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Chapter VI

MAPPINGS OF A SPACE
ONTO THE CIRCLE

§ 24. Inessential mappings onto the circle

24.1. In this and in the following chapter we shall identify couples (x, y) of real
numbers with complex numbers x + iy, so that E, is the set of all the complex
numbers nad S, (see 17.10) is the set of all complex numbers x + iy with absolute
value

| x +iy| = +V(x* + y?)

equal to one. The set E, will be termed the plane, the set S; will be termed the circle.
Evidently 0@ b)=|a—b| for ack,, bek,.

As is well known, for.any t€ E,,

e =cost +isinteS,.

The following two theorems are well known:
24.1.1. Put f(t) = €" for t e E,. Then f is a continuous mapping of E, onto S, .

24.1.2. Let aeE,, J=E[a <t < a+ 2n]. Put f(t) =€ for teJ. Then f is
t

a homeomorphic mapping of J onto S, — (£).
24.2. Let P be a metric space. The following two theorems are easy to prove:

24.2.1. Let f and g be continuous mappings of P into S,. Then f. g is a continuous
mapping of P into S, .

24.2.2. Let f be a continuous mapping of P into S,. Then 1/f is a continuous mapping
of Pinto S,.
It follows easily by 24.1.1:

24.2.3. Let ¢ be a continuous mapping of P into E,. Put f(x) = €' for every xe P.
Then f is a continuous mapping of P into S,.

Let f be a continuous mapping of P into S,;. We say that f is inessential, if there
exists a continuous mapping ¢ of P into E, such that f(x) = ¢'**® for every x € P.
A mapping f is said to be essential, if it is not inessential.

The following three theorems are evident.
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24.2.4. Let f and g be inessential continuous mappings of P into S,. Then f.g is an
inessential continuous mapping of P into S, .

24.2.5. Let f be an inessential continuous mapping of P into S,. Then 1/f is an
inessential continuous mapping of P into S, .

24.2.6. Let Q < P. Let f be an inessential continuous mapping of P into S,. Then
the partial mapping fq is also inessential.

24.2.7. Let f be a continuous mapping of P into S,. If S, — f(P) + 0, then f is
inessential.

Proof: There is an a € E; with e*e 'S, — f(P). By 24.1.2 there exists a homeo-
morphic mapping & of S, — (¢'*) onto the interval E[a < ¢ < o + 27] such that

t
e"® = z for everty ze S, — (). Put ¢(x) = h[f(x)] for xeP. Then ¢ is a
continuous mapping of P into E, such that f(x) = e'*® for every x € P.

24.2.8. Let f and g be continuous mappings of P into S,. Let f be inessential. Let
| f(x) — g(x)| < 2 for every x € P. Then g is also inessential.

Proof: Obviously g(x)/f(x) = —1 for any x e P. Thus, the mapping g = f. (g/f)
is inessential by 24.2.4 and 24.2.7.

24.2.9. Let 0 < w < 2m. Let f be a continuous mapping of P into S;. Let ¢ be a
mapping of P into E|. Let f(x) = €™ for every x e P. Let ¢ not be continuous in
a point a€ P. Then there is a sequence {x,} in P such that limx, = a, | ¢(x,) —
— ¢(@)| > w for every n.

Proof: Denote by M the set of all x € P such that | ¢(x) — ¢(a) | > w. By 8.2.1,
we have to prove that ae M. Let us assume the contrary. Then U =P — M is
a neighborhood of a such that x e U implies | ¢(x) — ¢(a) | £ w. Evidently there
is a neighborhood V of a such that S, — f(V) = (J. By 24.2.7 there is a continuous
mapping ¢ of V into E, such that, for every xe V'

eV =f(») = ei?t)

In particular e¥® = e'%®, 5o that there is an integer k with ¢(a) = ¥(a) + 2nk.
Since w < 2x and since ¥ is continuous, there is obviously a neighborhood W = U
of a such that xe W implies | Y(x) — Y(a)| < 2n — w. For xe U n W we have
lo(x) — Y(x) — 2kn| = | [p(x) — ¢@@)] — Y(x) — ¥(@]] = | o(x) — 9@ | +

+ | ¥(x) — ¥(a)| < 2n. However, the number

@(x) = ¥(x) — 2kn

I M
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is an integer, since
elP(X) _ gi(x) _ oi(W(x)+2kn)

Thus, (1) is an integer and its absolute value is less than 1, hence ¢(x) = Y(x) + 2kn
for every x € U n W. On the other hand, U n W is a neighborhood of a and y is
continuous. Thus, ¢ is continuous in a. This is a contradiction.

24.2.10. Let f be a continuous mapping of P into S,. Let there exist an integer k % 0
such that the mapping f* is inessential. Then f is also inessential.
Proof: There is a continuous mapping ¢ of P into E; with
G = e
for every x € P. For x e P put
8(x) = exp [ip(x)/k] .

Then g is an inessential continuous mapping of P into S,. For every x € P we have
[f(x)/g(x)]* = 1, so that f/g is inessential by 24.2.7. Thus, the mapping

f=Ulg) -2
is inessential by 24.2.4,
24.2.11. Let ¢, and ¢, be continuous mappings of a connected space P into E,. Let

eiorx) _ oieu(x)
for every x € P. Then there is an integer k such that

¢2(x) = ¢((x) + 2kn
for every x € P.

Proof: ¢ = (2n)"'. (¢, — ¢,) is a continuous mapping of P into E, and the
set @(P) consists of integers, so that ¢(P) is not an interval. Hence, ¢(P) is a one-point
set by 18.1.10 and 19.2.2.

24.2.12. Let K=1,2,3,.... Let P = AU B and let A, B be either both closed or
both open. Let A n B have at most k components. Let f, (1 £ A £ k) be continuous
mappings of P into S,. Let all the partial mappings

(s Fds A =45K)

be inessential. Then there are integers n, (1 < A < k) which are not all equal to zero
such that the mapping

0

is inessential.
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Proof: Let C, (1 £ pu < h) be all the components of the set 4 n B; thus,
O0Zh=k

There are continuous mappings ¢; (1 £ A £ k) of A into E; and continuous
mappings ¥, (1 £ A < k) of B into E; such that

fix) = 9™ for xe A,
fix) = e for xeB.
By 24.2.11 there are integers k,; (1 < p < h, 1 £ A £ k) such that
Yi(x) = @;(x) + 2nk,; for xeC,.

Let us determine integers n, n; (1 £ A < k) satisfying the equations
k
4121’(”1"‘ =n =sp=sh 2

Since the number,_ of the equations is less than the number of unknowns and since
the coefficients are integers, there exists a solution of (2) such that we do not
haven, =...=n,=0.

Put f = ﬁ (f)™, so that f is a continuous mapping of P into S,. We have
to prove th;: 1fis inessential.

Equations (2) yield that xe 4 n B implies anlv,b,l(x) = inlqol(x) + 2nn.
Thus, we may define a mapping y of P into E, by = =

k
x(x) =Y n9,(x) + 2nn for xeA,
i1

k

x(x) = Zln»#a(x) for xeB.

A=

Evidently f(x) = ¢'*® for every x € P, so that it suffices to prove that y is continuous.
This follows easily from the continuity of the partial mappings x4, x5 (see ex. 9.5).

24.2.13. Let P = A U B and let A, B be either both closed or both open. Let A N B
be either void or connected. Let f be a continuous mapping of P into S,. Let both
partial mappings f,, fg be inessential. Then also f is inessential.

This follows immediately from 24.2.10 and 24.2.12.%)

24.2.14. Let P = J 4,.Let A, = A, (n = 1,2,3,...).Let the sets A, be connected.

n=1.

For every x € P let there be an index n such that x is an interior point (see 8.6) of A,.

*) 24.2.13 is a particular case of theorem 24.2.12. If the proof is carried out for this particular
case, we see easily that we do not need theorem 24.2.10.
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Let f be a continuous mapping of P into S, . Let the partial mappings f,, be inessential
(n=1,2,3,...). Then f is inessential.

