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Chapter V
LOCAL CONNECTEDNESS

§ 22. General theorems concerning local connectedness

22.1. Let P be a metric space. Let a € P. We say that P is locally connected at the point
a, if, for every neighborhood U of q, a is an interior point (see 8.6) of that component
(see 18.2.1) K of U which contains a.

We say that P is locally connected (without further determination), if it is locally
connected at every point a € P.

Local connectedness is a topological property (see 9.3).

22.1.1. Let ae P. P is locally connected at a if and only if for every ¢ > O there is
a 6 > 0 such that for every x € P with g(a, x) < & there is a connected S = P with
acs$, xe S, dS) < e. )

Proof: 1. Let the condition be satisfied. Let U be a given neighborhood of a.
There is an & > 0 such that Q(a, &) = U. Choose an appropriate 6 > 0. Let K
be the component of U containing a. If g(a, x) < § there is a connected S = P
withae S, x€ S, d(S) < ¢ Sincea€ S, d(S) < ¢ we have S < U, so that (see 18.2.5)
S is contained in a component of U. As ae Kn S, we have S < K, so that xe K.
Thus, g(a, x) < & implies x € K, i.e. Q(a, §) < K, so that a is an interior point of K.

II. Let P be locally connected at a point a. Let ¢ > 0. Then Q(a, 1¢) is a neigh-
borhood of a. If K is the component of Q(a, 4¢) containing g, then a is an interior
point of K, i.e. there is a 6 > 0 such that g(a, x) < 6 implies x € K. On the other
hand, the set K is connected and evidently K = Q(a, }¢) implies d(K) < e.

The following theorems are evident:

22.1.2. Let P be locally connected at a point a. Let a be an interior point of Q < P.
Then Q is locally connected at the point a.

22.1.3. Let P be locally connected. Then every open Q < P is locally connected.

22.1.4. P is locally connected if and only if the components of open sets are open sets.

Proof: 1. Let the condition be satisfied. Let U be a neighborhood of a point a € P.
Let K be the component of U, containing a. As U is open, K is also open. Thus,
a is an interior point of K, and hence P is locally connected at a.
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II. Let P be locally connected and let K be a component of an open set G. For
every a€ K, G is a neighborhood of a and K is the component of G containing a.
Thus, every a € K is an interior point of K, i.e., K is open (see 8.6.1).

22.1.5. In locally connected spaces the quasicomponents are identical with the com-
ponents.

Proof: Let ae P. Let K be the component (see 18.2.1) and Q the quasicomponent
(see18.3.4.) containing a. We have to prove that K= Q. By 18.3.9, K = Q. We have
to prove that Q = K. By 18.3.5 it suffices to prove that P = Ku (P — K) with
separated summands. By 18.2.2. K is closed. By 22.1.4 also P — K is closed. Thus,
K and P — K are separated.

22.1.6. All components of a locally connected space are locally connected.

This follows by 22.1.3 and 22.1.4.

22.1.7. Let P and Q be locally connected spaces. Then P x Q is a locally connected space.

Proof: Let us take a point (a, b) e Px Q and a number ¢ > 0. Since P and Q
are locally connected, by 22.1.1 there is a 6 > 0 such that: [1] if x e P, ¢o(a, x) < 9,
there is a connected S, = Q withae S;, xe S, d(S,) < ¢ [2]ifye Q, 0(b, y) < 6,
there is a connected S, = Q with be S,, yeS,, d(S,) < }e. If (x,y)ePxQ,
ol(a, b), (x,y)] < 6, we have g(a, b) < 5, 9(b, y) < J, so that there exist sets S;, S,
satisfying the conditions above. We have then (a, b) € S; xS,, (x,y)€S,; xS,,
d(S;x S,) < ¢ and S, xS, is connected by 18.1.13. Thus, P x Q is locally connected
by 22.1.1.

22.1.8. The euclidean space E,, (m = 1,2,3,...) is locally connected.

Proof: Tt follows easily by 22.1.1 and 19.2.2 that E, is locally connected. As
E,.. = E,xE,;, we learn from 22.1.7 by induction that every E, is locally
connected.

22.1.9. Let P be a locally connected space. Let G < P be an open set; let K = G
be a connected set. K is a component of G if and only if B(K) <« P — G.

Proof: 1. Let the condition be satisfied. By 10.5.1, B;(K) = U, so that, for every
x € G, we have either g(x, K) > 0 or o(x,G — K) > 0. Thus (see 10.2.3), G =
= K U (G — K) with separated summands. If H o K, H < G and if H is connected,
then H = K by 18.1.2. Thus, K is a component of G.

II. Let K be a component of G. Then K is closed ilG by 18.2.2 and K is open
in P by£2.1.4. Thus, GN K = K (see 8.7.1) and P — K = P — K, so that B(K) =
=KNnP—-K=K—-KcP-0G.
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22.1.10. Let P be a locally connected space. Letae P,be P, Q < P. Q is an irreducible
cut of P between the points a, b, if and only if there exist two distinct connected sets
G,, G, such that ae G,, be G,, G, v G, = P — Q, B(G,) = B(G,) =0Q.

Proof: 1. Let the condition be satisfied. Q is closed by 10.3.1. Thus, by 22.1.9,
G, and G, are components of P — Q, so that G, n G, = (. G, isclosed in P — Q
by 18.2.2 and open in P — @ by 22.1.4 (see also 8.7.6), so that P — Q = G, u
v [(P — Q) — G,] with separated summands. We haveae G,,be G, = (P — Q) —
— G,. Thus, Q separates a from b in P. Let R = Q # R. We have to prove that R
does not separate a from b in P. We have Q — R = Q = B(G,) = G, so that
G, v (@ — R) is connected by 18.1.7. Similarly, G, U (Q — R) is also connected.
Since Q — R (), by 18.1.4 also S = G, U G, U (Q — R) is connected. We have
@ud)cSc(P-Qu(@—-R)=P—R.If P— R= Ay B with separated
summands, a € A, we have, by 18.1.2, S = 4 and hence be A so that R does not
separate ¢ from b in P.

II. Let Q be an irreducible cut of P between the points a, b. Then Q is a closed
set by 18.5.4. Q separates a from b in P, so that (@) U (b) = P — Q and the space
P — Q is not connected between a and b. Thus, by 18.3.3, G; ¥ G,, if G, G,
are components of P — Q such that ae G, b € G,. By 22.1.9, B(G,) = Q and hence
ae G, — B(G,). By 8.7.1 and 1822 G, — Q = G, so that beP — G,. Thus,
by 18.5.2, the set B(G,) = Q separates a from b in P, so that B(G,) = Q. Simi-
larly, B(G;) = Q.

