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Chapter 11
GENERAL METRIC SPACES

§ 6. Distance

6.1. Let P be a given set. Let ¢ be a finite function on the cartesian product P x P
such that

[1] o(x, x) = 0; x + y=o(x,y) > 0;
[2] o(x, y) = o(y, X);
[3] o(x, ) + o(y, 2) Z o(x, 2).

Then we say that g is a distance function (or a metric) in P. The set P is said to be
a metric space, if there is given a distance function g in P. The elements of a metric
space are, as a rule, called points. If a, b are two points, then by their distance is
understood the number g(a, b).

A metric space P with a distance function g is sometimes denoted more precisely
by (P, 9), in partlcular when dealing with different distance functions in the same P.
The letters P and ¢ will normally denote, throughout all this bock, a metric space
and its distance function.

The set E; of all real numbers is a metric space, if we define o(x, y) = | x — y|.
In the following, unless otherwise stated, E, will denote the metric space with the
distance function just defined.

More generally, we denote by E,, (and call it the m-dimensional euclidean space)
the set E, xE; x...xE; (m factors in the product), where the distance function g
is defined by putting, for x = (X1, X3, -ces Xm)s ¥ = (P15 Vas -5 V)

ox.9) = [ E 5= )

The function g just described obviously possesses properties [1] and [2]. Property [3]
may be proved as follows: For 1 <i < k < m one has (x;y, — x,»)*> = 0 and
hence 2x,yx;yr < x2y? + xly?; therefore

(.ixiyi)z = f: xtyl +2 Z Z XiYiXah =

i=1k=i+1

Z ey 3 (i + xiyd) = T xt Tl

i=1 i=1 k=i+

ll/\

*) If a is a non-negative real number, \/ a always denotes the non-negative b with b* =a.
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i=1 i=1

'Zl(x.' + ) =._let2 +.Z:1,Vi2 + Z.lei)’.',

and hence

.leiyi

Since

by (1) we have
2

Seers([Ex+ (5.

and hence

Lo+ y)y s [Yxi+ |3yl @)

Writing x; — y; instead of x; and y; — z; instead of y; we obtain o(x, z) < o(x, y) +
+ e(r, 2).

Another important example of a metric space is the Hilbert space, which we shall
denote by H. It is the set of all sequences x = {x;};2Z; (x; € E;) such that the series

Y x? converges, endowed with the metric ¢ given by

i=1

o(x,y) = i;i(x.- - )

a0 o]
If xeH, yeH, the series Y x7, Y y? converge and therefore [by (2), write —y;
i=1 i=1

instead of y,] the series on the right-hand side in (3) also converges. Properties [1]
and [2] of the function ¢ are again evident. Formula (2) implies

Y+ y) S [Yxi+ [ Yy

i=1 i=1 i=1
Writing x; — y, instead of x; and y; — z; instead of y;, we obtain g(x, z) < o(x, ) +
+ o(y, 2).

Remark: Let a, b, ¢ be three points of a metric space P. Then there are points
a, f, v in E, such that

0@ b) = o(e, ), olac)=0o(x,7), ab,c)=007),

[
(¢ on the left-hand side designates the distance function in P, ¢ on the right-hand
side the distance function in E,).

Proof: For brevity, we write g(a, b) = r, g(a, ¢) = s, 9(b, ¢) = t, so that the numbers
r+s+tr+s—t r—s+t —r+s+t are greater than or equal to zero.
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It is easy to see that the points

e (20). 5=(-Lro).

?=<12—-s2 J[(r+s+t)(—r+s+t)(r—s+t)(r+s-—-t)])

2r ’ 2r
have the required property.

6.2. Let P, and P, be two given metric spaces; let ¢, and g, be their distance functions.
Let us define a function g,, on (P, x P,) x (P, X P,) as follows: for x = (x,, x,),

¥ = (y1,¥2) put
012(%, ) = \/[(Ql(xl y YD)+ (a(x2, ¥2))7).

Properties [1] and [2] of the functions ¢, and g, imply the same properties of the
function g;,. We shall prove that the function g,, also has property [3]. Let z =
= (z,, ;). By the remark at the end of section 6.1, there exist real numbers a,,
a,,b,, by, ¢y, ¢y such that

0:(xy,y) = \/[(bl —a))? + (b; —a)?],  0,(x1,2y) = \/[(Cl —a,)* + (c; — ay)?],
2:(y1,2y) = \/[(Cl - b1)2 + (c; — bz)z] s

and real numbers as, a4, b5, bs, c3, ¢4 such that

0:(x2,y2) = \/[(ba —a3)* + (by — 04)2]’ 02(%2,25) = \/[(Ca - ‘13)2 + (s — a;)zl,

0:(32,22) = \/[("3 - b3)2 + (cq — b4)2]-
Hence,

012(%,y) = igl(bi - ai)zs 012(x,2) = g:l("i - ai)z,
i) = [% (- b

Since the distance function in E, has property [3], we obtain ¢,,(x, y) + 0,,(y, 2) =
Z 012(x, 2).

If P, and P, are given metric spaces with distance functions ¢, and g,, we shall
understand in the following by their cartesian product Py xP,, the set P, xP,
with the distance function ¢, defined above.

Remark:Letm, n = 1,2, 3,.... By the remark at the end of section 2.1 we do not
distinguish between E,, x E, and E,,,,. This is in accordénce with the evident fact
that the distance function in E,, x E, derived from the usual distance functions in
E, and E, is the same as the usual distance function in E,, +,-
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6.3. Let P be a metric space with a distance function ¢. Let M < P. The partial
function (see 2.4) gp 3 is evidently a distance function in M. Consequently, every
subset M of a metric space P may be taken for a metric space. We say that M is
a point set embedded into the space P. Hence, a point set is a metric space M which
is a subset of a metric space P, such that the distance function in M is the correspon-
ding partial function of the distance function in P.

6.4. Let P and Q be metric spaces; let ¢, and g, be their distance functions. Let f
be a mapping of P onto Q. We say that the mapping f is an isometry, if

XEP, yGP = Qz[f(x)’f()’)] = Ql(x’y)'

Since the distance function has property [1], f is obviously one-to-one. Evidently,
the inverse mapping f_, is an isometry of Q onto P.

We say that spaces P and Q are isometric if there is an isomeiry of P onto Q
(or of Q onto P). .

A metric property of a space P is a property which is preserved on replacing P
by an arbitrary isometric space, i.e. a property which depends only on the distances
of points and not on the “concrete form™ of the points. We shall investigate only
metric properties of metric spaces. e
6.5. Let P be a metric space (with a distance function g). Let 4 =« P, B < P. Let M
be the set of all real numbers g(x, y) with xe€ 4, y e B. The number inf M (see 4.10)
will be denoted by o(4, B) and called the lower distance of the point sets 4 and B.
The number sup M (see 4.10) will be denoted by d(A, B) and called the upper distanec
of the point sets 4 and B.*)

Evidently
0(A4, B) = o(B, 4), d(A, B) = d(B, A).

If either A = 0 or B =0, we have ¢(4,B) = o, d(4,B)= —0. If A +0 + B
then g(4, B) is a non-negative real number, and d(4, B)is either a non-negative real
number or co. Evidently, for ae P, be P

e((a), (b)) = d((a), (b)) = ofa, b) .
If A = (a) is a one-point set, we write
o(a, B) = o(B, a) = ¢((a), B) ,
d(a, B) = d(B, a) = d((a), B) .

and call ¢(a, B) the lower distance**) (and d(a, B) the upper distance) of the point a
from the point set B.

*) The lower distance is much more important than the upper one. Therefore it is often called
simply the distance.
**) Or simply the disrance (see the previous footnote).
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For A < P we put d(4) =0 provided 4 = 0 and d(4) = d(4, A) provided
A # (§. The number d(A) is called the diameter of the point set 4. A point set A
is said to be bounded if d(A) < oo, unbounded, if d(4) = 0. In the case of P = E,
this definition is in accordance with the definition given in 4.10.

Exercises

6.1, Let P be a given set, let p be a finite function with domain P x P such that [1] x = y <>
<> o(x, ) =0, [2] o(x, y) + o(z, y) = o(x, z). Then g is a distance function in P.

6.2. The statement of ex. 6.1 is not true, if we write g(», z) instead of o(z, ).

In exercises 6.3 and 6.4 C denotes the set of all complex numbers.

63. Let C,=CxCxX.,.xC (with m factors). For x€C,, yeC,, x=(xq,Xx3,...,X,,)

m
Y =(1,Y3,+. Ym) DUt olx,y) = \/ Z | x;—; |2. Then o is a distance function in C,,
- i=1

and C,, with this distance function is isometric to the euclidean E,,,.
-]

6.4. Let H’ be the set of all sequences {x;}?‘;l (x; € C), such that the series Z | x; |2 converges.
i=1

a
For xe H’, yeH’, x = {x‘.} y= {yi} put o(x, y) = \/ z lx;—» |2. Theng is a distance
i=1

function in H’ and (H’, g) is isometric to the Hilbert space H.
6.5. Let P be the set of all bounded sequences {x;}i>1 (x;€E,). If xeP, yeP, x = {x;},
y = {»;} put g(x, ») = sup | x; — y; |. Then g is a distance function in P.

In the following exercises 6.6.—6.12, a and b are points of a metric space P, and 4, B and C are
non-void point-sets embedded into P.

6.6.* |o(a, A) —e(b, ) | = e(a, b).

6.7. o(4, B) = o(a, A) + o(a, B).

6.8. d(4,C) =d(A, B) +d(B, C).

6.9. The inequality o(4, C) < o(4, B) + o(B, C) need not hold.

6.10. If d(4) < oo, then for every point a there is a number d (0 < § < ) such that x € 4
implies o(a, x) < 4.

6.11. If there is a point a and a number § (0 < § < ) such that x € 4 implies g(a, x) < 6, then
d(A) < oo,

6.12. d(A, B) < « if and only if both 4 and B are bounded.

6.13. Let P and QO be metric spaces; let 4 = P, B < Q. Then d(4A%XB) = \/(d(A))z +(d(B))?

§ 7. Convergence

7.1. If {x,} is a sequence of real numbers and if x is a real number, then the symbol
x, — x indicates that for every ¢ > O there is an index p(e¢) such that n > p(e)
implies | x, — x| < &. This is a particular case (P = E,) of the following definition:

Let P be a metric space. Let {x,} be a point sequence in P, i.e. a sequence, the
terms of which are points of the space P. Let x be a point of P. Then the symbol
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x, — x indicates that for every & > O there is an index p(g) such that n > p(e)
implies g(x,, x) < &. In other words

x, — x ifand only if o(x,,x) > 0.

We write also lim x, = x instead of x, = x; more definitely we write x, — x for
n— oo, or lim x, = x. We say that x is a limit of the sequence {x,}.

n- o
If x, » x and x, — y, then 0 =< o(x, y) < o(x,, x) + ¢(x,,¥) = 0, hence ¢o(x, y) =
= 0 and hence x = y. Thus, a sequence {x,} has at most one limit in the space P.
A sequence {x,} having a limit is called convergent (in the space P); if it has no
limit, it is said to be divergent (in the space P).

7.1.1. If there is an index p such that x, = x for n > p then x, - x.
7.1.2. If x, = x and if {y,} is a subsequence (see 3.1) of {x,} then also y, — x.

7.2. Let P be a given set. Let go; and g, be two distance functions in P, i.e. two
finite functions on P x P having properties [1], [2] and [3] stated at the beginning
of section 6.1. Dlig to the distance function ¢, P is a metric space, which will
be denoted for clarity (P, ¢,); due to the distance function g,, P is a metric space,
which will be denoted by (P, g,).

We say that the distance functions g,, ¢, are equivalent if

x,— x in (P, 9,) if and only if x,—> x in (P, ¢,).

As an example consider. the set E,,. For x = (X, X2, .0 Xp)s ¥ = (V15 V2s «ovs Ym)
put
g < 1/p
Qp(x’ ,V) = (Z | x; — Ip)
=1

where p is a real number greater than 1. For p = 2 we obtain the distance function
with which the set E, was called the m-dimensional euclidean space. We shall
prove that g, is a distance function for every p > 1.

Let us begin with the following remark: If «, g, b are real numbers, 0 < a < 1,
a=0and b = 0 then
ab' " saa+ (1 —a)b. )

Proof: (1) is evident for a = 0 and for b = 0. Let a > 0, b > 0. The function
() = 1" — at + o — 1 has the derivative ¢'(f) = «[(1/£)! ™% — 1] in the interval
E[0 < t] and hence 0 < t < 1 implies ¢’(¢) > 0, r > 1 implies ¢'(f) < 0; as ¢(1) =
t

= 0 we obtain the implication 0 < => ¢(r) < 0, consequently ¢(a/b) < 0 and
hence (1).
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Now, we are going to prove that for real x;, y; and p > 1 the so caled Hdlder
inequality holds:

i;lxiyi ] < (i;l X; |p)1/p ) (igl| v Ip/(p-n))(p-n/p' )

Of course, it is sufficient to prove this assuming x; = 0, y; = 0 with not every

x; = 0 and not every y; = 0. Then (2) may be obtained by (1), putting

1 xP pl(p—=1)
-1
Y. xf DN

i=1 i=1

and adding for 1 £ k £ m.
Inequality (2) yields the so called Minkowski inequality

(§1| xi+ylf)r s (gxl x; P)P 4 (.;1| il7)e. 3

m m
To prove (3) we may, again, assume x; 20,y, 20, Y x; >0, Y y; > 0. Under
i=1 i=1

this assumption let us write the formula ¥, obtained from (2) by replacing y; by
(x; + y)P~! and preserving x;; then, write the formula ¥, obtained from ¥, by
changing the letters x and y. We obtain (3) by adding ¥, and V,.

Now, we see easily that (for any p > 1) ¢, is a distance function in E,,. The sole
less obvious inequality was 0,(x%, 2) < 0,(x%, ) + ¢,(», 2); this is, however, “the
inequality (3), where we write x; — y; instead of x; and y; — z; instead of y;. If we
define the relation lim (X, , Xp25 -+ +» Xum) = (X1, X2, ..., X,») by the distance function g,

n=*o

we verify easnly that this relation holds if and only if lim x,; = x; (in the ordinary

n— o
sense) simultaneously for every 1 < i < m. Thus, all the distance functions g,
are equivalent.
7.3. If {x;}7 is a sequence of real numbers such that | x; | < 1/i for every i, the
series Y, x7 converges; thus, {x;} is a point of the Hilbert space H. We denote by U
i=1
the set of all {x;} eH such that | x;| < 1/i and call it the Urysohn space; the

distance function in U is, by 6.3, determined by the inclusion U = H.

