810; proximity 447 (25 A), 502 (28 A); uniformity 502
centred 209

character: cofinal ∼ 169; density ∼ 378; local ∼ 260; of finite ∼ 76; total ∼ 261
class 20; comprisable ∼ 21; empty ∼ 21; finite ∼ 47; independent ∼ of sets 211; indexed ∼ 34; infinite ∼ 47; minimally non-comprisable ∼ 79; structured ∼ 113; underlying ∼ 113; universal ∼ 22; void ∼ 21

classification: Baire ∼ 863; Borel ∼ 851
closed: see base, set, etc.
closure 237; induced by a metric, etc. 300 (18 A), 337 (19 B), 398 (23 A), 441 (25 A); of left, right, two-sided approximation 245; accrete ∼ 238 (14 A), 668 (35 D); admissible ∼ for a group, etc. 330, 336; coarse L ∼ 662; coarse semi-separated ∼ 486; coarse separated (topological) ∼ 573; dense-in-itself ∼ 862; discrete ∼ 238; fine dense-in-itself ∼ 862; fine non-discrete ∼ 676; hull-kernel ∼ 320; indiscrete ∼ = accrete ∼ ; normed ∼ 337; (generalized) order ∼ 245; quasi-discrete ∼ 479; relative ∼ 279; semi-pseudometrizable ∼, metrizable ∼, etc. 301; semi-uniformizable ∼ 401; T ∼ = topological ∼ 250; uniformizable ∼ 416

closure space (abbreviated to space, see also closure) 237; associated with a directed set 673; connected between two points 362; Baire ∼ 388; compact ∼ 523 (29 B), 780 (41 A), 837 (17—18 ex.); completely regular ∼ = uniformizable ∼; (topological) component ∼ 611; connected ∼ 359; countably compact ∼ 837; feebly semi-separated ∼ 483; fibre ∼ 759, 764 (40 B); fully normal ∼ = paracompact ∼; H-closed ∼ 574; Hausdorff ∼ = separated ∼; hereditarily normal ∼ 531; hereditarily paracompact ∼ 542; L ∼ 654; Lindelöf ∼ 849; locally convex ∼ 843; normal ∼ 514; paracompact ∼ 537; perfectly
normal ~ 532; pseudocompact ~ 864; regular ~ 492; s~ 656; semi-regular ~ 574; semi-separated ~ 483; separated ~ 487; sequentially compact ~ 863; strongly separated ~ 856; structure ~ 321, 322; systematically normal ~ 540; T₀~ = feebly semi-separated ~; T₁~ = semi-separated ~; T₂~ = separated ~; Tikhonov ~ = uniformizable separated ~; topological linear ~ 344; totally disconnected ~ 848; ultrafilter ~ 244; uniformizable ~ 416

cluster point 247 (14 C), 780 (41 A), 834 (15 ex.)
coarse, etc.: see closure, proximity, semi-uniformity, uniformity
coarser 238; proximally ~ 442; uniformly ~ 405
cofinal: ~ character 169; ~ class 169
collection (see also family) 22; centred ~ 209; complemented ~ 390; component of a ~ 845; connected ~ 845; quasi-connected ~ 846; rich ~ 547

combination: convex ~ 842; formal ~ 824
commutative: see composition, group, etc.
compact 523 (29 B), 780 (41 A), 837 (17–18 ex.); ~ in 869; countably ~ 837; sequentially ~ 863
compactification 808; Čech-Stone ~ 810; finer ~ 808; Wallman ~ 869
compatible 185, 186 (10 H), 329, 336 (19 B), 746, 753 (40 A), 768 (40 C), 875 (Notes)
complement 39, 42; ~ in an ordered set 390
complete: ~ accumulation point 796; ~ pseudometric space 849; ~ uniform space 780
complete quasi-ordered class 178; boundedly ~ 178; countably, monotonically ~ 828; finitely ~ 174
completely regular = uniformizable
completion 790; augmentation-separated ~ 790
completion-embedding 790

component: ~ of a collection 845; ~ of a space 362; external, internal ~ of an algebraic struct 132; (topological) ~ space 611