22.1.11. Let P be a locally connected space. Let G = P be an open connected set.
LetaeG,beP — G = P — B(G). Let T be the component of P — B(G) containing b.
Then B(I') is an irreducible cut of P between the points a, b.

Proof: B(G) and B(I') are closed by 10.3.1. As I' is a component of P — B(G),
we have, by 22.1.9, B(I') = B(G). I' is open by 22.1.4, so that BI) =TI — I
by 10.3.2. Similarly, B(G) = G — G. Thus,ae G = P — B(G) = P — B(I'). Let 4 be
the component of P — B(I') containing a. As ae G =« P — B(I'), we have G = 4
by 18.2.5. If A = I', we have G = T, so that the connected set I' contains the point
ae G and the point be P — G = P — G, so that, by 18.1.8, § + I' n B(G), which
is a contradiction. Thus, I' + 4. As G = 4, we have B(I') = B(G) = G < 4.
On the other hand, 4 is open by 22.1.4, so that B(4) = 4 — 4 by 10.3.2. As 4
<P — B(I'), B(I' = 4, we have B(I') = 4 — 4 = B(4). On the other hand,
by 22.1.9, we have B(4) < B(I'). Thus, I' and 4 are distinct connected sets such that
aed, bel'n ’'vd < P — B(I'), B(I') = B(4). Thus, by 22.1.10, B(I') is an
irreducible cut of P between the points a and b.

22.1.12. Let P be a locally connected space. Let Q < P separate a point a from a
point b in P. Then there is an irreducible cut M of P between the points a, b such
that M < Q.
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Proof: By 18.5.1 there is a closed set F = Q which separates a from b in P. Let G
be the component of P — F containing a. The set G is open by 22.1.4. By 18.3.3 G
does not contain b, so that be(P — F) — G. By 8.7.1 and 1822 G — F= G so
that be P — G = P — B(G). Let I' be the component of P — B(G) containing b.
By 22.1.11 the set M = B(I') is an irreducible cut of P between the points a, b.
In proving theorem 22.1.11 we noted that B(I') = G — G. Since G — F = G we
obtain M =« F = Q.

22.1.13. Let P be a connected and locally connected space. Let C = P be a closed
connected set. Let K be a component of P — C. Then P — K is connected.

Proof: K is open by 22.1.4. CuU K and P — K are closed. The set
(CuKR)U(P—-K)=P
is connected. By 8.7.1 and 18.2.2 we have K = K — C, so that the set
CuRNn@P-K)=Cu(E-K)=C

is also connected. Thus, P — K is connected by 18.1.12.

22.1.14. The spherical space S,, (m = 1,2, 3, ...) is locally connected.
This follows easily by 17.10.4 and 22.1.8.

22.1.15. Let P be a locally connected space. Let K be a component of a set M < P
Then B(K) = B(M).

Proof: Let there be, on the contrary, a point a € B(K) — B(M). Then P — B(M)
is a neighborhood of a. Let C be the component of P — B(M) containing a. Since P
is locally connected, a is an interior point of C. On the other hand, a € B(K) = K
so that C n K # @ and hence C n M = @. Since C is connected and C n B(M) + @,
we have C = M by 18.1.8. Thus, C = K by 18.2.5. This is, however, evidently
impossible, since @ € B(K) and a is an interior point of C.

22.2. Let P be a metric space, @ < P. Define a set L(Q) = Q as follows: If a€ 0,
then a € L(Q) if and only if for every neighborhood U of a there is a component X
of Q n U such that a is an interior point of Kn (P — Q).

22.2.1. Let ae Q. We have ae L(Q) if and only if Q is locally connected at the
point a.

Proof: 1. Let Q be locally connected at a. Let U be a neighborhood of a in P,
Then (see 8.7.5) O n U is a neighborhood of @ in Q. Thus, if K is the component
of O n U containing a, then a is an interior point of K in the space Q; i.e. there is
an ¢ > 0 such that xe Q n Q(a, &) implies x € K. Thus, in the space P, x € (a, €)
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implies x € K. Thus, in the space P, x € Q(a, ¢) implies xe KU (P — Q), i.e, a is
an interior point of Ku (P — Q).

II. Let ae Q n L(Q). Let V be a neighborhood of a in Q and let K be the
component of ¥ containing a. We have to prove that, for suitable ¢ > 0, xe @ n
N Q(a, €) implies x € K. By 8.7.5 there is a neighborhood U of the point a in P
such that V' = Q n U. As ae L(Q), there is a component H of V such that, for
suitable ¢ > 0, x € Q(a, ¢) implies xe H U (P — Q). In particular, ae Hu (P — Q).
As ae Q, we have ae H and hence H = K by 18.2.1. Thus, x € Q(qa, &) implies
xeKu (P — Q),ie xeQ n Qa, ¢) implies x € K.

22.2.2. Q < L(Q) if and only if Q is locally connected.
This follows by 22.2.1.

22.2.3. L(Q) is a Gy-set for every Q < P.

Proof: 1. If.s > 0, denote by A(¢) the set of all ae P such that there exists
a connected S < Q such that: [1] d(S) < ¢, [2] a is an interior point of S U (P — Q).

1. For every ¢ > 0 we have L(Q) < A(e). If ae L(Q), then Q(a, 1¢) is a neigh-
borhood of the point a, so that Q n Q(a, {¢) has a component K such that a is
an interior point of KU (P — Q). K is connected and K < Q. Moreover, K <
< Qa, 1¢) implies d(K) < ¢. Thus, a e A(e).

III. The sets A(e) are open. If ae A(g), there is a connected S = Q such that:
[1] d(S) < &, [2] there is a 6 > 0 with Q(a,d) = S U (P — Q). Evidently, every
x € (a, d) is an interior point of S U (P — @), so that Q(a, §) = A(¢). Thus, A(e)
is open by 8.6.1.

IV. @~ ) A(l/n) is a Gyset by 13.1.2, since Q is G, by 13.2 and A(1/n) are
n=1
G, by III and 13.1.1.
— @ -
V. It remains to be proved that L(Q) = Q@ n () A(1/n). As L(Q) <= Q, we have,
1

by II, L(Q) = @ n () A(1/n). On the other hand, choose an ae Q n () A(1/n).
n=1

n=1

We shall prove that a € L(Q). Let U be a neighborhood of a. There exists an index n
with Q(a, 2/n) = U. We have a € A(1/n), so that there is a connected S = Q such
that d(S) < 1/n and that @ is an interior point of Su (P — Q). There exists
a 6 >0 with Q(a,d) =« SuU(P— Q); we may suppose that § < I/n. As ae 0,
there is a point beQ N Qa,0) = 0N (SVP-0)=0nS=3S. As beQ(a,9d),
beS, d(S) < 1/n, we have S < Qa,d + 1/n) =« Qa,2/n) = U. Since S < Q,
we have S = Q n U, so that (see 18.2.5) there exists a component K of 0 n U
such that S < K, so that a is an interior point of Ku (P — Q). Since U was an
arbitrary neighborhood of a, we have a e L(Q).
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22.24. Let Q =« M <= L(Q) (so that Q is locally connected by 22.2.2).Then M is
locally connected.