Proof: Choose an ae A, so that ae A, for every n. For n =1, 2,3, ... there
is a continuous mapping ¥, of 4, into E, such that f(x) = e¥"™® for every x€ 4, .
If m < n, then, by 24.2.11, there exists an integer k,, such that xe A, implies
Vu(x) = Y,(x) + 2nk,,. Put h, = k,,. We have

V(@) = ¥n(@) + 2nk,,,
Vu(@) = ¥4(a) + 2nh,,
¥ul@) = Yy(a) + 27h,, ,
hence, k,,, = h, — h,,. Thus, we may define a mapping ¢ of P into E, by
o(x) = Y (x) — 2nh, for xe€A,.
Evidently f(x) = e'*® for every x € P. Since for every x € P there is an index n

such that x is an interior point of A, and since the mappings ¥, are continuous,
@ is also continuous. Thus, f is inessential.

24.2.15. Let Q = P. Let either T = E, or T = S,. Let ¢ > 0. Let ¢ be a continuous
mapping of Q into T. Then there is a neighborhood G of Q and a continuous mapping \s
of G into T such that | Y(x) — @(x)| £ ¢ for every x€ Q.

Proof: 1. First, let T = E,. We may assume that Q =+ (J.
II. Let I" be the set of all xe @ such that there is a number 5, > 0 with
@u®) e 2nQxn)=1¢@ — ob)| <ie.
As ¢ is continuous, we have obviously
Qcrcg.
Moreover, it is easy to prove that

xel=0nQx,n)cT
so that I' is open in Q.

III. Forn = 0, £1, +2, ... denote by A, the set of all xe Q with

neLo(x) £(n+ e,
so that

IV. We have
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To prove this, we choose an xeI. Since I' = O, we have 0 = o(x, Q) < n,,
so that there is an ae Q with o(a, x) < 7. Choose such an @ and determine ap
integer m with | @(a) — me| < 4e. If 0 < d < 1,, then 0 = o(x, Q) < 4, s0 that
there is a point be Q with o(b, x) < § < .. By II, | (@) — ¢(b)| < }¢, s0 that
| o(b) — me| < ¢, hence bed,_, u A,. Thus, o(x, 4y U 4,) <6 for every
8>0,5<n,,so that o(x, 4, U A,) =0, hence x€ Ap_1 U Ap = Ap_ U 4,

V. Further, we prove that
xel'nAd,, yel'nA4d,, ox,y) <n,=|m—n|<1

(In particular, xe'n 4, " A,=|m—n| £ 1.)

Since xeI' N 4,, there exists a point ae 4, N Q(x, 11,). Choose a 6 > 0 with
6 <, oxy) +d6<n,. Since yeI'n A,,, there exists a point be 4, N 2y, 5),
We have o(b, x) < o(x,») + e(b,») £ e(x,y) + 6 < n,. Hence, (@ U (b) = Qn
N Q(x, 1,), so that | p(a) — @(b)| < %&. Since a€ 4,, b€ A, we have ne < ¢(a)
< (n + e, me £ o(b) < (m + 1e. Since | p(a) — @(d)| < & we have |[m — n| g
<1

VI. Let us define a mapping y of I" into E, as follows:
Ifxelnd,(m=0,+1, +2,...) then*)

Q(x’ An- l)
Q(x’ An—l) + Q(x’ An+ l)

x(x)=ne+e

(the ratio on the right-hand side is always defined, since o(x, 4,-{) + o(x, 4,44) =
= 0 implies x € 4,_, N 4,,, which is, for x e I', impossible by V). By LV, the
number x(x) is defined for any x e I' at least in one way. If xe ' " 4,,, xe ' N ZM
m %= n, then, by V, m = n + 1. Then we obtain two formally different definitions,
which, however, both lead to the same value, namely y(x) = ne¢ provided m =
=n—1, y(x) = (n + 1)e provided m = n + 1.

VIL. xeQ=|x(x) —p(x)| e i
In fact, there is an index n with xe 4, € I' n 4,. By III, ne < ¢(x) < (n + 1)g,
by VI, ne £ x(x) < (n + 1)¢, hence | y(x) — o(x)| < e.

VIII. The mapping y is continuous. Let x, e I' (r = 1,2,3,..)), xeI',lim x, = x.
We have to prove that lim y(x,) = y(x). Let us assume the contrary. Then there
is a number & > 0 and a subsequence {y,} of {x,} such that | x(y,) — x(*)| > &
for every r. By IV there is an index n such that xe I' n 4,. There is an index p
such that r > p implies o(x, y,) < ..

By V, y,eI'n(d,-, v 4, 4,,,) for every r>p. If y,elnA4,_, for
infinitely many indices r, then (o(x, 4,-1) < o(x, »,) = 0, hence) o(x, 4,_,) = 0,
ie. xeI'n A,_,. Similarly, xeI' n 4,4, provided there exist infinitely many

*) We arrange to set o(x, @) = 1 for every point x.
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indices r with y,e I' N A,+. Thus, there exists an index m (m = nor m =n — 1
or m=n+ 1) such that xeI' n 4,, and {y,} contains a subsequence {z,} such
that z,eI' n 4,, for every r. On the other hand, z, —» x and the partial mapping
Arni, 1S continuous (see ex.9.10). Hence, x(z,) = x(x). This is a contradiction,
since | x(z,) — x(x)| > & > O for every r.

IX. The set Q — I is closed by II and 8.7.3, so that the set G = P — (0 — I)
is open. Moreover, I' = 0 n G, so that I' is closed in G by 8.7.2. Hence, by VIII
and 14.8.3, there exists a continuous mapping ¥ of G into E; such that y(x) = y(x)
for xeI'. As Q = I', xe Q implies | Y(x) — ¢(x)| £ ¢ by VIL

X. The proof is finished for T = E;. Now, let us turn to the case of T =S,.
We may assume that ¢ < 1. For xe Q put ¢(x) = ¢,(x) + ip,(x). Then ¢,, ¢,
are continuous mappings of Q into E,, and, for every x € Q we have [p,(x)]* +
+ [@2(x)]* = 1. Hence, there exist neighborhoods G,, G, of Q, a continuous
mapping Y, of G into E, and a continuous mapping y, of G, into E, such that for
every xe Q we have |¢(x) —y,(x)]| < -;—s, | @2(x) — Y,o(x) | < -ée, and hence
also

() + Y,(x) | = 1] = || s(x) + iY,(x) | = | @4(x) + ip(x) || £
< 1[040) = ()] + ilpa(®) — Yo < 5-e.

Let us denote by G the set of all xe G, n G, with ||y, (%) + iY,(x)| — 1| <
< }e. We see easily that G is a neighborhood of Q, that

Y +iY,
V=T AT

is a continuous mapping of G into §;, and thet | Y(x) — ¢(x) | < ¢ for every xe Q.

24.2.16. Let f be a continuous mapping of P into S,. Let Q = P. Let the partial
mapping f, be inessential. Then there exists a neighborhood G of the set Q such that
the partial mapping f¢ is inessential.

Proof: There is a continuous mapping ¢ of Q into E, such that f(x) = e'*™
for every x € Q. By 24.2.15 there is an open set G, > Q and a continuous mapping
Y of G, into E; such that | y(x) — ¢(x)| < = for every xe Q. Let G be the set
of all xe G, with f(x).e™ ™ % —1. Then G is, by 9.2, open in G,, hence, open
in P by 8.7.7. It is easy to prove that 0 = G.If x € G, then f(x) = f(x) . e~ V(¥ V),
f(%) . e~ ¥™ 4 1, so that the partial mapping fg is inessential by 24.2.4 and 24.2.7.

24.2.17. Let a space P be either compact or locally connected. Let f be a continuous
mapping of P into S,. Let fy be inessential for every component K of P. Then the
mapping f is inessential.
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Proof: We may assume that P + {J.

I. Let P be locally connected. By 18.2.1 there exists a mapping ¢ of P into E,
such that f(x) = ¢ for every x € P, and such that ¢y is continuous for every
component K of P. Since the sets K are open (see 22.1.4), we prove easily that ¢
is continuous.

