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Chapter V 

LOCAL CONNECTEDNESS 

§ 22. General theorems concerning local connectedness 

22.1. Let P be a metric space. Let aeP. We say that P is locally connected at the point 
a, if, for every neighborhood E/of a, a is an interior point (see 8.6) of that component 
(see 18.2.1) K of U which contains a. 

We say that P is locally connected (without further determination), if it is locally 
connected at every point a e P . 

Local connectedness is a topological property (see 9.3). 

22.1.1. Let aeP. P is locally connected at a if and only if for every e > 0 there is 
a d > 0 such that for every xeP with g(a, x) < 8 there is a connected S a P with 
aeS, xeS, d(S) < e. 

Proof: I. Let the condition be satisfied. Let U be a given neighborhood of a. 
There is an e > 0 such that Q(a, e) cr U. Choose an appropriate S > 0. Let K 
be the component of U containing a. If q{a, x) < 8 there is a connected S c P 
with ae Sfxe S, d(S) < e. Since a e S, d(S) < e, we have S cz U, so that (see 18.2.5) 
S is contained in a component of U. As a e K n S, we have S a K, so that x e K. 
Thus, g(a, x) < 3 implies x e K, i.e. Q(a, S) c= K, so that a is an interior point of K. 

II. Let P be locally connected at a point a. Let e > 0. Then Q(a, ^e) is a neigh-
borhood of a. If K is the component of Q(a, ^e) containing a, then a is an interior 
point of K, i.e. there is a <5 > 0 such that g(a, x) < 8 implies x e K. On the other 
hand, the set K is connected and evidently K a Q(a> ^E) implies d(K) < e. 

The following theorems are evident: 

22.1.2. Let P be locally connected at a point a. Let a be an interior point of Q a P. 
Then Q is locally connected at the point a. 

22.1.3. Let P be locally comtected. Then every open Q c= P is locally connected. 

22.1.4. P is locally connected if and only if the components of open sets are open sets. 

Proof: I. Let the condition be satisfied. Let U be a neighborhood of a point a e P. 
Let K be the component of U, containing a. As U is open, K is also open. Thus, 
a is an interior point of K, and hence P is locally connected at a. 
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II. Let P be locally connected and let K be a component of an open set G. For 
every a e K, G is a neighborhood of a and K is the component of G containing a. 
Thus, every a e K is an interior point of K, i.e., K is open (see 8.6.1). 

22.1.5. In locally connected spaces the quasicomponents are identical with the com-
ponents. 

Proof: Let aeP. Let K be the component (see 18.2.1) and Q the quasicomponent 
(seel8.3.4.) containing a. We have to prove that K= Q. By 18.3.9, Ka Q. We have 
to prove that Q c K. By 18.3.5 it suffices to prove that P = Ku(P - K) with 
separated summands. By 18.2.2. K is closed. By 22.1.4 also P — K is closed. Thus, 
K and P — K are separated. 

22.1.6. All components of a locally connected space are locally connected. 

This follows by 22.1.3 and 22.1.4. 

22.1.7. Let P and Q be locally connected spaces. Then Px Q is a locally connected space. 

Proof: Let us take a point (a,b)ePxQ and a number e > 0. Since P and Q 
are locally connected, by 22.1.1 there is a S > 0 such that: [1] if xeP9 e(a, x) < d, 
there is a connected Sx <= Q with ae Sl9xe Sl9 d(Sx) < ie , [2] if y e Q, q(by y) < <5, 
there is a connected S2 cz Q with beS2, yeS2, d(S2) < If (xt y)ePxQ, 
Q[(a, b), (x9 y)] < d9 we have q{a9 b) < S9 q{b9 y) < <5, so that there exist sets St, S2 

satisfying the conditions above. We have then (a, b) e St x S2, (x, y) e Sx x S2, 
d(Sx x S2) < e and 5, x S2 is connected by 18.1.13. Thus, P x Q is locally connected 
by 22.1.1. 

22.1.8. The euclidean space Em {m = 1, 2, 3,. . .) is locally connected. 

Proof: It follows easily by 22.1.1 and 19.2.2 that Et is locally connected. As 
1 = EmxEl9 we learn from 22.1.7 by induction that every Em is locally 

connected. 

22.1.9. Let P be a locally connected space. Let G c P be an open set; let K cr G 
be a connected set. K is a component of G if and only if B(K) c: P — G. 

Proof: I. Let the condition be satisfied. By 10.5.1, BG(K) = 0, so that, for every 
xeG9 we have either Q(X9K) > 0 or Q(X9 G - K) > 0. Thus (see 10.2.3), G = 
= KKJ (G — K) with separated summands. If H 3 K, TI <= G and if H is connected, 
then H = K by 18.1.2. Thus, K is a component of G. 

II. Let K be a component of G. Then K is closed in G by 18.2.2 and K is open 
in P by 22.1.4. Thus, GnK = K (see 8.7.1) and F ^ K = P - K9 so that B(K) = 
= KnP-K = K- K^P-G. 
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22.1.10. Let Pbe a locally connected space. Let aeP,beP,Q cz P. Q is an irreducible 
cut of P between the points a, b, if and only if there exist two distinct connected sets 
G1} G2 such that aeGl9 beG2, Gx u G2 <= P - ß , = B(G2) =Q. 

Proof: I. Let the condition be satisfied. ß is closed by 10.3.1. Thus, by 22.1.9, 
Gx and G2 are components of P — ß , so that Gx n G2 = 0. Gx is closed in P — Q 
by 18.2.2 and open in P - ß by 22.1.4 (see also 8.7.6), so that P - ß = G, u 
u [CP — Q) — separated summands. We have a e Gl9 b e G2 a (P - Q) -
— G,. Thus, ß separates a from b in P. Let R c ß 4= We have to prove that P 
does not separate a from b in P. We have ß — R <= ß = Z?(Gj) c so that 
Gi u (ß — P) is connected by 18.1.7. Similarly, G2 u (ß — P) is also connected. 
Since Q- R 4= 0, by 18.1.4 also 5 = Gj u G2 u (Q - R) is connected. We have 
(a) u (b) cz S c (P - Q) u (Q - R) = P - R. If P - R = A u 5 with separated 
summands, a e / i , we have, by 18.1.2, S cz A and hence be A so that R does not 
separate a from b in P. 

II. Let Q be an irreducible cut of P between the points a, Then Q is a closed 
set by 18.5.4. Q separates a from b in P, so that (a) u (b) cz P — Q and the space 
P — Q is not connected between A and b. Thus, by 18.3.3, Gt 4= G2, if G l 5 G2 

are components of P - Q such that a e Gx, 6 e G2 . By 22.1.9, B(GX) c: g and hence 
aeGt - B(GX). By 8.7.1 and 18.2.2 Gx — Q = G! so that beP -Gl. Thus, 
by 18.5.2, the set B(GX) c ß separates a from b in P, so that B(GX) = ß . Simi-
larly, B(G2) = ß . 

22.1.11. Le/ P be a locally connected space. Let G cz P be an open connected set. 
Let ae G, b e P — G cz. P — B(G). Let P be the component ofP - B(G) containing b. 
Then B(T) is an irreducible cut of P between the points a, b. 