compose, to 351

composite: ~ in a topologized semi-group 351; ~ of correspondences 120; ~ of finite sequences 96; ~ of morphisms 223 (13 B), 771 (40 C); ~ of relations 29; ~ under a composition 94; pointwise ~ 353; uniform ~ 353

composition (binary, internal) 94; associative ~ 96; commutative ~ 96; continuous ~ 325 (19 A), 668 (35 D); distributive ~ 101; inductively continuous ~ 325; sequentially continuous ~ 668; topologized ~ 325; (see also external and partial composition)

composition-stable: ~ correspondence 135; ~ relation 126, 131 (8 A), 135 (8 C)

comprisable 21; minimally non-~ 79

congruence 137
connected 359, 362

consecutive 359

constituent 126; basic ~ 134; external, internal ~ composition 131; multiplicative ~ 134

continuous: see composition, correspondence, mapping, etc.

convergence: ~ class 642; ~ of filters 834; ~ of nets 258 (see Errata); ~ relation 642; ~ structure 645; determining ~ relation 644; feebly generating ~ relation 674; generating ~ relation 656; pointwise ~ 335 (19 B), 433 (24 D); regular ~ 646; sequential ~ class 651; strict ~ 654; uniform ~ 433

convex 842; locally ~ 590, 591 (32 C), 843 (19 ex.)

coordinate 82
correspondence (see also relation, mapping) 116 (7 B), 625 (34 B); abstract ~ 117; bicontinuous ~ 626; canonical ~ 123; closed (inversely) ~ 628; continuous (bilaterally, inversely) ~
domain-full ~ 118; full ~ 626; inverse ~ 120; lower semi-continuous (bilaterally, inversely) ~ 626; open (inversely) ~ 628; proper ~ 633; range-full ~ 118; upper semi-continuous ~ (bilaterally, inversely) 626
countable 65
cover (see also family) 37 (1 E), 202 (12 A); closed ~ 285; interior ~ 285; normal ~ 437; open ~ 285; semi-uniform ~, uniform ~ 434; semi-uniformizable ~, uniformizable ~ 435; uniform collection of ~s 437
cover-product 205
covering = cover; (see also fibration)
cross-section 33 (1 B), 121 (7 C)
cube 294

D
decomposition 202; continuous ~ 638; lower, upper semi-continuous ~ 638
decreasing 166
deleting 64 (3 F), 115 (7 A), 873 (Notes)
derivative of a set 248
diagonal 32
diagonalization 647
diameter 300
difference of classes 39; symmetric ~ 39 (2), 95 (6 A)
directed 170
discrete: see closure, family, etc.
disjoint 40, 41
distance 300
distant: ~ sets 440
distinguishing: ~ family of mappings 588 (32 B), 804 (41 C); ~ quasi-order 160, 161
distributive: see composition, etc.
divisor of zero 146; ring without-~ 147
domain 26; ~ carrier 116; ~ of indexes 34; ~ of integrity 147; ~ unit 217; abstract ~ 127; abstract ~ carrier 117; actual ~ 117; latent ~ 116; structured ~ 127, 128
domain-object 223

E
element 21; least, greatest, etc., ~ 169; idempotent ~ 228
embedding 119 (7 B), 285 (17 A); identical ~ 98 (6 B), 101 (6 C), 110 (6 F), 163 (10 B), 218 (13 A), 448 (25 A); proximal ~ 448; uniform ~ 409; (see also canonical embedding)
endomorphism 122 (7 D), 135 (8 C); ~-relation 105; ordered ring of ~s 191
endowing 115
enriching 64 (3 F), 115 (7 A), 873 (Notes)
epimorphism 229; ~ of presheaves 755; strong ~ 230
equipollent 45
equivalence 31; ~ associated with a quasi-order 160; continuous ~ 638; lower or upper semi-continuous ~ 638
eventually 261; ~ bounded 650
exact: ~ Borel set 860; ~ closed, open set 508
expansion: canonical ~ 38
exponent 59 (3 E), 106, 107 (6 E), 129 (8 A), 156 (9 C)
exponential 36