II. Let P be compact. Let & be the system of all components of P. Every Ke &
has, by 24.2.16, a neighborhood I'(K) such that the partial mapping fr, is
inessential. By 19.1.4 (see also 19.1.5) there is a neighborhood A(K) = I'(K) of K
such that A(K) is both closed and open. Since the sets A(K) are open and since

UdK)> UK=r,

Ke® Ke®
p
R contains by 17.5.4 a finite sequence {K,}} such that |J 4(K,) = P. Put
n=1
n-1

Hy = AKK,), H,=A4(K,) - L=JIA(K -0 2=nzp).

p
The partial mappings fy, are inessential by 24.2.6. Moreover, |J H, = P with
n=1

disjoint summands. Thus, there is a mapping ¢ of P into E, such that f(x) = e**™
for every x € P and the partial mappings ¢y, are continuous. Obviously the sets H,
are open. Hence, we see easily that the mapping ¢ is continuous, so that f is
inessential.

24.2.18.*) Let P be a separable, locally compact and locally connected space. Let [
he a continuous mapping of P into S,. If f is essential, there is a continuum K < P
such that the partial mapping fx is essential.

Proof: By 24.2.17 there exists a component Q of the space P such that the partial
mapping fy is essential. By 16.1.2, ex. 17.20, 22.1.4 and 22.1.6, Q is a connected,
separable, locally compact and locally connected space. Since Q is locally compact,
we may associate with every ze Q a neighborhood U(z) of z in Q such that U(?)
is compact. Since Q is locally connected, we may find (for every z € Q) a connected
neighborhood ¥(z) of z in Q such that V(z) = U(z). The set 7(?) is connected
by 18.1.6 and compact by 17.2.2. By 16.2.2 we may find a sequence {z,}7 such

that U V(z,) = Q. By 18.4.2 (see also 18.3.1), for every m = 1,2, 3, ... there is
n=1

a finite subsequence {ui™}imo of {z,} such that u§” = z,, u{™ = z,,, V(u{™)) N

A V@™ +0forl £ 1<k, Put

km
H,= U V), G, = UH,.
A=0 1

*) This is a particular case of theorem 24.4.2. The proof of the more general theorem is, of course,
more complicated.
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It is easy to prove that the sets G, are connected and open in Q. Moreover,
G, < G,,1, UG, = 0 and the mapping f, is essential. Hence, by 24.2.14, there
n=1

exists an index n such that f; is essential. Hence (see 24.2.6) the mapping f is
also essential, if K = G,. It is easy to prove (see ex. 24.8) that K is a continuum.

24.2.19. Let Q be a connected dense subset of a space P. Let f be a continuous mapping
of Pinto S,. Let the partial mapping fy be inessential. Then there exists a set M = P
such that [1] M is closed, Q1M Q =0,[31if Q= X =P, M X =), then the
partial mapping fx is inessential, [4] if Q € X = P, M n X + O, then the partial
mapping fy is essential.

Proof: 1. There exists a continuous mapping ¢ of the set Q into E; such that
f(x) = €™ for every x € Q. Let G be the set of all x € P which have the following
property: There is a number y(x) such that, if a, > x and a, € Q for every n, then
o(a,) — Y(x).

Evidently Q@ = G and

Y(x) = o(x) for xeQ.

Put M =P — G, so that M nQ =0. By ex. 12.2, for every xe G there is
a sequence {a,} such that a, e Q for every n, a, - x, so that obviously f(x) ="
for every x € G.

I1. ¢ is a continuous mapping of G into E,, so that fy is inessential whenever
QcXcP, MnX=190. let xeG, x,eG, x,— x. We have to prove that
Y(x,) = Y(x). There exist sequences {a,,}2.; such that a,, €Q, lima,, = x,. As

v— 00

x,€ G, we have lim ¢(a,,) = Y(x,). For every n there is an index v, with

0@,y X2) <74 | 0(@,,,,) = ¥(x,) | < n”'. Thus, lima,,,
n->wo
lim ¢(a,,,,) = Y(x), so that lim Y(x,) = y(x).

III. Let Q = X = P and let the partial mapping fx be inessential. We have to
prove that M n X = (), i.e. that X = G. There exists a continuous mapping x
of X o Q into E, such that f(x) = e for every xe X, so that "¢ = ¢*®
for every xe Q. By 24.2.11 there exists an integer k with ¢@(x) = x(x) + 2kn
for every x € Q. Choose an xe X. Let a,e Q, a, > x (see ex. 12.2). Then we have
x(a,) = x(x), hence ¢(a,) = x(x) + 2kn. Thus, xe G, Y(x) = y(x) + 2k, so that
in fact X < G.

IV. It remains to be proved that M is closed, i.e. that G is open. Choose an a € G.
By 24.1.2 there is a homeomorphic mapping_h of S, — [—f(a)] onto the interval
J=E[@@) — n <t < y(a) + n] such that " =y for every ye S, — [—f(a)].

t

Evidently /[f(a)] = Y(a). There is a neighborhood U of a such that f(x) + —f(a)
for every x e U. For xe U put &(x) = h[f(x)]. Then @ is a continuous mapping

= x, a,.,, €0, hence
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of U into E,; we have @(a) = y(a), and f(x) = ¢'®™® for every x e U. There is
a neighborhood U; < U of a such that x € U, implies | &#(x) — Y(a)| < 4=n. By II
there is a neighborhood U, = U; of a such that xe G n U, implies | y(x) —
— Y(a)| < 3n. Thus, xe G n U, implies | #(x) — Y(x)| < = so that xe Q@ n U,
implies | #(x) — @(x)| < 7. On the other hand, we have e'®® = f(x) = e
for every xe Q n U,. Hence, xe Q n U, implies &(x) = ¢(x). If xe U, and if
a,€ Q, a, — x, there exists an index p such that n > p implies a, € U,, which implies
&(a,) = ¢(a,). We have &(a,) - ®(x). Thus, ¢(a,) - P(x), i.e. xeG, Y(x) = &(x).
Thus, every xe G has a neighborhood U, = G so that the set G is open.

24.3. 24.3.1. Let P be a simple arc. Then every continuous mapping f of P into S,
is inessential.

Proof: By 17.4.4 (see also 9.6.1), there exists an ¢ > 0 such that
xeP, yeP, o(x,y) <e imply |f(x)—f(»]|<2. )

m-1

By 20.1.12 there is a finite point sequence {¢;}7~' and a finite sequence {C;}T
of point sets such that [1] C; are simple arcs and, hence (see 17.2.2), they are closed

sets, [2]00;=P, BlCinCiy=(@Usism-1)[@CnCi=0(1=is
i=1

smlsjsm|i—jl=2),[5]dC)<e(l £i=zm),so that, by (1), S, —

— f(C) % 0. Thus, the partial mappings f¢, are inessential by 24.2.7. Put 4; =
i

=UC;(12i<m). Then 4, =C, and for 1 £i<m — 1 we have 4;;, =
j=1

J
= A; u C;,, with closed summands, 4; n C;,; = (c;). Thus, by 24.2.13, it follows

by induction that the partial mappings f,, (1 < i < m) are inessential. We have
P = A, so that f is inessential.

Now, let P be a simple loop and let f be a continuous mapping of P into S;.
Choose an orientation of P (see 21.2). Choose a€ P, be P, a + b. By 21.2.2 (see also
21.1.2) we have P = P(a, b) L P(b, a), P(a, b) n P(b, a) = (a) U (b). The sets P(a, b),
P(b, a) are simple arcs, so that, by 24.3.1, there exists a continuous mapping ¢,
of P(a, b) into E; and a continuous mapping ¢, of P(b, a) into E, such that

x€P(a,b) implies €' = f(x), @
x€P(b,a) implies €™ = f(x).

We have e'#'@ = ¢i02(® ¢le1® — iz 5o that there are integers n,, n, with

¢2(a) = ¢,(@) + 2nym, (€))
@2(b) = @,(b) + 2n,m.
Put
n=mn — np,
so that » is an integer.
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Preserving the points a, b and the chosen orientation of the simple loop P, replace
the mappings ¢,, ¢, by other mappings ¥, y, having the same properties. We
obtain integers m,, m, instead of the integers n,, n,. By 20.1.1 and 24.2.11 there
are integers k,, k, such that

x€P(a,b) implies V,(x) = ¢,(x) + 2k;7,
x € P(b,a) implies Y, (x) = @,(x) + 2k,
Thus,
Ya(a) = @y(a) + 2kn = ¢,(a) + 2(ny + ky) 7 =
=yy(a) + 20y + k, — k) m,

so that m; = n; + k, — k, and similarly m, = n, + k, — k;. Hence,
n=nl—n2=ml—m2.