Proof: B(G) and B(T) are closed by 10.3.1. As P is a component of P 
we have, by 22.1.9, B(T) a B(G). P is open by 22.1.4, so that B(T) = f - P 
by 10.3.2. Similarly, B(G) = G - G. Thus, a e G c P - 5(G) cz P - fl(P). Let J be 
the component of P — B(T) containing a. As a e G cz P — B(T), we have G cz A 
by 18.2.5. If A = P, we have G cz P, so that the connected set P contains the point 
a e G and the point beP -G cz P - Gy so that, by 18.1.8, 0 4= P n 5(G), whicji 
is a contradiction. Thus, P 4= A. As G cz A, we have Z?(P) cz B(G) cz G cz 
On the other hand, J is open by 22.1.4, so that B(A) = A - A by 10.3.2. As J cz 
cz P - B(T), B(T) c Ä, we have B(T) cz Ä — A = B(A). On the other hand, 
by 22.1.9, we have B(A) c B(T). Thus, P and A are distinct connected sets such that 
aeA, beT9 P u A c: P - 5(P), B(T) = B(A). Thus, by 22.1.10, 5(P) is an 
irreducible cut of P between the points a and b. 

22.1.12. Lei P be a locally connected space. Let Q c P separate a point a from a 
point b in P. Then there is an irreducible cut M of P between the points a, 6 5wc/i 
that M c ß . 
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Proof: By 18.5.1 there is a closed set F c Q which separates a from b in P. Let G 
be the component of P — F containing a. The set G is open by 22.1.4. By 18.3.3 G 
does not contain b, so that be(P - F)-G. By 8.7.1 and 18.2.2 G - F = G so 
that beP -GczP-B(G). Let r be the component of P - B(G) containing b. 
By 22.1.11 the set M = B(T) is an irreducible cut of P between the points a, b. 
In proving theorem 22.1.11 we noted that B(F) czG - G. Since G - F = G we 
obtain M c F c Q. 

22.1.13. Let P be a connected and locally connected space. Let C c: P be a closed 
connected set. Let K be a component of P — C. Then P — K is connected. 

Proof: K is open by 22.1.4. C u K and P — K are closed. The set 

(C u K) u (P - K) = P 

is connected. By 8.7.1 and 18.2.2 we have K = K - C, so that the set 

(CvK)n(P - K) = Cu(K - K)= C 

is also connected. Thus, P — K is connected by 18.1.12. 

22.1.14. The spherical space Sm (m = 1, 2, 3, . . .) is locally connected. 

This follows easily by 17.10.4 and 22.1.8. 

22.1.15. Let P be a locally connected space. Let K be a component of a set M cz P 
Then B(K) a B(M). 

Proof: Let there be, on the contrary, a point a e B(K) - B{M). Then P - B(M) 
is a neighborhood of a. Let C be the component of P — B(M) containing a. Since P 
is locally connected, a is an interior point of C. On the other hand, a e B(K) K 
so that C n K + 0 and hence C n M 4= 0. Since C is connected and C n B(M) 4= 0, 
we have C c M b y 18.1.8. Thus, C c K by 18.2.5. This is, however, evidently 
impossible, since a e B(K) and a is an interior point ©f C. 

22.2. Let P be a metric space, Q <=. P. Define a set L(Q) c g a s follows: If a e Q, 
then a e L(Q) if and only if for every neighborhood XJ of a there is a component K 
of Q n U such that a is an interior point of A n (P — 0 . 

22.2.1. Let aeQ. We have aeL(Q) if and only if Q is locally connected at the 
point a. 

Proof: I. Let Q be locally connected at a. Let U be a neighborhood of a in P . 
Then (see 8.7.5) Q n U is a neighborhood of a in Q. Thus, if K is the component 
of Q n U containing a, then a is an interior point of K in the space Q ; i.e. there is 
an e > 0 such that xe Q n G(a, e) implies JC e K. Thus, in the space P, x e &(a, e) 
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implies xeK. Thus, in the space P, xeG(a, e) implies xeK\j(P - Q\ i.e., a is 
an interior point of K u (P — Q). 

II. Let aeQ n L(Q). Let V be a neighborhood of a in Q and let K be the 
component of V containing a. We have to prove that, for suitable e > 0, x e Q n 
n Q(a, e) implies xeK. By 8.7.5 there is a neighborhood U of the point a in P 
such that V = Q n ZJ. As a e L(Q), there is a component H of V such that, for 
suitable e > 0, x e Q(a, e) implies xeH v(P — 0 . In particular, ae Hu (P — 0 . 
As aeQ, we have aeH and hence H = K by 18.2.1. Thus, xeQ(a, e) implies 
A* e K U (P — Q), i.e. x e Q N e) implies X E A'. 

22.2.2. Q cz L(Q) if and only if Q is locally connected. 
This follows by 22.2.1. 

22.2.3. L(Q) w a Gd-set for every Q cz P. 

P/-0O/: I. If e > 0, denote by ^(e) the set of all aeP such that there exists 
a connected S cz Q such that: [1] d(S) < e, [2] a is an interior point of S u (P — 0). 

II. For every e > 0 we have L(Q) c: /t(e). If a e L(Q), then ie) is a neigh-
borhood of the point a, so that 2 n ] has a component K such that a is 
an interior point of KKJ (P — Q). K is connected and K CZ Q. Moreover, K c 
c Q(a, ̂ e) implies d(K) < e. Thus, a e A(e). 

III. The sets A(e) are open. If ae>4(e), there is a connected S cz Q such that: 
[1] d(S) < e, [2] there is a S > 0 with D) cz S KJ (P - Q). Evidently, every 
A- e Q(a, <5) is an interior point of 5 u (P — 0 , so that Q(a, 5) cz A(e). Thus, A(e) 
is open by 8.6.1. 

00 _ 

IV. Q n n ^0 / " ) i s a G<5-set by 13.1.2, since Q is C3 by 13.2 and A(\/n) are 
n = 1 

G4 by III and 13.1.1. 
__ oo _ 

V. It remains to be proved that L(Q) = Q n f l ^0/")- As L ( 0 cz Q, we have, 
n = 1 

__ 00 _ 00 

by II, L ( 0 cz g n f | ^i1/")- On the other hand, choose an a e Q n f | ¿0/w). 
n = 1 n = 1 

We shall prove that a e L(Q). Let U be a neighborhood of a. There exists an index n 
with Q(a,2/n) c: U. We have aeA(\/n), so that there is a connected S <z Q such 
that d(S) < 1 jn and that a is an interior point of S u (P — 0 . There exists 
a (5 > 0 with Q(a, ¿ ) c 5 u ( P - g ) ; we may suppose that <5 < \/n. As a e Q , 
there is a point 6 e g n <5) c g n (S u (P - 0 ) = 0 n S = S. As be Q(a, <5), 
A e S, d(S) < 1 In, we have 5 cz <5 + 1/«) cz Q(a, 2/n) cz U. Since S cz Q, 
we have S a Q n U, so that (see 18.2.5) there exists a component K of Q r\ U 
such that S cz K, so that a is an interior point of K u (P - 0 . Since 17 was an 
arbitrary neighborhood of a, we have a 6 L ( 0 . 
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22.2.4. Let Q cz M c L(Q) (so that Q is locally connected by 22.2.2). Then M is 
locally connected. 