730, If x, = {x,}i21 €U, y = {y:;}i21 € H then lim x, = y if and only if lim x,; =

= y, for every index i.*)

Proof: 1. Let x,— y. For every ¢ > O there is an index p such that o(», x,) < ¢

*) The last equality evidently yields | y; | < 1/i, i.e. y € U.
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for n > p. We have o(y,x,) = [ Y (i — %.)* 2 | y; — x,;| and hence n > p
i=1

implies | y; — x,; | < &; thus, x,; = y; for each index i.

IL. Let x,; —» y; for every index i; then, of course, | y;| = lim | x,; | £ 1/i. Let

o]
us choose an ¢ > 0. Since the series Y. 1/i* converges, there is an index g such

that

i=1

e
Y. 1/i> < €%/8. As 1 £i £ g, there is an index p, such that
i=q+1

€
n>p = I.Yi_xm'|<'ﬁ

Put p = max p;. Then

1<i=q

IIA
IIA

e
q, n>p = I.Vi—xni|<'5‘7a

and hence

7.1.

7.2.

7.3.

n>p=>a(y,X,.)= [Z(yl—xn12+ =z (yn_xm)z]

IR

Exercises

For x = (X3, Xp), V=1, ¥y) Put o0 p)= max |lx;—yl, 0"(x,y) =
1<ism
m

Z | x; —y; |. Then @’ and o~ are distance functions in E, equivalent with each other
i=1
and equivalent with the ordinary distance function in E,,.

Let p be a given real number, p > 1. Let H, be the set of all sequences {x;}? of real numbers
=) oo

such that the series Y, | x; [P converges. For x = {x;}, » = {»} put g,(x,») = (} | x,—
i=1 i=1

—¥;1P)V/?. Then g,, is a distance function in H,,.
Let P and Q be metric spaces with distance functions g, and ¢,. For x; €P, y; € P, x, € Q,
¥2 €0, x = (x1, %), ¥ = 01, 7;) put ep(x ¥) = [ey ey, ¥IP + [02(x2, ¥ 1) V/P (p 2 1),
0"(x, y) = max o{x;, y;). Then gp and ¢” are equivalent distance functions in Px Q (gz is
i=1,
the distance function from 6.2). Regarding these distance functions

(¢, y) = (x,») ifandonlyif x,—>x, yo,—>».

7.4.% Let S be the set of all sequences {x;}T with real terms. For x = {x;}, ¥ = {y;} put

0

, 1 | Xy =Y |
X, —_—
0'(x, y) = "}:l i —"

1
e"(x, ») =inf(— + max | x; —y; l)
n 1<izn
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Then @’ and @” are equivalent distance functions in S. If x,, = {x }, 1 then, regarding these

distance functions, we have x, — x if and only if hmx = x; (in the ordinary sense)
n—+ow
simultaneously for every i.

§ 8. Closure of a point set. Open and closed sets

8.1. Let P be a given metric space. Let 4 = P. Put
A =E[xeP,o(x, A) = 0].
The set A is called the closure of the point set 4, more precisely, the closure of 4

in the space P.
The following formulas are evident

0=0 )
Ac A ¥)

Further, one has: L
A c B implies Ac B 3)

Proof: As A = B we have evidently o(x, A) = ¢(x, B) for every point x. Thus,
we obtain the following sequence of implications

xe,:f::-g(x,A) =0=>Q(x,B)=0=>xe§.

Further, we have -
AUB=AUB. C))

Proof: By (3), Ac AUB, Bc AU B. Hence, if (4) does not hold, then there
isapoint xe AU B — (4 U B). Since xe P — A, we have g(x, 4) > 0 and similarly
o(x, B) > 0; thus, there is an ¢ > 0 such that o(x, 4) > ¢, o(x,B) > ¢ If ye
€ A v B, we have either ye 4 and hence ¢(x, y) 2 o(x, 4), or ye B and hence
o(x,y) = o(x, B). Consequently, y e 4 U B implies o(x, y) > ¢ and hence g(x, 4 U
U B) = ¢ > 0. This is a contradiction, since xe 4 U B.

Formula (4) yields by induction for m = 1,2, 3, ...

4. &)

Cs

U4 =

i=1 4

1

8.2. 8.2.1. The closure A of a point set A is the set of all limits of convergent sequences,
the terms of which are points of A.

Proof: 1. Let xe 4; thus, g(x, A) =0 and hence forn=1,2,3, ..., o(x, 4) < 1/n
and consequently, there is a point x,€ A such that g(x, x,) < 1/n. Obviously
X, = X.
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II. Let x, € A4, x, » x. For every n, o(x, A) £ o(x, x,) = 0 and hence o(x, 4) = 0,
ie. xe A.
Further, we have

o(x, 4) = e(x, 4). (6)
Proof: 1. If ye A, we have y € 4 and hence g(x, y) = o(x, 4). Hence, o(x, A) =
= inf o(x, y) Z o(x, A).
yeA

II. Let ye A. By the preceding theorem there is a sequence {y,} such that
Yn€A, y,—y; we have o(x, 4) = o(x,y,) = o(x,y) + ¢(¥, ») = e(x, ¥). hence
o(x, 4) £ o(x, ). Consequently o(x, 4) < inf o(x, y) = o(x, A).

yeA .

By (6) and by the definition of closure we obtain

A=4
or, in words: the closure of the closure of a point set A coincides with the closure of A.
8.3. A point set 4 (embedded into a space P) is said to be closed, more precisely,
closed in P, if A = A. Hence:
8.3.1. ) and P are closed sets.

By the definition, we obtain easily:

8.3.2. Any one-point set is closed.

By 8.2.1 it follows that

8.3.3. A point set A is closed if and only if
x,€A4, xeP, x,—»x imply xeA

or, in words: if and only if A contains the limit of every convergent sequence, the terms
of which are points of A.

By (5) it follows that
8.3.4. The union of any finite number of closed sets is a closed set.

8.3.5. The intersection [\ A(z) of closed sets A(z) is a closed set, the number of the
zeC

members A(z) being finite or infinite.
Proof: Put B = [ A(z). We have B = A(z) for every z e C, hence, by (3), B = A(z);
zeC —
as the sets A(z2) are closed, we have A—(z) = A(z). Thus, B c« A(z) for every zeC
and hence B = [ A(z), i.e. B c B. Consequently, by (2), B = B.

zeC
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8.4. The closure A of a point set A is the least closed set containing the set A.
Proof: 1. A > A by (2); A4 is closed by (7).
II. Let F be a closed set, A = F. By (3), F o 4; as F = F, we obtain F > A.

8.5. A point set 4 (embedded into a space P) is said to be open, more precisely,
open in P, if P — A is closed.

Consequently:

8.5.1. 0 and P are open sets.

By analogous theorems of section 8.3, we obtain (see ex. 1.8) the following
theorems.

8.5.2. The intersection of any finite number of open sets is an open set.

8.5.3. The union |J A(z) of open sets A(z) is an open set, the number of the members
zeC

A(2) being finite or infinite.

8.6. Any open set G = P such that ae G is called a neighbélrhood of the point a
(more precisely, a neighborhood of a in P). A neighborhood of a point set A = P
(more precisely a neighborhood of 4 in P) is any open set G = P such that 4 = G.
Thus, the neighborhoods of a point a coincide with the neighborhoods of the
set (a).

Let ae P. Let re E;, r > 0. The set

E[xe P, o(a, x) < r]

will be denoted Q(a, r), more precisely Qp(a, r). This is an open set.

Proof: Let M = P — Q(a, r). We have to prove that M is a closed set. Let
x, € M, x,— x. It suffices to prove that x e M. Since x,e M, o(a, x,) = r. We
have ¢(a, x) + o(x, x,) = o(q, x,). Since g(x, x,) > 0, we obtain g(a, x) = r, i.e.
xeM.

Since a € Q(a, r), the set Q(a, r) is a neighborhood of a. It is called the spherical
neighborhood of the point a with radius r.
Let A< P. Let re E;, r > 0. The set

E[xeP, o(x, A) <]

will be denoted by (4, r); more precisely, 2p(4, r). We evidently have 2[(a), r] =
= Qa, 1), Ac AcQ4,r), AA, r) = 4, r) [see (6)]. We see easily that
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QA,r) = U Qx,r),
xe€d
consequently, the set (4, r) is open, and hence it is a neighborhood of the set A.
It will te termed the spherical neighborhood of the set A with radius r.
Let A = P. A point a € P will te called an interior point of A (with respect to
the space P), if there is an r > 0 such that Q(a,r) = A (then, of course, a€ A).

8.6.1. A point set A is open if and only if each of its points is an interior point.

Proof: 1. Let A be open. Choose a point ae A. The set B =P — A is closed,
i.e. B=B, and hence ae P — B. Hence, the number r = g(a, B) is positive.*)
Evidently, Q(a, r) = A.

11. Let every point x € A be an interior point. We may associate with every x € A
a positive number r(x) such that Q[x, r(x)] = A. We have
A=U®<cUQxrx) <4,

xeA x€A
hence
A= U Qlx, r(x)],

X€A

and consequently A is a union of open sets and hence open.
Many authors use the term ‘“‘neighborhood of ae P” for every U = P (open
or not open) such that a is its interior point. In this, more general, sense, the set

ElxeP, o(a, x) £ r],

(r given, a € P) is a neighborhood of the point a. It will be denoted by Qa, r).

8.7. Let P be a metric space and let Q be a point set embedded into P. By 6.3,
Q is also a metric space. A point set 4 embedded into Q is also embedded into P.
In the following, if 4 = Q, the symbol A denotes the closure of 4 in P.

8.7.1. The closure of A in Q is equal to Q N A. Actually, this closure equals
E[xe Q,0(x,4A) =0 = Q nE[xeP,o(x, ) =01=0n 4.

8.7.2. The set A = Q is closed in Q if and only if there is a closed set F in P such
that A= Qn F.

Proof: 1. Let A be closed in Q. Then A coincides with its closure in Q, i.e. 4 =
=0 n A Ais closed in P.

Il. Let A=Q N F, F=F. We have 4 c F and hence 4 c F by (3). Thus,
AcQnAcQnF=Aand hence 4 = Q0 A

*) If B =0, we have g(a, B) = » and £2(a,r) < A for every r > 0.
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The following two corollaries follow easily by 8.7.2:

8.7.3. If aset A = Q is closed in P, then it is closed in Q.

8.7.4. If aset A = Q is closed in Q and Q is closed in P, then A is closed in P.

8.75. A set A = Q is open in Q if and only if there is a set G open in P such that
A=0nG.

Proof: 1. Let A be open in Q. Then Q — A is closed in Q and hence there is
a closed F in P such that Q — A = QN F, hence 4 = Q n (P — F). The set
P — Fis open in P.

II. Let G be open in P and let A = Q@ N G. The set P — G is closed in P and
Q—-A=0n(P—-G). Thus, Q — 4 is closed in Q and hence, finally, 4 is
open in Q.

Theorem 8.7.5 has again two corollaries:
8.7.6. If aset A = Q is open in P, it is open in Q.

8.7.7. If aset A = Q is open in Q and Q is open in P, then A is open in P.

Genéfaﬁy we will give a fixed metric space P and if we simply say that a point
set A is closed (open), we mean closed (open) in P. The sets which are closed or
open in Q < P are sometimes called relatively closed or relatively open. Similarly,
the closure 4 of a set A is the closure in P, Q n A is the relative closure.

8.8. Let {4,}7 be a sequence of subsets of a metric space P. We associate with the
sequence {4,} two subsets B and C of P as follows: [1] x € B if and only if there
is a sequence {a,},=. such that a,e 4, for n = m and q,— x; [2] xe C if and
only if there exist indices i; < i, < iy < ... and a sequence {a,} such that a, € 4,,
and a, — x. The set B is termed the lower limit of {4,}, C the upper limit of {4,};
we denote them

B =LimA4, = Lim 4,

C = Lim 4, = Lim 4, .
n—+x
Evidently,
Lim 4, = Lim 4, . 0))
If B = C, we write .
Lim 4, = Lim 4, = Lim 4,. (2

1

Asserting that Lim 4, exists we indicate the validity of (2).
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Exercises

In ex. 8.1—8.8, 4 and B are point sets embedded into a metric space P.
81. A—B< A—B.

82*P_AcP—A

83 P—P—P—A=P—A.

84. If A is closed and B is open, 4 — B is closed and B— A4 is open.

In the exercises 8.5.—8.9, 8.11, A, denotes the sct of all interior points of A. The set A, is called
the interior of the set A.

85 A, =P—P—A.

8.6. A, is the largest open set contained in A.

87. A< B= A, < B,

88. (4N B),=A4,NB,.

89. A,— B, > (4—B),.

In ex. 8.10—8.14, P and Q are given metric spaces, A < P, B< Q, A + (J + B.

8.10. AxB = AXB.

8.11. (AxB), = A,xB,.

8.12. AX B is closed in PxQ if and only if A is closed in P and B is closed in Q.

8.13.* In ex. 8.12 the word closed may be (simultaneously) replaced by the word open.

8.14. To what extent in ex. 8.10—8.13 is the assumption of 4 + (J + B substantial?

8.15. If a e P, r > 0 then the set ?J(a, r) is closed in P. Thus, ?2(a, r)> m, However, it may
occur that !5((1, r) .(_)(a,__r).

8.16.* x € Lim A, means that g(x, 4,) > 0; x € Lim A, means that there is a subsequence {;,}
of {4,} with g(x, 4;) - 0.

8.17. Lim A4, = Lim 4,, Lim 4, = Lim 4,.

8.18. * The sets Lim 4, and Lim A, are closed.