Thus, the number » does not depend on the choice of ¢, ¢,. Let us write, more
precisely, n = n(a, b). We are going to prove that (with the orientation of P given)
the number n does not depend on the choice of a, b. It suffices to prove that the
number » remains unchanged whenever we preserve one of the points —say the point
a—and replace the point b by another point c; i.e. we prove that n(a, b) = n(a, )
for distinct a, b, c.

For certainty, let ¢ € P(a, b). It is easy to prove that

P(a,c) v P(c, b) = P(a,b), P(a, c) nP(c, b) = (c),
P(c, b) U P(b,a) = P(c,a), P(c, b) 0 P(b, a) = (b).
By 24.3.1 there are continuous mappings @i, @2, @3 of the simple arcs P(a, c),
P(c, b), P(b, a) into E; such that
xePa c) implies €™ = f(x),
xeP(c,b) implies € = f(x),
xeP(b,a) implies €% = f(x).
There are integers h,, h,, hy with
@3(a) = ¢,(a) + 2hym,
@3(b) = @,(b) + 2h,m,
@,(c) = ¢,(c) + 2h;m.
There exist (see ex.9.5) continuous mappings @4, ¢s of the simple arcs P(a, b),
P(c, a) into E, such that
x€P(@, ¢)= @ux) = ¢1(x), X €P(C B} = P4(x) = ¢, (x) — 2hym,
x€P(c,b) = ps(x) = @,(x), x€Pb,a)= @s(x) = ps(x) — 2h,7.

Evidently
n(a,b) =n, —n,, n@c)=m —m,,
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where
2mym = @3(a) — @4(a) = @3(a) — ¢,(a) = 27
2n,m = @3(0) — @a(b) = @3(b) — [@2(b) — 2h3m] = 2(h; + h3) 7,
2mn = ¢s(a@) — ¢4(a) = [@3(a) — 2h,m] — @y(a) = 2(hy — hy) ,
2mym = @s(c) — @1(c) = @a(c) — @4(c) = 2hym,

so that

ny —ny =hy — (hy + hy) = (hy — hy) — hy = my — my,

i.e., n(a, b) = n(a, c).

Thus, the number n—for a given mapping f—depends on the orientation of the
simple loop P only. If we change the orientation, we obtain —n instead of n (see
Remark at the end of Section 21.2).

The number n is said to be the degree of the mapping f. If the mapping fis inessential,
then there is a continuous mapping ¢ of P into E, with ¢'*® = f(x) for every x € P.
We may put ¢@; = @pu,b)» P2 = Pps,a)» and we obtain in (3) n;, =n, = 0 and
consequently n = 0.

On the other hand let » = 0, so that n, = n, in (3); if ¢,, ¢, are the mappings
from (2), there is a mapping ¢ of P into E; such that

x € P(a,b) implies ¢(x) = ¢(x),
x € P(b,a) implies o(x) = @,(x) — 2nmm.
We have ¢"**) = f(x) for every x € P and the mapping f is continuous (see ex. 9.5)

so that f is inessential.
The results obtained are stated .in the following two theorems:

24.3.2. The degree n of a continuous mapping of an oriented simple loop into S, is an
integer. If the orientation is changed, n is replaced by —n.

24.3.3. A continuous mapping of an oriented simple loop into S, is inessential if and
only if its degree is zero.
Moreover, it is easy to prove the following theorem:

24.3.4. Let f,, f> be continuous mappings of an oriented simple loop P into S, and let
n,, n, be their degrees. Then the degree of the mapping f1f, is equal to n; + n,.

24.3.5. Let P be an oriented simple loop. There are exactly two kinds of homeomorphic
mappings of P onto S,. The mappings of the first kind have degree one, the mappings
of the second kind have degree minus one.

Proof: 1. Choose ae P, be P, a + b. Then P(a, b) and P(b, a) are simple arcs
with end points a, b, so that there is a homeomorphic mapping ¢, of the interval
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J = E[0 < ¢ < 1] onto P(a, b) and a homeomorphic mapping ¢, of J onto P(b, a)
t
such that ¢,(0) = ¢,(0) = a, ¢,(1) = @,(1) = b. Define f,, f, by

f[i) =€, f(x) =€ for xePab), x=¢,),
fi) =™, fo(x) =™ for xeP(b,a), x= ¢y

It is easy to prove that f,, f, are homeomorphic mappings of P onto S, and that
their degrees are +1, —1.

II. Let /' be a homeomorphic mapping of Ponto S,. Puta = f_,(1),b = f_,(-1).
Let M, be the set of all ¢™ (0 < ¢ < 1). Let M, be the set of alle™'™ (0 <t £ 1).
Then M{uM, =S,, Min M, =(1)u(-1) and M,, M, are simple arcs with
end points +1, —1. Thus, f_,(M,) = P, f_(M,) = P are two distinct simple
arcs with end points g, b. Thus, under a suitable choice of orientation of the simple
loop P we have

P(a,b) = f-1(My),  P(b,a) = f_,(M)).
Obviously there is a homeomorphic mapping ¢, of P(a, b) onto J = E[0 £t £ 7]
t
and a homeomorphic mapping ¢, of P(b, a) onto J such that

f(x) = €™ for xeP(a,b),
f(x) = e~ ™ for xeP(b,a).

We have ¢,(a) = ¢,(a@) =0, ¢,(b) = ¢,(b) = 7, so that the degree of f is equal
to +1. If we change the orientation, the degree of f is equal to —1.

24.3.6. Let P be an oriented simple loop. Let n be an integer. Then there exists a conti-
nuous mapping of P into S, with degree equal to n.

Proof: By 24.3.5 there is a homeomorphic mapping f of P onto S, with degree
one. By 24.3.4 (see also 24.3.2) it is easy to prove that the mapping f” has degree n.

24.3.7. Let P < E,. Then every continuous mapping f of P into S, is inessential.

Proof: By 24.2.15 there is a set G © P open in E; and a continuous mapping g
of Ginto S, such that | f(x) — g(x)| < 2 for every x € G. Thus, by 24.2.6 and 24.2.8,
it suffices to prove that the mapping g of G into S, is inessential.

Let g be essential. The set G is separable by 16.1.2 and 16.1.5, locally compact
by 17.10.1 (see also ex. 17.20) and locally connected by 22.1.3 and 22.1.8. Thus,
by 24.2.18, there is a continuum K < G such that the partial mapping gy is essential.
This is a contradiction by 19.2.2 and 24.3.1.

24.4.24.4.1. Let Q < P. Let us define L(Q) in the same manner as in 22.2. Let Q <
cMc QuL(Q). Let g be a continuous mapping of M into S,. Let the partial
mapping f, be inessential. Then f is inessential.
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Proof: 1. There is a continuous mapping ¢ of Q into E; such that elv™ = J(x)
for every xe Q.

II. Let xe M — Q. Since f is continuous, there exists a neighborhood V, of x
in the space M such that f(») = —f(x) for y e V,. By 8.7.5 there is a neighborhood
U, of x in P such that ¥V, = M n U,. Since M — @ < L(Q), there is a component
K,of QnU,=Qn V, < M such that x is an interior point of K, U (P — Q).
The partial mapping fy_ is inessential by 24.2.7, as f(V,) = S; — [—f(x)]. Thus,
there exists a continuous mapping x, of ¥, into E; such that

e = f(y) for yeV,.
As K, is a connected subset of @ n V,, there is, by 24.2.11, an integer k, such that

ye K, = 1.0 = o(y) + 2k,7.

I11. Let us define a mapping ¥ of M into E, as follows: First, if x € 0, put :/{(x) =
= @(x). Secondly; if xe M — Q, put Y(x) = y.(x) — 2k,n. Then we have eV =
= f(x) for every x € M. It remains to prove that y is continuous.

IV. Let xe M. As L(Q) = O, we have M < 0. Hence (see 8.2.1), there exists
a sequence {a,} such that @, - x and a, € Q for every n. We shall prove that ¢(a,) —
- Y(x).