Proof: Choose a point a € M and a number ¢ > 0. Then Q(a, 4 ¢) is a neighborhood
of the point a € L(Q). Hence, there is a component K of Q n Q(, }¢) and a number
6 > 0 such that g¢(q, x) < § implies xe Ku (P — Q). We may suppose that
d<le. Put S=MnKnQa fe). By 8.7.1 and 18.2.2, K=K n Q n Qa, }e).
Thus, K = S and, moreover, S = K, so that S is connected by 18.1.7. As S <
< Q(a, {&) we have d(S) < &. Moreover, S = M, so that, by 22.1.1 it suffices to
prove that x € S whenever x € M, g(a, x) < d (in particular, for x = a). As § < }¢,
it suffices to prove that x e M, g(a, x) < & imply x € K. Thus, let x e M, ¢(a, x) < .
Choose an n > 0 with g(a, x) + 1 < 8. As M <= @, we have o(x, Q) = 0. Thus,
there exists a point z e Q such that g(x, z) < n. We have then ¢(a, z) < ¢(a, x) +
+ o(x,z) <, hence ze KU (P — Q), i.e. zeK, since ze Q. Thus, o(x, K) £
< o(x, 2) < 5 for every sufficiently small n > 0. Thus, o(x, X) =0, ie. xeK.

22.2.5. Let P be a continuum. Let a€ P — L(P). Then, there is a continuum K such
that ae K, K = P — L(P). Moreover, there is a point b = a and a disjoint sequence
of continua {K,}7 such that lim g(a, K,) = lim ¢(b, K,) = 0.

Proof: 1. By the definition of L(P) there is a neighborhood U of a such that a
is not an interior point of C, if C is the component of U containing a. Choose
a neighborhood V of a with ¥V < U.

II. For n=1,2,3,... we may, by I, determine recursively the components
A,of Usuchthatae U — A4,, Vn A, + U, 0(a, A,) < n~'. By 18.2.2, o(a, 4,) > 0,
so that we may evidently determine the A4, to be distinct and hence (see 18.2.1)
disjoint. For n = 1,2, 3, ... choose an a,€ ¥ n A, such that g(a, a,) < n™!.

1. The set 4, = U is evidently connected, so that 4, is either a one-point set,
or a continuum. On the other hand evidently U + P, so that, by 19.3.2, (see also
10.3.2), 4, — U # 0. Thus, 4, is a continuum and 4, — V + 0.

Denote by B, the component of 4, N V containing a,. By 19.3.1 we obtain easily
that B, n (V — V) % 0, so that B, is not a one-point set. B, is a closed (see 18.2.2)
connected subset of 4, N V. Thus, B, is a continuum. Choose a b,e B, n (V — V).

IV. As P is compact, there are indices i; < i, < i3 < ... such that there exists
limb, = b. Evidently beV — V, and hence a # b. Since B, < 4,nV < 4,n
N U = 4, (see 18.2.2) and since the sets A4, are disjoint, B, are disjoint continua.
We have o(a, B,) = o(a, a,), o(b, B,) < o(b, b,), so that, for K, = B, ,lim g(a, K,) =
= lim o(b, K,) = 0.

V. Put K = Lim B,. Evidently a € K, b € K. We even have a € Lim B,, so that K
is a continuum (see 19.1.7). We have K < ¥ < U.

VI. It remains to be proved that K = P — L(P). Let there be, on the contrary,
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a point ¢ in K n L(P). Since a€ K, ce K, and since K is a connected subset of U,
both points belong to the same component of U i.e. (see I), ce C. As ce L(P), ¢ is
an interior point of C. Thus, there is a 6 > 0 such that g(c, x) < § implies x e C.
Since ¢ € K = Lim B,, there exists an index p and a point u € B, such that o(c, u) <
< 6, and hence ne C. Thus, Cn B, # (J. On the other hand, B, = 4, (see 1V)
and C, 4, are components of U. Thus (see 18.2.1), 4, = C, which is a contra-
diction.

22.3. 22.3.1. Let P be a topologically complete connected and locally connected space.
Let acP, be P, a & b. Then there is a simple arc C < P with the end points a, b.

Proof: 1. By 15.6.3 we may suppose that P is complete.

II. For every xe P denote by V(x) the component of Q(x,}) containing the
point x. Thus, V(x) is connected and x e V(x). Moreover, d(¥V(x)) < 1 and V(x)
is open by 22.1.4. As all the V(x) are open and since |J V(x) = P, there is,

xeP

by 18.4.2, a finite point sequence {x;}iL, such that xo = a, x,, = b and that
V(xi-y) n V(x;) £ 0 for 1 £i < k,. Evidently {x;} contains a finite subsequence
{yito such that yo=a, y,, =b, Vi) V() +0 for 1 <i<h, and
Vo) V(y) =0 for 0Sigh, 0<j<hy, [i—j|22 Put UY=VW(y)
for0 i h;.

III. Suppose that for a given n there is a finite sequence {U{™}~, of point sets
(as it was just done for n = 1) such that

1], ae U, be Uy,

[2, U2, n UM+ @ for 1<igh,

BL,U”AUP =0 for 0<i<Zh,,
O0sjsh, |li—-jlz2

[4], U™ (0 £ i £ h,) are open,

[5], U™ (0 £ i £ h,) are connected,

(6], dUM™ < n~* 02 i<h,).

Put ¢co=a, ¢, 4, = b and, for 1 £i < h, choose a ¢;e U™, n U™, which may
be done by [2],. By [4], we may choose for every xe U™ (0 £ i < h,) an open
set Hyx) such that xe Hy(x) = Hy(x) = U™, d(H(x)) £ (n + 1)"'. Let W(x)
be the component of H,(x) containing x. Thus, W(x) is connected and x € W(x) =
< W(x) c U™. Moreover, d[W(x)] < (n + 1)~ ! and the set W,(x) is open by 22.1.4.

