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Chapter VII

TOPOLOGY OF THE PLANE

§ 26. Cutting of the plane by a given set

26.1. In the topological study of the plane, a transfer from the plane to the sphere
by the so called stereographical projection is often convenient.
The sphere is the space S, (see 17.10). We put (throughout the whole chapter)

w=(1,0,0)€S,.
If x + iy € E,, we put (throughout the whole chapter) o(x + iy) = (&g, &, &,) €
€S, — (w), where
x4yt —1 2x 2y

bo=—5—"F5—", bG=—F7F—F, &=-—F3—">H5—-.
T Lyt 41 E IR

By the proof of theorem 17.10.4 we obtain

26.1.1. ¢ is homeomorphic mapping of the plane onto S, — (w).
The mapping ¢ is termed the stereographical projection.

The following theorem is easy to prove:
26.1.2. Let M < E,. The set M is unbounded if and only if w € a(M).

26.1.3. Let M < E,. The closure of o(M) in S, is: [1] o(M) if M is bounded,
[2] 6(M) U (w) if M is not bounded.

Proof: By 26.1.1, 6(M) is the closure of a(M) in S, — (w), so that 26.1.3 follows
from 8.7.1 and 26.1.2.

26.14. Let M < E,, ae M. A continuum K = (M) v (w) containing both o(a)
and o exists if and only if there is a set C = M which is closed (in E,), connected,
unbounded, and which contains the point a.

Proof: 1. Let C exist. The set o(C) = (M) is connected by 26.1.1, so that, by
18.1.6, the set K = o(C) is also connected. We have K = ¢(C) U (w) by 26.1.3, so
that K c (M) U (w), o(a) e K, we K. K is a continuum by 17.2.2 and 17.10.2.

II. Let K exist. By 19.4.1 there exists an irreducible continuum L < K between
o(@) and w. Put Q =L — (w), C = 0_,(Q), so that ae C, C =« M. Evidently
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O = L, so that, by 26.1.3, C is closed and unbounded. Q is connected by 19.4.2
and hence C is connected by 26.1.1

26.1.5. Let M < E, be a bounded set. Let acE, — M,beE, — M, a + b. M cuts
the plane between the points a and b if and only if 6(M) cuts the sphere between o(a)
and o(b).

Proof: If a(M) cuts S, between a(a), o(b), then evidently o(M) cuts S, — (w)
between a(a), a(b), so that (see 26.1.1) M cuts the plane between a, b.

If 6(M) does not cut S, between a(a), o(b), there is a continuum K = S, — a(M)
containing both o(a), o(b). If @ does not belong to K, then (see 26.1.1) o_,(K) =
< E, — M is a continuum containing both points a, b, so that M does not cut the
plane between a, b. Thus, let w e K. Obviously there is a neighborhood U of w
in S, such that U — U is a continuum and such that neither o(a) nor o(b) nor
any point of ¢(M) belongs to U. Let H,, H, be components of K — U such that
o(a)e H,, o(b)e H,. By 19.1.1 and 19.3.1, H,, H, are continua and we have
H (U - U)#:O#:Hzn(l.—f— U) so that K0=H1u(ﬁ— U)u H, is also
a continuum. We have o(a@) e K,, o(b)eK,, weS, — Ky, o(M)n K, = (), so
that o(M) does not cut the piane between a, b.

26.2. Let a set M < E, and a point ae E, — M be given. Let us associate with
every z € M the point

z—a
— €
lz—al

(Z) = sl .
We obtain a mapping f of M into S, which plays an important role in following
tasks. We denote it by

= n(M; a).

Evidently n(M; a) is a continuous mapping of M into S, and n(¥; a) is its partial
mapping whenever N <« M.

26.2.1. Let M < E,, ae E, — M. A necessary and sufficient condition for n(M; a)
to be inessential is the following: There exists a set C = E, which is closed (in E,),
connected, unbounded and such that ac C, Cn M = 0.

Proof of sufficiency: 1. Let such a C exist. Let us assume that the mapping
n(M; a) is essential. We have to reach a contradiction.

II. Since M < E, — C, aeC, n(E, — C;a) is essential by 24.2.6. Thus, by
24.2.18, there is a continuum K < E, — C such that the mapping n(K;a) is
essential.

III. By 17.3.4, o(K, C) > 0. Choose an ¢ > 0, ¢ < g(K, C). By 17.2.3 there is
a ¢> 0 such that [ x| < ¢, |y] < ¢ for x + iye K. The set C is unbounded so
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that there is a point b = b, + ib, € C such that either | b,| > ¢ or |b,| > c.
By 24.2.7 it follows easily that the mapping n(K; b) is inessential.

IV. By 19.1.2 there is a finite sequence {a,}s such that a, = a, a; = b, a,e C
0O =nzgk),oa_,,a,) <e(l £n k). The mapping n(K; a,) is essential by II;
the mapping n(K; a;) is inessential by III. Thus, there is an index m (1 < m < k)
such that the mapping n(K; a,,-,) isesse ntial and the mapping n(K; a,,) is inessential.

V. Put
J=E0=1t<1].
t

For t € J we have
ad-19a, +ta,_,€E, )
and we compute easily that
Q[(l —1a, + 1a —l9am] = t-Q(a ~158,) < €< Q(K’ 0,

so that the point (1) does not belong to K.
For ze K, te J put
z—[(1 -1t)a, + ta,_,]
Iz =[(1 = 1) apn + tan-1]1"

Then ¢ is a continuous mapping of Kx J into S,. The partial mapping @ o)
is inessential. The partial mapping @k (1 is essential. By 24.3.1, the partial mapping
®()«y is inessential for every z € K. Thus, by 24.5.1, the mapping ¢ is inessential
so that by 24.2.6 also ¢y, is inessential which is a contradiction.

(p(z, t) =

Proof of necessity: 1. Let n(M;a) be inessential. Since ¢ = n(E, — (a); a) is
a continuous mapping of the open set E, — (@) o M into S, and since ¢, =
= (M, a), by 24.2.16 there exists an open set G = E, — (a) such that M = G
and the mapping n(G; a) is inessential. Put F = E, — G, so that Fis closed and
a€ F. Let C be the component of F containing the point a. We have Cn M = (}
and C is connected. Moreover, C is closed (see 8.7.4 and 18.2.2). Thus, it suffices
to prove that C is not bounded.

II. Let, on the contrary, C be bounded. We have to reach a contradiction. There
exists a bounded neighborhood U of C. Obviously C is a component of F U.
FA U is compact (see 17.2.3) and F U is a neighborhood of C in the space
F U, so that, by 19.1.4 (see also 19.1.5), there exist separated sets A, B such that
FAU=AUB, CcAcU.

Since A4, B are separated, we have first 4 n B = (J. Secondly, 4, B are closed
in AUB = Fn U and hence in E,. Moreover, 4 = U is bounded and hence
compact (see 17.2.3). F — U is also a closed set. Since A n B = (J, A = U, we have
An[BYU(F — U)] =¢. Thus, g[4,Bu (F— U)] >0 by 17.3.4. Let us choose
an ¢ > 0 with ¢ < g[4, Bu (F — U)]. Then,

V=2Q(4,c¢
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is an open bounded set (see 8.6). Since F = AU [BuU (F — U)], ¢ < g4, Bu
U (F — U)), we have evidently ¥ n F = A4, so that ( — V) n F = (.

1. Put
H=V -V,

so that H is bounded and closed. Moreover, H n F = 0, i.e. H = G, so that by I
and 24.2.6, n(H; a) is an inessential mapping. Hence there exists a continuous
mapping ¢ of H into E, such that
ev@ = 279  for zeH.
lz—al
Since H = E, is closed, by 14.8.3 there exists a continuous mapping ¥ of the whole
plane into E,; such that

(= zZ—a
e""(') = W for zeH.

IV. Since V is bounded, there is a number ¢ > 0 such that
zeV implies |z —a| <c.
Denote by Q the set of all ze E, with |z — a| = c.

V. Since ae F, H = G, we have ae E, — H, so that there is a component K
of E, — H containing the point a. The set K is connected and by 22.1.4 (see
also 22.1.8) it is also open. By 22.1.9 (see also 10.3.2) we have K — K < H.

VI. Define a mapping g of E, into S, as follows: [1] if z€ K, then g(z) = ¢'¥;
[2] if ze E, — K, then

zZ—a
g(z) = Tz=al’

If simultaneously both ze K and ze E, — K, then, by V, ze H so that both

values g(z) are equal by (2). The partial mappings

8x» gE,—K

are evidently continuous so that, by ex. 9.5, g is a continuous mapping of E,
into S,. By 24.5.3 g is inessential so that the partial mapping g, is also inessential.

VII. AsCc A < V, we have ae V. Hence, Kn V + (. If K is not contained

in V, we have, by 18.1.8, Kn B(V) + (J, i.e. (see 10.3.2) K~ H =% (), which is
a contradiction. Thus, K = V, so that by IV, Q < E, — K, and therefore

go =mQ;a).

Hence (see VI) n(Q; a) is an inesssential mapping of Q into S,. On the other
hand, n(Q; a) is evidently a homeomorphic mapping of the simple loop Q onto S,.
Thus, 7(Q; a) is essential, by 24.3.3 and 24.3.5, which is a contradiction.
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26.2.2. Let M c E,, ac E, — M. The set 6(M) cuts the sphere between the points
a(a) and o if and only if the mapping n(M; a) of M into S, is essential.

This follows by 26.1.1, 26.1.4 and 26.2.1.

26.23. Let M c E,,acE, — M,beE, — M, a + b. The set 6(M) cuts the sphere
between the points a(a), a(b) if and only if the mapping

n(M; a)[n(M; b)
of M into S, is essential.
Proof: For ze E, — (b) put
zZ—a
h(z) = b

It is easy to prove that /i is a homeomorphic mapping of E, — (b) onto E, — (1).
Put N = h(M); we have 0 = h(a).

Define a mapping k£ of S, into S, as follows: First, k(w) = o(1); secondly,
kl[o(b)] = w; if, thirdly, (€ S,, { + w, { + a(b) there, is exactly one point z € E, — ()
with { = o(z) and we put k() = a[h(z)]. It is easy to prove that k is a homeo-
morphic mapping of S, onto S, and that k[o(M)] = a(N), k[o(a)] = ¢(0), hlo(b)] = w.
Thus, o(M) cuts the sphere between the points o(a), o(b) if and only if a(N) cuts the
sphere between the points ¢(0), w, hence (see 26.2.2) if and only if the mapping
n(N;0) of N into S, is essential.

Put f = n(M; a)/n(M; b), g = n(N;0). We have to prove that the mapping
S of M into S, is inessential if and only if the mapping g of N into S, is inessential.
This, however, is an easy consequence of the fact that 4, is a homeomorphic
mapping of M onto N, since, for every z e M, f(z) = g[h(z)].