This is evident for x € Q. Hence, let xe M — Q. By 1I, x is an interior point of
K, U (P — Q). Thus, there is an index p such that a,e K, U (P — Q) for n > p.
As a, e Q, we see that

n>p=a,¢€ Kx = (P(a,,) = Xx(an) - kan'
On the other hand, y, is a continuous mapping of the set ¥, > K, into E;. Hence,

(P(a,,) - Xx(x) - 2kx7I = l/I(X)

V. Let us choose an x € M and prove that ¥ is continuous at the point x. Thus,
let x,e M, x,— x. We have to prove that y(x,) - y(x). There are sequences
{bylyey (n=1,2,3,..) in Q such that lim b,, = x,. By IV, lim ¢(b,,) = y(x,).

v— 0 v

Obviously, for every n = 1, 2, 3, ... there is an index v, such that

Q(xn’ bnv,.) < n-ly I ‘l/(xn) - (p(bn\',.)l < n_l'

1

As x, - x, o(x,, b,,) < n~', we have lim b,, = x. Moreover, b,, €Q, so that,

v+

by IV, lim ¢(b,,,) = ¥(x). As | ¥(x,) — @(b,,) | < n~!, we have also lim y(x,) =
= y(x).
24.4.2. Let P be a topologically complete locally connected space. Let f be a continuous

mapping of P into S,. Let f be inessential for every simple loop Q = P. Then f is
inessential.
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Proof: 1. Let K be a component of P. By 24.2.17 it suffices to prove that the partial
mapping f is inessential. The space K is topologically complete by 13.2, 15.5.3
and 18.2.2. Moreover, it is connected and also, by 22.1.6, locally connected.

II. Choose a point ae K and a number a € E; with e = f(a). If xe K, x + a,
then by 22.3.1 K contains at least one simple arc with end points &, x.

Let C;, = K, C, = K be simple arcs with end points a, x. By 24.3.1 there is a conti-
nuous mapping ¢, of C, into E, and a continuous mapping ¢, of C, into E, such
that: [1] @,(@) = @,(a) = a, [2] €*'?? = f(y) for every ye C, and e'*? = f(y)
for every y e C,. We shall prove that ¢,(x) = @,(x). Let us assume the contrary.
Let C, be oriented in such a way that a is the initial point. Define M < C, as follows:
If ye C, then y € M if and only if y € C, and ¢,(y) = ¢,(»). The set M is obviously
(see 9.5) closed in C,. Moreover, ae M and hence M #+ (. By 20.2.7 there exists
a last point b of the set M = C,. As ¢,(x) #+ ¢,(x), we have b + x, so that (see
20.1.8) there exists a simple arc C,(b, x) = C,. Evidently

yeCyn Ci(b,x), ¢,(y) =x(y) = y=0b. 1
There exists a simple arc C,(b, X) = C,. Suppose that it is oriented in such a way
that b is the initial point. We define a set M’ = C,(b, x) as follows: If y € C,(b, x),
then y e M’ if and only if ye C,(b, x) and ¢,(») * @,(»). As €9'? = ¢'20) we
may write | ¢,(3) — ¢,(»)| 2 2z instead of ¢((¥) * ¢,(»). Thus (see 9.5) the set M’
is closed in C,(b, x). Moreover, x € M' and hence M’ % (J. By 20.2.7 there is a first
element ¢ of the set M’ = C,(b, x). By (1), c is the first point y e C,(b, x) with
ye Cy(b, x) — (b). There exist simple arcs

C(b,c) = Cy, Cy(b, ¢) = C,.
Evidently C,(b, ¢) n Cy(b, ¢) = (b) U (c), so that C,(b, ¢) U C,(b, ¢) = Q is a simple
loop by 21.1.3. Let Q be oriented in such a way that
00, ¢c) = Cy(b,c),  Q(c, b) = Cy(b, o).
Since @,(b) = @,(b), the degree of the mapping f, is equal to

2 [940) = 921 +0,

so that the mapping f,, is essential by 24.3.3. This is a contradiction.

III. Put y(a) = & If x e K — (a), we define Y(x) € E, as follows: Choosea simple
arc C = K with end points a, x and a continuous mapping ¢ of C into E; such that

¢(a) = « and that
e?® = f(y) for yeC.

Then, put Y(x) = o(x). By II, y is a uniquely defined mapping of the set K into E,.

Evidently ¢ = f(x) for every x € K, $O that it suffices to prove that the mapping ¥

is continuous.
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IV. Let us choose a point x, € K and prove that the mapping y is continuous
at the point x,. As f'is continuous in xy, there is a neighborhood U of the point x,
in K such that x € U implies f(x) + —f(x,). By 24.2.7 there is a continuous mapping x
of U into E, such that e'*™ = f(x) for x e U and that x(x,) = W¥(x,).

Let ¥ be the component of U containing the point x,. By 22.1.4, V is a neigh-
borhood of the point x, in K. V is a connected space. Moreover, ¥ is topologically
complete by 15.5.3 and locally connected by 22.1.3.

It suffices to prove that y(x) = y(x) for x e (x,) v [V — (a)]. This is evident for
X = Xxo. Thus, let xe V, a + x + x,.

By 22.3.1 there exists a simple arc C = V with end points x,, x. If x, = a, then
Xc is a continuous mapping of C into E, such that ¢*® = f(3) for y € C and that
1(xo) = a, so that Y(x) = x(x). Thus, let x, & a. Then there exists a simple arc C, =
< K with end points a, x, and a continuous mapping ¢, of C, into E; such that
e'?® = f(y) for ye C, and @o(a) = a. Let C, be oriented in such a way that a
is its initial point. Define a set M = C, as follows: If y e C,, then ye M if and
only if y € C. It is easy to prove that M is closed in C,. Evidently xo € M, so that
M =% . Hence, by 20.2.7 there is a first point x; of the set M < C,. If x; = g,
put C; = (a). If x; & a, put C; = Cy(a, x,) (see 20.1.8). It is easy to prove that
there are simple arcs C' =« C; v C,C" « C, u Csuch that [1]C' = C; v (C' n O),
C’" = C,u(C"n (), [2] a, x, are the end points of C’, [3] a, x are the end points
of C". As e = f(x,) = 'V there is an integer k with x(x,) = @o(x;) + 2k=.
It is easy to prove that there exists a continuous mapping ¢’ of the set C’ into E,;
and a continuous mapping ¢” of C” into E, such that

yeCy = ¢'(») = ") = 0o(»),
yeC' — C,= ¢'(y) = x(») — 2kn,
yeC" — C, = ¢"(y) = x(») — 2kn.
Evidently: e''® = f(y) for ye C’, ' =f(y) for yeC", ¢'(a) = ¢"(a) = a.
Thus, we have ¢'(x,) = ¥(%o), ¢"(x) = Y(x). Since ¢'(xo) = x(xo) — 2kn = Y(xo) —
— 2kn, ¢"(x) = x(x) — 2kn, we obtain k = 0 and y(x) = Y(x).

24.5. 24.5.1. Let P be a metric space. Let Q be either a continuum or a connected and
locally connected space. Let f be a continuous mapping of Px Q into S, . Let, for every
x € P, the partial mapping f(xy« o be inessential. Let there exist a point be Q such
that the partial mapping fpx @) Is inessential. Then the mapping f is inessential.

Proof: 1. There exists a continuous mapping y of P into E, such that e*™ =
= f(x, b) for every x € P. For every x € P there exists a continuous mapping V,
of Q into E, such that e — f(x, y) for every y € 0. We may assume that  (b) =
= x(x) for every x € P.*)

*) Otherwise it suffices to replace the mapping ¥, by a mapping v, defined by

for every y € Q. ¥x0) = ¥:0) + 200 — y.(0)
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For (x, y) e Px Q put ¢(x, y) = ¥ (»), so that ¢ is a mapping of Px Q into E,
such that €™ = f(x, y) for every (x,y)ePxQ. It remains to prove that the
mapping ¢ is continuous. Let us choose an arbitrary point a € P and prove that ¢
is continuous at the point («, y) for every y e Q.

II. Let Q be a continuum. As y is a continuous mapping of P into E,, there is
an ¢ > 0 such that

xeP, ola,x) <e = |x(x)— x(a)] < m.

As fis a continuous mapping of Px Q into S,, we may associate with every ze Q
a number 6(z) > O such that

xeP, yeQ, 0@ x) <6z, o@zy) <) = |fix,y)-flay]|<2

We have
0 = U Qlz 6(2))

zeQ
with open summands. Since Q is compact, by 17.5.4 there is a finite sequence {z,}{,
z,€ Q, such that

0 246.. 561 = 0.