8.19. Let 4, = (a_,,);. if lim a,, exists, then Lim A, = (lim a,). Otherwise Lim A4, == 0.

820.* If iy < i, <iy < .., we have

Lim 4, < Lim 4;, < Lim 4;, < Lim 4,,;

hence,
Lim A4, = Lim 4;_,
if the left-hand side exists.
8.21. One has

Cs
s

A; < LimA, < Lim4, <
1i=n I n

s
Ca
S

n

Cs

N

©
N4, <
n=1 n

1i

§ 9. Continuous mapping. Homeomorphism

9.1. Let P and Q be given metric spaces. The distance function in both of them
will be denoted by g. It will be always evident which one is meant.
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Let f be a mapping of P into Q. Let a € P. We say that the mapping f is continuous
at the point a if
x, > a=f(x,) - f(a).

If a mapping f is continuous at a point @ and if ae M < P, then the partial map-
ping f), is evidently continuous at the point a.

9.1.1. A mapping f is continuous at a point a if and only if for every ¢ > 0O there is a
é(a, &) > 0 such that x € P, g(a, x) < 8(a, €) imply o[ f(a), f(x)] < e.

Proof: 1. Let the condition be satisfied. Let x, —» a. Choose an ¢ > 0 and take
the d(q, €). Since x, — a, d(a, €) > 0, there is an index p(e) such that n > p(e)
implies o(a, x,) < d(a, €). Thus, n > p(e) implies o[f(a), f(x,)] < ¢ i.e. f(x,)—
— f(a). Hence, f'is continuous at the point a.

I1. Let the mapping f be continuous at a point a. Let us choose an ¢ > 0 and
let us suppose that there exist no suitable (a, €). In p'eii"iicular, we cannot put
é(a,e) =1/nforn=1,2,3,... i.e. there is a point x, € P such that g(a, x,) < 1/n,
olf(a), f(x,)] = e. Since o(a, x,) < 1/n we have x, — a. Since o[f(a), f(x,)] = ¢ > 0,
it does not hold that f(x,) — f(a), which is a contradiction.

A mapping f is said to be continuous (without any further determination), if it is
continuous at every point of the space P.

If fis a mapping of a metric space P into a metric space @, f(P) is a point set
embedded into the space Q. If Q' is a point set with f(P) =« Q' = Q then Q' is
a metric space (see 6.3) and fis a mapping of P into Q’. The definition of continuity
of the mapping f obviously does not change, if we take Q' instead of Q.

9.2. Let [ be a mapping of a metric space P onto a metric space Q. A necessary and
sufficient condition for f to be continuous is the following: If A is open in Q, f_,(A)
is open in P. Another form of the condition: If A is closed in Q, f_(A) is closed in P.

Proof: 1. Both forms of the condition are equivalent; see ex. 2.13, write P, Q, 0, A
instead of 4, B, N,, N, respectively.

II. Let /_,(A) be open in P whenever A4 is open in Q. Choose an ae P, ¢ > 0.
We have to prove that there is a 6 > 0 such that xeP, g(a, x) < & imply
e[f(a), f(¥)] < e. Put 4 = Q,[f(a), e]. A is open in Q and hence f_,(4) is open
in P. We have aef_;(4) and hence a is an interior point of f..,(4). Thus, there
is a 6 > 0 such that Qp(a, 8) = f_,(A). If x e P, g(a, x) < 8, we have x € Qu(a, ),
hence x € f_,(A4), hence f(x) € A and hence finally o] f(a), f(x)] < &.

III. Let the mapping f be continous. Let 4 be open in Q. Let aef_,(A4). We
have to prove that a is an interior point of f_,(4). Since aef_,(4) and since 4
is open, f(«) is an interior point of 4 and hence there is an ¢ > 0 with Q,[f(a), ] = 4.
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As the mapping f is continuous at the point a, there is a = d(a, €) > 0 such that
the following sequence of implications holds

xeP, g(a, ») <& = g[f(@),/(x)] < e=f(x) e Q[f(a), &] = f(x)e A= xef_,(4).
Thus, Qp(a, §) = f_,(A).

9.3. Let f be a one-to-one continuous mapping of a metric space P onto a metric
space Q. Then the inverse mapping f_, of Q onto P need not be continuous. An
example: Let P be the set of all natural numbers 1, 2, 3, ...; let @ be the set of all
rational numbers; the distance functions in P and Q are defined by embedding
into E, (see 6.3). By ex. 3.1 there is a one-to-one mapping f of the set P onto the
set Q. It is easy to prove that the mapping f is continuous, while the inverse
mapping f_; is continuous at no point of the space Q.

If f is a one-to-one continuous mapping of a metric space P onto a metric space Q
and if the inverse mapping f_, is also continuous, we say that f is a fiomeomorphic
mapping of the space P onto the space Q. The mapping f_, is then, evidently,
a homeomorphic mapping of the space Q onto the space P.

Spaces P and Q are said to be homeomorphic if there exists a homeomorphic
mapping of P onto Q (or of Q onto P).

A topological property of a space P is any property which is preserved on replacing P
by an arbitrary homeomorphic space. Every isometry is a homeomorphic mapping;
thus, every topological property is a metric property. Of course, the converse is
not true. '

Let o, and g, be two equivalent distance functions in a set P. Let us, for clarity,
speak about the metric spaces (P, ¢,) and (P, g,), as we did at the beginning of
section 7.2. If we assign to every point x € P, considered as a point of (P, ¢,) the
same point x in (P, ¢,), we obtain a mapping f of the space (P, g,) onto the space
(P, 0,). It is easy to see that the mapping f is homeomorphic.

On the other hand, let f be 2 homeomorphic mapping of a space P (with a distance
function ¢,) onto a space Q (with a distance function g,). Let us define a function g,
on the domain P x P as follows:

2o(x, ) = @z[f(x), /)] -

We see easily that g, is a distance function equivalent with g, .

These considerations show that the topological properties are those metric
properties which remain preserved after replacing a given distance function by
an equivalent one.

Evidently, every property of a metric space P, that may be formulated without
explicitly speaking about the distance function, i.e., in terms of convergence in P
only, is a topological property. E.g., the closure 4 of a point set 4 embedded into
a metric space P is a topological notion by 8.2.1. (This is not obvious from the
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definition, however.) Thus, every notion which may be formulated by means of the
notion of closure, is topological, e.g. the notion of closed set (4 = A) and the
notion of open set (P — A = P — A) are topological. The notion of continuous
mapping of a space P into a space Q is also topological, being explicitly defined
only in convergences in P and Q.

9.4. We often meet with spaces in which the definition of convergence is quite
natural, while a distance function is defined artificially. E.g., this was the case in
the space S in exercise 7.4 with both given distance functions.

A simpler and more important example is the set R, consisting of all real numbers
and the symbols o0 and —oo. We define convergence in R as follows: If x,e R
then: [1] x, » co means that for every c e E, there is an index p(c) such that
n > p(c) implies x, > ¢; [2] x, —» —oo means that for every ce€ E,; there is an
index p(c) such that n > p(c) implies x, < ¢; [3] x, = o, where a€ E, means that
there is only a finite number of indices n with x, = o0 or x, = —o0 and that,
rejecting all terms x, which are co or —oo, we obtain a subsequence {y,} of {x,}
such that y, —» « in the ordinary sense.

Now, we shall define a distance function ¢ in R such that the convergence defined
by means of ¢ (see 7.1) coincides with the one just described. This may be done in
various ways; it does not matter which one we choose, since we are interested now
only in topological properties of R.

For xeR, yeR set"

| X y |
o(x, ) = - .
/ N =TT T TF T
kWeput
_® A |
1+ || 7 l+|—-w|

Property [1] (see section 6.1) follows from the fact that for xe R, ye R, x < y
we have
X . y
T+ix] ~T+y0°

Property [2] is evident, property [3] follows immediately from the inequality
lal+|b| 2 |a+ b]|(valid forae E,, b € E,) by substituing a = [x/(1 + | x|)] —
=A@ +1yDL b=DyA +1yDl = [z/1 +1z])] (xeR, yeR, zeR).

Thus ¢ is a distance function in R.

We see easily that the convergence in R defined by means of the distance function g
coincides with the convergence defined above. Consequently, the partial distance
function gg, xg, is equivalent to the ordinary distance function in E, (introduced
in 6.1.). The distance function gg, xg, is called the reduced distance function in E,.
Hence, the space E,; with the reduced distance function (not with the ordinary one)
is a point set embedded into the metric space R.
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A mapping of a set P into the set R was termed a function (see 2.3). If Pis a metric
space, a function f is said to be continuous (at a point a € P), if the mapping f is
continuous (at the point @) in the sense of section 9.1. If the function f'is finite, we
may define continuity by the ordinary or by the reduced distance function in E,.
In the calculus, functions are always finite and continuity is defined by means of
the ordinary distance function in E;.

9.5. 9.5.1. Let P be a metric space. Let f be a function on P. A necessary and sufficient
condition for a function f to be continuous is the following: for every c € E, the sets
E[f(x) > c] and E[f(x) < c] are open (in P).

Proof: 1. Let the condition be satisfied. Let x,e P, ye P, x, — y. We have to
prove that f(x,) - f(»). We shall distinguish three cases:
[1] Let f(y) = . Choose a ce€ E,. Since the set M = E[f(x) > c] is open and

since y e M, there is an & > 0 such that Qu(y, ¢) =« M. As x,— y, there is an
index p such that the following sequence of implications holds:

n > p=o(x, ) < 8= X, €20, 8) = x,€ M= f(x,) > c.

Thus, for every ceE,, therc is an index p(c) = p such that n > p implies
f(x,) > ¢, ie. f(x,) > o q.ed.
[2] Let f(y) = —oo. The argument is similar to case [1].
[3] Let f(»))eE,. Choosean &> 0. The set M, =E[|lf(x) — f(| < ¢l =
x

= E[f(x) > f(») — el n E[f(x) < f(y) + ¢] is open and contains the point y;
hence there is an r > 0 such that o(x,y) < r for xe M,. As x,— y, there is an
index p such that:

n>p=0x,y) <r=x,eM=|f(x) - <e
Thus, for every &> 0 there is an index p(g) =p such that n>p implies
1 f(x) = fO) | < ¢ e f(x,) > f(3), q.ed.

II. Let f be a continuous function. It is easy to prove that the set C =
= E[yeR,y>c] is open in R for every ce E,. Hence, by 9.2, the set f—,(C) =
y .
= E[f(x) > c] is open in P. Similarly we prove that also the set E[f(x) <c] is

x
open in P.

Since
E[f(x) = c] = P — E[f(») > ],

EL/(®) 2 ] = P — E[f(x) < d, )
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the condition in the theorem just proved may be expressed as follows: For every
ceE,, the sets E[f(x) = c] and E[f(x) < c] are closed in P.
X x

Since

E[/(x) = c] = E[f(x) 2 ] n E[f(x) £ ],

@

E[f(x) = o] = N E[f(x) Z n],

n=1

E[f(x) = —] = N E[f(x) £ -], (2

n=1x

E[f(x) < ] = P — E[f(x) = o],
E[f(x) > —0] = P — E[f(x) = — 0],

the sets E[f(x) = ] (c€ R) are closed in P and the sets E[f(x) < ], E[f(x) >

—o0] (and hence the set E[f(x) € E,] = E[f(x) < ] n E[f(x) > —]) are open

in P for every continuous function.

From the calculus, wé are acquainted with many continuous functions. We may
use the theorems just proved to prove easily that some simple sets in the euclidean
spaces are closed or open. E.g., the function f defined on E, by f(x,y) = x*/a* +

+ ¥%/b* is continuous; hence, the ellipse E [x2/a? + y?/b* = 1] is a closed set,
(x,)
its interior E [x?/a® + y?/b* < 1] and exterior E [x%/a® + y*/b® > 1] are open
(x.y) (x,y)
sets; the set E [x?/a® + y?/b® £ 1] is closed, etc.
(x,y)

9.6. Let /' be a mapping of a metric space P into a metric space Q. The mapping f
is said to be uniformly continuous if

x,€P,  y,eP,  o(x,,y,) >0 imply e[f(x,),/(ys]— 0.

Putting y, = ae P for every n we see that every uniformly continuous mapping
is continuous. .

Contir}qigy is a topological notion. Concerning uniform continuity, however,
we can assert that this is a metric notion only: it need not be preserved on replacing
the distance functions in P or in Q by equivalent ones.

As a rule, the term uniformly continuous function is used with finite functions
only (Q = E,), assuming the ordinary distance function in E, (not the reduced one).

9.6.1. A mapping f (of a space P into a space Q) is uniformly continuous if and only
if for every € > 0 there is a 6(¢) > O such that

xeP, yeP,  o(x,y) <de) imply olf(x),f(y)] < e.
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Proof: 1. Let the condition be satisfied. Let x,€ P, y, e P, o(x,, y,) = 0. Choose
an ¢ > 0 and determine the 8(¢). Since g(x,, ¥») = O, there is an index p such that
o(x,, y») < &(¢) for n > p. Thus, n > p implies ¢[f(x,), f/(»,)] < € and consequently

Q[f(xn)’f (y n)] id 0

II. Let the mapping f be uniformly continuous. Choose an & > 0 and aSsume
that there is no suitable (¢). Thus, we may not put §(¢) = 1/n forn = 1,2,3,...,
i.e. there are points x,eP, y,€P such that o(x,,y,) < 1/n, o[f(x,), f(3.)] = e.
Since o(x,, y,) < 1/n, we have o(x,, y,) = 0. Since o[ f(x,), f(y,)] 2 & o[ f(x,), [(y)] >
— 0 does not hold. This is a contradiction.

Exercises

9.1. Let us define a function f on E; as follows: for irrational x put f(x) = 0, for rational x put
f(x) = 1. The function f is continuous at no point x € E;.

9.2. Let us define a function f on E; as follows: for irrational x put f(x) = 0; if m and n are
integers without common divisor put f(m/n) = 1/| n |. The function f is continuous at a point
x € E if and only if x is irrational.

9.3. Let us define a function f on E, as follows: f(0,y) = 0, f(x,y) = ? + yz)/x for x + 0.
The function fis not continuous at the point (0, 0). If 4 is an arbitrary straight line going
through (0, 0), i.e. 4 = E [ax + by = 0] where a € E;, b€ E(, |al+ |h|> 0, the partial

(x,y)
function f,, is continuous at the point (0, 0).
In ex. 9.4—9.5, P is a metric space and 4 and B are point sets embedded into P; f is a mapping of P
into Q.