We have c; € U™, c¢;,, € U™, the sets Wi(x) are open in U™ and | Wi(x) =

xeU(m

= U™, Thus, by 18.4.2 (see also 18.4.1) and [5], there is a finite point sequence
{Zi,},‘.,;o Such that z,'o = c,-, zl'p; = C"+l and that Wl'(zi,r—l) n Wi(zi,.) =i= G for
1 £ r £ p;. Combine all the sequences {z;}fL, (0 <i < h,) into a new finite
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hn

point sequence {v;}i_, where k = Y (p, + 1) — 1 in the following manner: the
i=0 .

first elements of {vj}’l‘-=0 are the points z,, (r =0, 1,...,p,), they are followed

by the points z,, (r =0, 1,..., p,) etc., and the sequence is finished by the points
Zp,.r r=0,1,...,p,). Put Wi(z;,) = W(v;) for z;, = v;. Then we have vy = a,
v, = band W(v;_,) n W(v;) + ¢ for 1 < j £ k. Evidently, {v;}%.., contains a finite
subsequence {u;}in% such that uy = a, u,,,, = b, W(u;—y) n W(u;) =0 for 1 <
SjS hyyyand W) o W) =0 for 0 S i S hyyy, 0SS hyyy, (i —jl 2 2.
Put UY*D = W(u;) for 0 £j £ h,,,. Then the conditions [1],4+, — [6],+, are
satisfied. Moreover, we have

[7], for every i (0 < i < h,,,) there is an index A(i) (0 < A({) £ h,) such that

Ut < Ug); the indices A(7) may be chosen in such a way that

(8], 0 =i <)< h,y, implies A(i) < A(j).

IV. Thus, we may construct recursively, for n = 1,2, 3, ..., finite sequences
{UM}, of point sets such that, for every n, [1], — [8], hold. Put

hn .
G,=UU” n=1,23.).

i=0
G, are open by [4], and connected by [2],, [5], and 18.1.4. Moreover, by [7],,

Gou1cG, (n=1,2,3,..)
and hence

C=NG, =NG,.
n=1 n=1

V. We have ae C, b e C since, by [1],, aeG,, be G, for every n.

VI. C is compact by [6], and 17.5.2.

VII. C is a continuum. Let us assume the contrary. By V and VI C= 4 U B
with non-void separated summands. By 10.2.7 there are open sets I', 4 such that
Frnd=¢, T'>A, A>B. AsT, 4 are open and Gpsy < Gy, Gooy — (T U ) =

< G, — (' v 4). Since G, > C are connected and G,n (v d)=(G,nIN v
v (G, n 4) with separated non-void summands, we have G, — (I' U 4) % 0. Thus,

by [6,] and 15.7.2 we have 0 % () [G, — (v 4)] = C — (I' U 4), which is a
n=1
contradiction.

VIII. Let us choose a ceC, a % ¢ # b, and prove that C — (c) = C' ' u C”
with separated summands, ae C’, be C".
Since C < G, for every n, there are indices s, such that 0 <s, < h,, ce U™.
Choose an index p with
3.p' < min [o(a, ¢), o(b, )] .
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(11,, [2], and [6], Yield:

€@ d( UM s ¥ AU S 6+ )

i=

e(s, C)<d(n U™ < Zd(U"")<(h -5+ D.nt,

i=sn i=spy
so that
35s,£h,—3 for nzp.
Let
Sh—3 hn
=yuv”, G =UU"” @=pp+1,..),
i=0 i=snt+3
G'=UG,:, ¢ =UGgG,.
n=p n=p

G’ and G” are open by [4], and we have ae G, be G by [l],. Thus, it suffices to
prove first that -G’ N G” = ¢ and secondly that C — (c) = G’ U G” since then we
may put C'=Cn G, C"=Cn G"

We prove easily that C — (¢) = G’ U G". Let de C — (c). Choose an n such
that » > p and that 5. 27! < g(c, d). There exists an index i such that 0 < i < h,
and de U™. If | 5, — i| < 2, we obtain, by [2], and [6],,

sSht2 snt2
ee,d)sdl U UM= ¥ dUu™ss5.n7t,
Jj=sn—2 j=sn—2
which is a contradiction. Thus, |s, — i| = 3, so that de G, u G, =« G' U G".

It remains to be proved that G' n G" = ().

Let p</<m. By [7], and [8], (n=11+ 1,...,m — 1) we may associate, with
every i (0 <i<h,), a (i) [0 2 (i) < k)] such that U™ < Ul and that

0si<j<sh, implies u(i) = u(j).

Assume that there is a point de G,, N G/. As de G, there is an index i with
0Li<s,—3,deU™ and hence de U“"(’,) As de Gj, there is an index j with
s§i+3<j<h,de U"’ Thus U,y n U * 0, so that, by [3], u() =j—12
=5+ 2 Since i<, we have u(i) < < u(s,), so that u(s,) = s, + 2, so that,
by [3],, UQ,., n UP = @; this is a contradiction, since obviously ¢ €U, n US.
Thus,

pP<I<m implies G,NnG =0. m

Suppose that there is a point de G| n G,,. As de G,,, there is an index i such
that s, + 3<i < h,, de U™, so that de U,. As deGj, there is an index j
such that 0 < j<s,—3, de U{. Thus, UQ) n U +0, so that, by [3];, p(i) =<
Sj+1= s, 2. As i>S,,, we have u(i) = u(s,), so that u(s,) < s, — 2, and that,
by [3];, UL, ) n U = U, which is a contradiction, since ibviously ce U, , n U,
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Thus

IIA

p=<Il=<m impliess G nG, =0. )

(1) and (2) yield G' n G" = (.
IX. By V, VII, VIII and 20.3, C is a simple arc with end points a, b.

22.3.2. In a locally connected topologically complete space P the constituants are
identical with the components.

Proof: Let K be a component of P, By 12.8.1, 19.5.5 and 19.5.8 it suffices to
prove that K is a semicontinuum. K is open in P by 22.1.4. Thus, K is locally
connected by 22.1.3 and K is a topologically complete space by 15.5.3 (see 13.1.1).
Thus, K is a semicontinuum by 20.1.1 and 22.3.1.

22.3.3. Let P be a locally connected topologically complete space. Let a closed Q < P
cut P between points a, b. Then Q separates a from b in P.

Proof: By 19.5.10 the points a, b belong to distinct constituants of P — Q. The set
P — Q is open in P and hence it islocally connected by 22.1.3 and P — Q is topo-
logically complete by 15.5.3. Thus, the constituants of P — Q coincide with its
quasicomponents by 22.1.5 and 22.3.2. Thus, by 18.3.5, P— Q = 4 u B with
separated summands, a € 4, b€ B, i.e. Q separates a from b in P.

Exercises

22.1. Every connected subset of E, is locally connected. This is not true in E, (n = 2).

22.2. If PxQ + @ is locally connected, then P x Q are locally connected (see ex. 18.10).

22.3, PxQ is locally connected if and only if for every M open in P and for every N open in Q
every component of M XN is open in Px Q.