extension 27 (1 B), 118 (7 B), 283 (17 A), 409 (23 D), 873 (Notes)

external composition 108 (6 F), 127 (8 A); ~ of a module 110; ~ over a struct 109 (6 F), 127 (8 A); continuous ~ 339, 342; distributive ~ 129; enriched ~ 109; inductively continuous ~ 339, 342; pure ~ 128; purely algebraic ~ 128; structured ~ 109 (6 F), 127 (8 A); topologized ~ 342; unstructured ~ 108 (6 F), 127 (8 A)

F

factorization: inductive ~ 600 (33 A), 606, 607 (33 B), 695 (37 A), 707 (37 C), 734 (39 A); projective ~ 582 (32 A), 695 (37 A), 733 (39 A)

family 34; closure-preserving ~ 240; composable ~ 351; discrete ~ 480; distinguishing ~ 588; hereditarily closure-preserving ~ 832; inductive ~ 596; locally finite ~ 246 (14 B), 353 (19 F); point-finite ~ 206; projective ~ 577, 578; quasi-discrete ~ 480; σ-discrete ~ 528; σ-locally finite ~ 386; σ-point-finite ~ 528; star-finite ~ 206; summable ~ 351; (see also generating ~)

fibration 119; covering ~ 760; covering ~ associated with a presheaf 764

fibre 26; inverse ~ 27

field 147; ~ of an external composition 108; normed ~ 337; topological ~ 336

field-restriction 108 (6 F), 129 (8 A), 132 (8 B)

filter 171 (10 E), 207 (12 B); ~ base 208; Cauchy ~ 780 (41 A), 848 (22 ex.); converging ~ 780 (41 A), 834 (15 ex.); fixed ~ 210; free ~ 210; left ~ 171; maximal ~ 172; proper ~ 172 (10 E), 207 (12 B); right ~ 171; sub-base of a ~ 209

fine, etc.: see closure, proximity, etc.

finer 238 (14 A), 808 (41 D); proximally ~ 442; uniformly ~ 405

finite 47 (3 A), 151 (9 A), 200 (11 B); ~ intersection property 209; ~ number of elements 60; of ~ character 76; (see also family)

fixed 210 (12 B), 806 (41 C)

free 210 (12 B), 806 (41 C), 825 (8 ex.)

frequently 261

function (real-valued) 192; complex-valued ~ 193

functional: Minkowski ~ 842

functor: amnestic ~ 876; anti-isomorphism ~ 220 (13 A), 224 (13 B); contravariant ~ 220 (13 A), 224 (13 B); covariant ~ 219 (13 A), 224 (13 B); faithful ~ 876; forgetful ~ 875; isomorphism ~ 220 (13 A), 224 (13 B); projectively generative ~, product-preserving ~, etc. 876

G

generate, to: ~ a group, etc. 99 (6 B), 101 (6 C), 103, 104 (6 D), 141 (8 D), 148 (8 F), 225 (13 B); ~ inductively, projectively (see generating family)

generating family: ~ in a category 876; inductive ~ 596 (33 A), 604 (33 B), 692 (37 A), 705 (37 C), 726 (39 A); inductive ~ in the uniform sense 705; projective ~ 578 (32 A), 663 (35 D), 692 (37 A), 726 (39 A); strict (topological) inductive ~ 615; topological inductive ~ 604

graph 116

group 100; ~ of mappings into a group 334; abelian ~ = commutative 101; ~ multiplicative ~ of a field 147; normed ~ 337; quasi-ordered ~ 186; sequential ~ 668; topological ~ 330; underlying additive ~ of a module 110; uniformly continuous topological ~ 793
H

Hausdorff: ~ closure space 487; ~ hyperspace 840 (17—18 ex.), 867 (41 ex.)
hereditary 164 (10 B); 279 (17 A); 408 (23 D)
homomorphism 275; proximal ~ 442; uniform ~ 405
homomorphism 122 (7 D), 127 (8 A), 135 (8 C), 187 (10 H); ~-relation 105 (6 E), 126, 131 (8 A),
135 (8 C); order-preserving, order-reversing ~ 188
hull 816; balanced ~ 841
hyperspace: ~ of lower, upper semi-continuity 623; Hausdorff ~ 840 (17—18 ex.), 867 (41 ex.)