94. If AU B =P,ae AN Band both the partial mappings f, and fg are continuous at g, then
the mapping fis also continuous at a.

9.5. If AV B =P, both sets 4 and B are closed and both the partial mappings f, and f are
continuous, then the mapping f is also continuous.

9.6. If a mapping f is continuous, then the set E [xeP,y € Q,y = f(x)] is closed in PxQ.

(x,y)

9.7. The characteristic function of a set 4 is continuous if and only if the set 4 is both closed
and open.

9.8. A mapping fis continuous if and only if f(X) < f(X) for every X < P.

9.9. A mapping f is continuous if and only if f-1(Y) < f_,(Y) for every Y < Q.

9.10.* Let A =+ 0. The function g(x, A4) is uniformly continuous.

9.11.* Let d(4) < oo. The function d(x, A) is uniformly continuous.

9.12.* The distance function g of the space P is uniformly continuous in the domain P x P.

In ex, 9.13—9.15, fis a one-to-one mapping of P onto Q.

9.13. A necessary and sufficient condition for f to be homeomorphic is the following: X < P is
closed in P if and only if f(X) is closed in Q.

9.14. In ex. 9.13, the word closed may be (simultaneously) replaced by the word open.

9.15. A necessary and sufficient condition for f to be homeomorphic is the following: X < P
implies f(X) = f(X0).

9.16.  Let P and Q be metric spaces, @ + 0. For x € P, y € Q put f(x, y) = x. Then fis a uniformly
continuous mapping of the space Px Q onto the space P.
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9.17. For x € E| put f(x) = x2. The function [ is continuous, but it is not uniformly continuous.
However, if we replace the ordinary distance function in E, by the reduced one, the mapping f
is a uniformly continuous mapping of the space E, into the space E;.
9.18.* The metric space R is homeomorphic with the interval E[—1 < r =< 1]. We obtain a homeo-
t

morphic mapping e.g. putting f() = 1, f(—w) = —1 and f(t) = /(1 + [t ]) for t € E;.*)

9.19.* Let P be a metric space, let a € P, let f, g be finite functions on P, continuous at the point a.
Then the function, the value of which is given in any x € P by one of the following formulas
(by the same one for each x € P):

| fx) |, max [f(x), g(x)], min [f(x), g(x)], f(x) + g(x), f(x) —g(x), f(x).g(x)
is continuous at the point a. If, moreover, g(a) + 0, the function A, defined for x € E[ye P,
y
g(») + 0] by the relation A(x) = f(x)/g(x), and defined arbitrarily for x e P—E[y P,

g(») + 0] is also continuous at the point a. — The reader should examine how the t:'\eorem
has to be altered, if we do not assume finiteness of the functions f, g.

9.20.* Let g; (i == 1, 2) be a mapping of a metric space P; onto a metric space P;,,; let a; € P,
a, = g(a,), hence a, € P,. Let the mappings g; (i = 1, 2) be continuous at the points g;.
Then the mapping f of Py onto P; defined by

x € Py = f(x) = g,[g;(x)]
is continuous at the point ay .
9.21.* Let f bc a continuous mapping of a metric space P onto a metric space Q. Let 4, < P
(n=1,2,3,...). Then

f(Lim 4,) < Lim f(4,), f(Lim 4,) < Lim f(4,) .
If the mapping f is homeomorphic, then
f(Lim 4,) = Lim f(4,), f(Lim 4,) = Lim f(4,)

and hence Lim f(4,) exists if and only if Lim A, exists.

§ 10. Separated point sets; the boundaries of point sets

10.1. 10.1.1. Let P be a metric space. For arbitrary A; c P, A, = P there are closed
sets Fy,F; such that F\ UF, =P, Ay cF,4; cF,, FinF,n(4,04,)=
= Al N /—iz.

Proof: If Ay = 0, put F, = 0, F, = P; similarly for 4, = 0. Let 4, + 0 + A4,.
If f(x) = o(x, 4,) — o(x, A,) for x € P, the function f'is continuous on P by ex. 9.10.
Consequently, by 9.5, the sets F; = E[g(x, 4,) £ o(x, 4,)] and F, = E[g(x, 4;) =

= o(x, A,)] are closed. Pvideiltly FyUF, =P, Ay  F,, A, < F,. It remains to
prove that F, n F,n(4,v4y) = Ay n A,. First,let xe F, N F,, i.e. o(x, 4;) =
= o(x, A;). If xe A;, we have o(x, 4,) = 0, hence g(x, 4,) = 0 and hence x € 4,.

*) This mapping is an isometry if we take the ordinary distance function in E[—1 < ¢ < 1]
t
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Similarly, xe A4, implies x e Ay. Hence F,nF, n (4, uA4;)c 4, nA;. On the
other hand, l_et xXe Ay n A4,. Then_g(x, ,:1,) = 0 = o(x, A;) implies xe F, n F,.
Hence also A, n 4, <« Fy n F, n(A; U 4,).

10.1.2. Let U be a neighborhood of a closed set A. Then there is a neighborhood V
of A such that V < U.*)

Proof: In 10.1.1 put 4, = A, A, = P — U. Then 4, = 4,, A, = A,. Find F,
and F, by the quoted theorem and put ¥V = P — F,. Thus, the set V is open. We
have FinFn[Au(P—-U)l=A—-U=0,and hence AnF,=0ie AV,
and F, < U. Since F,UF, =P we have V=P — F, c F,, and hence finally
VeF,=F cU.

10.2. Point sets A and B are said to be separated if: [1] A n B = (), [2] both 4 and B
are closed in 4 U B. Since condition [1] yieldsthat 4 = (A W B) — B, B= (4 u B) —
— A, condition [2] may be replaced by condition [2']: both 4 and B are open in
A v B. The property of sets 4 and B being separated is a topological property
(see 9.3) depending on the space 4 U B only, not on the whole space P into which
A v B is embedded.

The following two theorems follow immediately from the definition (see 8.7.3
and 8.7.6).

10.2.1. Two closed disjoint sets are separated.
10.2.2. Two open disjoint sets are separated.

10.2.3. Sets A and B are separated if and only if AN B =0 = B A; otherwise
stated: if and only if [1] x € B implies g(x, A) > 0 and [2] x € A implies o(x, B) > 0.

Proof: 1. Let the sets 4 and B be separated. Then 4 n B = (. The set A4 is closed
in 4 U B; hence, its relative closure in 4 U B, i.e. (4 U B) N 4, is equal to A. Hence
BN Ac An B = (. Consequently BN A4 = (; similarly, 4 n B = (.

II.Let AnB=0=BnA AsBc B, we have AnB=0. As Bnd=0,
we have (AUB NA=ANnAUBnA=ANA=A; ie. the set 4 is equal
to its relative closure in 4 U B, i.e. A4 is closed in 4 U B. Similarly, B is closed in
A v B.

10.2.4. Let sets A and B be separated. Let C ¢ A, D = B. Then the sets C and D
are separated.
*) This property of subsets of metric spaces is termed the normality. An analogous statement
in more general spaces may be false. (Ed.)
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Proof: Cc A, Dc B and hence AN B = implies CnD =4, AnB=0
implies C n D = 0.

10.2.5. Let sets A and B be separated; let also sets A and C be separated. Then the
sets A and B U C are separated.

Proof: An B =0, AnC = imply 4n(Bu C) = y. Since BUC = BUC,
AnB=0,AnC=0imply AnBuC = (.
10.2.6. Let sets G and H be open and let G~ H = 0. Then G n H = U.

Actually, G and H are separated.
10.2.7. Sets A and B are separated if and only if there exist open sets U and V such
that UnV =0,U> A4, V>oB.

Proof: 1. If such sets U and V exist, they are separated. As 4 = U, B = V, also
A and B are separated.

II. Let A and B be separated. By 10.1.1 there are closed F,, F, such that
Ff,UF, =P, F o4, F,oB F,nF,n(AuB =4nB
Put U=P — F,, V=P — F,. Then the sets U and V are open and Un ¥V =
=P—-(FfuF,)=0. If we had xeAn F,, we would obtain xe F; n F, n

N (AU B),hencexe 4 n B n Aand hence x € A n B. We have however, 4 n B = (J.
Thus, AN F, = (}, so that A =« P — F, = U. Similarly, B < V.

10.3. For every A = P denote by B(A4), more precisely Bp(A), the set 4N (ﬁ-— A) (i.e.
the set Efo(x, A) = 0, o(x, P — A) =0]), and call it the boundary of the set A (in

the space P). The notion of boundary is a topological notion. From the defi-
nition it follows:

10.3.1. The set B(A) is always closed. Evidently we always have
B(P — A) = B(A). a

It always holds that
B(A U B) = B(4) u B(B). ?)

Proof: Since A « A v B,wehave P — (A u B) =« P — A and hence P- (Au B)
< P — A. Similarly P — (4w B) =« P — B; moreover, AU B = A u B. Thus

= B(4) U B(B).
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From (2) it follows by induction that

B(U 4) = UB).

We always have
B(A n B) « B(4) v B(B).
Actually by (1) and (2)
B(AnB)=B[P—- (AN B)] =

= B[(P— A) U (P — B)] c B(P — A) L B(P — B) = B(4) L B(B).

From (4) it follows by induction for m = 1, 2, 3, ... that

m m

B(N 4) = U BA).

It always holds that
B(A — B) < B(4) U B(B),
since, by (4) and (1),
B(A — B) = B[A ~ (P — B)] = B(A) U B(P — B) = B(A) U B(B).

We always have
B(4) = B(A).

BA)=An(P-ADHcAnP - 4) = B4).

Formulas (6) and (7) yield
B(A — B) = B(4) U B(B).

The notion of boundary is particularly important in the case of open sets.

10.3.2. If a set A is open, then
B(Ad)=A— A.

Proof: The set P — A is closed, hence P — 4 = P — A and hence
BA) =AAP—-A=AnP—-A)=A4-4A.

10.4.*) Let G, and V, (n = 1,2, 3,...) be open sets. Let S = () G,. Let T =

n=1

*) The so called Menger’s addition theorem (Ed.).
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Let, forn =1,2,3,..., G, > Gpoi1, V, = G,. Then
B(UV)<=UBV)v M,
n=1 n=1

M=SAB(UV)<S-T.
n=1

a0 @ o0

Proof: Put H=B(JV,), M=SnH. As T= |V, and as the set |J 7,
n=1 n=1 n=1

is open, HN T = ¢ and hence M = S — T. Now, it suffices to show that, for

@

every ae H — S there is an index k with ae B(V,). As acH—- S, S=G,,
n=1

there is an index / such that ae P — G,. For every n > h we have ¥, c G, = G,,

hence U V,<G,,.hence U V,<G, and hence aeP — | V,. On the

n=h+1 n=h+1 n=h+1
other hand

aeHc YV,=V,u...uV,u U V,=V,u..u¥V,u U V,

n=1 n=h+1 n=h+1

h
and hence a € |J V,. Consequently there is an index k with aeV,. We have
n=1
acHcP-YV,cP-V,.

n=1

Thus, ae V, — V, = B(V)).

10.5. 10.5.1. Let Q c P, A = P. Then

By(Q nA) = QN By(4). (10)

Proof: By 8.7, Bo(Qn A) = Q@ n(@nA)n(Q — Qn A). By formula (3) in
8.1,Qn_AcA_,Q—QnAcP—Aandhence(QanA)n(Q—QnA)c
cQ0nAnP— A) = 0 n ByA).

10.5.2. Let Q = P. Let a set U, be open in Q. Let a set U be open in P; let Uy = U.
Then there is a set V < U open in P and such that

Up=0nV, BQ(UO) = Q0 nBy(V).

Proof: The sets Uy and Q — U, are open in Q, and U, n (Q — Uy) = @. Thus,
the sets U, and Q — U, are separated, so that there are T and W open in P such
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that TA W =0, T> Uy, W> Q — U,. Since U, is open in 0, there is, by 8.7.5,
aset Gopenin Psuchthat Uy = QN G.Put V=G n Tn U. Thus, theset V < U
is open in P. Since Uy c U, Uy = T, Uy = @ n G, we have U, = @ n V. Since
VeT, Q—Uyc W, Tn W =0 and since the sets T and W are open in P, the
sets ¥ and Q — U, are separated, so that ¥ n (@ — Uy) = ¢ and hence 0 n ¥V <
cQnU, Thus, as Uy=QNV, we have QnV —Qn Ve Qn U, - U,.
We have 0nV —Q0nV=0nF —V)=0nBy(V). Since 0n U, is the
relative closure of the set U, in Q, we obtain, by (9), 0 n U, — Uy = By(Uo).
Thus, Q N Bx(V) = By(Uy). By (10), also @ n Bp(V) > By(Uy).

Exercises

10.1. If sets 4 and B are closed, the sets A — B and B — A are separated.

10.2. A one-point set (4) and a set 4 are separated if and only if o(a, 4) > 0.

10.3.* Let m = 3,4,5,.... Sets Ay, A,,..., 4,, are said to be separated if, for every i, k with
1=i<k=m, A; and A4, are separated. The sets A4, A,, ..., 4, are separated if and

m
only if: [1] they are disjoint, [2] they are closed in U A;. The word “closed” in [2] may
i=1
be replaced by the word “‘open”.

104. Sets A, A,,..., A, are separated if and only if for every n, 1 =n = m—1, the sets
n

U 4; and 4, are separated.

i=1
For A< P, B< P put S(4, B)= A N BU BN 4. The set S(4, B) is called the junction of the
sets 4 and B.

10.5. The junction S(4, B) will not change, if the space P is replaced by a space Q, 4 U B <
Q<P

10.6. S(A, B) = A N B if and only if both the sets 4 and B are closed in 4 U B.

10.7. S[4, S(B, C)] = S[S(4, B), C] does not, in general, hold (the junction is not associative).

108. A= A U B(A).

10.9. A set A4 is closed if and only if B(4) < 4.

10.10. A set A4 is open if and only if 4 N B(A4) = 0.

10.11. B(A) is the set of all the points at which the characteristic function of 4 is not continuous.

10.12. For any closed 4, B[B(A)] = B(A).

10.13. B{B[B(A)]} = B[B(A)] < B(A).

In exercises 10.14 and 10.15 the index i has the same significance as it had in ex. 8.5 and the
following ones.