26.24. Let M < E,. Let
Ay,0, .00 ak

be mutually distinct points of the set E, — M. Suppose that for 1 £ A < k there
exists no C = E, closed, connected and unbounded such that a,e C, Cn M = (.
Suppose that for 1 £ A < p £ k there exists no continuum K such that a; € K,
a,eK, Kn M = 0. Let ny,n,, ..., n, be integers. Let the mapping

T G 0P

of M into S, be inessential. Then all the numbers ny, n,, ..., n, are equal to zero.

Proof: 1. Let, on the contrary, some of the numbers 7y, n,, ..., n, not be zero.
Since our assumption concerning the points a;, @y, ..., @; remains preserved if
we omit some of them, we may assume that none of the numbers ny, n,, ..., ny
is equal to zero.
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I1. By 24.2.16 we conclude easily that there is an open set G > M such that G
contains none of the points a,, a,, ..., @, and the mapping

1 (G: a1

is inessential. Put
F = E2 hand G .

Let C, (1 £ 1 £ k) be the component of F containing the point a,. The set F is
closed so that (see 8.7.4 and 18.2.2) also the sets C;, (1 £ A £ k) are closed.
Moreover, C, are connected and we have a, € C,;, C; n M = {J, so that the sets C,
are bounded and hence (see 17.2.3) compact. Thus, for every 4 (1 £ 1 < k) either
C, = (ay) or C, is a continuum such that a, e C;, C; n M = (J. It follows easily
that C, (1 £ A < k) are mutually distinct, and hence disjoint, components of F.

II. If 4 =0, it is easy to construct a closed, connected and unbounded set
T, c E; such that T, n C, # {J for exactly p of the k sets Cy, C,, ..., C). Let such
a T, exist for some u (0 < u < k — 1). We are going to show that also T, exists.

Choose an index 4 (1 £ A £ k) with T,n C; =(. Choose a point beT,.
Choose a simple arc 4 = E, with end points a,, b, oriented in such a way that a,
is the initial point (see 20.2.5). Denote by P the union of the C, (1 £ v £ k) with
C,nT,=(. Then P is a closed set and a;€ A4 n P, hence 4 n P (. Hence
(see 20.2.7) there is a last point ¢ of the ordered set A " P = A. Evidently ¢ + b
so that (see 20.1.8) there exists a simple arc B = 4 with end points b, c. Obviously
wemay put T,,; = T, U B.

IV. Thus, there exists a set T,_, = T which is closed, connected and not bounded
and such that Tn C, = 0 for exactly one of the indices A (1 £ 4 £ k). For
certainty let

TnC =0, TnC,+0 2=2A1Zk).
k

Put S = Tu U C,. The set S is closed, connected and not bounded and we have
i=2

SnC, =0, C,cS 22215k,
hence
a,eS RQ=2iLk).

V. The set C, is bounded and E, — S is its neighborhood. Thus, there exists

a bounded neighborhood U of the set C, such that U n S = ¢J. By 10.1.2 we may
assume that U n S = 0. Since C,; = U is a component of the set F, C, is evidently
a component of F A U. F n U is compact (see 17.2.3) and F n U is a neighborhood
of C, in the space F n U. Thus, by 19.1.4 (see also 19.1.5), there exist separated 4, B
such that FAU = A U B, C; € A < U. Since A, B are separated, we have 4 n
A B=(and 4, Bareclosed in 4 U B = F n U, and consequently in E,. Moreover,
A < U is bounded and hence compact (see 17.2.3). Su (F — U) is also a closed
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set. Since ANnB=0, A< U, we have An[BuSU(F - U)]=0. Thus,
o[A,BUSU(F— U)] >0 by 17.3.4. Choose an ¢ > 0 with ¢ < g[4,Bu SuU
U (F — U)]. Then

V = Q(4, ¢)

is an open bounded set. As SUF = AU[BUSU(F—-"U)), ¢ <g[4d,BuSu
U(F—U),wehave VA (SUF) = 4,sothat ¥ — V)n(SUF)=9.

VI. Put H=V — V = B(V) (see 10.3.2). Then we have S~ H =0 and,
moreover, H n F = (J, i.e. H = G, so that the mapping

T 0205 ™

is inessential. The set S is closed, connected and not bounded. Moreover, S " H = ()
and, for2 £ 1 £ k, a, € C; < S, so that, by 26.2.1, the mapping n(H; a,) is inessential
for 2 £ 2 £ %. Thus, by 24.2.4 and 24.2.5, also the mapping

TI[x(H; a1

is inessential so that, by 24.2.4, also [n(H; a,)]" is inessential. As n, % 0, the
mapping n(H; a,) is, by 24.2.10, also inessential.

VII. Thus, by 26.2.1 there exists a set Q which is closed, connected and not
bounded, such that a, € Q, 0 n H = (.

As a, eV, we have Q n V + . Since Q is not bounded and V is bounded,
V does not contain Q. Thus, by 18.1.8, Q n B(V) £ (4, i.e. Q n H # (J, which is
a contradiction.

262.5. Let M < E,. Let

a,a;,..,a, (k=1)

be mutually distinct points of the set E, — M. Let the set o(M) cut the sphere between
every two of the points
w, a(a,), ..., o(ay) .

Let ny,n,, ..., n, be integers. Let

=

((M; a;)]™

A

1

be an inessential mapping of M into S,. Then all the numbers ny, n,, ..., n, are equal
to zero.

This follows easily by 26.1.1, 26.1.4 and 26.2.4.
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26.3. 26.3.1. Let A = S,, B S,. Let the sets A, B be either both closed in A U B
or both open in A L B. Let
Ao, Apy veey Ay (k; l) (l)

be mutually distinct points of S, — (A U B). Let neither A nor B cut the sphere between
some two points from (1). Let the set A N B have at most k components. Then there
are indices A, p (0 £ A < pu £ k) such that A L B does not cut the sphere between
the points a,, a,.

Proof: By 17.10.3 we may assume that a, = . Evidently there are sets C < E,,
D < E, and mutually different points «; € E, — (Cu D) (1 £ A1 £ k) such that
a(C) = A, a(D) = B, d(a;) = a, (1 £ 7 £ k). We conclude easily by 26.1.1 that
the sets C, D are either both open in C U D or both closed in Cu D and that
C n D has at most k components.

Since neither 4 = a(C) nor B = o(D) cuts the sphere between some two of the
points @, = w, a; = a(x;) (1 £ 2 £ k), we conclude by 26.2.2 that the mappings
n(C;a;) (1 £ 2 = k) of C into S, and the mappings 7n(D; 2;) (1 £ A< k) of D
into S, are inessential.

By 24.2.12 there are integers #n,, n,, ..., n, such that not all of them are equal
to zero and the mapping

T [x(c v i)

of C u Dinto S, is inessential. Thus, by 26.2.5, there are two distinct points amongst
o =ay, o(a;) =a, (1 £A=k) such that Cu D does not cut the sphere
between them.

26.3.2. Let A<= S,, B S,. Let the sets A, B be either both closed or both open.
Let k =1,2,3,.... Let both sets A, B be connected; let A n B, however, have more
than k components. Then S, — (A v B) has more than k components.

“Proof: The sets A, B, A n B are either closed or open. In the first case they are
compact by 17.2.2 and 17.10.2. In the second case they are locally connected by
22.1.3 and 22.1.14 and topologically complete by 15.5.2, 17.2.1 and 17.10.2. Thus,
in both cases (see 19.5.9 and 22.3.2) the constituants of any of the sets 4, B, A n B
coincide with its components.

Since A, B are connected and since A n B has more than k components, we see
that A, B are semicontinua and further, that there exist points a;€ 4 N B
(0 £ 1 £ k) such that distinct ones of them belong to distinct constituants of
AN B .

Put C=S, — 4, D =S, — B, so that the sets C, D are either both open
(in S,, hence also in C U D), or both closed (in S,, hence also in Cu D). As
a,€A, A =S, — Cand 4 is a semicontinuum, C cuts the sphere between no two
of the points a; (0 < A < k). The same holds certainly for the set D. If the set
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C n D has at most k components, there are, by 26.3.1, indices 4, u such that
0 £ A4 < pu £ k and the set C U D does not cut the sphere between a,, a,. If follows
that (see 19.5.10) both points a;, a, belong to the same constituant of S, —
— (Cu D)= A4n B, which is a contradiction. Thus, the set CnD =S, —
— (4 v B) has more than k components.

26.4. 26.4.1. Let M = S, be a closed set. Let M cut the sphere between points a, b.
Then there exists a component of M which cuts the sphere between the points a, b.

Proof: By 17.10.3 we may assume that b = w. Then there exists a set N < E,
and a point « € E, — N such that o(N) = M, o(a) = a. If no component K of M
cuts the sphere between the points a, w, the mapping n(H; a), where H = o_,(K),
is inessential by 26.2.2. All the components of N have by 26.1.1 the form H =
= o0_,(K) where K are all the components of M. Thus, the mapping n(N; o) is
inessential by 24.2.17, since M is compact by 17.2.2 and 17.10.2, so that N is compact
by 26.1.1. Then, by 26.2.2, M = a(N) does not cut the sphere between a, w. This is
a contra- diction.

26.4.2. Let M < S, be a locally connected set. Let M cut the sphere between points a, b.
Then there is a component of M, cutting the sphere between the points a, b.

The proof is similar to the proof of theorem 26.4.1.

26.4.3. Let M < S,, N < E, be homeomorphic sets. Then S, — M is a semi-
continuum.

Proof: 1t is easy to show (even in different ways) that M + S,. Thus, if the
statement does not hold, there are points a€S, — M, be S, — M such that M
cuts the sphere between them. By 17.10.3 we may proceed under the assumption
of b = w. By 26.2.2 the mapping n[oc_,(M); 6_,(a)] would be essential. On the
other hand, o_(M) is homeomorphic with N < E,, so that we see easily by 24.3.7
that every continuous mapping of o_,(M) into S, is inessential.

26.4.4. Let M < E, be a bounded set. Let M be homeomorphic with a set N < E,.
Then E, — M is a semicontinuum.

This follows easily by 26.1.1, 26.1.5 and 26.4.3.

26.4.5. Let M, = S,, M, = S,. Let h be a homeomorphic mapping of M, onto M, .
Let a, e M,, a, € h(a,). Let a, be an interior point of M, (in S,). Then a, is an
interior point of M, (in S,).

Proof: Assume the contrary. As a, is an interior point of M, in S,, it is easy to
find a neighborhood U, of a, in the space M, such that there exists a homeo-
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morphic mapping k of E, onto U,. Evidently there is a neighborhood V; = U,
of a, in M, such that k_,(V,) is bounded.