224. Let P, Q be locally connected spaces. Let M < Px Q. Let f be a continuous function on
PxQ. Let, for every a € M,

x€PXQ, fx) =f@)=>x=a.

Then M has no cluster points in P X Q (see ex. 19.14).

225. Let My < P, M, < P,a € M; N\ M,. Let both the sets M;, M, be locally connected at the
point a. Then M; U M, is also locally connected at the point a.

22.6. If the sets M| < P, M, < P are locally connected, then M; U M, need not be locally con-
nected. This may be shown by means of an example with M; U M, = Ps (see ex. to § 19).

22.7. Letthe sets M; < P, M, < P be locally connected and closed in M; U M,. Then M, U M,
is locally connected.

22.8. We may replace the word “closed” in ex. 22.7. by the word *“‘open”.

22.9. Let G be an open set in a separable locally connected space P. Then the system of all compo-
nents of G is countable.

22.10. A space P is locally connected if and only if it has the following property: If a point a € P
and a positive number ¢ are given, then there is a connected open set G such that a € G,

d(G) < e.
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22.11.

22.12.

22.13.
22.14.

22.15.

22.16.
22.17.

22.18.
22.19.
22.20.

22.21.

22.22.
22.23.

22.24.

22.25.

22.26.

22.27.

22.28.

V. Local connectedness

Let a € P. For every ¢ > 0 let there be a connected open G with a € G, d(G) < ¢. Then P
is locally connected at a.

There exists a space P and a point a € P such that P is locally connected at a and that, for
suitable £ > 0 there is no connected open G with a € G, d(G) < &. This may be shown by
means of the example with @ = (0, 0), P = P, (see exercises to § 19).

Let a € M < P. Let M be locally connected at the point a. Let M < N < M. Then N is
locally connected at the point a.

Let M < P. If M is locally connected, M need not be locally connected. This may be shown
by an example with P = E; and also by an example with P = E, and with open connected M.
Let P be a locally connected space. Let Q < P be compact. Let G be a neighborhood of Q.
Then there exists an open M such that Q < M < G and that M has a finite number of
components.

We may replace the word “‘open” in ex. 22.15 by the word “closed™.

Let P be a connected and locally connected space. Let G,, G, be connected open sets. Let
the sets B(G,), B(G,) be connected and disjoint. Let

G, NGy U +P—(G,VGy).
Then either G; < G, or G, < G,.

Remark: V. Knichal noticed that in ex. 22.17 we may: [1] omit the assumption of local
connectedness, [2] replace the assumption of G,, G, open by a weaker assumption of
G; U G, open, [3] replace the assumption P — (G, Y G,) + 0 by a weaker asssumption
P—(G, VG, * 0.

Let there exist a one-to-one continuous mapping of a connected and locally connected space P
onto a simple arc. Then P is a simple arc.

1t is not possible to omit the assumption of local connectedness in ex. 22.18. This may be
shown by means of an example with P < P; (see exercises to §19).

A one-to-one continuous image of a locally connected space need not be locally connected.
There exists a connected space P such that P— L(P) is an n-point set (n =1,2,3,...) or
an infinite countable set. This may be shown by means of an example with P < P, (see
exercises to §19).

A space P satisfying the condition from ex. 22.21 cannot be compact; this follows by 22.2.5.
Prove that P cannot be locally compact. P may be topologically complete.

Let P be the set of all couples (x, y) € E, such that at least one of x, y is irrational. Then P
is connected, locally connected and topologically complete.

Let P be a connecied, locally connected and topologically complete space. Let a € P. Let a
be an end point of every simple arc C < P such that a € C. Then the set P — (a) is either
void or connected. )

Let P be a locally connected and topologically complete space. Let C < P be a simple arc
with end points a, b. Let c€C, a + ¢ + b. Let P—(c¢) be connected. Then there exists
a simple loop D < P such that ¢ € D.

Let P be a locally connected and topologically complete space. Let 4 < P be a closed and
locally connected set. Let B be a union of some components of P— 4. Then A U B is closed
and locally connected

Remark: V. Jarnik noticed that the assumption of topological completeness in ex. 22.26
is superfluous.

Let P be a locally connected and topologically complete space. Let G < P be an open set.
Let M be the set of all x € B(G) such that there is a continuum K with x € K, K — (x) < G.
Then M is dense in B(G).

Let P be a locally connected space. Let S be a system of points sets. Let M be thc union
of all Xe&. Let N be the union of all sets B(X) (X € S). Then M = MU N.
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§ 23. Locally connected continua

23.1. 23.1.1. Let P be a metric space. For every ¢ > O let there be a & > 0 such that
for every ae P, be P with g(a, b) < J there is a connected S = P with ae S, be S,
d(S) < &. Then P is locally connected.

This follows by 22.1.1.

23.1.2. Let P be a compact locally connected space. Then, for every ¢ > 0, there
is a 8§ > 0 such that for any ae P, be P, o(a,b) < 6 there is a connected S = P
with ae S, be S, d(S) < e.

Proof: On the contrary, let there be an ¢ > 0 such that no § =n~! (n =
= 1,2, 3,...) has the required property. Then there are point sequences {x,}, {y,}
such that [1] o(x,,y,) <n~! [2] if S = P is connected and x,€ S, y,€S, then
d(S) = ¢. Since P is compact, there are indices i; < i, <i; < ... such that
lim x;, = a exists. As P is locally connected at the point a, there is a § > 0 such
that there is a connected S = P with ae S, xe S, d(S) < ;& whenever g(a, x) < 0.
There is an index n such that (g, x;) < 46 and i, ! < 4§ and hence o(a, )=
< o(a, x;) + o(x;,, y;,) < 0. There exist connected S; = P, S, = P such that
aeS;nS,, x;, €8, yi,€8,;, d(S,) <1, d(S,) <15. We have x; €S, US,,
Vi, €S US,,d(S,US,) £ d(S,) + d(S,;) < dand S, U S, is connected by 18.1.4.
This is a contradiction.

23.1.3. A metric space P is locally connected if and only if every its component is
open and locally connected.

Proof: 1. Let P be locally connected and let K be its component. K is open
by 22.1.4, so that K is locally connected by 22.1.3.

II. Let every component of P be open and locally connected. Choose a point
a€ P and a number ¢ > 0. Let K be the component containing the point a. Then
there is a 6; > 0 such that Q(a, §,) = K. Since K is locally connected, by 22.1.1
there is a , > 0 such that for every x e K with g(a, x) < 9, there is a connected
S < K with ae S, xe€ S, d(S) < e Put § = min(d,,0,). If xeP, o(a, x) <9,
we have g(a, x) < §; and hence x € K. Moreover, g(a, x) < d,, so that there exists
a connected S « K < P such that ae S, xe S, d(S) < &. Thus, P is locally conn-
ected at the point a by 22.1.1.