I

ideal 140; fixed ~ 806; free ~ 806; maximal ~ 143; prime ~ 148; proper ~ 141; two-sided ~ 141
idempotent 228
identifying the points 610
identity 25; ~ morphism 875
image 26, 27 (1 B), 33 (1 D); ~ of a cover 205; homomorphic ~ 135; 137; inverse ~ 27
increasing 166
index 34
indexed class 34; constant ~ 35
inductive: see family, product, etc.
inductive-stable 612 (33 C), 700 (37 A), 740 (39 C)
infimum 173
infinite 47 (3 A), 151 (9 A), 200 (11 B)
injection 85
integer 145
interior 240; ~ cover 285
intersection 39, 41, 42 (2), 95 (6 A); finite ~ property 209
interval 164; ~-like 164; order-open ~ 245
inverse: left~-, right~ 99
inversion 100; ~ of a topologized semi-group 328
invertible: ~ element 99; ~ morphism 227; virtually ~ element 100
isomorphism 135 (8 C), 166 (10 C), 188 (10 H), 220 (13 A), 224 (13 B), 227 (13 C), 755 (40 A),
771 (40 C); ~-relation 105 (6 E), 220 (13 A)

J

join 172, 173
join-complete: countably, monotonically ~ 827; finitely ~ 174
join-isomorphism 176
join-preserving: ~ class 177; ~ mapping 176; completely ~ class, mapping 181
join-stable class 175; completely ~ 180

L

lattice 174, 177
lattice-preserving: ~ class 177; ~ mapping 176; completely ~ class, mapping 181
lattice-stable 175; completely ~ 180
limit: \sim element 196; \sim point 258 (15 B), 780 (41 A); inductive \sim 750 (40 A), 767 (40 C), 875 (Notes); inverse \sim 746; order (lower, upper) \sim 650; projective \sim 746 (40 A), 767 (40 C), 875 (Notes); topological inductive \sim 775; topological (lower, upper) \sim 835

linear space: locally convex topological \sim 590; topological \sim 344; weak topological \sim 591

local: see base, character

locally 368, 369, 370, 371; \sim connected 371; \sim convex 590, 591 (32 C), 843 (19 ex.); feebly \sim, relatively \sim, relatively feebly \sim 368, 369, 370, 371

M

mapping (see also relation, correspondence) 119; \sim associated with a morphism of sheaves 766; associated \sim of associated spaces 674; Baire \sim 863; Baire measurable \sim 391; bijective \sim 119; Borel measurable \sim 391; closed \sim 622; connecting \sim 745 (40 A), 767 (40 C); continuous \sim 269, 270 (16 A), 874 (Notes); distance-preserving \sim 300; injective \sim 119; Lipschitz \sim 303; lower semi-continuous \sim 319; open \sim 622; perfect \sim 634; proximal quotient \sim 741; proximally continuous \sim 442; quotient \sim 608; quotient \sim for quasi-ordered sets 827; surjective \sim 119; uniformly continuous \sim 312 (18 B), 405 (3 C); upper semi-continuous \sim 319; (see also canonical)

maximal: \sim element 170; see also ideal, set, etc.

meet 172, 173

meet, to 40

meet-complete class: countably, monotonically \sim 828; finitely \sim 174

meet-preserving: \sim class 177; \sim mapping 176; completely \sim class, mapping 181

meet-stable class 175; completely \sim 180

member 24 (1 B), 34 (1 D)

metric (see also pseudometric, semi-pseudometric) 300

minimal: \sim element 170; see also set, etc.