Evidently U, = A(U,), V, = h(V,) are neighborhoods of the point a, in M,.
Choose a be U,, b + a,. There is a number § > 0 such that x e M,, ¢(a,, x) < &
imply xe V,. Since a, is not an interior point of M, in S,, there is a point
ceS, — M, such that g(a,,c) =r <d. Let Q be the set of all xeS, with
o(ay, x) = r. It is easy to prove that Q is homeomorphic with S, and that Q
cuts S, between the points a,, b. Thus, the set Q n M, = Q n U, cuts U, between
the points a,, b. We have Q n M, = Q — (c), so that evidently there is an
N < E, homeomorphic with 0 n M,.

For ze E, put ¢(z) = h[k(2)], so that ¢ is a homeomorphic mapping of the
plane onto U,. There exist points a € E,, f€ E, and a set R < E, such that
o(a) =a,, o(f) =b, p(R) = Q0N M,. As Q n M, cuts U, between the points
a,, b, R cuts the plane between the points «, . We have ¢_,(V,) = k_,(V),
Q n M, < V, so that the set R is bounded. Evidently, R is homeomorphic with N.
This is a contradiction by 26.4.4.

264.6. Let M = S,, aeS, — M, beS, — M, a+ b. Let M not cut the sphere
between the points a, b. Let M be connected. Let M = N < M. Let N cut the sphere
between the points a, b. Then there is at least one point ce N — M such that the
set M L (c) cuts the sphere between a, b. If C is the set of all such points c, then C
is closed in N.

Proof: By 17.10.3 we may assume .that & = w. There exist sets M, = E,,
N, = E, and a point « € E, such that a(M,) = M, o(Ny) = N, o(a) = a. By 26.1.1,
M, is connected and M, = N, = M,, so that M, is dense in N,. We have
aeE, — Ny, so that n(Ny; ) is a continuous mapping of N, into S, and
n(My; o) is its partial mapping. This partial mapping is inessential by 26.2.2.

By 24.2.19 there exists a set C; = N, — M, such that C, is closed in N, and,
for Z, =« N, — M,, the mapping n(M, v Z,; o) is essential if and only if
Zyn Co % (. Put C = 0o(C,). The set C is closed in N by 26.1.1. By 26.2.2, for
Z = N — M, the set M U Z cuts the sphere between the points a, w if and only
if Z n C + @J. Since N cuts the sphere between the points a, w, we have (N — M) n
n C # ¢ and hence C = .

26.5. 26.5.1. Let either P =S, or P = E,. Let F be a closed set in P. Then the
constituants of P — F coincide with its components. They are open.

Proof: P is complete by 15.1.3, 17.2.1 and 17.10.2. P is locally connected by
22.1.8 and 22.1.14. P — F is open in P. Thus, the space P — F is topologically
complete by 15.5.2 and locally connected by 22.1.3 so that our theorem follows
by 22.1.4 and 22.3.2.

It is easy to prove the following theorem
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26.5.2. Let M < E, be a bounded set. Then E, — M has exactly one unbounded
component — denote it by H. The set S, — a(M) has the following components:
first, o(H) U (w), secondly, all the sets o(K) where K are bounded components of
E2 - Mo

26.5.3. Let either P =S, or P = E,. Let C = P be a simple arc. Then P — C is
connected and B(P — C) = C.

Proof: 1. The set P — C is connected, since, by 26.4.3 and 26.4.4, it is a semi-
continuum.

II. By 10.3.2 we have B(P — C) < C. If there is a point ae C — B(P — C),
it is evidently an interior point of C in P. By 26.4.5 this is impossible for P = S,.
By means of the stereographical projection it follows easily that this is also
impossible in the case of P = E,.

26.5.4. (Jordan theorem.) Let either P = S, or P = E,. Let C = P be a simple loop.
Then P—C has exactly two components,; denote them by G,, G,. We have B(G,) =
= B(Gz) = C.

Proof: 1. Choose ae C, be'C, a + b. By 21.1.2 there are simple arcs C,, C,
such that
C,uC,=C, C,nCy=(@u (b).

The sets C,, C, are closed and connected. C; n C, has two components. Thus,
by 26.3.2 (see also 26.5.2), P — C has at least two components.

II. If the set P — C had more than two components, there would be, by 26.5.1,
points a, B, y in P — C such that C would cut P between any two of them. If
P =S,, we obtain a contradiction with theorem 26.3.1, since C,, C, are closed
in C = C, u C,, C, n C, has two components and (by 26.4.3) neither C, nor C,
cuts S, between some two of the points «, 8, y. By 26.1.5 it follows easily that we
may obtain an analogous contradiction also in the case of P = E,.

III.. Thus, P — C has exactly two components G,, G,. We have to prove that
B(G,) = B(G,) = C. Choose a, € G, a, € G,. Then C separates a, from a, in P.
If D = C # D, then it follows by 26.4.3 and 26.4.4 that D does not separate a,
from a, in P. Thus, C is an irreducible cut of the locally connected space P between
the points a,, a,, so that by 22.1.10 there are connected sets I'y, I', such that
a,ely,a,elr,, [yur,cP-C, B(I'y)) = B(I',) = C.

By 22.1.9, I',, I', are components of P — C. Thus, I'y = G,, ', = G, and hence
B(G,) = B(G,) = C.

_Let C = E, be a simple loop. By 26.5.2 and 26.5.4, E, — C has exactly one
bounded and exactly one unbounded component. The bounded component of
E, — C is called the interior of the loop C; denote it by

V().
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The other component of E, — C is called the exterior of C; denote it by
W(C).
By 26.5.1 the sets ¥(C) and W(C) are open. By 26.54,
BV (C)] = BW(O)l = C

26.6. 26.6.1. Let Q < S,. Define the set L(Q) = S, as in 22.2 (putting P = S)),
LetaeS, — Q,beS, — Q,a + b. If Q does not cut the sphere between the points
a, b, then neither does the set

M=QuULQ) - [(@v®)].

Proof: We may assume that b =  (see 17.10.3), so that 0 = S, — (). Thcre
exists a set Oy < E, and a point a € E, — Q4 such that o(a) = a, a(QO) =
Define L(Q,) <= E, asin 22.2. By 26.1.1 it follows easily that ¢[L(Q,)] = L(Q) — (w).
By 26.2.2 the mapping n(Q,; «) is inessential, so that by 24.4.1 the mapping
n[Qo v L(Q) — (@); @] is also inessential. On the other hand o[Q, v L(Q,) —
— ()] = M, so that, by 26.2.2, M does not cut the sphere between the points a, @

26.6.2. Let Q = S,, aeS, — Q, beS, — Q, a+b. Let Q be locally connected.
If Q does not cut the sphere between the points a, b, then there exists a set M <
c S, — (@ v ()] such that 1] 0 = M <0, [21 M is G4S,), [31 M is locally
cornected, [4] M does not cut the sphere between the pomts a, b.

Proof: Put S
M = L(Q) - [(@) v ®)].

By 22.2.2, 0 = M. By the definition of L(Q) we have M c- Q. By 22.2.3 (see
also 13.1.2) the set M is G(S,). By 22.2.4, M is locally connected. As Q = M,
by 26.6.1, M does not cut the sphere between the points a, b.

26.6.3. Let either P=S, or P =E,. Let Q < P, aeP — Q, beP — Q, a + b.
If P = E,, let Q not be bounded. Let Q be G4(P). Let Q be locally connected. Let 0
cut P between a and b. Then there is a simple loop C < Q cutting P between a and b.

Proof will be done e.g. for P = S, (the case P.= E, may be transferred to
P =S, by means of theorem 26.1.5). By 17.10.3 we may assume that b = w.
There exists a set Q, = E, and a point « € E; — Q such that o(x) = a, 6(Q,) =
By 26.1.1 it follows easily that Q, is locally connected and that it is G4(E,), so that Q,
is a topologically complete space (see 15.1.3 and 15.5.2). By 26.2.2, the mapping
n(Qo; @) is essential. Hence, by 24.4.2, there exists a simple loop Cy = Q, such
that the mapping n(Cy; o) is essential. Then C = o(C,) is a simple loop, we have
C < Q and, by 26.2.2, C cuts.S, between the points a, w
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26.64. Let Q = S,, aeS, — Q, beS, — Q, a+ b. Let Q be locally connected.
Let Q cut the sphere between the points a, b. Let no set X = Q % X closed in Q cut
the sphere between the points a, b. Then Q is a simple loop.

Proof: Put M = L(Q) — [(@) v (b)]. By the definition of L(Q) (see 22.2) we
obtain M < Q. The set M is G4S,) by 22.2.3. By 22.2.4 M is locally connected.
By 22.2.2, 0 = M, so that M cuts the sphere between the points @, 5. Thus, by
26.6.3, there is a simple loop C = M which cuts the sphere between the points a, b.

It suffices to prove that Q = C. Let, on the contrary, Q % C. If Q < C, there
exists a set N = E; homeomorphic with Q. This is, however, impossible by 26.4.4,
as Q cuts the sphere between the points a, . Thus, C does not contain Q, so
that C is not equal to M. As C = M, there is a point ce M — C. The set C is
compact, hence (see 17.2.2) it is closed in S,. Thus (see 10.1.2), there is a neigh-

borhood U of the set C such that ce S, — U. If we had Q < U, then
ceMcLQ <=0cU,

which is impossible. Thus Q A U % Q. On the other hand, X = Q n U is closed
in Q. Hence, Q n U does not cut the sphere between the points a, b. 26.6.1 yields
that the set _ _

My=QaU)vL@nU) - [@v®)]

does not cut the sphere between the points a, b either. As C < M < L(Q)_and as
U> C is closed, we obtain easily by the definition of L(Q), L(Q n U) that
CcL(Qn l.-f). Thus, C = M,, so that C does not cut the sphere between the
points a, b. This is a contradiction.

26.6.5. Let Q = S,. Let the set Q be G48S,). Let Q be locally connected. Then the
constituants of S, — Q coincide with its components.

Proof: Let a, b belong to distinct constituants of S, — @ so that Q cuts the sphere
between them; let, however, both points a, b belong to the same component K
of S, — Q0. We have to reach a contradiction. By 26.6.3 there exists a simple loop
€ < Q which cuts the sphere between points a, b. Hence (see 26.5.1), a, b are not
in the same component of S, — C. This is a contradiction, as both a, b belong to
the connected set

KcS,—-QcS,-C.

26.6.6. Let Q = S,. Let Q be locally connected. Let M be a constituant of S, — Q.
Let
aeM - M, beM.

Then there exists a continuum K such that

aecK, beK, K- (@M.
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Proof: Define L(Q) as in 22.2. By 8.2.1 there exists a sequence {c,}; such that
¢, € M for every n and ¢, —» a. By 22.2.2 we have 0 = L(Q). Put

%=M®—MU@UQWL

0, is G,4(S,) by 22.2.3 (see also ex. 13.11). Q, U (a) is locally connected by 22.2.4,
so that Q, is locally connected by 22.1.3. Let M, be the component of §, — Q,
containing the point b. By 18.2.2 (see also 8.7.1) we have

My — My <= Q.
By 26.6.5, M, is a semicontinuum, so that M is a constituant of S, — @, (see 19.5.8).
Forn =1,2,3,... we have be M, ¢, e M, so that Q does not cut the sphere between
the points b, ¢,. By 26.6.1, the set

L) - [®) v ()] = QU L(Q) — [(B) v (c)]

does not cut the sphere between the points b, ¢, either. On the other hand
Qo < L(Q) — [(b) v (c,)]. Thus, @, does not cut the sphere between the points b, c,,
so that both the points b, ¢, belong to the same constituant of the set S,—Q,,
ie c,e My. As ¢,— a, we have ae My. As a€S, — Qo, Mg — My <= Q,, we
have ae M,. As ae My, be My, a + b and as M, is a semicontinuum, there
exists a continuum K, < M, containing both a and b. Thus, by 19.4.1, there is an
irreducible continuum X between the points a, b such that K < M,.