Proof: Choose a point a e M and a number £ > 0. Then Q(a9 $ e) is a neighborhood 
of the point a e L(Q). Hence, there is a component K of Q n £(, } e) and a number 
<5 > 0 such that G(a9 x) < 3 implies xe KKJ (P — Q). We may suppose that 
S < ± B . Put S = M N K N Q(A, ^e). By 8.7.1 and 18.2.2, K — K N Q N Q(A, ie). 
Thus, K cz S and, moreover, S K, so that £ is connected by 18.1.7. As S cz 
c Q(a, ^e) we have d(S) < e. Moreover, S cz Af, so that, by 22.1.1 it suffices to 
prove that xe S whenever xe M, q(a9 x) < 3 (in particular, for x = a). As <5 < ^e, 
it suffices to prove that x e M, q(a, x) < 5 imply xeK. Thus, let xe M9 g(a, x) < 3. 
Choose an q > 0 with g(a, x) + rj < 3. As M a Q, we have g(x, Q) = 0. Thus, 
there exists a point ze Q such that e(x, z) < rj. We have then z) ^ x) + 
+ e(x, z) < 3, hence zeKu (P - Q), i.e. z e K, since z e Q. Thus, e(x, K) ^ 
^ g(x, z) <r\ for every sufficiently small t/ > 0. Thus, g(x, K) = 0, i.e. x e K. 

22.2.5. Let P be a continuum. Let a e P — L(P). Then, there is a continuum K such 
that ae K, K c: P — L(P). Moreover, there is a point b a and a disjoint sequence 
of continua {Kn}™ such that lim Kn) = lim Kn) = 0. 

Proof: I. By the definition of L(P) there is a neighborhood U of a such that a 
is not an interior point of C, if C is the component of U containing a. Choose 
a neighborhood V of a with V cz U. 

II. For n = 1,2, 3 , . . . we may, by I, determine recursively the components 
An of U such that a e U - An9 Vn An * 0, g(a, An) < n'1. By 18.2.2, q{a, A„) > 0, 
so that we may evidently determine the A„ to be distinct and hence (see 18.2.1) 
disjoint. For n = 1, 2, 3 , . . . choose an a„e V n An such that q(ay an) < n~x. 

III. The set An U is evidently connected, so that An is either a one-point set, 
or a continuum. On the other hand evidently U #= P, so that, by 19.3.2, (see also 
10.3.2), An - U 4= 0. Thus, An is a continuum and An - V 4= 0. 

Denote by P„ the component of An n V containing an. By 19.3.1 we obtain easily 
that Bn n (V — V) 4= 0, so that Pn is not a one-point set. Pn is a closed (see 18.2.2) 
connected subset of An n K. Thus, jBn is a continuum. Choose a bne Bn n (V — V). 

IV. As P is compact, there are indices ix < i2 < i3 < ... such that there exists 
lim bin = b. Evidently beV — V, and hence a 4= b. Since Bn cz An n V cz An n 
n U = An (see 18.2.2) and since the sets An are disjoint, Bn are disjoint continua. 
We have Q(a, Bn) ^ Q(a, an\ g(b9 Bn) ^ e(b, bn\ so that, for Kn = Bin, lim Q(a9 Kn) = 
= lim q(b9 Kn) = 0. 

V. Put K = Urn Pn . Evidently aeK,beK. We even have a e Lim Pn , so that K 
is a continuum (see 19.1.7). We have K cz V cz U. 

VI. It remains to be proved that K cz p — L(P). Let there be, on the contrary, 
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a point c in K n L(P). Since ae K9 c e K, and since K is a connected subset of (/, 
both points belong to the same component of U i.e. (see 1), c e C. As c e L(P), c is 
an interior point of C. Thus, there is a S > 0 such that Q(C, X) < 6 implies XE C. 
Since ce K = Lim Bn9 there exists an index p and a point ue Bp such that Q(C9 U) < 
< S, and hence ueC. Thus, C n Bp 4= 0. On the other hand, Bp cz Ap (see IV) 
and C, Ap are components of U. Thus (see 18.2.1), Ap = C, which is a contra-
diction. 

22.3. 22.3.1. Let P be a topologically complete connected and locally connected space. 
Let aeP9 b e P, a 4= b. Then there is a simple arc C cz P with the end points a, b. 

Proof: I. By 15.6.3 we may suppose that P is complete. 

II. For every xeP denote by V(x) the component of £(A, £) containing the 
point x. Thus, V(x) is connected and XE V(X). Moreover, d(V(x)) g 1 and V(x) 
is open by 22.1.4. As all the V(x) are open and since |J V(x) = P, there is, 

xeP 

by 18.4.2, a finite point sequence {xj f io s u c h that x0 = a9 xki = b and that 
Vixi-i) N V(Xi) =# 0 for 1 ^ i G k1. Evidently {A,} contains a finite subsequence 
W J i o such that y0 = a9 yhl = b9 n V(yd 4= 0 for 1 ^ / g and 
V(ydnV(yj) = Q for O ^ y ^ , ¡ / - y | ^ 2 . Put U^ = V(yt) 
for 0 ^ / g hx. 

III. Suppose that for a given « there is a finite sequence {i/{n)}?=0 point sets 
(as it was just done for n = 1) such that 

[1], aeU<?\ bEUin
n\ 

[2]n U-nJ1 n U(in) 4= 0 for 1 ^ i ^ hn9 

[3]„ U\n) n Uy = 0 for 0 ^ i ^ hn9 

0 | i - yi ^ 2, 
[4]„ C/IN) (0 £ I £ Ab) are open, 
[5]n t/,00 ( O ^ i ^ hn) are connected, 
[6]n ^ ^ ( O ^ ^ /;„). 

Put c0 = a9 chn+i = and, for 1 ^ i ^ hn choose a cf e U\n2x n C/^, which may 
be done by [2]n. By [4]n we may choose for every x e U[n) (0 ^ i g /?„) an open 
set Hi(x) such that x e H f a ) e J f f i ) e L/i'0, ^ ( / i + l ) - 1 . Let 1^(A) 
be the component of //¿(A) containing A. Thus, Wfjc) is connected and A e fV£x) cz 
cz ^ ( x ) c= U\n\ Moreover, d[Wia)] g (n 4- l)""1 and the set fV{(x) is open by 22.1.4. 