Let n > O be the least of the p + 1 numbers ¢, d(z,) (I < n = p). Then, first,

xeP, ola,x)<n = |xx)— y(x)] <m,
Secondly,
xeP, oo, x)<n = |f(x,y) = fla,y)| <2

for every y e Q. In fact, for every y e Q there is an index n with o(z,, y) < 8(z,).
By 24.1.2 there exists a hqmeomorphic mapping v of S; — (—1) onto the interval
E[—7 < t < 7] such that e”® = z for every ze S; — (—1).
t
Put P, = Qu(a, ). If (x,y)e PoxQ, we have g(a, x) < n, hence |f(x,y) —
— fa, )| < 2, hence f(x, y)[f(2, y) & —1; therefore we may put
B(x,y) = ¥.(3) + o[f(x, )[f(2, y)] for (x,y)ePoxQ.
Then ¢ = f(x, y) for every (x, y) e P,x Q and @ is a continuous mapping
of Pyx Q into E,.
Since Y (b)) = x(a),
x €Py=| P(x,b) — y(a)| < =.
Since also x € Py = |y (x) — x(®) | < =,
x€Py=|D(x,b) — x(x)| < 2m.
On the other hand, ) )
el@(x.b) = f(x, b) — e|x(x)’

so that d(x, b) = y(x) for every x € P,.
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Choose an x € P,. Let &(x, ) = g.(») for y € 0, so that g, is a continuous mapping
of Q into E,. ¥, is also a continuous mapping of Q into E,. Moreover,

e'x0) = ¢! = f(x, y) = e'=® forevery yeQ.
The space Q is connected so that, by 24.2.11, there exists an integer n, such that
&(x,y) = g:(0) = ¥(») + 2n,n forevery yeQ.
Since be Q, d(x, b) = y(x) = Y,(b), we have n, = 0. Thus,
P(x,y) = ¥.(») = o(x, ) for (x,y)ePoxQ.

Since Py x Q is open in Px @, since @ is a continuous mapping of P, x Q into S,
and since o € P,, the mapping ¢ is continuous at the point («, y) for every ye Q.

III. Let Q be connected and locally connected. If y € Q, let y € 4 if ¢ is continuous
at (a,y), y € B if ¢ is not continuous at («, y). We have to prove that B = (J.

We have Q = AU B, A n B =(J. We shall prove that the sets A4, B are open
in Q, so that Q = A4 U B with separated summands. Since the space Q is connected,
this will imply that either 4 = (J or B = (J. Then the proof will be finished, as soon
as we prove that be 4.

Let B € A, so that ¢ is continuous at (a, ). There exists a neighborhood U of
the point « in P and a neighborhood ¥ of the point § in Q such that

xeU, yeV = |o(x,y) — o, f)]| < in.

If yeV, (x,, ¥») = (o, »), there is an index p such that for » > p we have x, e U,
y.€ V.Sincealsoa e U,y e V,n > pimplies | o(x,,y,) — ¢(a, B)| < ir, | o(a, y) —
— ¢(a, f) | <4m, which implies | ¢(x,, ¥,) — ¢(¢,¥)| < @, so that, by 24.2.9, the
mapping ¢ is continuous at the point («, y). Thus, ¥V = 4. Consequently, A is
open in Q.

Now, let us prove that the set B is also open in Q. Let 8 € B so that ¢ is not conti-
nuous at (a, ). We have to prove that there is a neighborhood W of the point f
in Q such that W < B.

By 24.2.9 there exists a sequence {(x,,,)} in PxQ such that x, > «, y,— B
and that | ¢(x,, y,) — ¢(«, B)| > = for every n.

Since f is a continuous mapping of x Q into S;, we can find a neighborhood U
of the point a in P and a neighborhood V; of the point § in Q such that

xeU, yeV, = |f(xy)—-fle,P] <2

By 24.1.2 there is a homeomorphic mapping v of S, — (—1) onto the interval
E[ n < t < ] such that e® = z for every ze S, — (—1).

If xeU, yeV;, we have |f(x,y) —f(«, f)| <2 and hencef(x,y) + —f(«, B),
so that we may put &(x, y) = ¢(a, B) + v[f(x, »)/f(x, B)] for xe U, y€ V. Then ¢
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is a continuous mapping of Ux V, into E; and we have e®™? = f(x, y) for every
(x, ) e Ux V,. Moreover,

xeU, yeV, = |&(x,y) — &(a, )| < =

Let V, be the component of V| containing the point 8. Then ¥, = V' and, by 22.1.4,
V, is a neighborhood of the point f in Q.

If xeU, put g,(y) = @(x, ), h(y) = Y (y) for ye V,. Then g, and h, are con-
tinuous mappings of the connected ¥, into E; and we have e'*) = f(x, y) = e
for every y € V,. Thus, by 24.2.11 there is an integer k, such that h(y) = g.(y) +
+ 2k,m for ye V,. Hence,

xeU, yeV, = o(x,y) = &(x,y) + 2k,n.

Since ¥, is a continuous mapping of Q into E, there is a neighborhood W < v,
of the point f§ in Q such that

yeWs=|o¢(xy) — o, p)]| < in.

We shall prove that W < B; then B will be proved to be open. Since x, = «, y, — j,
there is an index p such that n > p implies x,e U, y,e W. If n > p, we have
| @(xps ya) — P, B) | < 7, | @(x,, ¥2) — @(a, B) | > 7, @(x,, p,) = PUX,, ¥a) + 2Kk, 7,
&(a, B) = ¢(a, B), hence k, = 0, k, + 0. If W is not contained in B, there is a point
ye A n W. We shall obtain a contradiction as follows: Since y € 4, the mapping ¢
is continuous at the point (a, ). Since @ is also continuous at the point («, ¥) and
since x, = a, we have ¢@(x,,») = o(2,y), P(x,,y) = P(a,¥) = ¢(a, y) + 2k, =
= o(a, ¥), @(X,,y) — ®(x,,y) = 2k, n — 0, which is a contradiction, as |k, | = I.

Since | k,,| 2 1 and since @(x,, f) = ¥(, B) = ¢(a, B), P(xn, B) = G(X,, B) —
— 2k, 7, ¢(x,, B) cannot converge to ¢(x, f8). On the other hand, evidently o(x,, b) -
— @(a, B). Thus,  + b for every € B, so that be 4.

24.5.2. Let f be a continuous mapping of P into S,. Then f is inessential, if and only
if there exists a continuous mapping g of PxE[0 < t < 1] into S, such that
’ t

g(x,0) = f(x), g(x,1)=1 forevery xeP.*)
Proof: 1. Let such a g exist. Put J = E[0 < ¢ < 1]. By 24.3.1 the partial mapping
t

8(x)xJ is inessential for every x € P. By 24.2.7 the partial mapping gp » (1, is inessential
Hence, by 24.5.1, g is inessential, so that (see 24.2.6) also the partial mapping gpx o)
is inessential. Thus, also the mapping f is inessential.

*) If fy, f; are mappings of X into Y such that there is a continuous mapping £ of X

XE[0 £ 1 £ 1] into Y with g(x, 0) = fo(x), g(x, 1) = fi(x), the mappings fo, f; are said
t
to be homotopic. Thus, the theorem states that a mapping f of P into S, is inessential if

and only if it is homotopic with a constant. (Ed.)
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II. Let f be inessential. Then there exists a continuous mapping ¢ of P into E,
such that e'*®™ = f(x) for every x € P. Obviously, it suffices to put g(x, f) = ¢'! ~0¢(
for xeP, 0t < 1.

24.5.3. Let f be a continuous mapping of the euclidean space E,, (im = 1,2,3,..))
into S,. Then f is inessential.

Proof: The statement is true for m = 1 by 24.3.7. Since E, ., = E, xE,, the
general statement may be proved by induction by 24.5.1.

24.5.4. Let f be a continuous mapping of the spherical space S, (m = 2,3,4,...)
into S,. Then f is inessential.

Proof: If a e E,, it is easy to prove that the set E,, — («) is connected. Conse-
quently, by 17.10.4, S,, — [(@) v ()] is also connected if we choose a€S,,, beS,,,
a %+ b.Thesets4 =S, — (a),B =S, — (b) are openin S,, and the partial mappings
fa,fp are inessential by 17.10.4 and 24.5.3. Moreover, A n B = S,, — [(a) u (b)]
is connected. Thus, f is inessential by 24.2.13.