It remains to be proved that K — (@) = M. The set K — (a) is connected by
19.4.2. Moreover, K € My = S, — Q, so that K — (@) = S, — Q,, where

@=L@»4@ugm»

The set Q, is, similar to Q,, a locally connected G,(S,)-set. Since K — (@) is
a connected subset of S, — @, and since be K — (@), we have K — (@) = N,
where N is the component of S, — Q, containing the point b. By 26.6.5, N is a semi-
continuum. On the other hand,

0, >LQ)-M>0Q.
Thus, N is a subset of the constituant of S, — Q containing the point b, i.e. N = M,
so that really K — (@) = M.

26.6.7. Let Q = S, be a locally connected set. Then the constituants of S, — Q are
closed in S, — Q.

Proof: Let M be a constituant of S, — Q. We have to prove (see 8.7.1), that
M — M < Q. On the other hand, let there be a point

aeM — (Mu Q).
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By 26.6.6 there exists a continuum K such thatae K, K — (@) =« M. Asa€ S, — Q,
McS,— 0, we have K= S, — 0. As K is a continuum, K is a subset of one
constituant of S, — Q. Since (J + K — (a) = M and since M is a constituant of
S, — Q, we have K = M and hence a € M which is a contradiction.

26.7. 26.7.1. Let M <= S, be a closed set. Let M be locally connected. Let ¢ > 0.
Then the set S, — M has only a finite number of components with diameter greater
than e.

Proof: 1. Otherwise there exists (see 17.10.2) a sequence {a,}7 and a point b
such that lim a, = b, all the a, belong to S, — M and, if G, is the component of

S, — M containing a,, the sets G, are mutually distinct and every one of them
is more than ¢ in diameter.

II. We have be M. In fact, otherwise (see 22.1.4 and 22.1.14) there exists an
open connected G = S, — M such that be G. Since limq, = b, there exists an
index n such that a,€G, a,,, €G. Since a, and a,,, do not belong to the same
component of S, — M and since G = S, — M is connected, this is-impossible.

III. By 23.1.6 (see.also 17.2.2) there exists a finite system 2 of point sets such
that [1] the sets 4 € U are closed and connected, [2] the union of all the sets 4 €A
is equal to M, [3] every set A € U is less than ¢ in diameter.

Divide U into thre¢ parts A, A, A; as follows: [1] 4 €U belongs to A,, if
and only if be A, [2]'if 4eW — A, then 4eU, if there is, and 4 € A, if there
is not a set Be U, with A n B + (.

Denote by C; (i =1, 2, 3) the union of all the sets 4 € ;. The sets C,, C,, C,
are then closed and every one of them has a finite number of components; we
have C,UC,uCy =M, beC;, — (C,uC,), C; nCy =(J and finally,

o(b, x) <%s for xeC,,

o(b, x) <%e for xeC,.

Since b does not belong to the closed set C, v C,, there is a § > 0 such that
8 < 3¢ and such that
ob,x) >0 for xeC,uC;. "~

IV. Denote by T the set of all x € S, with g(b, x) < J, sothat T, n (C, U C3) =
=@. Denote by T, the set of all xeS, with g(b, x) = }¢, so that T, n
N (C, v C,) = ¢. Evidently, T,, T, are continua.

V. Since lima, = b, 6 > 0, there is an index p such that

n = p implies o(a,,b)'<éd.
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VI. If p < m < n, then C, U C; does not cut the sphere between the points
a,, a,as T, =S, — (C, v C,) is a continuum containing both the points a,, a,-

VIL. If p £ m < n, then C, U C, does not cut the sphere between the points
a,, a,. In fact, if G,,, G, are more than ¢ in diameter, there exist points «,, € G,,,
a, € G, such that g(a,, a,) > 1¢, o(a,, ®,) > +&. We have

e(b, ¢,) 2 e(an, @) — o(b, a,) > %e —d0> %s,
hence a,, € T, and similarly «, € T,.
By 26.5.1 there exists a continuum K,, < G,, containing both points a,,, «, and
a continuum K, < G, containing both points a,, «,. The set K=K, u T, U K,
is a continuum contained in S, — (C, u C,) and containing both points a,, a,,
so that C; U C, does not cut the sphere between these points.

VIIL. If m < n, then (see 26.5.1) M cuts the sphere between the points a,, a,.

Since
JM = (Cl v Cz) v (Cz v C3)

with closed summands, we obtain by VI and VII and 26.3.1 that the set
(CivC)n(CuG)=C,

has infinitely many components, which is a contradiction (see I1I).

26.7.2. Let M <= S, be a closed set. Let M be locally connected. Let G be a component
of S, — M. Let G = N < G. Then N is locally connected.

Proof: 1. G is open in S, (see 22.1.4 and 22.1.14), so that, by 22.1.2, N is locally
connected in every point x € G.

II. Let ae N — G. We have to prove that N is locally connected at a. Choose
an ¢ > 0. By 22.1.1 it suffices to prove that there is a 6 > 0 such that for every
x e N with g(a, x) < ¢ there is a connected S = N with ae S, xe S, d(S) < 2e.

Obviously it suffices to prove this for ¢ such that there exists a point b € G with
o(a, b) > e ’

III. Denote by T the set of all xe S, with g(a, x) = ¢, so that be T. It is easy
to prove that M U T is closed and locally connected.

If K is a component of S, — (M u T), then K is a connected subset of S, — M,
so that (see 18.2.5) we have either K =« G or Kn G = (J.

IV. Let K be a component of S, — (M u T) such that K = G. Then K n T + (.
Assume the contrary. By 18.2.2 (see also 8.7.1), K — K= M u T, and hence (see
10.3.2 and 22.1.4) B(K) = K — K = M. Since K is a connected subset of the open
S, — M, we see by 22.1.9 that K is a component of S, — M. As K = G, we have
K = G which is a contradiction, since KN T =0, beGn T.
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V. Denote by A the system of all components K of S, — (M u T) such that
Kc G BylIlll, G- (MuUT)=G— T is the union of all sets KeA. Divide A
into three parts U, , A,, A, as follows: Ke A, ifae K. If Ke A — A,, then Ke U,
(K e U, respectively) if the diameter of K is greater than (less than or equal to) }e.

Denote by C; (i = 1, 2, 3) the union of all KeU;, so that

G—T=C1UC2UC3.

VI. For every Ke ,, K U (a) is connected by 18.1.7. Thus, C, v (a) is connected
by 18.1.5.

VII. 2, is a finite system by 26.7.1, so that C, is the union of all K with Ke A,
Thus, a does not belong to C,. It follows easily by IV that a does not belong to C,
either. Hence, there is a number 6 > 0 such that § < ¢ and

xeC,yu C; implies g(a, x) = 6.

VIII. Let x € N, g(a, x) < d. Since < ¢, x does not belong to 7. We have

xeNeG=G-TuT=G-TuT,
and hence

_ xeG-T=C,uC,uG,,
so that, by VII, xe C,.

IX. Thus, the set S = C; U (@) U (x) is connected by VI and 18.1.7. Evidently
S < N,aeS, xeS. Moreover, S = S, — T so that d(S) £ 2e.

26.7.3. Let M < S, be a closed set. Let M be locally connected. Let G be a component
of S, — M. Let acG — G. Let € > 0. Then there is a § > 0 such that for every
b e G withg(a, b) < 6 there is a simple arc C with end points a, b such that C — (a) = G
and the diameter of C is less than e.

Proof: G is open by 22.1.4 and 22.1.14, so that G U (a) is G4(S,) by 13.1.3 and 13.2.
G v (a) is locally connected by 26.7.2. [G U (@)] n Q(a, &) = H is open in G U (a)
and hence locally connected (see 22.1.3). Let I' be the component of H containing a.
T is locally connected by 22.1.6 and open in G U (a) by 22.1.4. Thus, I' is G4S;)
by 8.7.5, 13.1.1 and 13.1.2. Consequently, I is a topologically complete space by
15.5.2, 17.2.1 and 17.10.2. Certainiy, I' is connected and we know that it is locally
connected. '

Since I is open in G v (a), there is a 6 > 0 such that

x€G, gl@x)<dé imply xerl.

Let beG, g(a,b) < 6. Then b + a, bel. By 22.3.1 there is a simple arcC <= I'
with end points a, b. We have C — (@) = I' — (a) = G. As I' = Q(a, }¢), we have
dC) = %e<e.
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26.7.4. Let M = S, be a closed set. Let G be a component of S, — M. Put H = B(G),
so that (see 22.1.9 and 22.1.14) H = M. Let a€ H. If both the sets

Gu (e, M
are locally connected at the point a, then H is also locally connected at the point a.

Proof: Assume the contrary. By 22.1.1 there is an ¢ > 0 such that for every
& > 0 there is a b € H with g(a, b) < § and such that every connected subset of H
containing both a and b is greater than or equal to ¢ in diameter.

Put Q = Q(a, 1¢), so that Q is a neighborhood of a in S,. Evidently Q is homeo-
morphic to E,, therefore locally connected by 22.1.8 and unicoherent by 25.2.3.

Let K be the component of [G U (@)] n Q containing the point a. Let L be the
component of M n Q containing the point a. Since G U (@), M are locally connected
at a, there is a number 6 > 0 such that

xeG, o(@x)<do imply xeKk,
xeM, o(a,x)<é imply xelL.

The definition of ¢ yields easily the existence of a point be H n Q such that
o(a, b) < & and the fact that the points a, b belong to distinct components of H n Q.
On the other hand, H n 2 is compact (see 10.3.1, 17.2.2 and 17.10.2), so that (see
19.1.5) a and b belong to distinct quasicomponents of H n Q and hence also in
distinct quasicomponents of Hn Q « H Q. Thus, the set @ — (HNn Q) =
= Q — H separates the point a from the point b in Q. Thus (see 22.1.12), there
exists a C = Q — H which is an irreducible cut of Q between the points a, b. C is
connected by 25.1.2.

Since be H = M, ¢(a, b) < 6, we have b e L and, of course, also ae L. Thus L
is a connected subset of Q containing both a and b. Since C separates a from b
in 2, we have L n C % (0. On the other hand, L €« M = S, — G, so that

C-G+0.
If xe G — K, we have ¢(q, x) < 6. Hence also
xe G — K implies g(a, x) < 0.