We have c f e U\n\ ci+le U\n\ the sets ^ (A ) are open in U\n) and (J W£x) = 
jcel/i<") 

= U(in\ Thus, by 18.4.2 (see also 18.4.1) and [5]n there is a finite point sequence 
{zir}r=o such that zi0 = ci9 ziPi = ci+1 and that IVfa^i) n ^¿(zir) 4= 0 for 
1 g r ^ pt. Combine all the sequences {zir}iL0 (0 < i ^ hn) into a new finite 
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hn 
point sequence {vj}k

j = 0 where Ic = £ + 1) — 1 in the following manner: the 
¿=o 

first elements of {vj})^0
 a r e ^ e points z0r (r = 0, 1, ...,/?0), they are followed 

by the points z, r (r = 0, 1, etc., and the sequence is finished by the points 
zhn.r (r = 0, 1, Put Wi(zir) = W(Vj) for zir = Vj. Then we have v0 = a, 
vk = b and W(Vj^s) n W(vj) 4= 0 for 1 ^ j ^ k . Evidently, {vj})x0 contains a finite 
subsequence {w;}J=+o such that u0 = a, uhn + i = ¿>, ^(wy.j) n 4= 0 for 1 g 

hn+1 and n W(uj) = 0 for O g i g hn+l, 0 g y £ //„+,, j / - y | ^ 2. 
Put i/jn + 1) = for 0 Then the conditions [l]w+1 - [6]B+1 are 
satisfied. Moreover, we have 

[7]„ for every i (0 ^ / ^ /*„+i) there is an index X(i) (0 g A(i) ^ //„) such that 
Uln+i) cz [/$>; the indices A(i) may be chosen in such a way that 

[8]„ 0 implies A(/) g A(j). 
IV. Thus, we may construct recursively, for n = 1,2,3,. . . , finite sequences 

{ U ^ l u of point sets such that, for every n, [1]„ - [8]M hold. Put 

Gn = U U ^ ( » = 1,2,3, . . . ) . 
¿ = 0 

Gn are open by [4]„ and connected by [2]„, [5]n and 18.1.4. Moreover, by [7]„, 

S „ + I C GN (« = 1, 2, 3 , . . . ) 
and hence 

00 OO 
c = n Gn = n c„. 

«=1 n=1 

V. We have aeC, beC since, by [1]„, aeGn, for every 

VI. C is compact by [6]n and 17.5.2. 

VII. C is a continuum. Let us assume the contrary. By V and VI C = A u B 
with non-void separated summands. By 10.2.7 there are open sets T, A such that 
r r\A = 0, r A, A ZD B. As r, A are open and Gn+1 cz Gn, (7n+1 - ( r u A) cz 
cz G„ - ( r u J). Since Gn z> C are connected and (7„ n (f u J ) = (G„ n T) u 
u (G„ n J ) with separated non-void summands, we have G„ — ( r u J) 4= 0. Thus, 

00 

by [6„] and 15.7.2 we have 0 4= f | - ( r u/!)] = C - (f u A), which is a 
n= 1 

contradiction. 

Vl'II. Let us choose a ceC, a 4= c 4= b, and prove that C - (c) = C' u C" 
with separated summands, ae C, be C". 

Since C cz Gn for every n, there are indices sn such that 0 g sn ^ /?„, r e t / ^ . 
Choose an index p with 

3 . p'1 < min feO, c), Q(b, c)]. 
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[1L [2]„ and [6]„ yield: 

<0 ^ d( f i C/.(n)) ^ I ¿(tf,00) :g fo, + 1) . i T \ 
i = 0 i = 0 
An 

so that 

Let 

^ fl C/Jn)) ^ Z ^ (K - + 1). , 
i = «n i=Sn 

3 sn = hn — 3 for w ^ p . 

i' = 0 i = s „ + 3 

c - u G' = u o ; . 
n = p n = p 

G' and G" are open by [4]„ and we have a eG\ be G" by [l]rt. Thus, it suffices to 
prove first that -G' n G" = 0 and secondly that C - (c) c: G' u G'' since then we 
may put C ' = C o G', C" = C n G 

We prove easily that C — (c) <= G' u G". Let deC - (c). Choose an « such 
that n^p and that 5 . H"1 < Q(C, d). There exists an index i such that O g i g hn 

and de U\n\ If | - i | ^ 2, we obtain, by [2]n and [6]n9 

Q(C, d) g d( [J U ^ ) ^ d(Uf) ^ 5 . H"1 , 
j = sn-2 j = sn-2 

which is a contradiction. Thus, | sn - i | ^ 3, so that deG'nv G "n c G' u G". 
It remains to be proved that G' n G" = 0. 
Let p<L I By [7]„ and [8],, (« = / , / + 1,..., m - 1) we may associate, with 

every i (0 g / ^ hn\ a /¿„(i) [0 ^ p{i) ^ A J such that U[m) c and that 

0 <j implies ^ ji(J). 

Assume that there is a point deG'mr\ G'l. As deG'm, there is an index i with 
0 ^ i g - 3, de U\m) and hence de U%. As de G'l, there is an index j with 
si + 3 ¿j ^ hl9 de Up. Thus Ujfi, n C/f 4= 0, so that, by [3],, p(i) - 1 ^ 
^ j, + 2. Since i < sm, we have //(/) g /¿CO* so that p(sm) ^ + 2, so that, 
by [3]/, n U^ = 0; this is a contradiction, since obviously ceU{^Sm) n C/̂ K 
Thus, 

p ^ l ^ m implies G > ( ? ? = 0 . (1) 

Suppose that there is a point de G[ n G"m. As deG„, there is an index i such 
that sm + 3 g / g hm, de U[m\ so that de Ujfi). As deG\, there is an index j 
such that deUf. Thus, n £/('> #= 0, so that, by [3]„ /x(i) ^ 

+ 1 ̂  st - 2. As i > we have p(i) g so that p(sm) 2, and that, 
by [3]z, f / j ^ ) n Us* == 0> which is a contradiction, since ibviously ce U$Sm) n 
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Thus 
p g / ^ m implies G\ n G"m = 0. (2) 

(1) and (2) yield G' n G" = 0. 

IX. By V, VII, VIII and 20.3, C is a simple arc with end points cr, b. 

22.3.2. In a locally connected topologically complete space P the constituants are 
identical with the components. 

Proof: Let K be a component of P. By 12.8.1, 19.5.5 and 19.5.8 it suffices to 
prove that A!" is a semicontinuum. K is open in P by 22.1.4. Thus, K is locally 
connected by 22.1.3 and K is a topologically complete space by 15.5.3 (see 13.1.1). 
Thus, K is a semicontinuum by 20.1.1 and 22.3.1. 

22.3.3. Let P be a locally connected topologically complete space. Let a closed Q c P 
cut P between points a, b. Then Q separates a from b in P. 

Proof: By 19.5.10 the points a9 b belong to distinct constituants of P — Q. The set 
P — Q is open in P and hence it is locally connected by 22.1.3 and P — Q is topo-
logically complete by 15.5.3. Thus, the constituants of P — Q coincide with its 
quasicomponents by 22.1.5 and 22.3.2. Thus, by 18.3.5, P - Q = A u B with 
separated summands, a e A, be B, i.e. Q separates a from b in P. 

Exercises 

22.1. Every connected subset of Ej is locally connected. This is not true in En (n ^ 2). 
22.2. If PxQ 4= 0 is locally connected, then PxQ are locally connected (see ex. 18.10). 
22.3. PxQ is locally connected if and only if for every M open in P and for every N open in Q 

every component of MxN is open in P x Q . 
22.4. Let P, Q be locally connected spaces. Let M ^ PxQ. Let / b e a continuous function on 

PxQ. Let, for every a e M, 

xePxQ, f(x) =f(a)=>x = a. 

Then M has no cluster points in P x Q (see ex. 19.14). 
22.5. Let Mx P, M2

 c P, a e Mx C\M2. Let both the sets Mt, M2 be locally connected at the 
point a. Then u M2 is also locally connected at the point a. 