10.14. B(4)) < B(A).

10.15. [B(A)}, = 4 N [B(A4)], = [B(A)], — A. o

10.16. Let P and Q be metric spaces, let A < P, B < Q. Then B(4xB) = B(A)XB \J A XB(B),
For A < B put S(4) = A N B(A). The set S(A) is called the frontier of the set A4.

10.17. B(A) = S(4) U S(P — A) with disjoint summands.
10.18. S[S(A4)] = S(A).
10.19. B(A) = S(A) if and only if A is closed.
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§ 11. Dense-in-itself and dispersed spaces

11.1. A point a of a metric space P is said to be an isolated point of P if there is a posi-
tive ¢ such that x e P, g(a, x) < ¢ imply x = a. A non-void space P is said to be
isolated, if each one of its point is isolated.

A space P is said to be dense-in-itself if there are no isolated points in P.

Since a point set Q embedded into a metric space P is also a metric space, we need
not define explicitly an isolated point of a (nonvoid) point set, an isolated point
set, or a dense-in-itself point set.

Evidently, an isolated point a of a set 4 < P is an isolated point of every the B
such that ae B = A. Consequently, a union U A(z) is dense-in-itself whenever
every A(z) is dense-in-itself.

11.1.1. A set A < P is dense-in-itself if and only if the set A is dense-in-itself.

Proof: 1. Let A be dense-in-itself. Then 4 = (J and hence A + . If 4 is not dense-
in-itself, there is an isolated point a € A. There is an ¢ > Osuch that x € 4, g(a, X) < ¢
imply x = a. Since ae 4, we have g(a, A) = 0 and hence there is a point be A4
with g(a, b) < ¢. As A = A, we have b = a and hence a € A. Since a is an isolated
point of the set 4 > A and since a € 4, a is an isolated point of A. This is a con-
tradiction.

II. Let the set 4 be dense-in-itself. Then 4 + @ and hence A 3 0. If the set 4
is not dense-in-itself, it has an isolated point a. There is an ¢ > 0 such that x e 4,
o(a, x) < & imply x = a. As the set 4 has no isolated points and as ae 4 < 4,
there is a point b € 4 such that a =+ b, o(a, b) < }e. Since b € A, we have o(b, 4) = 0.
Hence, there is a point ce A with o(b, ¢) < ¢(a, b). We have g(a, ¢) < ¢(a, b) +
+ a(b, ¢) < 20(a,b) < & ce A and hence ¢ = a. This is a contradiction, since
o(b, ¢) < ¢(a, b).

Let P be an arbitrary metric space. If there is no dense-in-itself subset 4 < P,
we put K = (J. Otherwise, K is the union of all dense-in-itself A < P. By the remark
above, the set K is dense-in-itself. Thus, it is the largest dense-in-itself set embedded
into P. The set K is also dense-in-itself, hence K = K so that K = K; this holds, of
course, with K = ), too. The set K is called the kernel of the space P. Again, we
need not define explicitly the kernel of a point set.

A set A < P is termed by many authors perfect in P, if: [1] it is dense-in-itself,
[2] it is closed in P. Notice, that the property [1] depends on the set 4 only, while [2]
depends on the space P.

Many authors consider (J as a dense-in-itself set.

11.2. A space P is said to be dispersed, if its kernel is void, i.e. if P does not contain
a non-void dense-in-itself set, i.e., if for every 4 % 0, 4 = P, A has an isolated point.
We need not define a dispersed point set Q < P.
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If a space P is dispersed, then evidently every 4 < P is dispersed. Evidently (J
and every isolated set is dispersed. Obviously no (nonvoid) set is simultaneously
both dense-in-itself and dispersed.

11.2.1. If sets A = P and B = P are dispersed. then the set A L B is also dispersed.

Proof: On the contrary, let there be a dense-in-itself set S = 4 U B. As the set B
is dispersed, it is not the case that § = B and hence A n S = (J; similarly BN S =+ 0.
Since 0 + AN S < A and since A is dispersed, there exists an isolated point a
of the set 4 N S. There is an ¢ > 0 such that xe 4 n S, ¢(a, x) < ¢ imply x = a.
As a e S and as S is dense-in-itself, there is a point b € S such that b = a, g(a, b) < e.
Thus, b is not contained in 4 N S and hence be Bn S.

Thus, the set B N S N Q(a, €) is non-void; since B n S is dispersed the set BN S N
r Q(a, €) has an isolated point c. Hence, there exists an # > 0 such that xe Bn
N SN Qa,e), olc,x) <y imply x = c. As ce S and as S is dense-in-itself, there
is a point de S such that d % ¢, o(c,d) <n,0(c,d) < ¢ — o{a, ¢), d + a (since
ceQa, c), we have ¢ —o(a,c) >0). As deS=UANS)u(BnS), we have
either deAn SordeBn S. But de A n S does not hold, as ¢(a, d) = e(a, ¢) +
+ o(c,d) < &, d # a; also de B n S does not hold, for o(c,d) < n, d + c.

Exercises

11.1. A point g € P is isolated if and only if the set (a) is open.
Let Aj designate the set of all isolated points of a point set 4; by 4, we denote the set 4 —Aj.

11.2. The set A4, is closed in A.
11.3. A4 < B implies 4, < B,.

The set (f_i)h is denoted by A’ and called the derived set of the set A. The points of the set A’ are
terrned, as a rule, the accumulation points (or cluster points, or limit points) of A. While 4, depends
only on the space 4, A’ depends also on the space P = A.

114. A=AV A"

115. A, =AN A"

116 A =A—4;.

11.7. (AVB) =A4"UB.

11.8. The set A’ is always closed.

119. A’ is the set of all limits of convergent one-to-one sequences {x,} such that x, € 4.
m

11.10. The set A4,, consisting of zero and of all the numbers of the form Z 1/n; (myny, ...,
i=1

n, =1,2,3,..)) is dispersed and closed in the space E;. The set 4; — (0) is isolated. We
a
have A, 1 = (Ap41)y = A,,. The set |J 4,, is dense-in-itself and is not closed in E,.
m=1

11.11. Let 4 = B < A. The set B is dense-in-itself if and only if the set 4 is dense-in-itself.
11.12. If a set A4 is dense-in-itself, the set A’ is also dense-in-itself.
11.13. If a space is dense-in-itself, then each of its open nonvoid subsets is dense-it-itself.
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11.14. A space P is isolated if and only if every function on P is continuous.
In the following exercises, P and Q are two given metric spaces.

11.15. Let a € P, b € Q. The point (q, b) is isolated in Px Q if and only if the point a is isolated
in P and the point b is isolated in Q.

11.16. If P is dense-in-itself, then P x Q is dense-in-itself.

11.17. If P x Q is dense-in-itself, then either P or Q is dense-in-itself.

11.18. If P and Q are dispersed, then P x Q is dispersed.

11.19. If P += g + Q and if P X Q is dispersed, then P and Q are dispersed.

§ 12. Dense and nowhere dense sets. Sets of the first category

12.1. Let P be a metric space. A point set 4 = P is said to be dense, more precisEly,
dense in P, if A = P, i.e. if o(x, A) = O for every point x € P. The density of a set 4
is a topological property (similar to the property of being closed or open) depending
on the “position” of 4 in P. This contrasts with the property of being dense-in-itself
which depends on the “form” of 4 only.

The following theorem is obvious by the definition:
12.1.1. If A = B = P and if A is dense, then B is also dense.

12.1.2. A set A = P is dense if and only if A G = @ for every open G =* ().

Proof: 1. Let A = P. Let G be open and let A N G = 0. Then 4 = P — G, hence
P=AcP—-G=P -G and hence G = 0.

II. Let A + P. The set G = P — 4 is non-void and open, and we have G + § =
=A4AnG.

12.1.3. Let A be a dense set, let G be an open dense set. Then the set A n G is dense.

Proof: Let I' + () be open. The set G n I is open and nonvoid, since G is dense.
Hence, as A is dense, we have AN G N T + @. Thus, An G T %0 for every
open I' + ( and hence 4 N G is dense. ’

12.2. A set A = P is said to be nowhere dense, more precisely, nowhere dense in P,
if the set P — A is dense. It is again a topological property depending on the position
of the set A4 in the space P, in contrast with dispersedness which depends on the form
of A4 only.

12.2.1. If A = B = P and if B is nowhere dense, then A is nowhere dense.

Proof: AsP—B=Pand A < B,wehave P — A > P — Band hence P — 4 >
SP—-B=P Hence P— A=P.
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From the definition follows immediately:

122.2. If A = B (e.g. if A = B c A), and if the set A is nowhere dense, then the
set B is also nowhere dense.

12.2.3. A set A = P is nowhere dense if and only if every open G + () contains an
open I' = @ with AnT = (.

Proof: 1. Let 4 be nowhere dense; then, P — A is dense. If G is a non-void open
set, the set I' = G N (P — A) is non-void. The set I' is open and 4 " I" = 0,

II. Let A not be nowhere dense; hence, P — 4 is not dense. Then there is an open
non-void set G with G n (P — A) = 0, i.e. G = A. Let I be a non-void open subset
of G. We have to provethat ANT £ 0. If AnT = (J, then A <« P — I and hence
I'cGcAc P—T =P —TI; consequently I' = (J. This is a contradiction.

12.24. Let A; 1 £i<m; m=1,2,3,...) be nowhere dense sets. Then the set

U 4; is nowhere dense.
i=1

Proof: This is evident for m = 1. If the statement holds for some m and if sets

m

A; (1 £i £ m + 1) are nowhere dense, then the sets |J 4; and 4,,,, are nowhere

i=1

dense and hence the sets P — |JA4; =P —
i=1

;and P — A4,,, are dense. As

Cs
bN]

-~
—

m+1
the set P — A,,, is open, the set (P — UA)n(P —A4,3,) =P - U A4, =
i=1
m+1 m+1

= P — |J 4, is dense (by 12.1.3) and hence the set |J A4, is nowhere dense.
i=1

i=1

_'_[Csu

-

12.3. A set 4 < P is called a set of the first category, more precisely, of the first

category in P, if there is a sequence {4,} of nowhere dense sets such that 4 =

= U 4,. This is again a topological property of the position of 4 in P. A set which
n=1

is not of the first category is termed by many authors a set of the second category.

A set A such that P — A is of the first category is said to be residual.

123.1. If A ¢ B < P and if B is a set of the first category, then A is a set of the first
category, too.

U 4 n B, and the

n=1

Proof: B = |J B, with nowhere dense sets B,. Hence, 4 =
n=1

sets A N B, = B, are nowhere dense.
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The definition yields immediately:

12.3.2. Every nowhere dense set is a set of the first category.

12.33. If A, (n = 1,2, 3, ...) are sets of the first category, U A, is also a set of the

n=1

first category.

Proof: We have 4, = U A,; with nowhere dense A4,;. By 3.5 there is a one-to-one

sequence {(n, i) }i=1 consnstmg of all the pairs (n, {). We have 4 = U A,,,‘,,‘

12.4. Let a point set Q be embedded into a space P. Then (see 6.3) Q is also a metric
space. A point set 4 embedded into Q is also embedded into P. The set 4 may be
dense in Q, dense in P, nowhere dense in Q, nowhere dense in P, of the first category
in @, of the first category in P.

12.4.1. The set A = Q is dense in Q if and only if A > Q and if and only if A = Q.

Proof: By 8.7.1, A is dense in Q if and only ifQnA=0.0n 4= Q implies
QcAcQcAandhence A=0and 0nAd=0n0=0.

12.4.2. If a set A = Q is dense in P, then A is dense in Q and Q is dense in P.
Proof: As A = P, we have A o Q, i.e. A is dense in Q. Q is dense in P by 12.1.1.

12.4.3. If a set A = Q is dense in Q and if Q is dense in P, then A is dense in P.
Proof: A= Q, Q0 = P and consequently 4 = P.

12.44. If a set A = Q is nowhere dense in Q, then A is nowhere dense in P.

Proof: Let G be a non-void set open in P. We have to prove that there is a non-
void open ' =« G with ' =+ 0 = AnT. Since A = @, in the case QNG = ¢}
we may choose I' = G. Thus, let Q N G =+ (). The set @ n G is open in Q and non-
void. Since A4 is nowhere dense in Q, there is a non-void 4 = Q n G open in Q
such that 4 &+ (J = 4 n A. As 4 is open in Q, there is a set H open in P such that
A=QnNnH Put I' = Gn H. The set I' is open in P and we have I' = G. Since
AcQnG, A=Qn H, we have 4 = @ n T, and hence I' % (), since 4 + 0.
Since AcQ,4=QnTl,wehave AN =And=0.

124.5. If A < Q is a set of the first category in Q, then it is a set of the first
category in P.
0

Proof: A =) A, with 4, nowhere dense in Q and hence nowhere dense in P.
n=1
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Exercises

12.1. A dense subset 4 of P contains every isolated point of P.

12.2.* A set A is dense in P if and only if for every x € P there exists a sequence {x § with x, € A
and x, > x.

123.* If 4 is dense in P and if G is open in P, then 4 N G is dense in G.

12.4. If A4 is dense in a space P, then A is dense-in-itself if and only if P is dense-in-itself.

12.5.* A finite set A is nowhere dense in a space P if and only if there is no isolated point of P in A.

12.6. If A is nowhere dense in O, then A N Q is nowhere dense in Q.

12.7.* If a set A is either closed or open or nowhere dense, then the set 3(A4) is nowhere dense.

12.8. 1If the sets B(A4) and B(B) arc nowhere dense, then the sets B(4 U B), B(4 N B), B(A— B)
are nowhere dense.

129. If G is an open set and if 4 is a nowhere dense set, then 4 N G is nowhere dense in G
and 4 N G is nowhere dense in G.

12.10. Let 4 < P be a dispersed set. Let P be dense in itself. Then A is dispersed in P.

12.11. If A and B are separated sets, then the sct 4 N B is nowhere dense.

12.12. No set of the first category in P contains an isolated point of P.

12.13.* A countable set A4 is a set of the first category in P if and only if it contains no isolated
point of P.