modification: locally convex \sim 591; lower, upper \sim 560; quasi-discrete \sim 479; semi-uniformizable \sim 852; sequential \sim 657; T_\sim = topological \sim 272; uniform \sim 420 (24 B), 686 (36 B); uniformizable \sim 423 (24 B), 460 (25 C); weak \sim 592

module 109, 110; locally convex \sim 590; normed \sim 347; ordered \sim of families 188; quasi-ordered \sim 187; topological \sim 344; weak \sim 591

module-like 133

monomorphism 229; \sim of presheaves 755; strong \sim 230

monotone: \sim class 49; \sim net 258; \sim quasi-order 162

morphism 217 (13 A), 223 (13 B), 874 (Notes); \sim associated with a mapping 764; \sim of presheaves 755 (40 A), 771 (40 C); canonical \sim 764; identity \sim 875; inverse \sim 227; invertible \sim 227; left inverse \sim 226; right inverse \sim 226

multiplet 63 (3 F), 822 (3 ex.), 872 (Notes); regular \sim 62 (3 F), 872 (Notes)

multiplication 59 (3 E), 146 (8 E), 149 (8 F), 156 (9 C); external \sim 110 (6 F), 128 (8 A), 339, 342 (19 C)

multiplicative class of sets 69; completely, monotonically \sim 69

N

negative 188 (10 H), 299 (18 A); strictly \sim 188

neighborhood 241; \sim system 241; proximal \sim 442; relative \sim 279; symmetric \sim in a group 332; uniformizable \sim 423

net 257; adjacent \sim 851; Cauchy \sim 786 (41 A), 849 (22 ex.); convergent \sim 258 (see Errata); directed \sim 258; eventually bounded \sim 650; monotone \sim 258; order-convergent \sim 265
neutral 95 (6 A), 129 (8 A), 216 (13 A)
norm 337 (19 B), 347 (19 D)
normal: ~ cover 437; ~ sequence 437; ~ subgroup 141
normal space 514; fully ~ = paracompact space 537; hereditarily ~ 531; perfectly ~ 532;
systematically ~ 540
normed: ~ algebra 347; ~ closure 337; ~ field, group, ring 337
number: cardinal ~ 151; complex ~ 193; natural ~ 56; ordinal ~ 199; rational ~ 149; real
~ 192
number of elements 60

O

cardinal 151; complex 193; natural — 56; ordinal ~ 199; rational ~ 149; real
number of elements 60

O

object 223
one-to-one = bijective 33 (1 D), 119 (7 B)
open: see base, cover; etc.
order (see also quasi-order) 30 (1 C), 160 (10 A); ~ for natural numbers, etc. 56 (3 D), 149 (8 F),
152 (9 B), 199 (11 B); ~ induced by a quasi-order 161; maximal ~ 162
order-complete class 178; boundedly ~ 178; finitely ~ 174
order-constituent 186, 187
order-dense 833
order-isomorphism 166
order-limit 265
order-preserving 166 (10 C), 188 (10 H)
order-reversing 166 (10 C), 188 (10 H)
ordered 163; lattice-~ 174
ordinal (number) 199; finite, infinite ~ 200; initial ~ 200