On the other hand, be H=c G =< G — KUK, o(a, b) <6, so that be K. Thus,
K u (b) is a connected (see 18.1.7) subset of Q containing both points a, b. Since C
separates a from b in Q, we have [Ku (b)]n C % (J and hence Kn C £ (J. On
the other hand, K = G u (a), so that G n C + (.

As C- G+ 0+ Gn C and as C is connected, H n C + (J by 18.1.8. This is
a contradiction.

26.7.5. Let M < S, be a closed set. Let M be locally connected. Let G be a component
of S, — M. Then B(G) is locally connected.
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This follows by 26.7.2 and 26.7.4.

26.8.26.8.1. Let M = E, be a compaci set. Let [ be a continuous mapping of M into S, .
Then there exists a finite number of points a,e E, — M (1 < 1 £ k) and integers
n, (1 £ A £ k) such that the mapping

k
f -AHI[“(M )
is inessential.
Proof: 1. Ifae E,, be E,, a & b, define a segment S(a, b) similarly as in exercises
to § 19; S(a, b) is, of course, a simple arc with end points a, b.

II. If a = a, + ia, € E, and if s is a positive number, denote by A(a, 2s) the set
ofall x + iye E, with | x —a,| £ 5, |y — a,| < 5. The set A(s, 2s) will be called
a square and the point a is said to be its centre. Edges of the square A(a, 2s) are
the segments

"Sl@a—s—si,a—s+si), Sla+s—si,a+ s+ si),
S(a— s —si, a+ s — si), S(a — s + si, a + s + si).
The union of all four edges of a square 4(a, 2s) is said to be its perimeter and is

denoted by D(a, 2s). Evidently D(a, 2s) is a simple loop, and 4(a, 25) — D(a, 2s) is its
interior. The points

a—s—si, a—s+si, a+s—si, a+s+si
are termed the vertices of the square.

II1. By 24.2.15 there exists an open set G = E, such that M < G and there exists
a continuous mapping g of G into S, with |f(z) — g(z)]| < 2 for every ze M.

IV. 17.2.3 and 17.3.4 yield the existence of an integer m > 1 such that: [1] for
every x +iyeM, |x|<m, |y |<m, [2]if o(x + iy, M) < 2m™!, then x +
+iyeG.

Order the points

u+ i 1+i
m 2m

(—m* sp<m? —m*<v<m?

into a one-to-one sequence {c;}{™". Put 4, = A(c;, m™"), D, = D(c;, m™Y), K =
4mA .

= U 4,, so-that K = 4(0, 2m).
gelnote by K, the union of all 4; (1 £ 4 £ 4m*) with 4, n M =+ (J. Evidently
McK,cGnK.
Denote by K, the set obtained from K, by adjoining of all the vertices of all the

4m4 amy

squares 4; (1 £ 1 < 4m"). Put K, = K,u UD, =K, vl D,.
A=1 A=1
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V. Evidently there exists a continuous mapping g, of K, into S, such that g,(z) =
= g(2) for every ze K,. If S(a, b) is an edge of some of the squares 4, (1 £ 4 <
< 4m®*), there is evidently a continuous mapping & of S(a, b) into S, such that
h(a) = g,(a), h(b) = g,(b). Consequently there exists a continuous mapping g,
of K, into S, such that the partial mapping (g2)k, coincides with g,.

VI. The square 4, (1 £ 1 < 4m*) is said to be free, if 4, is not a subset of K,
(Evidently, 4, = K, ifand only if 4, = K,, i.e. if and only if 4, n M % (J.) Denote
by A the set of A(1 £ 1 < 4m*) for which the square 4, is free.

Let 1€ 4, so that 4, n K, = D,. D, is a simple loop. It is easy to prove that D,
may be oriented in such a way that the mapping n(D;; c;) has degree (see 24.3.2)
equal to one. Denote by n; the degree of (g2)p,, so that n, is an integer.

VII. Put
=82 n [n(K3: e )™ ™
AeA

If 2€ A, then the degree of the mapping (g,)p, is n;, the degree of the mapping
n(D;; c;) is +1, and it is easy to prove that for pe A, u =+ A, the degree of the
mapping n(D,; c;) is zero. Thus (see 24.3.4) the degree of kp, is zero so that it is
inessential by 24.3.3. Thus, for every A € A there is a continuous mapping ¢, of D,
into E, such that e'**® = k(z) for every z € D;. By 14.8.3 there exists a continuous
mapping y, of 4, into E; such that y;(z) = ¢,(z) for every ze D,.

VIIL. Since K= K, u U 4,, 4,0 K, = D, for Ae A, there exists ev1dently

AeA
a continuous mapping v of K into S; such that [1] v(z) = k(z) for every zeKz,

[2] v(z) = e¥*? for Ae 4, ze 4,.
K is obviously a cartesian product of two simple arcs, so that the mapping v
is inessential by 24.3.1 and 24.5.1. Put
u=f.[][M; ™™,
A€eA

so that u is a continuous mapping of M into S,. For ze M we have g,(z) = g(2);
therefore z € M implies | u(z) — k(z) | = | f(z) — g(2)| < 2, and hence u is inessential
by 24.2.6 and 24.2.8.

26.8.2. Let P=S, or P =E,. Let M < P be a compact set. Let k =1,2,3,.
The set P — M has more than k components if and only if there exist k continuous
mappings f; 1 £ 2 £ k) of M into S, such that the mapping

ﬂf

cannot be inessential, lf the mtegers n, (1 £ 2 = k) _are not all equal to zero.

Proof: I By 17.2.3,17.10. 3 24.5. 4 26.1.1 and 26 5.2it sufﬁces to prove the theorem
under the assumption of P = E,.
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II. Let E, — M have more than k components. By 26.5.2 thereexist mutually
distinct bounded components K; (1 < A £ k) of E;— M. Choose an a, € K, and put
k

fi=n(M; a;). By 26.2.4 (see also 26.5.1) we see easily that the mapping []fi* is
inessential only if n, = ... = n, = 0. !

III. Let there exist continuous mappings f; (1 £ A £ k) of M into S, such that
A]E[I f1* is essential whenever at least one of n, is not zero. We have to prove that the

set E, — M has more than k components. Assume the contrary.

By 26.5.2 (see also 17.2.3), E, — M has exactly one unbounded component. Let
us denote this by K, and the remaining components of E, — M by K, (1 < u < h),
so that, by the assumption,

0Zh<k

For every A (1 £ A £ k) there is, by 26.8.1, a finite number of points and integers
cMeE, — M (1 £v=r)and mP (1 £v £ r,) such that the mapping

f;. . I’jl[n(M; C&A))]my(l)

is inessential.

For every 4 (0 £ u < h) choose a point a, € K. As M is bounded, we may choose
a, such that xe M, ay — x = y, + iy, imply y; > 0. By 26.2.3 (see also 26.1.5
and 26.5.1) we may associate with every pair of indices , v(l S A1 £k, 1 Sv<ry)
an index p (0 £ pu < h) such that the mapping n(M; c¥)/n(M; a,) is inessential.
Moreover, we see easily by 24.2.7 that the mapping n(M; a,) is inessential. Thus
(see 24.2.4 and 24.2.5) there are integers n;, (1 S A<k, 1 < pu < h) such that

the mappings A
fi- T (03 a1
as

(1 £ 2 £ k) are inessential so that, for every choice of integers x, (1 £ 1< k),
the mapping

k h ".
o2 Mauxa
[1/:*- Tl [a(M; @)=
i=1 n=1
k
is inessential. Thus, the mapping [ [ f* is inessential if the integers x, (1 < 4 £ k)
k A=1
are such that ) n;,x;, =0for 1 S u < h.
A=1
As h < k, we may choose such integers without putting x; = ... = X, = 0.

This is a contradiction.

26.8.3. Let C = E, be an oriented simple loop. For every acE, — C, n(C; a) is
a continuous mapping of C into S,. The degree (see 24.3.2) of this mapping is equal
to zero if and only if ae W(C).
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Proof: By 24.3.3, the degree of n(C; a) is equal to zero if and only if this mapping
is inessential. This holds by 26.2.2, 26.5.1 and 26.5.2 if and only if a e W(C).

26.8.4. Let C < E, be a simple loop. With respect to one of both its orientations
(see 21.2.3), the degree of n(C; a) is equal to +1 for every a e V(C).

This orientation is called positive and the second one is called negative. By 24.3.2,
with respect to the negative orientation, the degree of the mapping n(C; a) is equal
to —1 for every ae V(C).

Proof: 1. Let ae V(C), b € ¥(C). By 26.5.1 and 26.5.2, 6(C) does not cut the sphere
between the points o(a), a(b) so that the mapping n(C; a)/n(C; b) is inessential
by 26.2.3. Thus, both mappings n(C; a), n(C; b) have the same degree by 24.3.3
and 24.3.4.

IT. It remains to be proved that, if an orientation of a simple loop C and a point
a € V(C) are chosen, the degree of n(C; a) is equal to 4 1. By 24.3.6 there is a conti-
nuous mapping f of C into S, such that its degree is equal to +1. By 26.8.1 there
arepointsa; € E, — C(1 £ A £ k)andintegersn, (1 £ A < k) such that the mapping

k
S T1IA(C; a
is inessential, so that (see 24.3.3) its degree is equal to zero. Thus (see 24.3.4)
k
1+ ) nir;=0,
A=1

where r, is the degree of n(C; a;). As E, — C = V(C) u W(C), we have for every
index A (1 £ A £ k) either aq, e W(C) or g, € ¥(C). In the first case r, = 0 by 26.8.3;
in the second case r; = s by I. Thus, there is an integer n with ns = 1. Thus, s = +1.

Exercises

26.1. Let M < E, be a closed unbounded connected set. Then there is at least one point a € M
such that every component of M — (a) is unbounded. If there is exactly one such point,
then M is homeomorphic with the set of all x € E; with x = 0.

26.2. Let M < E, be an irreducible continuum between points @ € M, b € M. Then M has no
interior points.

26.3. Let K be a disjoint system of continua K< E,. Let the union of all K €  be the whole plane.
Then there is a continuum K € & such that E, — K is connected.

264. For 1 =i=nlet C;<E, be a simple arc with end points a, b. For 1 £ i <j=n, let
n
c;N CJ- = (a@) Y (b). Then E, — 'Ux C; has exactly n components.
i=
26.5. Let a locally connected M < E, be an irreducible cut of the plane between points a, b.

Then M is a simple loop.
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26.6. Let a bounded C < E, be an irreducible cut of the plane between points a, b. Let K< C
be a continuum. Then C — K is either void or connected.

26.7. Let C < E, be a simple loop. Let K, K, be continua. Let K; W K, < V(C), Ky N K, = 0.
Let a; eCNK, byeCNKy, aeCNK,, b eCNK,, a; + b;. Then there exists
a simple arc C; < C with end points a,, b, such that (a,) U (b,) < C;.