12.14. If A is a set of the first category in @, then 4 N @ is a set of the first category in Q.

12.15. If G is an open set and if A4 is a set of the first category, then the set 4 N G is of the first
category in G and the set 4 N G is of the first category in G.

In the following exercises, P and Q are two metric spaces, 4 < P, B < Q.

12.16. If A is dense in P and if Bis dense in Q, then 4 X B is dense in P X Q.

12.17. If P + ) + Q and if A X B is dense in P X Q, then A is dense in P and B dense in Q.

12.18. If A is nowhere dense in P, then 4 X B is nowhere dense in P X Q.

12.19. If 4 x Bis nowhere dense in P x Q, then either A4 is nowhere dense in P or B is nowhere dense

in Q.

§ 13. G;-sets and F,-sets

13.1. A point set 4 embedded into a metric space P is said to be Ga (or a G;-set),

more precisely G;(P), if there exist open sets 4, = P such that A= ﬂ A,. Moreover,
n=1
in such a case there are open sets G, = P such that A = n G, and G, > G, ; it
n
suffices to put G, = ) A4;. The notion of G;-set is a topologlcal notion.
i=1

Obviously:
13.1.1. Every open set A is G; (it suffices to put 4, = A).

13.1.2. If 4, (n = 1, 2,3, ...) are Gy-sets, the set () A, is also G;.
n=1

Proof: There are open A,; such that A4, n A,;. By 3.5 there exists a one-to-one

=1 ©

sequence {(%, i\)}ez of all the pairs (n, i). We have N 4, n A
n=1
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13.1.3. If A and B are Gg-sets, the set A U B is also G;.
Proof: There exist open sets 4, and B; such that 4 = N 4,, B= () B;. If
n=1 i=1

{(ny, i)}i=1 is again a one-to-one sequence of all the pairs (n, i), then, as 4, U B;
are open, it suffices to prove that

AUB=)(4, v B,).
k=1
The left-hand side is evidently a subset of the right hand side. Let x € ) (4,, v
k=1

U B,). If x does not belong to 4 U B, we have neither xe 4 = [ 4, nor x e () B;;
n=1 i=1

thus, there are indices n and i such that neither x € 4, nor x € B; and hence x does
not belong to 4, U B;. This is a contradiction, since there is an index k with n = n,
and i = i, and xe 4,, v B,,.

13.2. Every closed set A is Gs. Moreover, for every closed set A there are open sets G,
such that

s

A=

Proof: Put G, = Q(4, 1/n) = E[o(x, A) < 1/n]. By 9.5 and by ex. 9.10, the sets G,
are open. (This also holds for A4 =xﬂ since then G, = (J.) Moreover, the sets E[Q(X, A) =

< 1/n] are closed and hencc by 8.4, G c E[Q(x, A) £ 1/n] and hence A c G c
<G, cG,, L so that 4 < QG = an ItremamstobeprovedthatA = ﬂlG

If xe n G,,, then g(x, A) < 1/n for every n, hence g(x, A) = 0 and hence finally
XeA= A.

©
= n C_"m Goey © G,
=1

1

13.3. A point set A embedded into a metric space P is said to be F, (or a F,-set), more

precisely F (P), if there exist closed sets A, = P such that 4 = |J 4,. Moreover,
© n=1

in such a case there are closed sets F, P such that A= \J F,, F, < F,,,; it suffices

n=1

n
to put F, = |J A4;. The notion of F_ -set is a topological notion.
i=1

133.1. A set Ais F, if and only if P — A is G,. In fact,

a=Udy=P-d=UP-4),
n=1

n=1

= Falh:='A = cj(P‘— L&).
n=1 n=1
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Thus, the preceding theorems yield:

13.3.2. Every closed set is F,.

a0

13.33. If A, (n = 1,2,3,...) are F,-sets, then the set \J A, is also F,.

n=1
13.34. If A and B are F -sets, then the set A~ B is also F,.
13.3.5. Every open set is F,.

13.4. Let f be a mapping of a metric space P into a metric space Q. Let C be the set
of all the x € P at which the mapping f is continuous; put D = P — C. Then C is G4(P)
and consequently D is F (P).

Proof: 1t is easy to see that C is the set of all the x € P having for every n
(=1,2,3,...) a neighbourhood G (in the space P) such that

y€G, zeG = olfO) ] < - M

Denote (for n = 1,2,3,...) by U, the system of all sets G open in P having the
-]
property (1). Then, I', = |J X are open sets inP and C = [\ I', so that C is
XeWU, n=1
G,(P).
13.5.*) Let A = B < P. Let A be G and let B be F,. Then there exists a set C = P
such that: [11 Cis G4, [2] Cis F,, [3] A = C < B.
@ @
Proof: We have A = | G,, B = | F, where the sets G, are open and the sets F,
n=1 n=1

closed. Let us define recursively the sets H, and K, as follows:

n+1
H =G, K, =G, nF,, H, =K, uNG,
i=1
‘a+1
Kyyy=H,y 'l_JlFr m
Put
<) - ]
H=NH, K=UK,. 2
n=1 n=1

*) From the statement of the theorem we obtain: if 4, 4, are two disjoint subsets of P, both
of them G, F_, or both of them there are C;, C, which are both G5 and F, such that C; " C, = 0,
A< Cili=1,2).
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We may prove by induction that the sets H, and K, are both G; and F, so that
the set H is G, and the set K is F,. Thus, it suffices to prove that

Ac H=Kc B.
By (1) we have
K, < H,. 3)

n+1

Moreover, n G, c ﬂ G; = H, and hence

i=1

Hy,yy < H,. @)

nt+1

Finally, K, = U F, c U F;, K, = H,,, and hence
K,,i o K,. (%)

I. Let xe A. Then we have x € G, for every i, hence, by (1), x e H, for every n,
hence x € H. Consequently 4 = H.

II. Let .x € K. Then there is an index m such that xe K,,. By (1), K,, = U F;,
hence x e UF B. Hence, K < B.

i=1

III. Let x € K. Then there is an index m such that x € X,,. Thus, by (5), n = m
o]
implies x € K,,. Thus, by (3) n = m implies x € H,, so that, by (4), xe ) H, = H.
i=1
Hence, K < H.

n+1

IV. Let er K. Then, for every n, xe H,,, — K, < nG Hence xenG
=1

=Ac B= U F,, so that there exists an index m such that X€ U F,. Smce also

n=1 m n=1

x€ H,,, we have xe H,n | F, = K,,, which is a contradition. Thus, H — K=(J,
n=1
ie. H=K.

13.6. Let Q by a point set embedded into a metric space P, so that Q is also
a metric space.

13.6.1. A set A = Q is G4(Q) if and only if there is a set B such that [1] A =
= Q N B, [2] B is G4P).

Proof: Let A be a G4(Q)-set. Then 4 = ) 4, with A, open in Q for every n.

n=1
By 8.7.5 there exist sets B, open in P such that 4, = Q n B,. It suffices to put

B =B,

n=1
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II. Let B be G4(P). Then B = () B, with B, open in P for every n. The sets

n=1

Q N B, are open in @, so that 0 n B = ) Q N B, is G4Q).
n=1
Similarly we may prove the following:

13.6.2. A set A = Q is F,(Q) if and only if there is a set B such that (I} A = Q@ 0 B,
[2] B is F,(P).

Exercises

If A is a point set embedded into a metric space P, we usc the following terms: [1] 4 is G;,, more

»N
precisely Gy, (P), if there exist sets 4, < P such that 4 = (J 4, and every 4, is Gg; [2] 4 is Fgs,
n=1 o
more precisely F_;(P), if there exist sets 4, < P such that 4 = n A, and every A, is F,.
n=1
13.1. Aset Ais F;if and only if P— A is G,,.
13.2, If Ais G, orif Ais F_, then 4 is both G, and F_;.

@
13.3. If A, are G, -sets, then the set |J 4, is G, .
n=1

13.4. If A, are F_; sets, then the set (] 4, is F;.

n=1

13.5. If A and B are G, then the set A N Bis Gy,

13.6. If A and B are F_;, then the set 4 U Bis F;.

13.7.* Let f be a continuous mapping of a metric space P into a metric space Q. Let 4 = Q. If 4
is G4(Q), then f_;(A) is G4(P); if A is F(Q), then f_,(A) is F (P); if A is Gs,(Q), then
f-1(A) is G4,(P); if A is F g(Q), then f_,(4) is F,(P).

13.8. Let A = B< P. Let A be F ;5 and let B be G;,. Then there exists a set C <= P such that:
[11 Cis G4,, 21 Cis F 5, [31 4= C < B.

139. Let A < QO < P. The set 4 is G;,(Q) if and only if there exists a set B < P such that [1]
A = Q N B, 2] Bis G;,(P). The set 4 is F_4(Q) if and only if there exists a set B < P
such that [1] 4 = Q N B, [2] Bis F 4P).

13.10.* Let 4 < Q < P. If Q is G4(P), then A4 is G4(P) if and only if it is G4(Q). It is permitted
to write simultaneously F, or G,, or F; instead of G,.

13.11.* Every countable set A < P is F (P).

13.12. If A < Pis a set of the first category, then there is a set B < P such that [1) 4 < B, [2] Bis
F,, [3] Bis a set of the first category

13.13. Letaset A < P be F . Let P— A be a dense set. Then A is a set of the first category.

13.14. Let P and Q be metric spaces. Let C < Px Q. For every x € P put 6,(C) = E[(x, y) € C].

y
If a set C is open (closed, F,, Gy, S,5, G;,) in Px @, also the set 67(C) is, for every xeP
open (closed, F,, G;, F_5, G;,) in Q.

Similarly for o}(C) = El(x, ») € C1(¥ € Q).

x
13.15. Let P and Q be two metric spaces. Let @ + 4 < P, J + B < Q. The set AX B is Gy(P < Q)
if and only if A is G4(P) and B is G,(Q). It is permitted to write (simultaneously) F_, or G;,
or F ; instead of G;.
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§ 14. Functions of the first class

14.1. Let P be a metric space. Let /' be a function on P. We say that f is a function
of the first class, if there is a sequence {f,} of continuous functions on P such that
[,(x) = f(x) for every point x € P. We may always attain this by means of bounded
functions f,; if f, are not bounded, it suffices to replace them by functions g,
defined as follows:

&(x) =fux) if 1fi(x)|=n,
g (x)=n if f(x) > n,
g(x)=—-n if fi(x)< —n.

The following theorems are evident:
14.1.1. Every continuous function is of the first class.

14.1.2. If ¢; are real numbers and if f; are finite functions of the first class, then
m

Y. ¢.f is a finite function of the first class.

i=1

14.1.3. If Q is a point set embedded into a metric space P and if f is a function of the
first class on P, then the partial function fy is a function of the first class on Q.

14.2. Let f and f, be finite functions on P. We say that f is the uniform limit of the
sequence {f,}, if for every & > 0 there is an index p such that for every x € P

n2zp=|f(x)-/x]<e.

The index p depends on ¢ only, not on x (otherwise every limit would be uniform).

14.2.1. Let f be a finite function. Let {f,} be a sequence of finite functions of the first
class. Let f be the uniform limit of the sequence {f,}. Then f is a function of the
first class.

Proof: For i = 1,2, 3,... there is an index »; such that
S 1
n=n; implies |f(x) —f(x)] < ST
hence
mzm, nzm mply 100 -0l <.
Evidently, we may assume that n, < n, <.... Put

F(x) = f(x) = fu,(x),  Fi(x) = foe,(¥) = o) (i=1,2,3,..).
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Then | F(x) | < —217 and
Z Fyx) = ll:l;lo .z Fy(x) = hm [[f,,m“(x) = fu(®)] = f(x) = fo(x) = F(x).

Since f(x) = F(x) + fo,(x), if suffices to prove that F is a function of the first class.

The functions F; are of the first class and hence there are finite continuous functions

Vi, such that limy;(x) = F(x) for i =1,2,3,... and for every x e P. Define
n—+ao

functions ¢, as follows:

Ou(x) = Yiu(¥) for |¥u(x)] < %
Pin(X) =% for  yu() 2

)= =% for Y@ S -

Then, ¢,, are continuous functions; since | Fi(x) | < 1/27, we have

l@im(x) = Fix)| < 1¥u(x) — F(0) |,
and hence lim ¢;,(x) = F(x). Put
(D"(X) = q)ln(x) + ...+ (pnn(x) .

The functions @, are continuous; hence it suffices to deduce that lim &,(x) = F(x).

n—

Choose a point x € P and a number ¢ > 0. Choose an index k such that 1/2* < /3

and such that | F(x) — Z Fy(x) | < ¢/3. Since lim ¢;,(x) = F,(x), there is an index

n— o
m > k such that fori = l, 2, ..., k and for every n > m we have | ¢;,(x) — F(x) | <
< ¢/3k. Let n > m. Then

19,69 = FO| S1°%, Fi&) = F@1 + 3, Loue) = R +

1
2+

™8

3 € & 1 2
+ T lel<gHkoget ¥ =T+ <

=
+

Hence, n > m implies | &,(x) — F(x) | < ¢ and therefore lim ¢,(x) = F(x).

n—aow

14.3. 14.3.1. Let P be a metric space. Let f be a function on P. A necessary and
sufficient condition for f to be of the first class is the following: for every c € E, the
sets E[f(x) > c] and E[f(x) < c] are F,(P).
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Another form of the condition: for every ceE,, the sets E[f(x) £ c] and

E[f(x) = c] are G4(P).

Proof: 1. Let f be a function of the first class and let {f,} be a sequence of con-
tinuous functions such that f,(x) - f(x) for every xe P. Let ce E,. If f(x) > c,
there is an index m such that

n=m implies f,(x) = c + —'%1—. )

On the other hand, if there is an index m with (1), we have f(x) > c¢. Hence
B> A= U 0 A A= B[ 2 4]
x m=1 n=m x

Since the functions f, are continuous, the sets 4,, are closed by 9.5, hence the sets

o

N A,. are closed and consequently, the set E[f(x) > c] is F,. Similarly we may

n=m x

prove that also the set E[f(x) < c]is F,. Hence, the sets E[f(x) < c] and E[f(x) = ¢]
x X x
are G4(P) by 13.3.1.