23.1.4. A compact space P is locally connected if and only if: [1] P has a finite number
of components, [2] every component is locally connected.

Proof: 1. If P has a finite number of components and if K is one of them, then
P — K is the union of the remaining ones, so that, by 8.3.4 and 18.22, P — K is
closed and hence K is open. If, moreover, every K is locally connected, P is locally
connected by 23.13.
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In this part of the proof the compactness of P was not used.

II. Let P be locally connected, so that the components are open by 23.1.3. By
18.2.1 and 17.5.4 the number of components is finite.

23.1.5. Let P be a metric space. Let, for every ¢ > 0, P = |J K; with a finite number
i=1
of closed connected summands of diameters less than . Then P is locally connected.

Proof: Choose an a€ P. Let F be the union of all X; (1 £ i £ m) which do not
contain the point a (if a € K; for every i, F = J). Denote by S the union of the
remaining K;, so that a € S and S is connected by 18.1.4 or by 18.1.5. Fis obviously
closed, so that there is a § > 0 such that Q(a, §) =« P — F = S. Evidently, d(S) <
< 2¢. Thus, P is locally connected at the point a by 22.1.1.

23.1.6. Let P + () be a compact locally connected space. Let ¢ > 0. Then P = U K;
with a finite number of closed and comnnected summands of diameters less than €.

Proof: For every x e P denote by U(x) the component of Q(x,4¢) containing
the point x. The sets U(x) are open by 22.1 4 and |J U(x) = P so that, by 17.5.4

xeP

there is a finite sequence {x;}T such that U U(x;) = P and consequently P =
U K; where K; = (Ux,). As U(x) < Q(x,,%e) we have evidently d(K;) £

< %e < & Moreover, the sets K; are closed and, by 18.1.6, also connected.

23.1.7. Let P be a continuum. P is locally connected if and only if for every ¢ > 0,
P is a union of a finite number of continua of diameters less than e.

Proof: 1. The condition is sufficient by 23.1.5, since every continuum is closed
by 17.2.2.

II. Let P be a locally connected continuum and let ¢ > 0. By 23.1.6, P =

= U K;, where K; are connected and closed (and hence compact by 17.2.2) and
i=1

d(K;) < e. Thus, every K; is either a continuum, or a one-point set. We may suppose
that there is an index n £ m such that K; is a one-point set if and only if i > n.

By 18.19n =2 1. Wehave P= AU B, where A = |J K;, B=P — A. A is closed
i=1

and non-void. B is finite and hence also closed. Moreover A N B = (J, so that 4, B

are separated. Since P is connected and A4 # (J, we have B = (J, ie. P = |J K.

i=1

23.1.8. Simple arcs are locally connected continua.
This follows, e.g., from 20.1.1, 20.1.12 and 23.1.7.
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23.1.9. Simple loops are locally connected continua.
This follows, e.g., from 21.1.1, 23.1.7 and 23.1.8.

23.1.10. Let a continuum P not be locally connected at a point ae€ P. Then there
exists a continuum K < P such that ae K and that P is locally connected at no
point x € K.

Proof: By 22.2.1 ae P — L(P). Thus, by 22.2.5, there exists a continuum K such
that ae K =« P — L(P). By 22.2.1 P is locally connected at no x e K.

23.1.11. Let P be a metric space. Let there be a finite number of locally connected

compact sets A; (1 £i < m) such that P = |J A;. Then P is a locally connected
i=1
compact space.

Proof: P is compact by ex. 17.4. P is locally connected by 23.15 and 23.1.6 (see
also 17.2.2).

23.2. 23.2.1. Let P be a locally connected continuum. Let Q be a metric space
containing more than one point. Let there exist a continuous mapping f of P onto Q.
Then Q is a locally connected continuum.

Proof: By 17.4.2 and 18.1.10 Q is a continuum. Choose an ¢ > 0. By 17.4.4
there is a 6 > O such that

Mc P, dM)<é imply d[f(M)] <e. )]
By 23.1.7 P = G K; where K; are continua and d(K;) < 6 (1 < i £ m). We have
0= Cl S(K). l‘;yl(l), d[f(K})] < =. The sets f(K;) are compact by 17.4.2 and hence
close:i:iln Q by 17.2.2 and connected by 18.1.10. Thus, Q is locally connected
by 23.1.5.
23.2.2. Let P be a metric space containing more than one point. Put J = I‘Z[O b

< t £ 1]. Let there exist a continuous mapping f of the interval J onto P. Then P
is a locally connected continuum.

This is a particular case of theorem 23.2.1, since J is a locally connected continuum
(e.g. by 23.1.8).

23.2.3. Let P be alocally connected continuum. Then there exists a continuous mapping f
of the interval J = E[0 £ t < 1] onto P.
t
First proof: 1. Let D be the Cantor discontinuum (see 17.8.3). Let E[u, < ¢ < v,]
t

(n=1,2,3,...) be the contiguous intervals of D, so that v, — u, = 0.
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II. By 17.8.4 there is a continuous mapping ¢ of D onto P. Put 5, = o[o(u,),
@(v,)], hence n, = 0. As D is a compact space, we have, by 17.4.4, n, - 0.

1II. By 23.1.2 we may associate with every m (= 1,2,3,...) a number §,, > 0
such that for every ae P, b e P with g(a, b) < §,, there is a connected S < P with
aeS,beS, dS) <m™.

IV. As 5,20, n,— 0, 5,, > 0, we may associate with every m (=1,2,3,...)
an index i, such that
n = i, implies n, < 4d,.

We may assume that 1 < i, <i, <iy <....

V. We shall define, for every n (= 1,2, 3,...) a continuous mapping , of the
interval E[u, £ ¢ £ v,] into P such that ¥, (u,) = o(u,), ¥.(v,) = o(v,). We shall
t

distinguish the following three cases: [1] @(u,) = ¢(v,), [2] 1 = n < i, o, +
@), Bl in-2n <ipyy (m=1,2,3,...), 0o,) * o(v,).
VI. First, if o(,) = ¢(v,), we put y,(t) = ¢(u,) for every teE[u, <t < v,).
t

VII. Secondly, let 1 £ n < iy, o(u,) £ ¢(v,). By 17.2.1 and 22.3 there is a simple
arc C, < P with the end points ¢(u,), ¢(v,). Let ¢, be a homeomorphic mapping
of the interval E[u, < ¢ £ v,] onto C, such that y,(1,) = ¢(u,), ¥.(v.) = ¢(v,).