26.8. We cannot replace the word ‘‘continua” in ex. 26. 7 by the words ‘“‘connected sets”.

269. Forl=isnletC,<E,bea snmple loop. Let U V(C;) be connected. Then there exists
i=1

a simple loop C < U C; such that U V(C) <= V(C).

26.10. Let M < E, be a locally connected set Let M be Gy(E,). Let a € M. Let there be no
continuum K with X " M = (a). Let ¢ > 0. Then there exists a simple loop C < M of
less than ¢ in diameter such that a € ¥ (C).
26.11. Let K < E, be a continuum. E; — K is connected if and only if for every € > 0 there is
a simple loop C with
K< V()< QK,e).

26.12. Let C < E, be a simple arc. There exists a simple loop Cy < E, such that C < C.

In exercises 26.13 and 26.14, P is the space from the exercises to § 19.

26.13. Let a = (0, }). For every x € E, — P5 there is a continuum K < E, such that x € K,
K NP5 = (a). If there is an ¢ > 0 given, we may choose the point x with g(a, x) < ¢ and
such that every continuum K is more than > § in diameter.

26.14. Let P be the set of all x + iy € E, with either x + iy € Py or —x + iy € P5. Let a ==
= (0, ). Then there is no continuum K with X N P = (a).

26.15. B. Knaster constructed in 1921 a continuum K < E, such that there is no simple arc C < K.
Assuming this result, prove that there exists a set M < E, and a point a € M such that:
[1]1 M is G4(E,), [2] M is F,(E;), [3] there is a continuum H < E, with H N M = (a),
[4] there is no simple arc C < E, such that C " M = (a).

26.16. Let M < E, be a closed set. Let a € M. Let K < E, be a continuum such that K N M == (a).
Let € > 0. Then there is a simple arc C < E, with C < (K, ¢) and C " M = (a).

In ex. 26.17—26.19, C;< E, (1=i=n; n=2,3,4,...) are simple loops such that C;N

I‘\Cj=0forl§i<j§n.

26.17. Let C; < W(C)) for 1 =isn, 1 Sj=n, i+j Then P—-‘L"Jl C; has exactly n + 1
components These are the sets V(C;) (I =i = n) and the set U W(C;) = K; we have
B(K) = U o o

26.18. Let there exlst an index 4 (l é A = n) such that C; < V(Cy) for 1 =i < n, i+ 2, and that

n
CicW(Cyfor 1 ZiZn, 1<1<n 1#1#]*1 Then P— |J C; has exactly n + 1
i=1
components These are: the set w(C)), the sets V(C) (1 =isn, i+, and the set

V(Cy) — U V(C) = K. We have B(K) = U C;.
i=1 i=1
i*A

26.19. If neither the assumptions of ex. 26.17 nor the assumptions of ex. 26.18 are satisfied, the

set P— U C; has also n +1 components However, the boundary of none of them is
l—l

equal to U C;.
i=1
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25.29. Exercises 26.17—26.19 may be generalized as follows: The assumption that C; N Cj are
void will be replaced by the assumption that every set
i-1
anlU ¢ @sisn
i=1
is either void or connected (and C; + Cj forl1 2i<j=n).

In exercises 26.21 and 26.22, C, < E,, C, < E, are simple loops and C,,C, denote their po-

sitive orientation, a;, b,, ¢, are three distinct points of Cy, a,, b,, c, are three distinct points

of C;.

26.21. Let C; < V(C,). Let (a, by, c¢;) €C,. We have (a,, b,, ¢c;) €C, if and only if there exist
three disjoint simple arcs 4,, A,, A3 such that

C, N4, (@), CaNAy=(by), C;NAy=I(c), )
C, N Ay = (a)), C3Ay=(by), CyN Ay=I(cy).

26.22. Let C; < W(C,), C, = W(Cy). Let (a;,b,,c;) €C,. We have (a,, b;,¢;) €C, if and
only if there are no simple arcs A4y, 4,, A5 such that (1) holds.

26.23. Let C < E, be a simple arc with end points a, b. Let S be the system of all simple
arcs K < E, such that C N K contains exactly one point which is an end point of K, and
such that (@) + C N K * (b). The system S may be divided into two disjoint subsystems
S,, G, which have the following property: If K, €S, K, €S, K; N K, < C, there is
a simple arc I' and a simple loop 4 such that [1] I' = E, — C, [2] one of the end points
of I" belongs to K, the other to K,, B]J'c4<I'UK,; UK, U C. For every such 4
it holds that: [1] if K, € G, K, €S, or K; € S,, K, € S,, then either (a) VU (b) = V(4)
or (a) U (b) = W(A), [2)if K, € S,, K, € S,, then either a € V(4), b € W(A), or a € W(J)
b eV(A).

In cxercise 26.24, S designates the segment as in exercises to § 19.

26.24. Let a€ E,, b€ E,, a + b. Let C = E, be a simple loop such that S(a, b) = C. Let S(a, b,)
be oriented in such a way that a is the initial point, and let C be oriented coherently. Let
ceE,, deSa,b), a+d+ b, Sc,d)—(d)< V(C). Let

c—d .
m.= x .
The given orientation of C is positive if and only if y is positive.

26.25. Let Q, < E, be the set consisting of the points +i, —i, the points x + isin ™Y,
0 < x <1, and, finally, the points (1 +i)x +isin(x™!), 0 < x < 1. Then E,—Q,
is a semicontinuum.

26.26. Let Q, < E, be the set consisting of the points +i, —i, the points \/ ©* —y?) +iy with
1 < p =2, y =sin1/(o — 1), and, finally, of the points —\/(e2 —yz) +iywithl <o =2,
y=sinl/(e—1). Let a =0, b == 2i. Then Q, cuts the plane between the points a, b.

26.27. Let M, < E,, M, < E, be closed sets. Let there exist a homeomorphic mapping of M,
onto M,. If E; — M, has a finite number k of constituants, then E, — M, has also k
constituants. If E; — M, has an infinite number of constituants, then also E, — M, has
an infinite number of constituants.

26.28. One cannot omit in exercise 26.27 the word “‘closed”. This may be seen, e.g., by replacing
M, M, with some of Ay U B, A, U B, A, U B, (where A4 is the set of all real x, 4, is
the set of all x with —1 < x < 1, B, is the set of all ix with real x, B, is the set of all ix
with —1 < x < 1). One cannot replace the word “closed” by the word *‘bounded”, either.
This follows by the example with M, = Q, (see ex. 26.25), M, = Q, (see ex. 26.26).
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§ 27. Topological characterization of the sphere

27.1. Let P be a metric space. We say that P is a spherical space, if it has the following
properties:

(«) P is a locally connected continuum,

(B) P — (a) is connected for every a € P,

() if A = P, B c P are closed sets such that A N B is either void or connected, and
if a, b are two distinct points of P — (A U B) such that neither A nor B separates the
point a from the point b in P, then A U B does not separate a from b either.

The term “spherical space” is motivated by the following fact:

27.1.1. A metric space is spherical if and only if it is homeomorphic with S,.

Proof of this theorem is the principal aim of this section. S, is evidently a spheri-
cal space. In fact, S, has property («) by 17.10.2, 19.2.5 and 22.1.14; S, has
property () by 17.10.4 and 19.2.4; S, has property (y) by 26.3.1 (see also 19.5.11
and 22.3.3). Since (), (B), (y) are topological properties, every metric space homeo-
morphic with S, is spherical. To finish the proof of theorem 27.1.1, we have to
prove the theorem:

27.1.2. Let P, Q be spherical spaces. Then P and Q are homeomorphic.

Proof of this theorem will be done in section 27.3. First, we have to prove some
simple theorems concerning spherical spaces.*)

27.2. 27.2.1. A spherical space P is unicoherent.

Proof: Let us assume the contrary. By 25.1.2 [see also property («)] there are
points ae P, be P, a #+ b and an irreducible cut M = P — [(a) U (b)] of P between
the points a, b such that the set M is not connected. Since P is connected, we have
certainly M = ¢J. M is closed by 18.5.4. Hence, there exist disjoint closed sets 4, B
such that 4 = (§ = B, M = A u B. Since M is an irreducible cut between points
a, b, neither 4 nor B separates the point a from the point b. As A n B =),
property (y) yields that 4 U B = M does not separate a from b either, which is
a contradiction.

27.2.2. Let P be a spherical space. Let A = P, B = P be open sets such that A n B
is either void or connected. Let a, b be two distinct points of P — (A U B) such that
neither A nor B separates a from b in P. Then A U B does not separate a from b in P
either.

*) By theorems of §26 we see easily that all the theorems of section 27.2 are true for P = S,.

Thus, it follows by 27.1.2 that these theorems are true_for every spherical space P. Theorem

27.1.2, however, is not proved yet. Thus, these theorems must be deduced directly from the
properties (%), (8), (7).
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Proof: Assume the contrary. P is locally connected [see property (%)]. Thus (see
22.1.12), there is an irreducible cut M = A U B of P between the points a, b. M is
closed by 18.5.4, so that M — A, M — B are also closed. As M = A LU B, we have
M-ANnM—-B) =10, so that M — A4, M — B are separated (see 10.2.1).
Hence (see 10.2.7), there exist disjoint open U, V with UnV =0, U> M — A.
VoM-~—B. Put Ay=M — U, By = M — V. Then A4,, B, are closed sets and
we see easily that 4, = 4, By < B, Ay U By = M. Ay n B, is compact by 17.2.2;
A n B is open and either connected or void. Thus (see 23.2.5), there exists a closed
set C such that 4o n By =« C @ A n B and that C is either connected or void.

As Ay u C c A, A, U C does not separate a from b in P. This holds also for
B, u C. On the other hand, the set (4o U C) U (B, U C) o 4, U B, = M separates
a from b. Thus, property (y) yields that (4o U C) N (B U C) = (g nBy)uC = C
is neither connected nor void, which is a contradiction.

27.2.3. Let P be a spherical space. Let C = P be a simple arc. Then P — C is connected.

Proof: Let us assume the contrary. We obtain, by property () and 20.1.2, that
C = P. Thus, there are points ae P — C, be P — C such that C separates a from
b in P. By 22.1.12 [see also property («)] there exists an irreducible cut D = C of P
between a, b. D is closed by 18.5.4 and connected by 25.1.2 and 27.2.1 [see also pro-
perty («)]. Moreover, D is not a one-point set. Thus (see 17.2.2), D is a continuum.
As D < C, D is a simple arc (see 20.1.13). Hence (see 20.1.9) there exist simple
arcs D, « D, D, = D such that D, u D, =D and D; n D, is a one-point set.
As D is an irreducible cut of P between points a, b, neither D, nor D, separates a
from b. By (), D; w D, = D does not separate a from b either. This is a contra-
diction.