II. Let f be the characteristic function of a set 4, which is simultaneously both
G; and F,. Let us prove that fis a function of the first class. Since A is both G,
and F_, there are closed sets F, and open sets G, such that

@ P
F,c Fopys Guy =G, A=UF,=NG,.
n=1 n=1
If F, + 0 and G, + P put
o(x, P — G,)

f,.(x) - Q(x: F,,) + Q(x’ P -G, ’

Since F, and P — G, are closed sets, g(x, F,) = Oholds for x e F,and o(x, P — G,) =
=0 for xeP — G, only; as F, = G,, we have o(x, F,) + ¢(x,P — G,) > 0 for
every point x. The function f, is, by ex. 9.10, continuous and obviously has the
following properties

xeF, implies f,(x) =1, xeP — G, implies f(x)=0 Q)

If F,= 0 and G, + P put f,(x) = 0 for every point x; if G, = P, put f,(x) =1
for every point x. In both cases, f, is again a continuous function with the pro-
perties (2). It suffices to show that f,(x) -> f(x) for very point x. First, if xe 4 =

oo

= |J F,, there is an index m such that xe F,,. Since F, = F,, forn = m, xe F,
n=1

and hence f,(x) = 1; thus, lim f(x) =1 = f(x). Secondly, if xeP — A =

n—w
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=P—- NG,= U (P-G,), there is an index m such that xeP — G,. As
n=1 n=1

G,., = G,, we have, for n2m, xeP - G,, hence f,(x) =0, and hence
lim f(x) = 0 = f(x).

I1I. Let f be finite and let it gain only a finite number of values ¢,, ¢;, ..., ¢,
Let every set C; = E[f(\') = ¢;] (1 £i £ m) be simultaneously both G; and F

a0

If f; is the charactenstxc function of the set C;, we have evidently f(x) = Y. c¢.fi(x)

i=1
for every point x. By II, the functions f; are of the first class, so that fis of the
first class.

1V. Let fbe such that: [1] —1 £ f(x) £ 1 for every point x, [2] the sets E[ fx) > ]
and E[f(x) < ¢] are F, for every real number ¢. For n =1,2,3,... and for an

integer i with —n < i < n — 1 put

A = [ <f()<'_+—l]=”-(§[f(x)<,';] [f()>ﬂ])

B;, = EI'-';—I <f(x)<#]=g[f(x) >_"_l_] [f( ) < ;+2]

|
U 4., A = By, xeB, ="' f(x) - < —
i=-n !

the sets B, are F, and the sets A,, are G,. By 13.5 there are sets C;, such that:

n=1

{1} 4,, = C;, = B;, and hence U Ci, = P and | f(x) — (i/n)| < 2/n for xe C,,

{2] C,, are F,, [3]) C;, are G;. Put D

(-n<ign-2).

- = C—n,ln i+1,m = Ci+l,'l - U

j=-n

n-1

Then: [1] P = J D,, with disjoint summands, [2] x € D,, implies | f(x) — i/n]| <

i=-n
< 2/n, [3] D,, are F,, [4] D,, are G;. By the property [1] of the sets D,, there are
functions f, on P such that f,(x) = i/n for x € D;,. By properties [3] and [4] of the
sets D;, and by III, the functions f, are of the first class. By property [2] of the sets
Dy, the function f is a uniform limit of the sequence {f,}; thus, by 14.2.1, fis
a function of the first class.

V. Let f be a function such that the sets E[f(x) > ¢] and E[f(x) < ¢] are F,
for every ce E,, or, which is by 13.3.1 the same, such that E[f(x) < ¢] and

E[f(x) = c] are G;. By ex. 9.18 there exists a homeomorphic mapping ¢ of the
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set R onto the interval E[—1 < ¢ < 1]. Set F(x) = ¢[f(x)]. Then the function F
has (on P) the following ‘property

-1 F(x)£1 for xeP.
Let ceE,. If, first, ¢ 21, then E[F(x) > c] = 0; secondly, if ¢ < —1 then
E[f(x) > ¢] = P. Thirdly, if -1< :_< 1, then E[F(x) >c] = E[f(x) > ¢p_(0)];
fourthly, E[F(x) > —1] = "U E[F(x) > -1+ (l/n)] Hence, for every ce E;, the

set E[F(x) > c] is F, and this may be similarly proved for the set E[F(x) < c].

Thus, by IV, F is a function of the first class and hence there is a sequence {F,}
of continuous functions such that F,(x) - F(x) for every point x. Put

G (x) = F(x) for |F(x)|=<1
G(x)=1 for F(x)>1,
G,(x)= -1 for F(x)< —1.

Then G, are continuous functions such that G,(P) < E[ 1 £t=<1]and G,(x)—
— F(x). Put
Sux) = ¢_1[G,(x)] .

Then, f, are continuous functions, and, for every point x,
J¥) = @ [F(X)] = f(x) .

Hence, f is a function of the first class.
Thus, the proof of theorem 14.3.1 is finished. By formulas (2) in 9.5, for every
function f of the first class the sets E[f(x) = ¢] (ce R) are G; and the sets
X

E[f(x) < 0], E[f(x) > —0] are F,.

14.4. Let f and g be finite functions of the first class. Then f. g is a function of the
first class. If g(x) £ O for every point x € P, f[g is also a function of the first class.

Proof:1.Letce E,.Ifc < 0, then E[fz(x) > c] = P.Ifc = 0, then E[f’(x) >c] =
= E[f(x) > \/c]uE[f(x) < —Jc] If ¢ £0, then E[f’(x) cJ=0. If ¢>0,
then E[f*(x) < ¢] = E[f(x) < y/c] n E[f(x) > \/c] Hence, by 14.3, the sets
E[f 2(;) > c¢] and E[fZZx) < c]are F, a:1d f? is a function of the first class.
) II. Since ;

fa=sU+et -5,

/. g is also a function of the first class.
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II1. If ¢ > 0, then (assuming g(x) * 0)

E[E(lx—).>c_j =]E|:g(x)<—‘l:— r\l;:[g(x)>0],

-

1 -_ 3 1
E[g—(x‘)'<c =E -g(x)>—c—-u15[g(x)<0].
If ¢ <0, then

E[_lj> c- =E -g(X)<—‘1:~j UI:T[g(X)>0]s

E ——<cT=Erg(x)>—1—]nE[ (x) < 0]
o IO RN B A '

Finally,
E[E(I;)‘>0]=§[E(x)>0],

§[§%< o] - E[g(x) <0}

Hence, by 14.3, 1/g is a function of the first class and consequently, by II, f/g =
= f. 1/g is a function of the first class.

14.5. 14.5.1. Let f be a finite function on P. Let {f,} be a sequence of finite functions
on P. Let f(x,) — f(x) for every x € P. Let a € P. Let all the functions f, be continuous at
the point a. A necessary and sufficient condition for f to be continuous at a is: for
every ¢ > 0 there is a 6(¢) > 0 and an index m(e) such that

o(a, x) < 6(e) implies | fne(*) — f(x)] <.
Proof: 1. Let the condition be satisfied. Choose an ¢ > 0 and determine the (¢)

and m(e) = m. As f,, is continuous at the point a, there is an n(¢) with 0 < 5(¢e) <
< 6(¢) such that g(a, x) < n(e) implies | f,.(x) — f(@) | < & Then

e(a, x) < n(e) = | f(x) = f@) | £S(xX) = fuX) | + | fulx) = Sul@) | +
+ | fu(@) — fl@) | < 3e.

Hence, for every & > 0, there is an 7(¢) > 0 such that g(a, x) < 5(¢e) implies
| f(x) — f(@ | < 3e. Thus, the function f is continuous at the point a.

I1. Let the function f be continuous at the point a. Choose an & > 0. There
exists a 8, > O such that g(a, x) < 8, implies | f(x) — f(a)| < &/3. Since f,(a) -~
— f(a), there is an index m such that | f,(@) — f(a)| < ¢/3. Since f,, is continuous
at the point a, there is a §, > 0 such that g(a, x) < 8, implies | £,,(x) — f(a)| <
< ¢/3. Put 6 = min (¢, 8,). Then

0@, x) < 0= fu¥) = fX) | S | Sul®) = @ | + | ful@) = f(@) ]| +
+1fl@) - /)| <e.
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14.5.2. Let f be a function of the first class on P. Let D be the set of all x € P at which
the function f is not continuous. Then D is a set of the first category in P.*)

Proof: 1. Let the function f be finite. There is a sequence {f,} of finite continuous
functions on P such that f,(x) - f(x) for every point x. For every ¢ > 0 and for
m=123,... put

Ape=Elp>mv>m=|f(x) - f(x)| < ¢]. 1)

As the functions f,(x) — f,(x) are continuous, the sets 4,, , are closed by 9.5. As
the sequence {f,(x)} is convergent in the ordinary sense for every x € P, we have

U A = P @
m=1

for every ¢ > 0. Put
B, = B(Apn,) - (3

By ex. 12.7, the sets B,, . are nowhere dense. Thus, it suffices to prove that

1)(: lJ LJ B;.IM'

m=1n=1

Let
aeP—- U U B.ipm- C))

m=1n=1

We have to prove that the function f is continuous at the point a.
Choose an ¢ > 0 and an index p > 1/e. By (2) and (4) we have

© ©
ae U Am,l/p - U Bm.l/p9
m=1 m=1

so that there is an index ¢ such that ae 4,,,,, — B,,;/,- By (3), we have ae P —
— P — A,,,,, so that the number o(a, P — A4, ;) is positive. Let 0 <d <
< o(a,P — A, ,,)- Then

q.1/p
Qa,d) < Ag,1)p»

so that, by (1)

o(a,x)<é, p>q, v>q = |f(x)-f(x)]=

1
IR

*) Theorem 14.5.2 (called sometimes Baire’s theorem) gives a necessary condition for f to be
a function of the first class in P. By 14.1.3 the following theorem also holds:

14.5.3. Let f be a function of the first class on P. Let Q < P. Let Dy be the set of such xe Q at
which the partial function f, is not cotinuous. The set Dy, is of the first category in Q.

We shall prove later (see, in particular, theorem 16.6.3 and the associated footnote) that the
necessary condition, stated in theorem 14.5.3 is, in some special spaces, also a sufficient condition.
The steps, by which we reach theorem 16.6.3, are, in particular, theorems 14.5.2, 15.8.3, 16.6.2.
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As f(x) = f(x), we have

o@x) <3 n>q = 46 -S@IS S <e

Thus, by 14.5.1, the function f is continuous at the point a.

II. Let f be an arbitrary function of the first class. Let {f,} be a sequence of
continuous functions such that f,(x) — f(x). By ex. 9.18 there is a homeomorphic
mapping ¢ of the set R onto the interval E[—1 £ ¢ £ 1]. Put ¢[f,(x)] = F,(x),

4

o[f(x)] = F(x). Then the functions F, are continuous and F,(x) —» F(x). Thus,
F is a finite function of the first class. Evidently, the set D of all points at which
the function f is not continuous coincides with the set of all points at which the
function F is not continuous. Thus, D is a set of the first category by I.

14.6. Let f be a function on P. Let D, the set of all x € P at which f is not continuous,
be countable. Then f is a function of the first class.

Proof: Choose a ce E;, and put 4 = E[f(x) > c]. Put C=P — D.

If x e A n C, we have f(x) > c and the function fis continuous at x; consequently,
for every x € A n C there is a number d(x) > 0 such that Q[x, §(x)] = A. Put

B= U Q[x,éx)].
xeANnC
Then A n C = B = A and the set B is open. We have 4 — B = D so that the set

A — B is countable. By 13.3.5, B is F,, by ex. 13.11 4 — B is F,. Thus the set
E[f(x) >c]=A4A=Bu(4 - B) is F, by 13.3.3. Similarly, we may prove that

the set E[f(x) < c] is also F,. Thus, fis a function of the first class by 14.3.1.

14.7. Let f be a function on P. Let a € P. We say that the function f is upper semi-
continuous at the point a if, for every o e E; with f(a) < a, there is a § > 0
such that

xeP, oa,x) <o imply f(x)<a.

Similarly, we say that the function f is lower semicontinuous at the point a, if, for
every « € E, with f(a) > o, there is a > 0 such that

x€eP, oa,x) <6 imply f(x)> .

We say that a function f is semicontinuous at the point a if it is either upper
semicontinuous or lower semicontinuous at the point a. We say that a function f
is upper (lower) semicontinuous if f is upper (lower) semicontinuous at every
point a€P.
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Finally, we say that f is semicontinuous, if it is either upper semicontinuous or
lower semicontinuous.

The following two theorems are evident:

14.7.1. A function f is lower semicontinuous at a point a if and only if the function —f
is upper semicontinuous at the point a.

14.7.2. A function f is continuous at a point a if and only if it is both upper and lower
semicontinucus at the point a.

14.7.3. Let f be a function on P. The function f is upper semicontinuous if and only
if for every c € E, the set E[f(x) < c] is open.*) A function f is lower semicontinuous

if and only if for every ¢ exE1 the set E[ f(x) > c] is open.**)

Proof: 1. Let the set E[f(x) < c] be open for every ceE,. Let acP, acE,,
f(@) < a. We have a e E[J}(x) < a]; as the set on the right-hand side is open, there
isaé > Osuch that Q(a,x 8) < ljl'f(x) < o] i.e. such that g(a, x) < ¢ implies f(x) < a.

Hence, the function f is upper semicontinuous at the point a.

II. Let the function f be upper semicontinuous. Choose a ce E;. Put C =
= E[f(x) < c]. If ae C, f(a) < c, hence there is a § > 0 such that g(a, x) < &

implies f(x) < ¢, i.e. Q(a, ) = C. Hence, the set C is open.

III. We have finished the proof for the case of the upper semicontinuous function.
The case of the lower semicontinuous function may be reduced to the first one
by 14.7.1.

14.7.4. Let f be a function on P. The function f is upper semicontinuous if and only
if and only if there exists a sequence {f,} of continuous functions on P such that for
every xe€P: [1] fi(x) = for1(x) for n=1,2,3,...; [2] limf(x) = f(x). The

n—* o
Sunction f is lower semicontinuous if and only if there is a sequence {f,} of continuous
Sfunctions on P such that for every xeP: [1] f(x) £ fos.,(x) for n =1,2,3,...;

[2] lim fi(x) = f(x).
Proof: By 14.7.1, we may do the proof for the case of lower semicontinuous
functions only.