22.6. If the sets Mt P, M2 P are locally connected, then M1 u M2 need not be locally con-
nected. This may be shown by means of an example with Mx U M2 = P5 (see ex. to § 19). 

22.7. Let the sets Mx <= P, M2 c P be locally connected and closed in Mt u M2. Then Af, u M2 

is locally connected. 
22.8. We may replace the word "closed" in ex. 22.7. by the word "open". 
22.9. Let G be an open set in a separable locally connected space P. Then the system of all compo-

nents of G is countable. 
22.10. A space P is locally connected if and only if it has the following property: If a point a eP 

and a positive number e are given, then there is a connected open set G such that a e G, 
d(G) < e. 
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22.11. Let a e P. For every c > 0 let there be a connected open G with a e C , d(G) < e. Then P 
is locally connected at a. 

22.12. There exists a space P and a point a e P such that P is locally connected at a and that, for 
suitable e > 0 there is no connected open G with o e G , d(G) < e. This may be shown by 
means of the example with a = (0, 0), P = P7 (see exercises to § 19). 

22.13. Let a e M P. Let M be locally connected at the point a. Let M N M. Then N is 
locally connected at the point a. 

22.14. Let M <= P. If M is locally connected, A7 need not be locally connected. This may be shown 
by an example with P = Ex and also by an example with P = E2 and with open connected M. 

22.15. Let P be a locally connected space. Let Q p be compact. Let G be a neighborhood of Q. 
Then there exists an open AT such that Q M G and that M has a finite number of 
components. 

22.16. We may replace the word "open" in ex. 22.15 by the word "closed1'. 
22.17. Let P be a connected and locally connected space. Let GL, G2 be connected open sets. Let 

the sets B(GI), B(G2) be connected and disjoint. Let 

Gr
1 n G2 4= 0 4= P — (GI V G2). 

Then either GT c G2 or G2 <= GT . 

Remark: V. Knichal noticed that in ex. 22.17 we may: [1] omit the assumption of local 
connectedness, [2] replace the assumption of GLF G2 open by a weaker assumption of 
GX U G2 open, [3] replace the assumption P — (GT VG2) 4=0 by a weaker asssumption 
P — (Gi U G 2 ) * 0. 

22.18. Let there exist a one-to-one continuous mapping of a connected and locally connected space P 
onto a simple arc. Then P is a simple arc. 

22.19. It is not possible to omit the assumption of local connectedness in ex. 22.18. This may be 
shown by means of an example with P c p5 (see exercises to § 19). 

22.20. A one-to-one continuous image of a locally connected space need not be locally connected. 
22.21. There exists a connected space P such that P — L(P) is an «-point set (n = 1, 2, 3 , . . . ) or 

an infinite countable set. This may be shown by means of an example with P <= Px (see 
exercises to § 19). 

22.22. A space P satisfying the condition from ex. 22.21 cannot be compact; this follows by 22.2.5. 
Prove that P cannot be locally compact. P may be topologically complete. 

22.23. Let P be the set of all couples (*, y) e E2 such that at least one of x, y is irrational. Then P 
is connected, locally connected and topologically complete. 

22.24. Let P be a connected, locally connected and topologically complete space. Let a € P. Let a 
be an end point of every simple arc C <=• P such that a e C. Then the set P — (a) is either 
void or connected. 

22.25. Let P be a locally connected and topologically complete space. Let C c p be a simple arc 
with end points a, b. Let c e C, a 4= c 4= b. Let P — (c) be connected. Then there exists 
a simple loop D <= P such that c e D. 

22.26. Let P be a locally connected and topologically complete space. Let A <=• P be a closed and 
locally connected set. Let B be a union of some components of P — A. Then A U B i s closed 
and locally connected 

Remark: V. Jarnik noticed that the assumption of topological completeness in ex. 22.26 
is superfluous. 

22.27. Let P be a locally connected and topologically complete space. Let G <=• P be an open set. 
Let M be the set of all x E B(G) such that there is a continuum K with x E K, K — (x) G. 
Then M is dense in B[G). 

22.28. Let P be a locally connected space. Let S be a system of points sets. Let M be the union 
of all XeS. Let N be the union of all sets B(X) (X e S) . Then M M U N. 



23. Locally connected continua 183 

§ 23. Locally connected continua 

23.1. 23.1.1. Let P be a metric space. For every c > 0 let there be a 8 > 0 such that 
for every aeP, beP with g(a9 b) < S there is a connected S cz P with ae S, b e S, 
d(S) < e. Then P is locally connected. 

This follows by 22.1.1. 

23.1.2. Let P be a compact locally connected space. Then, for every e > 0, there 
is a S > 0 such that for any aeP, beP, g(a, b) < S there is a connected S cz P 
with aeS, b e S, d(S) < e. 

Proof: On the contrary, let there be an e > 0 such that no S = n~l (n = 
= 1, 2, 3, . . .) has the required property. Then there are point sequences {*„}, {>>„} 
such that [1] < n [ 2 ] if 5 c ? is connected and xneS9 yneS, then 
d(S) ^ e. Since P is compact, there are indices it < i2 < /3 < ... such that 
lim xin = a exists. As P is locally connected at the point a, there is a 3 > 0 such 
that there is a connected S cz P with ae S9 x e S, d(S) < -¿e whenever g(a9 x) < 8. 
There is an index n such that g(a9xin) < \8 and i~x < \8 and hence Q(a,yi) ^ 
^ g(a, xin) -f- e(*in,j\-n) < 8. There exist connected Sx c P, S2 P such that 
aeSt n S29 xin e S{, yin e S2, < ¿<5, d(S2) < $8. We have xin eSivS2y 

yineSl u S2, d(Sl u S2) ^ d(S{) + d(S2) < 8 and Sx u S2 is connected by 18.1.4. 
This is a contradiction. 

23.1.3. A metric space P is locally connected if and only if every its component is 
open and locally connected. 

Proof: I. Let P be locally connected and let K be its component. K is open 
by 22.1.4, so that K is locally connected by 22.1.3. 

II. Let every component of P be open and locally connected. Choose a point 
aeP and a number e > 0. Let K be the component containing the point a. Then 
there is a 8j > 0 such that Q(a, <5j) c K. Since K is locally connected, by 22.1.1 
there is a 82 > 0 such that for every xeK with g(a9 x) < 82 there is a connected 
S K with aeS9 xeS9 d(S) < e. Put 8 = min , 82). If xeP, g(a, x) < 8, 
we have g(a, x) < 8t and hence xe K. Moreover, g(a9 x) < 8l9 so that there exists 
a connected S cz K <z P such that ae S9 xe S9 d(S) < £. Thus, P is locally conn-
ected at the point a by 22.1.1. 

23.1.4. A compact space P is locally connected if and only if: [1] P has a finite number 
of components, [2] every component is locally connected. 

Proof: I. If P has a finite number of components and if K is one of them, then 
P — K is the union of the remaining ones, so that, by 8.3.4 and 18.2.2, P — K is 
closed and hence K is open. If, moreover, every K is locally connected, P is locally 
connected by 23.13. 
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In this part of the proof the compactness of P was not used. 