P

pair 24
pair-product 32
paracompact 537; hereditarily ~ 542
part = subclass 23; proper ~ 23
partial composition 215 (13 A), 223 (13 B); (strongly) associative ~ 216; contragredient ~ = op-
posite ~ 220
partition of unity 860
point 238; accumulation ~ 247 (14 C), 258 (15 B); cluster ~ 247 (14 C), 780 (41 A), 834 (15 ex.);
complete accumulation ~ 796; isolated ~ 248; left-isolated ~ 248; limit ~ 258 (15 B),
780 (41 A); right-isolated ~ 248, 249
point-set 846
point-star 204
pointwise 335 (19 B), 353 (19 F), 433 (24 D)
polynomial 825
positive 188 (10 H), 299 (19 A); strictly ~ 188
potency class 36
power 59, 60 (3 E), 61 (3 F), 87 (5 C), 96 (6 A), 107 (6 E), 129 (8 A), 151 (9 A)
presheaf 745 (40 A), 767 (40 C), 875 (Notes); inductive ~ 754 (40 A), 769 (40 C); left-directed ~
775; projective ~ 748 (40 A), 769 (40 C); right-directed ~ 775; underlying ~ 767
product: ~ of algebraic structs, structures 106, 107 (6 E), 111 (6 F), 127, 129 (8 A), 133 (8 B), 188 (10 H); ~ of categories 226; ~ of categoroids 221; ~ of classes, sets 32 (1 C), 81, 82 (5 A); ~ of closures 289 (17 C), 667 (35 D); ~ of compositions 106, 107 (6 E), 129 (8 A), 328 (19 A), 343 (19 C); ~ of covers 205; ~ of filters 210; ~ of numbers 59 (3 E), 156, 158 (9 D); ~ of objects of a category 831 (13 ex.), 875 (Notes); ~ of proximities 731; ~ of quasi-ordered classes 165; ~ of relations, mappings, correspondences 87 (5 C), 120 (7 C), 293 (17 C), 412 (23 D), 633 (34 B), 731 (39 A); ~ of semi-uniformities 411; ~ of topological groups, etc. 333, 336 (19 B), 346 (19 D); compositional ~: see ~ of compositions; free ~ 825; inductive ~ 296, 298 (17 D), 614 (33 D); lexicographical ~ 165 (10 B), 827 (10 ex.), reduced ~ 87 (5 C), 121 (7 C), 293 (17 C), 412 (23 D), 731 (39 A); relational ~: see ~ of relations; uniform ~ 430

progeny: inductive ~ 612 (33 C), 700 (37 A), 740 (39 C), 876 (Notes); projective ~ 584 (32 B), 668 (35 D), 700 (37 A), 737 (39 B), 876 (Notes)

projection 82 (5 A), 289 (17 C), 411 (23 D); ~ of presheaves 746 (40 A), 767 (40 C)

projective: see family, presheaf, etc.

projective-stable 584 (32 B), 663 (35 D), 668 (35 D), 700 (37 A), 736 (39 B)

proper: see correspondence, part, etc.

proximal: ~ embedding 448; ~ homeomorphism 442; ~ neighborhood 442; ~ quotient 741; ~ sets 440; ~ vicinity 450

proximity 440; ~ fine around a set 742; ~ induced by a semi-pseudometric 441; ~ induced by a semi-uniformity 440; Čech ~ 447 (25 A), 520 (28 A); coarse ~ 719; coarse uniformizable ~ 724; continuous ~ 447; fine ~ 719; fine uniformizable ~ 724; uniformizable ~ 449; Wallman ~ 447 (25 A), 514 (23 A)

proximity space 440

pseudometric (see also semi-pseudometric) 300; ~ induced by a norm 337; invariant ~ on a module 854; uniform collection of ~ 422

pseudometric space 300; complete ~ 849

pseudomorphism 876

Q

quasi-component 362; ~ of a collection 846; (topological) ~ space 611
quasi-discrete: see closure, family modification, etc.

quasi-order 30 (1 C), 160 (10 A); distinguishing ~ 160, 161; inverse ~ 164; monotone ~ 162; strict ~ 160, 161; (see also order)

quasi-ordered: ~ class 163; lattice-~ 174; (internal) algebraic ~ struct 186, 187

quotient 608, 609 (33 C), 710 (37 D); ~ obtained by identifying 610; ~ obtained by pasting, sewing 616, 617; ~ of a quasi-order 827; ~ of a topological group 635; proximal ~ 741; uniform ~ 710

quotient mapping: see mapping

quotient-struct 138

R

range 26; ~ carrier 116; ~ unit 217; abstract ~ carrier 117; actual ~ 117; latent ~ 116
range-object 223
refine, to 168 (10 D), 203 (12 A)
reflection 877
regular: see closure space, convergence
relation 25, 26 (1 C), 113 (7 A); antisymmetric ~ 29; assignment ~ 223; constant ~ 35; convergence ~ 642; domain-structured ~ 128; fibering ~ 33; inverse ~ 27; irreflexive ~ 29; mapping ~ 32; permuting ~ 34; reflexive ~ 29; sequential ~ 651; single-valued ~ 32; structured ~ 113; symmetric ~ 29; transitive ~ 30; (see also canonical)