*) By (1) in 9.5, this condition may be stated as follows: for every ceE; the set E[f(x) =
= ] is closed. x
**) This condition may be stated: for every c € E; the set E[f(x) = c] is closed.
x
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I. Let {f,} be a sequence of continuous functions on P such that for every xe P:
[1] £u(x) £ for1(x); [2) fu(x) = f(x). Let a€ P, a € E,, f(a) > o. As f(a) = lim f,(a),
there is an index p with f,(a) > «. As the function f, is continuous at the point a,
there is a & > 0 such that g(a, x) < 6 implies f,(x) > «. Since f(x) < f,+,(x) and
Jo(x) = f(%), f(x) > « implies f(x) > a. Hence, o{a, x) < é implies f(x) > a.
Thus, the function f is lower semicontinuous.

II. Let the function f be lower semicontinuous and let —1 =< f(x) < 1 for every
point xe P. Forn = 1,2, 3, ... and for x € P put

Jux) = in£ [f(2) + n.o(x, 2)].

Hence for every zeP, f(x) £ f(z) + n.o(x,z). If we put z=x, we obtain
£,(x) £ f(x), so that f,(x) £1 and f,(x) =1 implies f(x) = 1. As f(z) = -1,
o(x, z) 2 0, we have f,(x) = —1. Evidently, f/(x) = —1 implies f,(x) = —1. Further,
if f(x) = a > —1, there exists a 6 > 0 such that ze P, g(x,z) < é imply f(z) >
> 1(—1 + a). Hence

zeP implies f(z) + n.o(x,z) Z min[—1 + nd,3(-1 + a)],

and hence
(X)) =2 min[—1 4+ nd,3 (-1 +a)] > —1.

Thus, f(x) = —1 if and only if f(x) = —1. Since f(z) + n.o(x,z) £ f(2) +
+ n.o(y 2) + n.o(x,y), we have

inf [f(z) + n.o(x,2)] < inpf [f@) +n.0(y,2)] + n.o(x,y)

zeP

ie. fu(x) ££0) +n.o(x,y), and, of course, f,(y) £ f.(x) + no(x,y), hence

1) = (| £ n.o(x,y). Thus, for every n, f, is a continuous (moreover:

uniformly continuous) function. Obviously, f,(x) £ f,+1(x) £1 so that there

exists g(x) = limf,(x). As f,(x) £ f(x), we have g(x) < f(x). Let ¢ > 0. Since

the function f is lower semicontinuous at the point x, there exists a § > 0 such that

o(x,y) < ¢ implies f(») > f(x) — &. Since f,(x) = inf[f(z) + n.o(x, z)], there
X€EP

exists (for the given x) a point z,e P such that f(z,) + n.o(x, z,) < f(x) +
+ 1/n £ f(x) + 1/n, hence 1 = f(x) > n.o(x, z,) — 1/n + f(z,) = n.o(x, z,) —
— 1/n — 1, and hence g(x, z,) < 2/n + 1/n®. There exists an index g such that
for n > g we have 2/n + 1/n®> < 6, hence o(x, z,) < & and hence f(z,) > f(x) — «.
On the other hand, f(z,) £ f(z,) + n.o(x, z,) < f,(x) + 1/n and hence f(x) <
< fu(x) + 1/n + eforevery n > g, so that f(x) < lim (f,(x) + 1/n) + & = g(x) + &.

Since & > 0 was arbitrary, we have f(x) < g(x); since also g(x) < f(x), we have

J(x) = g(x) = lim f,(x).

n— o
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I1I. Let the function f be lower semicontinuous. By ex. 9.18 there is a homeo-
morphic mapping ¢ of the set R onto the interval E[—1 £ ¢t £ 1]. Put ¢[f(x)] =
t

= F(x). Evidently, for ae R, f € R we have a < f§ if and only if ¢(a) < @(B).
Since f is lower semicontinuous, we decide easily that the function F is also lower
semicontinuous. We have —1 = F(x) = 1, F(x) = —1 if and only if f(x) = — 0,
F(x) = 1 of and only if f(x) = 0.

By II, there is a sequence {F,} of continuous functions such that [1] F,(x) £
S Foyi(®), [2] imF(x) = F(x), 3] -1 s F(x) =1, [ F(®) = -1« FXx) =

= —1, [§] F,(x) = 1= F(x) = 1.
Put ¢_,[F,(x)] = f,(x). Then f, are continuous functions such that f,(x) <
< foe1(®) and lim £,(x) = f(x). The proof is finished. Moreover, from the proof
n—oo

we obtain that f,(x) = —oo if and only if f(x) = —oo and that f,(x) = co implies
f(x) = 0. Thus, we may formulate the following theorem:

14.7.5. Let f be a finite function on P. The function f is upper semicontinuous if and
only if there exists a sequence {f,} of finite continuous functions on P such that for
every x € P: [1] f,(x) = fos1(x) forn = 1,2, 3, ..., [2] lim f,(x) = f(x). The function f

n— o
is lower semicontinuous if and only if there exists a sequence {f,} of finite continuous
Jfunctions on P such that for every xeP: [1] fi(x) £ fos:1(x) for n=1,2,3,...;

[2] lim £,(x) = f(x).

n— o

Theorem 14.7.4 yields:
14.7.6. Every semicontinuous function is a function of the first class.

14.8. 14.8.1. Let g and h be functions on P. Let g be upper semicontinuous; let h be
lower semicontinuous. Let g(x) < h(x) for every x € P. Then there exists a continuous
Sfunction f on P such that g(x) £ f(x) < h(x) for every x € P.

Proof: 1. Let the functions g and h be finite. For 1e E, put: [1] A(t) = 1 for
t 20, [2] A(f) = 0 for ¢ < 0. By 14.7.5 there exist sequences {g,} and {4,} of finite
continuous functions on P such that g,(x) = g,+1(x), £,(x) £ h,41(x), g.(x) = g(x),
h,(x) = h(x). We have

8.(X) — h(x) = g, (x) — hus 100 2 gps1(¥) — fpp1(x) 5 (1

and hence the absolute values of the terms (with the exception of the first one)
of the series

hy(x) + Algy(x) — Ai(x)] — Agy(x) — hy(x)] +
+ Mgu(x) — hy(0)] — Alga(%) = Ay(¥)] + ... 7))

\




14. Functions of the first class 89

converge monotonically to zero. As the terms of the series (2) are (with the exception
of the first one) alternately = 0 and < 0, the series (2) is, by the well-known
Leibniz criterion, convergent. Denote its sum by f(x). If f,(x) designates the sum
of the sum of the first n terms of the series (2), then f, are continuous functions.

and on(x) —>_=f2n+2(x)’ on-l(x) é.on-l-l(x)’ f;n(x) -’f(x)a so thata by 14.7.2 and
14.7.5, the function f is continuous. It remains to prove that, for every xeP,
g(x) £ f(x) £ h(x). Let us distinguish two cases.

First, let g(x) = h(x). Then g,(x) = h,(x), so that the series (2) goes as follows
() + [g1(x) = Iy ()] + [hy(x) — g1(0)] + [g2(x) — fia(x)] + ...

and its sum f(x) is equal to lim g,(x) = lim /1,(x) = g(x) = (x).

Secondly, let g(x) < h(x). Then, beginning with a certain n, g,(x) < 1, (x).
g.(%) < h,41(x). Let m be the least index such that in the n-th term of the series (2)
we have a negative number after the sign 4. By (1), for 2 <n < m — 1, in the
n-th term of the series (2) we have a non-negative number after 4, so that f(x) is
equal to the sum of the first m — 1 terms of the series

hy(x) + [g1(x) = A (0] + [ha(x) — g:(0)] +
+ [g2(x) = B ()] + [h3(x) — g2(X)] + ...
Hence, if m = 2i is even, we have f(x) = h/(x) and g,(x) < hy(x). If m =2i + 1,
we have f(x) = g,(x) and g(x) < hyy4(x). Since g,(x) = gus 1)y AX) < hpy (¥),
2.(x) = g(x), h,(x) = h(x) we have obviously g(x) < f(x) £ h(x).
II. In the general case we proceed as follows: By ex. 9.18 there is a homeo-
morphic mapping ¢ of the set R onto the interval E[—1 £ ¢ £ 1] such that
t

xeR, peR, a < B imply ¢(2) < @(B). Putting G(x) = ¢lg(x)], H(x) = ¢[A(x)],
we obtain that —1 £ G(x) £ 1, —1 £ H(x) £ 1, G(x) £ H(x), G is upper semi-
continuous and H lower semicontinuous. By I there exists a continuous function F
such that G(x) £ F(x) £ H(x), hence —1 £ F(x) £ 1, so that we may put f(x) =
= ¢_,[F(x,)]. Obviously f is a continuous function and g(x) £ f(x) < A(x).

14.8.2. Let A = P be a closed set. Let k be a continuous function on A. Then there
exists a continuous function f on P such that the partial function f, is identical with k.
Proof. Define functions g and /2 on P as follows:
g(x) = h(x) = k(x) for xeA,
g(x) = —0 and h(x) =0 for xeP — A.
Let ce E,. We have
E[xeP,g(x) = c] = E[xe 4, k(x) = c].
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Hence, by 9.5.1 and 8.7.4, the set E[x e P, g(x) = c] is closed, so that by 14.7.3

g is an upper semicontinuous function on P. Similarly we prove that % is a lower
semicontinuous function on P. As g(x) < h(x) for x € P, there is by 14.8.1 a conti-
nuous function f on P such that x e P implies g(x) < f(x) < h(x). For xe 4 we
have g(x) = k(x) = h(x) and hence f(x) = k(x).

14.8.3. Let A = P be a closed set. Let k be a finite continuous function on A. Then
there exists a finite continuous function f on P such that the partial function f, is
identical with k.

Proof: The case A = (J is trivial; thus, let 4 # 0. By ex. 9.18 there is a homeo-
morphic mapping ¢ of the set R onto the interval E[—1 < ¢ < 1] such that ¢p(—o0) =
t

= —1, ¢(c0) = 1 and such that e R, feR, a < # imply ¢(a) < ¢(8). By 14.8.2
there is a continuous function / on P such that xe 4 implies /(x) = k(x). Put
B = E[l(x) = 0] U E[{x) = —»). By 9.5 B is closed; evidently 4 n B = 0.

If B = (J we may put f = [; thus, let B + @. For x € P put L(x) = ¢[l(x)]. Then L
is a continuous function on P such that x e P implies | L(x)| £ 1 and such that
E[| L(x)| = 1] = B. For xe P put

r(x) = olx, 4) .
:o(x, 4) +o(x, B)}

We have
o(x, A) =0<>xc A< x€c A, o(x,B) =0<>xeB.

Thus, r is a finite function on P such that r(x) = 0 for xe P, r(x) = 0 for xe 4,
r(x) =1 for x € B. By ex. 9.10, the function r is continuous. For x € P put

_ L
F(x) = m

Then, F is a continuous function on P such that: [1] | F(x)| <1 for xeP,
[2] F(x) = @lk(x)] for x e A. For xeP put f(x) = ¢_,[F(x)]. Then f is a finite
continuous function on P such that x € 4 implies f(x) = k(x).

Exercises

In exercises 14.1—14.3, x is a characteristic function of a point set 4 < P.

14.1. The function y is upper semicontinuous if and only if the set A is closed.

14.2. The function yx is lower semicontinuous if and only if the set A4 is open.

14.3. The function y is of the first class if and only if the set 4 is simultaneously both F, and Gj,.
14.4. Deduce theorem 14.1.2 from theorem 14.3.1.

14.5. Deduce theorem 14.2.1 from theorem 14.3.1.



14.6.

14.7.
14.8.

14.9.

14.10.

14.11.

14.12.
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If finite functions f and g are both upper semicontinuous, then also the function f+ g is
upper semicontinuous.

Deduce: [1] directly from the definition, [2] from theorem 14.7.3, [3] from theorem 14.7.5.
If P is a countable space, then every function on P is of the first class.

Let f be a function on P. For a € P there exist the limits:

(@ =1lim  sup  f(x), ®,y(a) = lim sup fx),
n—w ¢(a,x)<1/n n—ow 0<g(a,x)<1/n

(@) = lim inf  f(x), y,(a) = lim inf f(x).
n—~+ow e(a,x)<1/n n—+o:0<ela,x)< 1/n

The functions ¢, and ¢, are upper semicontinuous, the functions ¢, and y, are lower semi-
continuous.
Let € + (J be an arbitrary set. For every z € C let f, be an upper semicontinuous function

on P. For x € P put f(x) = inf f,(x). Then fis an upper semicontinuous function. Deduce:
zeC

[1] directly from the definition, [2] from theorem 14.7.3.

Let f be a function on E; such that x < y implies f(x) = f(»). Then fis a function of the
first class.

Deduce: [1] directly from the :deﬁnition, [2] from theorem 14.3.1, [3] from theorem 14.6.
Let { fn} be a sequence of continuous mappings of a metric space P into a meiric space Q.
For every x € P let there exist lim f,(x) = f(x) € Q. Then for every set 4 < f(P) open in

n—>o

f(P) the set E[f(x) € 4] is F, in P.

x
Let f be a mapping of a metric space P into the euclidean space E,, such that, for every set
A < f(P) open in f(P), E[f(x) € 4] is an F-set in P. Then there is a sequence {f,} of conti-
x

nuous mappings of the space P into E,, such that lim f,(x) = f(x) for every x € P.
n—+ o

A function fon Pis said to be of the second class, if there exists a sequence { f,,} of functions of the
first class on P such that f,(x) — f(x) for every x € P.

14.13.

14.14.

14.15.

If fis a finite function of the second class on P, there exists a sequence { j;,} of finite functions
of the first class on P such that f,(x) - f(x) for every x € P.
Let f be a finite function. Let { f,,} be a sequence of finite functions of the second class. Let f
be the uniform limit of the sequence { j;,}. Then fis a function of the second class.
Let f be a function on P. A necessary and sufficient condition for f to be a function of the
second class is: for every c € E; the sets E[f(x) > c] and E[f(x) < c] are G4,(P).

x x
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