II. Let P be locally connected, so that the components are open by 23.1.3. By 
18.2.1 and 17.5.4 the number of components is finite. 

m 
23.1.5. Let P be a metric space. Let, for every e > 0, P = (J Kt with a finite number 

¿=1 
of closed connected summands of diameters less than e. Then P is locally connected. 

Proof: Choose an aeP. Let F be the union of all Kx (1 ^ i ^ m) which do not 
contain the point a (if a e Kx for every /, F = 0). Denote by S the union of the 
remaining Ki9 so that a e S and S is connected by 18.1.4 or by 18.1.5. Fis obviously 
closed, so that there is a S > 0 such that Q(a, S) a P — F c S. Evidently, d(S) < 
< 2e. Thus, P is locally connected at the point a by 22.1.1. 

m 
23.1.6. Let P 4= 0 be a compact locally connected space. Let s > 0. Then P = U K{ 

i=l 
with a finite number of closed and connected summands of diameters less than e. 

Proof: For every xeP denote by U(x) the component of Q(x, ^e) containing 
the point x. The sets U(x) are open by 22.1.4 and |J U(x) = P so that, by 17.5.4 

m xeP 
there is a finite sequence {xJ7 such that (J £/(*,) = P and consequently P = 

m i = 1 
= U Ki ™here Ki = (Uxi)• As U(*i) c we have evidently d(Kt) g 

¿ = i 
^ j e < e. Moreover, the sets are closed and, by 18.1.6, also connected. 

23.1.7. Let P be a continuum. P is locally connected if and only if for every e > 0, 
P is a union of a finite number of continua of diameters less than e. 

Proof: I. The condition is sufficient by 23.1.5, since every continuum is closed 
by 17.2.2. 

II. Let P be a locally connected continuum and let e > 0. By 23.1.6, P = 
m 

= U Ki9 where Kt are connected and closed (and hence compact by 17.2.2) and 
i — 1 

d(Ki) < e. Thus, every Kt is either a continuum, or a one-point set. We may suppose 
that there is an index n ^ m such that Kt is a one-point set if and only if i > n. 

n 
By 18.1.9 n^ 1. We have P = A u B, where A = \J Kh B = P - A. A is closed 

i = 1 
and non-void. B is finite and hence also closed. Moreover A n B = 0, so that A, B 

n 

are separated. Since P is connected and A 4= 0, we have B = 0, i.e. P = (J K^ 
¿=i 

23.1.8. Simple arcs are locally connected continua. 
This follows, e.g., from 20.1.1, 20.1.12 and 23.1.7. 
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23.1.9. Simple loops are locally connected continua. 
This follows, e.g., from 21.1.1, 23.1.7 and 23.1.8. 

23.1.10. Let a continuum P not be locally connected at a point aeP. Then there 
exists a continuum K ci P such that ae K and that P is locally connected at no 
point x e K. 

Proof: By 22.2.1 ae P — L(P). Thus, by 22.2.5, there exists a continuum K such 
that aeK cz P - L(P). By 22.2.1 P is locally connected at no x e K. 

23.1.11. Let P be a metric space. Let there be a finite number of locally connected 
m 

compact sets A{ (1 g / ^ m) such that P = U Ai. Then P is a locally connected 
[ = I 

compact space. 

Proof: P is compact by ex. 17.4. P is locally connected by 23.15 and 23.1.6 (see 
also 17.2.2). 

23.2. 23.2.1. Let P be a locally connected continuum. Let Q be a metric space 
containing more than one point. Let there exist a continuous mapping f of P onto Q. 
Then Q is a locally connected continuum. 

Proof: By 17.4.2 and 18.1.10 Q is a continuum. Choose an £ > 0. By 17.4.4 
there is a S > 0 such that 

A / c P , d(M) < S imply d[f(M)] < £ . (1) 
m 

By 23.1.7 P = | J Kx where Kx are continua and d(K{¡) < 5 (1 g i g m). We have 
m i = 1 

Q = U /(*.•). By (1), d[f(Ki)\ < s. The sets f(Kt) are compact by 17.4.2 and hence 
i = i 

closed in Q by 17.2.2 and connected by 18.1.10. Thus, Q is locally connected 
by 23.1.5. 

23.2.2. Let P be a metric space containing more than one point. Put J = E[0 g 
t 

^ / g 1]. Let there exist a continuous mapping f of the interval J onto P. Then P 
is a locally connected continuum. 

This is a particular case of theorem 23.2.1, since J is a locally connected continuum 
(e.g. by 23.1.8). 

23.2.3. Let Pbea locally connected continuum. Then there exists a continuous mapping f 
of the interval J = E[0 t g 1] onto P. 

t 
First proof: I. Let D be the Cantor discontinuum (see 17.8.3). Let E[un < t < vn] 

t 
(n = 1, 2, 3, . . .) be the contiguous intervals of D, so that vn — un -> 0. 
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II. By 17.8.4 there is a continuous mapping cp of D onto P. Put rjn = Q[(p(un)> 
<p(vn)]9 hence rjn ^ 0. As D is a compact space, we have, by 17.4.4, rjn 0. 

III. By 23.1.2 we may associate with every m (= 1, 2, 3,. . .) a number Sm > 0 
such that for every a e P, beP with g(a9 b) < Sm there is a connected S <= P with 
aeS, beS, d(S) < m'1. 

IV. As f]n ^ 0, r\n 0, Sm > 0, we may associate with every m (= 1, 2, 3,. . .) 
an index im such that 

n ^ im implies r\n < Sm. 

We may assume that 1 < < i2 < < ... . 

V. We shall define, for every n (= 1, 2, 3,. . .) a continuous mapping ^„ of the 
interval E[uH g / ^ vn] into P such that i¡/n(un) = (p(un), iAn(tO = <p(t\,). We shall 

t 
distinguish the following three cases: [1] (p(un) = <p(v„)9 [2] 1 g « < il9 (p(un) 4= 
+ <P(Vn)> [3] 'm - = « < fm + 1 (w = 1, 2, 3,...), cp(un) 4= (p(vn). 

VI. First, if <p(w„) = (p{vn\ we put = <p(un) for every / e E[w„ ^ t ^ vH]. 
t 

VII. Secondly, let 1 ^ n < il9 (p(un) 4= cp(vn). By 17.2.1 and 22.3 there is a simple 
arc Cn cz P with the end points cp(un), cp(vn). Let ij/n be a homeomorphic mapping 
of the interval E[un ^ / ^ vn] onto Cn such that \l/n(un) = cp(un\ ij/n(vn) = <p(i;n). 

r 

VIII. Thirdly, let im ^ n < im+l9 <p(un) 4= <p(vn). By IV, we have rjn = g[(p(un), 
<p(vn)] < <5m, so that, by III, there exists a connected Sn cz P such that (p(un)e S„, 
<p(v„)eSn9 d(S) Km'1 and hence Sn c Q((p(un), m~x). Let Gn be the component 
of Q[cp(un), m~l] containing the point <p(un)eSn. By 18.2.5 Sn c Gn and hence 
(p(y„)eGn. The set Gn is connected. By 22.1.4 Gn is open, so that, by 22.1.3, Gn 

is locally connected. By 17.2.1 and 15.5.3 Gn is a topologically complete space. 
Thus, by 22.3, there exists a simple arc Cn c Gn with the end points cp(un), (p(vn). 
Let i¡fn be a homeomorphic mapping of the interval E[un ^ t ^ vn] onto Cn such 

t 
that il/„(un) = <p(«„), il/n(vn) = q>(vH). 