relative closure, etc. 279
relativization 279 (17 A), 314 (18 C), 408 (23 D), 448 (25 A)
restriction: ~ of an algebraic structure 95 (6 A), 108 (6 F), 126, 129 (8 A), 132 (8 B), 188 (10 H); ~ of a composition 95 (6 A), 108 (6 F), 129 (8 A), 328 (19 A), 342 (19 C); ~ of a presheaf 745; ~ of a quasi-order 161; ~ of a relation, mapping, correspondence 27 (1 B), 118 (7 B), 283 (17 A), 409 (23 D), 448 (25 A), 666 (35 D); ~ of a semi-pseudometric 314
ring 102; ~ with cancellation 147; ~ without divisors of zero 147; Boolean ~ 102; commutative ~ 104; normed ~ 337; ordered ~ 186; ordered ~ of endomorphisms 191; product ~ 336; topological ~ 335

S

saturated 62
section 33 (1 D), 121 (7 C)
segment 195
semi-continuous: see correspondence, mapping, etc.
semi-group 97; abelian ~ = commutative ~ 101; (inductively) continuous topologized ~ 325; quasi-ordered ~ 185, 186; ring over a ~ 824; underlying additive or multiplicative ~ of a semi-ring 102
semi-isomorphism 227
semi-metric 300 (see also semi-pseudometric)
semi-neighborhood 306
semi-pseudometric 299; ~ subordinated to a cover 436; continuous ~ 306; invariant ~ 427; isomorphic ~ 300; Lipschitz equivalent ~ 310; proximally continuous ~ 447; topologically equivalent ~ 301; uniform collection of ~ 400; uniformly continuous ~ 400; uniformly equivalent ~ 312
semi-ring 102; commutative ~ 104; natural ~ of sets 102; quasi-ordered ~ 186; unital ~ 104
semi-separated, etc.: see closure space, set
semi-uniform space 398; locally fine ~ 865
semi-uniformity 397; ~ fine around a set 742; ~ generated by a collection of semi-pseudometrics 401; coarse ~ 683; continuous ~ 401; fine ~ 683; invariant ~ 427; proximally coarse ~ 452; proximally continuous ~ 447; proximally fine ~ 721; totally bounded ~ 407 (23 C), 455 (25 B); uniformly discrete ~ 407; uniformly quasi-discrete ~ 685
semi-uniformizable: see closure space, etc.
separated, etc.: see closure space, set
sequence 56; Cauchy ~ 840; metrically discrete ~ 840; normal ~ 437
sequential (determining): ~ convergence class 651; ~ relation 651; ~ structure 651
set 22; ~ of the first category = meager ~; ~ of the second category = non-meager ~; absorbing ~ 842; accessible ~ 823; almost open ~ = Baire ~ 388; balanced ~ 842; Borel ~ 391; closed ~ 238; connected ~ 359; convex ~ 842; cozero-~ = exact open ~; dense ~ 378; directed ~ 256; discrete ~ 491; exact Borel ~ 860; exact closed, open ~ 508; F_g ~ 391; G_g ~ 391; largest ~ 49; maximal ~ 50; meager ~ 383; minimal ~ 50; N-~ = exact open ~; nowhere dense ~ 381; open ~ 238; regular closed, open ~ 249; relatively discrete ~ 491; residual ~ 256; (semi-)separated ~ 355; smallest ~ 49; Z-~ = zero-~ = exact closed ~ 508; (see also to generate)
sewing 617
sheaf 748, 749; ~ associated with a presheaf 764; ~ of continuous mappings 749; ~ of continuous sections 760
singleton 23
single-valued 32 (1 D), 119 (7 B)
space: see closure ~, proximity ~, semi-uniform ~, uniform ~
sphere 300
square 32
stable: ~ class 95 (6 A), 103 (6 D), 110 (6 F), 126 (8 A), 133 (8 B); ~ relation 105 (6 E), 126, 127, 131 (8 A), 135 (8 C)
stalk 762
star 204 (12 A), 480 (26 A); combinatorial ~ 623
star-refine, to 205
struct 113; (purely) algebraic ~ 131; internal algebraic ~ 126; module-like algebraic ~ 133; quasi-ordered algebraic ~ 186, 187
structure (of a struct) 113; admissible group ~, etc. 330, 336; categoroid ~ 217; convergence ~ ~ 645; L ~ 654; sequential ~ 651; ~ of, J ~ 874
structured: ~ class 113; ~ domain 127, 128; ~ external composition 109 (6 F), 127 (8 A); ~ relation 113
subalgebra 134 (see Errata); topological ~ 345
sub-base: ~ for a semi-uniformity 398; ~ of a filter 209; ~ of a neighborhood system 242; closed ~ 254; local ~ 242; open ~ 253
subcategory 225
sub-lattice-algebra 464
subcategory 225; ~ generated by ... 225, 226; full, morphism-full, object-full ~ 225; reflective ~ 878
subclass 23; indexed ~ 34; proper ~ 23; quasi-ordered ~ 163
subfamily 34
subgroup 101; ~ of a topological group 332; ~ of a topologized group 328; invariant ~ = normal ~ 141
sub-lattice-module 464
submodule 110; topological ~ 345
subnet 266; generalized ~ 266; residual ~ 266
subring 103
sub-family 34
sub-ring 103
subsequence 266
subset 23
subspace 279 (17 A), 408 (23 D), 448 (25 A), 666 (35 D)
substruct 113
successor 56 (3 D), 196 (11 A)
sum: ~ of sets 85; ~ of closures 287; ~ of a cover 203; ~ of elements, numbers 59 (3 E), 97 (6 A), 155 (9 C), 157 (9 D), 351 (19 F); ~ of objects of a category 831 (13 ex.), 875 (Notes); ~ of proximities 448 (25 A), 731 (39 A); ~ of quasi-ordered sets 826; ~ of relations, mappings 87 (5 C), 288 (17 B), 731 (39 A); ~ of semi-uniformities 410 (23 D); free ~ 825; reduced ~ 87 (5 C), 289 (17 B), 731 (39 A); relational ~: see ~ of relations support 353; closed ~ 353
supremum 173
symmetric: ~ difference 39 (2), 95 (6 A); ~ neighborhood in a group 332; ~ relation 29
topological: \(\sim\) property 276; \(\sim\) space: see closure space; see also group, ring, etc.
transferring 136
transform 210
translation 100
transpose 118 (7 B), 444 (25 A), 703 (37 B)
\(n\)-tuple 62 (3 F), 871, 872 (Notes)
type of an algebraic struct 131