27.2.4. Let P be a spherical space. Let C = P be a simple arc. Then C has no interior
points.

Proof: Let there be, on the contrary, a non-void open G = C. C is closed (see
17.2.2), so that GcC. By 27.2.3, P — C % (J. Choose ae G, be P — C. By 18.5.3,
B(G) = G — G < C separates a from b. By 22.1.12 there exists an irreducible cut
D < B(G) = C of P between a and b. We obtain a contradiction similarly as in the
previous proof.

27.2.5. Let P be a spherical space. Let A = P, B < P be disjoint closed sets. Let C < P
be a simple arc with end points ae A, be B. Let An C = (a), BN C = (b). Then
C — [(a) v (b)] is a subset of a component G of P — (A v B)and G — C is a component
of P—(Au BuC).

Proof: C — [(@) v (b)] is a subset of a component G of P — (4 u B) by 18.2.5
and 20.1.5. G is open by 22.1.4 [see property («)], so that G — C + (J by 27.2.4,
Chooseace G — C.
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We have to prove that xe P — (4 u Bu C) is in the same component of P —
— (4 v Bu C) with ¢, if and only if x € G. First, let 4 be a component of P —
— (Au BuC)and let ced, xe 4. Then 4 is a connected subset of P — (4 U B)
and ce 4 n G, so that, by 18.2.5, 4 =« G and hence xe G.

Secondly, let ¢ and x belong to distinct components of P — (4 u Bu C). We
have to reach a contradiction with the assumption of xeG. P — (4w Bu C)
is locally connected by 22.1.3, so that, by 22.1.5, 4 U B u C separates ¢ from x.
Since ce G, xe G and G = P — (4 v B) is connected, 4 U B does not separate ¢
from x, so that 4 does not separate ¢ from x either. By 27.2.3 C does not separate ¢
from x either. As 4 n C = (a), A U C does not separate ¢ from x by property (y).
Similarly we may prove that B u C does not separate ¢ from x. Since (4 U C) n

N (Bu C) = C, by property (y) (Au C)u (Bu C) = A u Bu C does not separate
¢ from x. This is a contradiction.

27.2.6. Let P be a spherical space. Let K = P be a continuum. Let C = P be a simple
arc with end points ae K, be K. Let C — [(a) v (b)] =« P — K. Then C — [(a) U (b)]
is a subset of a component G of P — K. G — C has exactly two components G,, G,.
We have

CcBG)cCUBGUK (i=12).

Proof: 1. C — [(a) L (b)] is a subset of a component G of P — K by 18.2.5 and
20.1.5. P — G is connected (see 22.1.13), so that G does not separate a from b.
By 27.2.3, P — Cdoes not separate a from b either. On the other hand, G U (P — C) =
= P — [(a) v (b)] separates a from b. Moreover, G and P — C are open sets (see
17.2.2 and 22.1.4), so that, by 27.2.2, Gn (P — C) = G — C is neither void nor
connected. Thus, G — C has at least two components.

II. Let G, be a component of G — C. G and G, are open by 22.1.4, so that B(G) =
=G -G, B(Gy) = Gy — G, by 10.3.2. We have B(G,) = G, = G = G U B(G).
By 22.1.9, B(Gy) < P — (G — C). Thus, B(G,) = C v B(G). By 22.1.9, B(G) =
< K. To prove that

C < B(Gy) =« CU B(G) = CUK,

we have to prove that C < B(G,).
Let us assume the contrary. Since B(G,) is closed and since C is a simple arc,
we prove easily that there exist simple arcs C,, C, such that

aecl, bECZ, ClﬁC2*(:,, CxUCZCC,
C - (C1 UC:) * (4, B(Go) c Cl UC2 v K.

Choose a point ce C — (C, U C,) and a point de G,. Evidently ceP — G,,
so that (see 18.5.2) B(G,) separates ¢ from d. Since B(Gy) =« C,uC, UK, C; u
u C, U K also separates ¢ from d. Evidently (c) u (d) = K, so that K does not
separate ¢ from d. By 27.2.3 neither C, nor C, separates ¢ from d. Since C; N K =
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= (a), C; n K = (b), by property (y) neither C, u K nor C, U K separates ¢ from d.
On the other hand, (C, u K) n (C, u K) = K is connected, so that, by property (),
(C;uK)u (C,UK) = C;u C, u Kdoes not separate ¢ from d, which is a contra-
diction.

III. Choose a ce€C, a % ¢ + b. Choose (see 18.3.1 and 20.1.2) points r, s in
C — (c¢) such that this set is not connected between r and s. We may evidently assume
a+r#+b a+sFb.

G — (c¢) is open and non-void. It is also connected. Otherwise (see 18.3.1) it
would contain points A4, k such that P — [G — (¢)] = (P — G) u (c) would separate h
from k. As G is connected, P — G does not separate i from k. By property (), (c)
does not separate 4 from k either. As (P — G) n (c) = (4, by property (y) (P — G) U
U (c) does not separate i from k.

Thus, G — (c) is connected. It is also locally connected by 22.1.3. Moreover,
G — (c) is a topologically complete space by 15.5.2 [see also (%) and 17.2.1]. Hence
(see 22.3.1), there is a simple arc D = G — (¢) with end points r,s. As C — (¢)
is not connected between r and s, D is not contained in C. Thus, there is a point
te D — C. By 20.1.9 there is a simple arc D, with end points r,t and a simple
arc D, with end points ¢, s such that D, v D, = D, D; n D, = (¢). By 20.2.7 we
see easily that there is a simple arc E; < D, with end points %, ¢t and a simple arc
E, c D, with end points t,v such that CnE; = (u), Cn E, = (v). Put E;, =
= E, UE,. Then E, is (see 20.1.10) a simple arc with end points u, v and we have
CnEy,=(u)v ().

Ey, — [() v (v)] is a connected (see 20.1.5) subset of G — C. Hence, there is
a component G, of G — C such that

Ey — [(w) v ()] = Go.

IV. We have to. prove that G — C has at most two components. Let us assume
the contrary. Then there exist, besides the described component G, two other compo-
nents G,, G, of G — C. Choose g, € G,, g, € G,. Then (see 22.1.3, 22.1.5 and pro-
perty ()] P — (G — C) = (P — G)u C separates g, from g,. Consequently,
(P — G) v C U E, separates g, from g,.

It is easy to prove that there exist simple arcs C’, C”, C” such that C= C’'u
uC'uC", C'NnC"=(,aeC’, beC" and either C'n C" = (u), C" N C" = (v)
orC'NnC”" =), C"'NnC" = (u). Let, eg., C'nC" = (u), C"C" = (v).

Choose ye C”, u # y + v. By 1I we have y e B(G,) n B(G,). Thus, G, U (),
G, L (») are connected (see 18.1.7), so that G; U (¥) U G, is connected (see 18.1.4).
Evidently [G,u () v Gln[(P-G)uC UC UE] =0, so that (P - G)u
U C"u C" U E, does not separate g, from g,.

Choose a ze C', a # z # u. By I, ze B(G,) n B(G,), so that (again by 18.1.7
and 18.1.4) G, U (2) U G, is connected. Evidently [Gy U (z) U G,] N (C" U Ey) = 0,
so that C” u E, does not separate g, from g,.
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[(P-@)uCuC UE)]n(C"UE,)) = E, is connected, so that, by property
@), [(P-—GUCUC"UE]uU(C"UE,) = (P~ G)u Cu E, does not separate
g, from g,, which is a contradiction.

27.2.77. Let P be a spherical space. Let C < P be a simple loop. P — C has exactly
two components and C is the boundary of both of them.

Proof: Choose ue C, ve C, u % v. By 21.1.2 there exist simple arcs C,, C, with
end points u, v such that C, U C, = C, C; n C; = (1) U (v).

Put K= C,, G =P — K. Then K is a continuum (see 20.1.1), C, is a simple
arc with end points u € K, v € K, G is a component of P — K (see 27.2.3) and C, —
= [(@) v (v)] = G. Thus, by 27.2.6, G — C, = P — C has exactly two components
G,, G, and we have

C,cBG)=C,uC(C, (i=12).

After an analogous reasoning in which we interchange C, and C, we obtain
CicBG)=C,uC, (i=12).
Thus, B(Gl) = B(Gz) = Cl v Cz = C.

27.2.8. Let P be a spherical space. Let M, < P be a one-point set or a continuum.
Let M, < P be a one-point set or a continuum. Let M, " M, = 0. For i =1,2,3
let C; < P be a simple arc with end points a,e My, b,e M,. Put C;' = C, — [(a;) U
ub)l (i=1,2,3). Let
CinCi=CinCi=CinCy=0,
(CTUCTUCH A (M, UM, =0
P — (M, v M,) has a component G such that
CiuCuCrcG.
G — (Cy v C, U C,) has exactly three components G, G,, G;. We have

C, v Cy c B(G)), C; v Cy = B(Gy), C, v C, © B(@Gy),
Ci n B(G,) = C; n B(G,) = Cs n B(G,) = 0,
B(G,) UB(G,))UB(G;) =cCiuC,uC3; UM, UM,.

Proof: 1. If C¥ U C; U C7 is not a subset of a component of P — (M, u M,),
then [see 22.1.3, 22.1.5 and property («)] there exist points ¢, € C}, ¢, € C;‘ (,j=
= 1,2, 3) such that M, U M, separates c¢; from c,. Sets C¥ u (b)), C}" v (b))
are connected (see, e.g., 20.1.2). Thus (see 18.1.4) C;' U C}‘uMz is connected.
On the other hand, (¢;) U (c;) = Cf U Cj UM, cP— M,, so that M, does
not separate ¢, from c,. Similarly we may prove that M, does not separate ¢, from c,.
As M, n M, = (), we obtain by property (y) that M, U M, does not separate c,
from ¢, which is a contradiction.
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Thus, there is a component G of P — (M, u M,) with

cCiucCiu C;‘ < G.
G is open (see 22.1.4).

II. By 27.2.5, G — C, is a component of P — (C, U M, UM,). C,u M, UM,
is a continuum (see 17.2.2 and 18.1.4). By 27.2.6,(G — C)) — C, = G — (C, U C,)
has exactly two components G, G3 and we have

C, = B(G;) n B(G3),
B(Gy) UBGy) = C,uC, UM, UM, <P - Cj.
111. We may repeat the argument in II with interchanged C,, C,. We obtain
C, < B(G;) n B(G3).

IV. By 18.2.5 (see also 20.1.5) we have either C3 < G, or C; < G. Let, e.g.,
Cy = Gy and hence C3n G, =@. Evidently G, =« G — (C, u C, U C;). We
obtain, by 22.1.9,

B(Gy))cP—-[G—-(C,uC)lecP—-[G-(C,uC,uC,)
Thus, by 22.1.9, G5 is a component of G — (C; LU C, U C,).
V. Hence, the set G — (C, u C, u C,) has a component G, such that
C,uC, c B(G;), CinBG,) =0,
B(Gy)) c G,uC,uC3; UM, UM,.