IX. Define a mapping / of the interval J = E[0 g / g 1] into P as follows: 
00 t 

Evidently J = D u U E[i/n < t < vn] with disjoint summands. If i e Z>, put /( /) = 
n = l t 

= <p(0; if un < t < vn9 put f(t) = \j/n(t). As (p(D) = P we have / ( / ) = P, i.e. / is 
a mapping of / onto P. It remains to prove that / is continuous; Assume the contrary. 
Then there is a number ae J and a sequence of numbers such that tk a9 

while f(tk) does not converge to f(a). Then there exists a positive number a and 
a subsequence of such that Q[f(xh),f(a)] > 2a for every k. We see 
easily that some of the following three cases occur: [1] there is a subsequence 
of {xk}i such that yk e D for each k9 [2] there is an index n such that a subsequence 
{7k}i° of {**}i° m a y b e chosen with ykeE[un < t < u j for each k9 [3] there are 
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indices nk (k = 1, 2, 3, . . .) such that < n2 < n3 < ... and that a subsequence 
{yk}f of {xk}i may be chosen with yk e E[unk < t < vHk] for each k. 

In the first case yk -> ay yke D, hence aeD, so that f(yk) = <p(yk), f(a) = cp(a), 
and hence f(yk)-+f(a) which is a contradiction, since Q[f(}\), f(a)] > 2a > 0 
for all k. 

In the second case yk -> a, un < yk < vn, hence un ^ a ^ vn9 so that f(yk) = 
= ^n(yk)>f(a) = W«), and hence f(yk) f(a), which is a contradiction. 

In the third case yk a, wnk < >»fc < hence | yk - un J < vnk - w„k 0, 
hence unk a, hence a e i ) , hence /(«„ J = (p(unk),/(a) = <?(«) and hence/(«O 

f(a). As a > 0, there is an indexp such that p~l < a. Since n{ < n2 < n3 < ... 
and since/(w„J -> /(a), there is an index fc such that /p g nk and that <?[/(wn(<)> 
f(a)] < a. As <?[/(>>*)>/(a)] < 2a, we have evidently Q[f(yk)J(unk)] > a. Thus, 
Ay*) + / C O - s i n c e < Jfc < we have, by VI, * <p(vnk). Since ip g 
^ there is an index m ^ p such that im ^ nk < im+l. Thus, by VIII, we have 

/(>>*) = tnuiyk) e CBk c Gnk c GfoofaJ, m"1], i.e. el/Cy*), <K"J] < As <p(uj = 
= /OO» fif/tv*)»/^)] > <*> we have > a. This is a contradiction, since 
m ^ p, p~l < a. 

The proof just finished is simple; however, it is based not only on theorem 17.8.4, 
but also on theorem 22.3. 

Second proof of theorem 23.2.3: I. For every xeP denote by V(x) the component 
of Q(x, containing x. Thus, V(x) is connected and xe V(x). Moreover, d(V(x) g 
g i and V(x) is open by 22.1.4. As (J V(x) = P, by 17.5.4 there is a finite point 

p X sP 
sequence {xA}J=1 such that U V(xx) = P. By 18.4.2 there is a finite point sequence 

A = 1 
{ytiU i s u c h that {y{} is a subsequence of {xx}, every term of is equal to some 
member of {xx} and V(yi) n K(.y+i) 4= 0 for 1 g / g h - 1. The sequence {>>,} 
may be modified by repeating the last term several times, so that we may assume 
h = 2™i = 2Nl. Put Ut

(1) = V(yd (1 g i g h). 
II. Assume that we have determined for some n (= 1, 2, 3,. . .) a finite sequence 

{^{n)}?=i (h = 2Nn) of point sets (as just done for n = 1) such that 

[1]„ U v\n) = P> 
i= 1 

[2]n U\n) n U\H+i> 4= 0 for 1 g i g //„ - 1, 
[3]„ the sets U\n) (1 g i g are open, 
[4]„ the sets (1 g i g hn) are connected, 
[5]n d(UiH)) ^ 2"n (1 ^ K). 

For a given /(I < i 1in) denote by W^x), for every xeU\n\ the component 

of Q(x, 2~n~2) containing x. Thus, ^¿W i s connected and . x e ^ ) . Moreover, 

dWix)} ^ 2~n~1 and W,(x) is 0pen by 22.1.4. As \J JU^n W^x)} = ¿7}-> 
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and as U\n) is compact by 17.2.2, by 17.5.4 there exists a finite point sequence 

{ z ^ = 1 such that U => W*-
H=1 

By [2]n we may assume that, for every i ^ 2, we have z^ e U\n\ n U[n) and that, for 
/ ^ hn — 1, we have z<° e U\n) n i / ^ . Therefore, we see easily that we may assume 
za+i) = 2<o for 1 g i g - 1. Since U™ is connected by [4]„ and 18.1.6, by 18.4.2 
there is a finite point sequence {wi0}*!^ such that the sequence {z^0} is a subsequence 
of {w*0}, every term of is equal to some term of {z^} (in particular u[l) — zx\ 
u™ = z^), and Wt(u^) n W^U) * 0 for 1 ^ r ^ kt - 1. The sequence {u^} 
may be modified by repeating the last term several times, so that we may 
assume kx = 2mn+\ where the number mn+l is the same for all i (1 ^ / ^ hn). Let 
us combine the sequences {W¡{u^)}^ into a new sequence {C/jn+1)}J=+

1
1 where 

hn+1 = 2n"+1, Nn + i = Nn + mn+l. We take first the sets Wx(z™) (I g r ^ 2m"+1); 
they are followed by W2(u(

r
2)) (1 ^ r ^ 2m',+ ,) etc. and, finally, by the sets 

Whn(u(
r
hn)) (1 ^r ^ 2m"+1). Then all the properties [l]n+1 - [5]w+1 are satisfied. 

Moreover, we have (see 10.2.6). 

[6]„ 1 g / ^ hn , 1 ^ r g 2™-' => t/tf-V.U, n U<"> * 0 . 

III. Thus, we may construct recursively, for n = 1,2,3, . . . , finite sequences 
{£/|-n)}?=i of point sets such that, for every n, [ l ] , , - ^ hold. We have hn = 2N'\ 

n 
Nx=mx, Nn+l = Nn + and hence Nn = By [2]n or [4]„, U\n) # 0. 

S=1 

Choose a z\n) e (n = 1, 2, 3,. . . , 1 g i g hn). 