t

VIII. Thirdly, let i, < n < i,.y, @W,) + @@,). By IV, we have 5, = glo(x,),
¢(v,)] < 6, so that, by III, there exists a connected S, = P such that ¢(u,) € S,,
o, €S,, d(S) < m™! and hence S, = Q(¢(u,),m™!). Let G, be the component
of Q[e(u,), m™'] containing the point ¢(x,)€ S,. By 18.2.5 S, = G, and hence
¢(v,) € G,. The set G, is connected. By 22.1.4 G, is open, so that, by 22.1.3, G,
is locally connected. By 17.2.1 and 15.5.3 G, is a topologically complete space.
Thus, by 22.3, there exists a simple arc C, = G, with the end points ¢(u,), o(v,).
Let ¢, be a homeomorphic mapping of the interval E[u, <t £ v,] onto C, such

t

that ¥, (u,) = @(u,), Yu(v,) = ¢(v,).
IX. Define a mapping f of the interval J = E[0 < ¢ £ 1] into P as follows:
@ t

Evidently J = Du |J E[u, < t < v,] with disjoint summands. If ¢ € D, put f(¢) =

n=11
= @(0); if u, <t < v, put f(t) = y,(t). As ¢(D) = P we have f(J) = P, i.e. fis
a mapping of J onto P. It remains to prove that fis continuous: Assume the contrary.
Then there is a number a e J and a sequence of numbers {t,}° such that 7, - q,
while f(z,) does not converge to f(a). Then there exists a positive number « and
a subsequence {x,}7 of {f,}¥ such that o[f(x,),f(a)] > 2« for every k. We see
easily that some of the following three cases occur: [1] there is a subsequence {y,}{°
of {x;}7 such that y, € D for each k, (2] there is an index n such that a subsequence
{ye}? of {x,}¥ may be chosen with y, € E[u, < t <v,] for each k, [3] there are
t
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indices n, (k =1,2,3,...) such that ny <n, < ny <... and that a subsequence
{y}1 of {x}7 may be chosen with y, € E[u,, <t < v,,] for each k.
t

In the first case y, — a, y, € D, hence a€ D, so that f(y,) = @(y,). f(a) = ¢(a),
and hence f(y,)~ f(a) which is a contradiction, since ¢[f(y¢), f(@)] > 22 >0
for all k.

In the second case y, — a, u, < y, < v,, hence u, < a £ v,, so that f(3;) =
= ¥,(7:), f(a) = ¥,(a), and hence f(y,) - f(a), which is a contradiction.

In the thlrd case Yi — a, Uy, < yk < v’lk’ hence |yp - ullkl < v'lk u’lk - 0
hence u,, — a, hence ae D, hence f(u,) = ¢(u,), f(a) = ¢(a) and hence f(u,,) —
— f(a). As a > 0, there is an index p such that p~! < «. Since ny <n, < n; <
and since f(#,) = f(a), there is an index k such that i, < n, and that o[ f(u,,),
f(@] < «. As o[f(»), f(@)] < 21, we have evidently o[f(yi),f(u,)] > «. Thus,
SO * flu,). Since u,, < y, <, we have, by VI, ¢(u,) + ¢(v,,). Since i, <
< n,, there is an index m = p such that i, < n, < i,,,. Thus, by VIII, we have
FOW = V) € Coy G, = QLop(tn), m™ ], ie. oLf(1)s @(tt)] < m~L. As lut) =
= f(u,,), g[f(yk),f(u”k)] > o, we have m~! > «. This is a contradiction, since
m=p,p <o

The proof just finished is simple; however, it is based not only on theorem 17.8.4,
but also on theorem 22.3.

Second proof of theorem 23.2.3: 1. For every x e P denote by V(x) the component
of Q(x, :) containing x. Thus, V(x) is connected and x € V(x). Moreover, d(V(x) <
< % and V(x) is open by 22. 1 4. As U V(x) = P, by 17.5.4 there is a finite point

xeP

sequence {x;}%_, such that U V(x;) = P. By 18.4.2 there is a finite point sequence

{y:}i=1 such that {y;} isa subsequence of {x,}, every term of {y;} is equal to some
member of {x,} and V(y;) n V(y4+y) U for 1 i< h— 1. The sequence {y;}
may be modified by repeating the last term several times, so that we may assume
h=2"=2Y Put UY = V(y) 1 £i<h).

II. Assume that we have determined for some n (= 1, 2, 3, ...) a finite sequence
{UMYim, (B = 2V of pomt sets (as just done for n = 1) such that

[l]’l U U}") = P:
i=1
(2, U (") U("+l) +UWforl <i<h, -1,
(3], the sets U™ (1 £ i < h,) are open,
(4], the sets U™ (1 =i < h,) are connected,
[5], dU™) £ 27" (L S i hy).
For a given i(l <i < h,) denote by Wi(x), for every xe U™, the component
of Q(x,27""2) containing x. Thus, Wi(x) is connected and x € W(x). Moreover,

d[W‘(x)] é 2-n- 1 and W,'(v\) is open by 22.1.4. As U [U(")ﬂ W(x)] = U(")

xeU;m
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and as [7,‘75 is compact by 17.2.2, by 17.5.4 there exists a finite point sequence
q ) [

{zL}2_, such that U wi(z{?) > U™.
n=1

By [2], we may assume that, for every i = 2, we have z{’e U™, n U{™ and that, for

i < h, — 1, we have z{? € U™ n U}, . Therefore, we see easily that we may assume

Z{*D =20 for 1 < i< h,— 1. Since U™ is connected by [4], and 18.1.6, by 18.4.2
there is a finite point sequence {u{"}f_, such that the sequence {z{"} is a subsequence
of {u{"}, every term of {u{"} is equal to some term of {z{’} (in particular u{’ = z{’,
ul = 29), and W) n Wiu),) + @ for 1 <r < k; — 1. The sequence {u"}
may be modified by repeating the last term several times, so that we may
assume k; = 2™*', where the number m,, is the same for all i (1 £ i £ A,). Let
us combine the sequences {W,(u{”)}’; into a new sequence {U{"*V}i*t where
Bppy = 2% N,y = N, + m,,,. We take first the sets W,(z(") (1 £ r £ 2™*1);
they are followed by W,u) (1 £r £2™*') etc. and, finally, by the sets
W, @) (1 £r < 2™*'). Then all the properties [1],,, — [5],+; are satisfied.
Moreover, we have (see 10.2.6).

6, 1Si<h, | Sr<2™ UMY L, AnU™ 0.

111. Thus, we may construct recursively, for n = 1,2, 3,..., finite sequences
{U™M}= | of point sets such that, for every n, [1],—[6], hold. We have h, = 2™,
N,=m,, N,y, = N, + m,,, and hence N, = im,. By [2], or [4],, U™ + 0.
Choose a z"e U™ (n = 1,2,3,...,1 i < h,). !