ultrafilter 211
ultranet 833
underlying set, etc. 97 (6 B), 102 (6 D), 110 (6 F), 113 (7 A), 117 (7 B), 127 (8 A), 132 (8 B), 187 (10 H), 223 (13 B)
uniform: see multiplication, composite, etc.
uniform space 416; complete \(\sim\) 780; hypercomplete \(\sim\) 867; locally fine \(\sim\) 866; subfine \(\sim\) 866
uniformity 416 (see also semi-uniformity); \(\sim\) for a group 425; Čech \(\sim\) 502; coarse \(\sim\) 688; fine \(\sim\) 502; Hewitt \(\sim\) 864; proximally coarse \(\sim\) 724; proximally fine \(\sim\) 724; pseudometrizable \(\sim\) 418; uniformly totally disconnected \(\sim\) 685
uniformizable: see modification, closure space, etc.
union 39, 41 (2), 95 (6 A)
unit 104 (6 D), 217 (13 A), 223 (13 B), 876 (Notes); domain, range \(\sim\) 217
unity 104; partition of \(\sim\) 860

value 32, 34
vicinity 203 (12 A), 397 (23 A); finite square \(\sim\) 450; proximal \(\sim\) 450

weak: \(\sim\) modification 592; \(\sim\) module 591; \(\sim\) topological linear space 591
well-order 194; minimal \(\sim\) 198

zero 104 (6 D), 139 (8 D)