IV. For n = 1, 2, 3, . . . define a mapping /„ of the interval J = E[0 g / ^ 1] 
t 

as follows: Put /f = E[(/ - 1). 2~N" g t <i. 2~N"] (i = 1, 2 , h „ - 1), Ihn = 

= ERA, - 1). 2-*" g t 1], 
t 

Then, put /„(/) = z\"\ where / is uniquely determined by the relation i e / , . 
(If t e then there is a unique index i (1 ^ i ^ hn = 2"n) such that (/ - 1) . 2"Nm ^ 
^ t < i . 2~n" provided / < /r„ and (/ - 1) . 2~"n <; t g / . provided / = /;„. 
Put fn(t) = 

V. Let t e /„(i) = z{?\fn+i(t) = We see easily that there is an index r 
such that . / = ( / - 1) 2m" + l + r. As zjn)6[/| f l ), zi-n+1)e t/jn+1), we 
have, by [5]n and [6]n 

Q[fn(0Jn+i(t)] H d(Uln)) + < . 

Thus, for n = 1, 2, 3, . . . ; m = « 4- 1,« + 2, « + 3, . . . we have 

s = n 
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Thus, {/n(0} is a Cauchy sequence, so that, by 17.2.1, there exists 

f(t) = lim/n(i) e P. 
H 00 

VI. If txeJ, t2eJt \t! - t2\ < 2~Nn, fn{tx) = z\1\ fn(t2) = z\n
z\ we have 

(I! - 1) . 2-"» G . 2 _ A \ (i2 - 1). 2"Nh i2 . 2~Nn, SO that evidently 
I /i - «2 I g 1. Thus, by [2]„ and [5]„, 

QlfMJ&i)] ^ d(U\?) + d(V\?) g 2 " " + I . 
This yields easily that / is a continuous mapping of the interval J into P. In fact, 
let ty E J, i e Jy tv x and let e > 0. There is an index n with 2~n+4 < e. As tv x, 
there is an index p such that | FV — T | < 2~Nn for v > p and hence 0[/„('v),/„(T)] g 
g 2~n+1 . On the other hand, by V, 

Qlfnia AQ] g 2~n+1, <?[/„(!), f(x)] ^ 2~n+2 , 

so that, for v > p9 Q[f(tv\ /(T)] g 2" n + 1 + 2" n + 2 + 2"n + 2 < 2"n + 4 < c. Thus, 
m->f(T). 

VII. It remains to prove that f ( J ) = P. Let, there be on the contrary, an 
aeP-f(J). 

By VI and 17.4.2, / ( / ) is compact, so that (see 17.2.2) f{J) is closed, and hence 
P - f(J) is open. As aeP - f(J), there is a S > 0 such that Q(a> S) c= P - /(./). 
There is an index n with 2" n + 3 < S. Asa ePt by [1]„ there is an index / (1 ^ / g /2„) 
such that a e U\"\ so that, by [5]n, we have e(a, z f ) g 2'\ If / = (/ - 1). 2~Nn e J> 
then /„(/) = z\n\ so that, by V, Q{z?\f(t)) g 2~"+2. Thus, Q[aJ(t)] ^ 2 - + 
+ 2" n + 2 < 2"n + 3 < <5, so that f(t)eQ(ayS) c P - / (J) , which is a contradiction. 

23.2.4. Le/ P be a locally connected continuum. Let e > 0. Then there exists a finite 
m 

number of locally connected continua PI (1 ^ / ^ m) such that P = (J PT and 
/ = i 

d(Pt) g s (1 g i g m). 

Proof: By 23.2.3 there exists a continuous mapping / of the interval J = 
= E[0 g t g 1] onto P. By 17.4.4 (see also 9.6.1) there is a <5 > 0 such that 0 g 

t 
g tx < t2 g 1, t2 — tt < <5 imply Q[f(t\),f(t2)] < e. Choose a natural number 
n > Sand denote by Ak (1 < k g n) the set of all teJ with (k - l ) « " 1 g 

n 
g t g kn'1. Then P = \J f(Ak) and the sets f(Ak) are less than or equal to e 

fc = i 
in diameter. We see easily by 23.2.2 that every f(Ak) which is not a one-point set 

m 
is a locally connected continuum. On the other hand, the equation P = U f(Ak) 

i* 1 
remains valid after omitting the one-point summands on the right-hand side (see 
the proof of theorem 23.1.7). 
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23.2.5 . Let P be a locally connected continuum. Let I) 4= F a G cz P. Let F be closed. 
Let G be open and connected. Then there exists a locally connected continuum K with 
Fez KczG. 

Proof: F is compact by 17.2.2. Thus (see 17.3.4) there is an e > 0 such that XGG 
m 

whenever Q(X, F) g s. By 23.2.4, P = \J Pi9 whereP, are locally connected continua 
of diameter less than or equal to e. ,==1 

G is a topologically complete space by 15.5.2 (see also 17.2.1). Moreover, G is 
connected and locally connected (see 22.1.3). 

Denote by N the system of all couples (/, k) with 1 ^ i' ^ k ^ m9 F n P, 4=0 4= 
4= F n Pk. If (/, k) e N9 choose points aePi9 bePk9 a 4= b. We have ae G, b e G, 
so that, by 22.3.1 there exists a simple arc Cik cz G with end points a, b. m 

Denote by K{ the union of all Pt (1 ^ i ^ m) with P n Pf 4= 0. As P = \J Pi9 
i= 1 

we have F cz Kx. Since d(P¡) g s, e(;c, F) < e imply xeG, we have Kt <= G. Denote 
by K2 the union of all Cik with (/, k) e N. Put K= KJ K2. Evidently F cz K cz G. 
By 23.1.11 K is a locally connected compact set. Evidently K is not a one-point set, 
and we obtain easily by 18.1.5 that K is connected. Thus, A îs a locally connected 
continuum. 

Exercises 

The spaces P x , P 2 , . . . , P 1 2 were defined in the exercises to § 19. 
23.1. P 4 and P 6 are locally connected continua. Moreover, every continuum embedded into PA 

is locally connected (this is not true for P6) . 
23.2. At which points are Px, P 2 , P5, P 7 locally connected ? 
23.3. The continuum P 3 is locally connected at a unique point; P 1 2 is locally connected at 

no point. 
23.4. Let C c P 5 or C P 1 2 . Let C be a locally connected continuum. Then C is a simple arc. 
23.5. Let P be a locally connected continuum. Let e > 0. Then there is a number <5 > 0 such 

that for every a e P, b e P with 0 < g(at b) < <5, there is a simple arc C c p with end points 
at b and with diameter less than c. 

23.6. Let K Em be a continuum. There exist locally connected continua Kn c Em (n = 1, 2, 3 , . . . ) 

such that *„=> Kh + 1 , = ^ 
l 

23.7. Let K <= Em be a continuum. There are simple arcs Cn «= Em (n = 1,2, 3 , . . . ) such that 
00 

tf u ( J C„ is a locally connected continuum, 
l 

23.8. Pet P be a continuum. P is locally connected, if and only if for any two disjoint closed Fx, F2 

there are separated , A2 and a closed 0 such that 0 has a finite number of components 
and P — 0 = At U A2t Ax => Fl9 A2 => P 2 . 

23.9. There exists a continuous mapping of E j onto P if and only if there exist locally connected 
00 

continua Kn c P (n = 1,2, 3 , . . . ) such that Kn c Kn + 1, P = ( J Kn. 
l 

23.10. Let P be a locally connected continuum. Let Q c Em be a locally connected continuum. 
There exists a continuous mapping of Q onto P. 
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