IV. For n = 1,2,3,... define a mapping f, of the interval J = E[0 £ ¢ < 1]
as follows: Put I;, =E[(i—1).27M™ <t <i.2™] (i=1,2, ...,h,,‘— n, 1, =
= E[h, — 1).27M < ;g 1].

t

Then, put f,(t) = z{”, where i is uniquely determined by the relation te /.
(If ¢ € J, then there is a unique indexi (1 £ i £ A, = 2") such that (i — 1).27" <
<t<i.27™ provided i<#h, and (i —1).2°™ <t <i.27™ provided i = h,.
Put f£,(¢) = z{".)

V. Let te J, f,(t) = 2", f,, (1) = z{"" V. We see easily that there is an index r
such that 1<r<2™*, j=(—1)2™*" +r. As z"eU®", 2" Ve U™, we
have, by [5], and [6],

elfi(), £, (0] S AU™) + d(UF™P) < 2774

Thus, forn=1,2,3,...;m=n+ 1,n+ 2,n + 3, ... we have

o[f(0). fu()] <§"2-s+1 Py
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Thus, {f,(1} is a Cauchy sequence, so that, by 17.2.1, there exists
f(t) = lim f,(t) e P.

n—oo

VLIf tyeJd, t,ed, |t —t,] <27™, fi(t) = 2", f,(t:) = 23, we have

(G —1).27M < 27 (i, —1).27% <1, £4,.27™, so that evidently
I il - ill = L. ThUS, by [2]n and [5]n9

elf(t). 1,1 £ d(USY) + d(UD) S 271

This yields easily that f is a continuous mapping of the interval J into P. In fact,
lett,eJ,teJ, t,— tand let ¢ > 0. There is an index n with 27"** < &. As 1, - 1,
there is an index p such that | t, — 7| < 27" for v > p and hence ¢[/,(1,), £:(D] <
< 27"*! On the other hand, by V,

olfi), @) 27772, olfi(), (] S 27772,

so that, for v > p, o[f(t,), f(x)] €27 %' 4 27"¥2 4 27m+2 £ 27"*% < ¢ Thus,
f@) - f(0.

VIIL. It remains to prove that f(J) = P. Let, there be on the contrary, an
aeP — f(J).

By VI and 17.4.2, f(J) is compact, so that (see 17.2.2) f(J) is closed, and hence
P — f(J) is open. As ae P — f(J), there is a 6 > 0 such that Q(q, §) = P — f(J).
There is an index n with 27"*3 < §. Asae P, by [1], there is an index i (1 £ i £ A,)
such that a € U™, so that, by [5],, we have g(a, z{”) < 27" Ift = (i — 1). 2" € J,
then f(f) = z{”, so that, by V, o(z™, f()) £27"*% Thus, ola, f()] £ 27"+
+ 272 £ 273 < 5, s0 that (1) € Q(a, ) = P — f(J), which is a contradiction.

23.2.4. Let P be a locally connected continuum. Let ¢ > 0. Then thzre exists a finite

m

number of locally connected continua P; (1 < i < m) such that P= \J P, and
i=1
dP)se(lsism).

Proof: By 23.2.3 there exists a continuous mapping f of the interval J =
= E[0 £ ¢t £ 1] onto P. By 17.4.4 (see also 9.6.1) there is a § > 0 such that 0 <
t

S <t, £1,t, —t, <6 imply o[f(¢),f(t;)] < &. Choose a natural number
n> 67! and denote by A4, (1 £ k < n) the set of all teJ with (k — 1)n™! <

<t <kn™'. Then P = |J f(4,) and the sets f(4,) are less than or equal to ¢
k=1

in diameter. We see easily by 23.2.2 that every f(4,) whith is not a one-point set
is a locally connected continuum. On the other hand, the equation P = U f(4,)

i=1
remains valid after omitting the one-point summands on the right-hand side (see
the proof of theorem 23.1.7).
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V. Local connectedness

23.2.5. Let P be a locally connected continuum. Let \) + F ¢ G < P. Let F be closed.
Let G be open and connected. Then there exists a locally connected continuum K with
FcKcG. '

Proof: Fis compact by 17.2.2. Thus (see 17.3.4) there is an ¢ > O such that xe G

whenever go(x, F) < ¢. By 23.24, P = |J P;, where P; are locally connected continua
of diameter less than or equal to &. ‘=*

G is a topologically complete space by 15.5.2 (see also 17.2.1). Moreover, G is
connected and locally connected (see 22.1.3).

Denote by N the system of all couples (i, k) with 1 S i< k< m, FnP; £0+
+ Fn P.. If (i, k) € N, choose points ae P;, be P;, a + b. We have ae G, be G,
so that, by 22.3.1 there exists a simple arc C;;, = G with end points q, b. m

Denote by K, the union of all P, (1 £ i < m) with FnP; + 0. AsP= | P,

i=1
we have F c K. Since d(P;) < &, o(x, F) < ¢ imply x € G, we have K; = G. Denote
by K, the union of all C;, with (i, k) e N. Put K = K, U K,. Evidently F c K = G.
By 23.1.11 K is a locally connected compact set. Evidently K is not a one-point set,
and we obtain easily by 18.1.5 that K is connected. Thus, K is a locally connected
continuum.

Exercises

The spaces Py, Py, ..., Py, were defined in the exercises to §19.

23.1. P, and P4 are locally connected continua. Moreover, every continuum embedded into P,
is locally connected (this is not true for Pg).

23.2. At which points are P, P,, P, P, locally connected ?

23.3. The continuum Py is locally connected at a unique point; Py, is locally connected at
no point.

234. Let C < P or C < Py,. Let C be a locally connected continuum. Then C is a simple arc.

23.5. Let P be a locally connected continuum. Let £ > 0. Then there is a number § > 0 such
that for every a € P, b € P with 0 < g(a, b) < 9, there is a simple arc C = P with end points
a, b and with diameter less than &.

23.6. Let K < E_, be a continuum. There exist locally connected continua K,, < E,, (n = 1,2,3,...)

@
such that K, @ K41, () K, = K.
1
23.7. Let K < E,, be a continuum. There are simple arcs C, < E,, (n=1,2,3,...) such that
2]
KV | G, is a locally connected continuum.
1

23.8. Pet P be a continuum. P is locally connected, if and only if for any two disjoint closed F;, F,
there are separated A, 4, and a closed @ such that @ has a finite number of components
and P—P =4, VA, Ay,> F, A4,> F,.

23.9. There exists a continuous mapping of E; onto P if and only if there exist locally connected

[ )
continua K, © P (n=1,2,3,..)such that K, < K, ,;, P = |J X,.
1

23.10. Let P be a locally connected continuum. Let Q < E, be a locally connected continuum.
There exists a continuous mapping of Q onto P.
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