Exercises

24.1. Let f be a continuous mapping of E,, (m = 2) onto S,. Let a € E_,, b€ E,, a + b. Then
there exists a point ¢ € E,, such that either a * ¢, f(a) = f(c) or b + ¢, f(b) = f(c).

24.2. What must we assume about a space P to be allowed to replace E,, in ex. 24.1. by P?

24.3. Every continuous mapping of any of the spaces P,, Py, P4, Ps, P, (see exercises to § 19)
is inessential. This is not true for the spaces Py, Pg.

244. We may replace E; in theorem 24.2.15 by any E, (m=2,3,4,...) or by U (see
section 7.3).

Let m=1,2,3,.... Let f be a continuous mapping of a space P into S,,. We say that fis ines-
sential, if there exists a continuous mapping of PXE[0 = ¢ < 1] into S, such that
t

g(x,0) = f(x), g,1)=(,0,...,0) forevery xeP.
By theorem 24.5.2, this definition is consister:t with the definition for m = 1 given in the section 24.2.

24.5. Tn theorems 24.2.6, 24.2.7, 24.2.8, 24.2.16 we may write more generally S, (m =1,2,3,..))
instead of S,.

24.6. Let M < P,aeM,be M, C < P. Let C be a simple arc with end points a, b. Let C N\ M =
=(a) U (b). Let a, b belong to distinct quasicomponents of M. Let f be a continuous mapping
of M U Cinto S;. Let the partial mapping fj, be inessential. Then f is inessential.

24.7. Let M < P,aeM,beM,C < P. Let C be a simple arc with end points a, b. Let CN M =
= (@) U (b). Let a, b belong to the same quasicomponent of M. Let g be a continuous
mapping of M into S;. Then there exists an essential continuous mapping f of MU C
into S such that fy = ¢.

24.8.* Complete the proof of theorem 24.2.18.
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§ 25. Unicoherence

25.1. A metric space P is said to be unicoherent if [1] P is connected, [2] if P =
= A u B with closed connected summands, then 4 n B is connected.

25.1.1. Let P & 0 be a locally connected space. P is unicoherent if and only If it has
the following property: If C < P is closed and connected and if K is a component
of P — C, then the set B(K) is connected.

25.1.2. Let P % ( be a locally connected space. P is unicoherent if and only if it has
the following property: If Q = P is an irreducible cut of P between points a, b, then
the set Q is connected.

Proof: 1. Let P % () be a locally connected space. Let U designate unicoherence,
V the property from theorem 25.1.1 and W the property from theorem 25.1.2.
Evidently it suffices to prove the three implications: U=V, V=>W,6 W= U,

II. Let U hold. Let C = P be closed and connected. Let K be a component of
P — C. By 22.1.13, P — K is connected. By 18.1.6 the set K is connected. As P =
= KU (P — K) and as U holds, K n (P — K) = K — K is also connected, since
P — K is closed by 22.1.4. By 10.3.2 and 22.1.4, K — K = B(K). Thus, V holds.

11I. Let V hold. Let Q = P be an irreducible cut of P between points a, b. By
22.1.10 there exist two distinct connected sets G, G, such that

aeG,, beG,,. G UG cP—0, BG,)=BG,)=0.

The set Q is closed by 10.3.1 (or by 18.5.4). By 22.1.9, G,, G, are components of
P — Qsothat G, NG, = (J. The sets G,, G, are open by 22.1.4,so that G, n G, = ()
by 10.2.6. The set G, is closed and by 18.1.6 connected. The set G, is connected
and B(G,) = B(G,) < G,, while G, =« P — G,. Thus, by 22.1.9, G, is a component
of P — G, so that, by V, B(G,) = Q is connected. Thus, W holds.

IV. Let W hold. If P were not connected, we would have P = 4 U B with non-void
separated summands. For a € 4, b € B the set J would be an irreducible cut between
the points a and b. This is impossible, since W holds. Thus, P is connected.

Let P-= A u B with closed connected summands. We have to prove that the closed
set A n B is connected. Let us assume the contrary. As P is connected, we have
A n B =+ (). Hence, A n B = H v K with non-void separated summands. As 4 n B
is closed, H and K are also closed. Moreover, H " K = (§. Choose ac H, be K.
Then the set P — (4 n B) separates the point a from the point b in P. By 22.1.12
there is an irreducible cut S « P — (4 n B) of P between the points a, b. By W
the set S is connected. Since 4, B are closed, 4 — (4 n B), B — (A n B) are evidently
separated. On the otherhand, S« P -~ (AnB)=[4 - (An B)] U [B - (4n B),
so that, by 18.1.2, we have either 4 N S = @ or B n S = (4. Since S is an irreducible
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cut of P between the points a, b, S separates a@ from b in P, i.e. the set P — S is not
connected between the points a, b so that (see 18.3.3) M n S = 0 for every connected
M < P containing both the points a, b. On the other hand, ae H, be K, HU K =
= A n B. Thus, each of the connected sets 4, B contains both points a, . Hence,
AnS + 0 + Bn S, which is a contradiction.

25.2. 25.2.1. Let P be a connected space. Let every continuous mapping of P into S,
be inessential. Then P is unicoherent.

Proof: Let us assume the contrary. Then there are closed connected sets A, B
such that P = 4 u B and A4 n B is not connected. Since P is connected, A N B = (J.
Since 4 N B = (J is closed and not connected, there are disjoint closed sets H # (),
K+ ¢withdnB=HUK.

Define a mapping f of P into S, as follows:*)

f(x) = exp (in o, l-%x-;-};Zx, K)) for xeA4,
Sf(x) =exp (—in oCx, I-‘IJ)(xizzx, K)) for xeB.

For xe An B = Hu K we have formally two definitions of f(x). Both of them,
however, give f(x) = 1 for xe H and f(x) = —1 for xe K.

The mapping f is evidently continuous. Thus, f is inessential, i.e., there exists
a continuous mapping ¢ of P into E, such that e***® = f(x) for every x € P. We have

. o(x, H) io(x)
exp | in =e for xeA,
P ( o(x, H) + e(x, K))

. Q(xs H) ) ip(x) .
exp| —in =e for xeB,
P ( o(x, H) + o(x. K)

and the sets 4, B are connected. Hence, by 24.2.11 there are integers m, n such that

o(x, H)
o(x)=m= + 2mn for xeA,
() o(x, H) + o(x, K)
o(x) = —n olx, H) +2nn  for xeB.

o(x, H) + e(x, K)
Let us choose ae H, be K. We have ae A n B,be A n B, so that

¢(a) = 2mn = 2nm,
o) =7 + 2mn = —n + 2nn,
which is a contradiction.

*) Since H, K are closed and since H + 0 + K, H N K = (J, we have o(x, H) + o(x, K) > 0
for every x € P.
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25.2.2. Let P be a locally compact unicoherent space. Then every continuous mapping f
of P into S, is inessential.

Proof: 1. Put
Real (@ + bi) = a, Im (a + bi) = b.

Define point sets Oy, Q,, @5, Q4 as follows. If x € P, then

xe @, < Real f(x) >0, x €, <> Real f(x) <0,

xe Qi< Imf(x) >0, xeQ,<>Imf(x) <O.
We have P = Q, uQ,u Q;uU Q, and, by 9.2, 0, (A =1,2,3,4) are open sets.

II. For 1 £ 1 =4 choose M, < Q, such that M, contains exactly one point

of every component of Q,. It is easy to prove (see ex. 25.5) that (with the exception
of the trivial case with a one-point P) we may assume that the sets M, (A = 1,2, 3, 4)
are disjoint. For every x € M, let V(x) be the component of 0, containing the point x.
The sets V(x) are connected and, by 22.1.4, open. Moreover

U Vx =0,

xeM,
with disjoint summands.

Put M=M oM, M;uUM,.
I Let xX’e M, x"e M, x' & x", V(x') n V(x") % (. Evidently x' e M;, x"e M,
where the couple (4, u) is one of the following eight ones
(1,3, G, 1, (1,4, (4, 1), (2,3), 3,2), (2,4, 4,2).

IV. Let {x,}T be a finite sequence such that [1] x,e M for 1 < r < m, [2] if
1 £r<s<m, then V(x,) n V(x,) * ¢ if and only if either s=r+ 1 orr=1,
s =m. Then there is an index A (1 £1<4) such that x,e M, for no
r(l £r < m.

Let us assume the contrary, so that m = 4. Put x, = x,,, Xm+1 = X;. It follows
easily by III that there exists an index s (1 £ s < m) such that

xs—leM).’ XSGM;[’ xs+l€Mva
where the triple (4, u, v) is one of the following
(3,1,4), 4, 1,3), 3,2,4), (4,2,3).

All four cases lead to a contradiction in the same way. Hence, it suffices to treat,
one of them. E.g. let

Xs—1 E M, x,e My, Xs41 EMy.

By the assumption there is an index ¢ (1 £ ¢ < m) such that x,€ M,.
We have x;e V(x,). Since x,e M;, ye V(x,) implies Real f(y) > 0, so that
y € V(x,) implies Real f(y) = 0, while x,€ M,, so that Real f(x;) < 0. Thus, x, &
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€P ~ V(x,), so that, by 18.5.3, B[V(x,)] separates the point x, from the point x,
in P. By 22.1.12 and 25.1.2 there exists a connected set S = B[V(x,)], which separates
the point x; from the point x, in P. Put

W, = U V(x,) lsr=m, s—1%r+m+s-1),

W, =U V(x,) Arsm s+1F+r£s+1—m.

Among the summands of the first union are the sets V(x,), V(x,+1); for every other
summand V(x,) of this union we have V(x,) n V(x,) = () and hence (see 10.2.6)
V(x,) n V_(x?) = (). On the other hand, S < B[V(x))] = V(x,) — V(x,) (see 10.3.2).
Thus, S~ W, = S n V(x,,,), and we may deduce similarly that S~ W, = Sn
N V(x,-,). By 18.1.4 we see easily that the sets W, W, are connected; moreover,
x;e W, nW,, x,e W, n W,. As S separates the point x, from the point x, in P,
the set P — S is not connected between the points x;, x,, so that, by 18.3.3, S n W, +
0 +SnW,,ie.

SN V(x—y) =0+ SN0 V(xgey) 1)

Since S = I@, we have Real f(y) = 0for y € S. By 22.1.9, however, S = B[V(x,)] =
<P - Q,,ie., Real f(y) <0 for ye S. Hence, Real f(y) = 0 for ye S, i.e. f(y) =
= +i for yeS. As x,_; € M3, x,,, € M,, we have Im f(y) > 0 for ye V(x,—,),
Im f(y) < 0 for y e V(x,+,). Thus [see (1)], £(S) = (i) + (—1i), so that f(S) is not
connected. This is a contradiction (see 18.1.10).

V. By 24.1.2 there exists a homeomorphic mapping v of §; — (—1) onto the
interval E[—n < t < n] such that ¢® = z for every ze S, — (—1). Evidently,
t

v(z™Y) = —v(z) for every ze S, — (=1).
If xe M, y' € V(x), ¥" € V(x), we have obviously f(»') + f(»") % 0, so that there
exists a number
(1),
)

VI Let {x,}T, {»,}T be finite sequences (m = 2) such that [1] x,e M for 1 £
SrEm2y,eVix)forl <rs<my.,,eV(x)forl <r<m-—1,y e Vix,).

Then we have
m-1
f(yr+l)) (f(ym))
v =0 . 1
Z (f(y,) ) M
This statement is evident for m = 2. Hence, let m = 3. It suffices to prove it under

the assumption (denote it by H) that equations analogous to (1) in which m is
replaced by a number less than m, are valid. Consider two cases.

First case. There exist indices A, k such that V(x,) n V(x,) £ 0,1 S h <k < m,
and neither kK = A + 1 nor (h, k) = (1, m). Obviously m = 4. Choose a point z e
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€ V(x) 0 V(x;). Then we obtain, by assumption H, the following four equations
2o() () - (g?)+ 2o Ui) -+ (65)
I - 085) - ()
()~ (G2) = (5.
(5~ () =+ (%)

We obtain (1) by adding them, since r(u~') = —u(u) for every ueS,.

Second case. If 1 S r < s < m, V(x,)n V(x,) + 0, we have either s = r + 1,
or (r,s) = (1, m). By 1V there is an index A (1 < 4 £ 4) such that x, e M, for no r

(1 £ r £ m). Obviously

sl —f[ HV(X’)] 4:(”

so that by 24.2.7 there exists a continuous mapping ¢ of W = |J V(x,) into E,
r=1
such that e® = f(») for every ye W. If ¢ = f(»,) (1 £ r £ m), then

¢ = exp {i [/ + v( f((yy; )]} for yeV(x),

so that, by 24.2.11, there are integers k, (1 < r < m) such that

o(y) = b, + v(f(y) ) + 2k for yeV(x,).

)
Hence
(f%;)l)) e(rr) —0(y) (A Srs=m-1),
SOm)\ _ ~
(f(y )) = @(ym) = ¢(y1),

which yields (1).

VII. Choose a fixed ae P and a € E; such that e'* = f(a). For every ye P there
are, by 18.4.2, finite sequences {x,}7, {»,}5 such that [1] yo = @, . = », [2] x,e M
for1 £r£m,[3] y,—,€eV(x,), y,€ V(x,) for 1 £r < m. Put (see V)

Vo) =2+ Lo ( f(fy(”‘)) @

We shall show later that the number ¥(») is uniquely determined for every y € P.
Thus, ¥ is a mapping of P into E,. Evidently e’ = f(y) for every y € P. We have




216 VI. Mappings of a space onto the circle

to prove that the mapping ¥ is continuous. For a given y and given sequences
{371, {»}s, V(x,) is a neighborhood of y. Replacing the point y by a point
y' € V(x,), we may preserve the points x, (1 <r<m), y, 0 <r<m—1) and
take y,, = ' instead of y, = y. Formula (2) yields

10) =90 =522 ) - (k) o veven

As V(x,) is a neighborhood of the point y, { is continuous at the point y.
It remains to prove that the number Y(») is, for a given y € P, uniquely determined.
Replace the sequences {x,}7, {y,}5 by other similar sequences {x,}], {y;}5. We have

to prove that
)5 45

Put x4, = x,_,4; for 1 £ r £ n, Ymsr = Yn-, for 1 < r < n. We have then [1]
yO = ym+n = a; [2] X,GM for 1 é r é m + n, [3] yr—l € V(X,), yre V(xr) fOl'
1 £r < m+ nand we have to prove that

E1G)o-()- (),

This follows by VI.

25.2.3. The euclidean space E, (m = 1,2,3,...) is unicoherent.
This follows by 19.2.4, 24.5.3 and 25.2.1.

25.2.4. The spherical spaces S,, S, are not unicoherent. The spherical spaces S,,
(m = 2,3,4,...) are unicoherent.

Proof: 1. S, is not connected, hence, it is not unicoherent. S, is a simple loop,
hence (see 20.1.1 and 21.1.2), S, is a union of two continua, whose intersection
is not connected, so that S, is not unicoherent.

II. Let m = 2. The space S,, is connected by 19.2.5. Thus, S, is unicoherent
by 24.5.4 and 25.2.1.

25.2.5. Let P, Q be locally connected unicoherent spaces. Then the space Px Q is
unicoherent.

Proof: The spaces P, Q are connected, so that Px Q is connected by 18.1.13.
Hence, by 25.2.1, it suffices to prove that every continuous mapping of P x Q into S,
is inessential. This follows by 24.4.2 and 25.2.2.
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Exercises

The spaces Py, P,, ..., Py were defined in exercises to § 19.

25.1. The spaces P,, Py, P4, P5, P;, Pg are unicoherent.

25.2. The spaces Py, Pg, Py are not unicoherent.

25.3. Let P < E, be the space consisting of all (x, y) such that 2+ y2 =1 and of all (x,y)
of the form x=( +¢ YHcost, y=(l +t"l)sin t, t> 1. Then P is a unicoherent
space.

25.4. We cannot omit in theorem 25.2.2 the assumption that P is a locally connected space.

25.5.* Prove that the sets M, (1 =1,2,3,4) in part I of the proof of theorem 25.2.2 may be
found disjoint.
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