We may repeat the whole part of the proof done till now with an arbitrary permu-
tation of C,, C,, C3. Thus, G — (C,; u C, U C;) has a component G, such that

C,uCyc B(G,), CinB@G)=0,
BG)=cC,uC,uCyuM, UuM,,
and a component G, such that
C3 v C; = B(Gy), C:n B(Gy) = 0,
BlG,) = C,uC,uC;uM UM,.
The components G,, G,, G; are distinct, since their boundaries are distinct.
VI. It remains to prove that G — (C, u C, U C;) has at most three components.
We have (see II and 1V)
G‘—(CIUCZUC3)——G3U(GI3_ C3).

Thus, it suffices to prove that G; — C; has at most two components. In fact, every
component of G3 — C; is a connected subset of G — (C; U C, U C;) and hence
(see 18.2.5) it is a subset of a component of G — (C, u C, U Cy).



248 VII. Topology of the plane

VII. C, v C, u M, U M, is a continuum (see 17.2.2 and 18.1.4). As G, < P —
- (C,uC,uM,uM,),B(G;) c C,uC,uM, uM,,Gyis, by 22.1.9,a compo-
nent of P — (C, u C, u M, U M,). On the other hand, C, is a simple arc, the end
points of which, ay and b;, belong to C, v C, u M, U M,, and we have C;—
— [(as) U (b3)] = G5. Thus, G; — C, has exactly two components by 27.2.6.

27.2.9. Let P be a spherical space. Let C = P be a simple loop. Letae C,be C,a + b,
so that (see 21.1.2) there exist simple arcs C, = P, C, = P with end points a, b such
that

C,u(C,=C, CinC, =(avu ).

Let Cy < P be a simple arc with end points a, b. Let C n C; = (a) v (b). There exists
a component Q of P — C such that

CG-l@u®l<=9.
Q — C, has exactly two components G, G, and we have
B(G,) = C, v C5, B(G,) = C, v C;.

Proof: 1. Obviously P — [(a) v (b)] # 0. If P — [(a) U (b)] were not connected,
then it would contain (see 18.3.1) points ¢, d such that (a) U (b) would separate ¢
from d. On the other hand, by property (f), neither (a) nor (b) separates ¢ from d,
so that, by property (y), (a) v (b) does not separate ¢ from d. Thus, P — [(a) U ()]
is connected.

1I. Put M, = (a), My =(b), a, =a, =as =a, b, = b, = b; = b. Then the
assumptions of theorem 27.2.8 are satisfied. By I, the set G from the quoted theorem
is equal to P — [(a) v (b)]. Thus, P — (C, u C, U Cj,) has exactly three components
G,, G,, G, and we have

B(G|) = Cz ) C3, B(Gz) = C3 v Cl’ B(Gg) = CI o CZ =C.

We have
P—(CUC3,=GIUGZUG3

with disjoint summands. G, is, by 22.1.9, a component of P — C. This last set has,
by 27.2.7, one more component Q and we have

P—C=QuUG,
with disjoint summands. Thus,
P—-(CuGy)=(Q—Cy) UG,
with disjoint summands, so that

Q-G =G, uG,
with disjoint summands.
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It remains to prove that G, and G, are components of Q — C5. Let this state-
ment be not true, e.g., concerning G,. Then there exists a connected subset G; of
Q — C, such that G, = G * G,. Then, G| is a connected subset of P — (C; U
v C, U C,) and we have G, = G| # G,. This is a contradiction, since G, is a
component of P — (C, u C; U Cj).

27.2.10. Let P be a spherical space. Let K < P be a locally connected continuum. Let G
be a component of P — K. Put H = B(G). Then H is a locally connected continuum
and we have H < K.

Proof: 1. By 22.1.9 we have H < K.

II. By 25.1.1 and 27.2.1, either H is a continuum, or H = (c) is a one-point set.
Let H = (¢). By 22.1.9, G is a component of P — H = P — (c). P — (c) is connected
[see property (f)]. Thus, G = P — (c), so that K < (c), which is a contradiction.
Thus, H is a continuum.

ITI. Tt remains to be proved that the continuum A is locally connected. Assume
the contrary. By 22.2.5 (see also 22.2.2) there exist distinct points ae H, be H
and a disjoint sequence of continua {H,}T such that H, < H, lim g(a, H,) =
= limo(b, H,) = 0.

1V. Choose an ¢ > 0 such that g(a, b) > 6¢. By 23.1.2 there is an « > 0 such that,
whenever xe K, ye K, g(x,y) < a, there is a connected S = K such that xe S,
yeS, d(S) < e Evidently o < e.

As lim g(a, H,) = lim g(b, H,) = 0, there is an index p such that for every n > p
there are points a, € H,, b, € H, with ¢(a, a,) < «a, ¢(b, b,) < a.
Since H,,,, H,,,, H,,, are disjoint continua, there exists (see 17.3.4) an n > 0
such that n < e, 2n < @(Hpyy, Hpi2), 20 < @(H 4y Hpys), 20 < o(H i3, Hpy3).
By 23.1.2 there is a § > 0 such that, whenever xe K, y € K, o(x, y) < B, there is
a connected S < K such that xe S, ye S, d(S) < n. We may assume that 2 < n.

V. Let n > p. Since H = K, we have ae K, a,e K. Moreover, ¢(a, a,) < «a,
so that there is a connected S, = K such that a€ S,, a,€S,, d(S,) < ¢. Put

My =S8,419S,42V 843,

M, is a continuum (see 17.2.2, 18.1.5 and 18.1.6). We have M, c K, d(M,) < 2e,
aeM,,a,,,eM,,a,,,e M, a,,;6M,.

Similarly we may prove that there exists a continuum M, < K such that d(M,) <
S2,beM,, b, €My, b, €M, b,,;€M,.

We have M, n M, = (J; we have even

QAM,, &) 0 QAM;, ) = 0.

In fact, let there exist a point x with go(x, M,) < ¢, o(x, M,) < &. Then there are
x, € M,, x,€ M, such that o(x, x;) < &, o(x, x,) < ¢. Since ae M,, d(M,) £ 2,
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we have g(a, x;) < 2e. Similarly ¢(b, x,) < 2¢. Thus, g(a, b) < o(a, x,) + o(x,, X) +
+ o(x, x;) + o(x,,b) < 2e + € + € + 2¢,i.e. o(a, b) < 6¢, which is a contradiction.

VI. H,,, is a connected subset of K Q(H,.,,B). Hence (see 18.2.5) there
exists a component Q of Kn Q(H,,,, B) such that H,,,< Q. Since K is a locally
connected space and since K n Q(H,,,, p) is open in K, Q is open in K by 22.1.4.
Thus, Q is locally connected by 22.1.3. As Q is open in the compact space K, Q is,
by 15.5.2 and 17.2.1, a topologically complete space. Moreover, Q is, of course,
connected. We have a,,, € Hypy = Q, b,,,€0, a,+1 + b,;;. Thus, by 22.3.1,
there exists a simple arc T < Q with end points a,.,,b,,,. We have a,,, € M,,
bp,y1€ M, =« P — M,. Thus, by 20.2.7 (see also 20.1.8), there exists a simple arc
E < D with end points u,,b,,, such that En M; = (4;). We have u, e M;
<P - M,, b,,, € M,. Thus, by 20.2.7, there is a simple arc C, = E with end
points u,, v, such that C; n M, = (v,).

We have proved that there exists a simple arc C, with end points u,, v,
such that

"Ci e KnQHy 1, , CLoMy = (), ConM, =(v)).

Similarly we may prove the existence of a simple arc C, with end points u,, v,
such that
C,cKnQH,2,p), C;AM; =), C;nM, = (vp)

and the existence of a simple arc C, with end points u;, v, such that

C3 = KN QH, 45, f), C3n My = (u3), C3n M, = (v;).
We have
Cthz=C1(\C3=Czr'\C3=U.

In fact, if there were, e.g., a point xe C; n C,, we would have o(x, H,,,) < 8,
o(x, H,,,) < p and consequently ¢(H,+, H,,,) < 2B. This is a contradiction,
since @(H 41, Hpv2) > 1 = 28.

VII. If there were C; = Q(M,, &) v Q(M,, €), we would have
C, =[C,nQM,, &) UIC, N QAM,,e).

The sets on the right hand side are open in C, and, by V, disjoint; thus, they
are separated. Moreover, they are non-void, since u; e C; n My, v, € C; " M,.
This is impossible, as C, is a connected set.

Thus, there is a point x, € C; such that o(x,, M,) = ¢, o(x;, M;) = &. As
Cy < Q(H,,, B), there is a point y, € H,,, such that g(x,, y;) < . On the other
hand, x, e C; = K, y, € H,,, < K. Thus (see IV), there exists a connected S, = K
such that x, € §,, y, € S,, d(S)) < 1.

We have x, € S, d(S,) <n, e(x;, M,) = ¢ > n. Thus, S; n M; = (). Similarly
we may prove that S§; n M, = 0.
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We have S; n C, = (). Let there be, on the contrary, a point ze S, n C,. As
C, = QH, 47, P), there is a point te H,,,, o(z,1) < B. As d(S,) < n, we have
o(y1,2) <n. Thus, o(yy, 1) < o(yy,2) + e(z, 1) <n + B < 2. This is a contra-
diction since y; € H,yy, teH,yp, o(H,iy, Hyi2) > 2y Similarly we may
prove that S; n C; = 0.

Thus, we have proved that there exist points x; € C;, y, € H »+1 and a connected
set S, such that

xlESI, yIGSI, SICP""(02UC3UM]UM2).

Similarly we may prove that there exist points x, € C;, y, € H,,, , and a connected
set S, such that

X;€8;, y2€8;, S;cP—-(C,uC3UuM nM,),

further, that there exist points x;e€C;, y;€H,,; and a connected set S,
such that
x3€83, y3€8;, S3cP—-(C,uC,uM UM,).

VIII. The set G is a component of P — K. Since M, U M, < K, there exists
(see 18.2.5) a component I" of P — (M, U M,) such that G = TI'.

We have y, e H,,; « H < B(G) < G, so that G U (,) is connected by 18.1.7.
Since y, € S, and since S| is also connected, [G U (y))] U S, = G U S, is connected
by 18.14. Since G P — (M, UM,), S, <P - (M, uUM,), GuUS, is a subset
of a component of P — (M, U M,). Since (§ &= G I, we have Gu S, = I.

Thus, we proved that S; < I'. Similarly we may prove that S, = I', S, < I.

IX. M, and M, are disjoint continua. For i = 1,2, 3, C; is a simple arc with
end points u;e M,, v;e M,. Moreover, CinM;u M,) = (), where Cf =
= C; — [(»;) v (v)] and, further, C; " C, = C; n C3 = C3n C, = (J. Thus, by
27.2.8, C¥ U C3 U Cj is a subset of a component of P — (M, U M,). On the other
hand, x, € S; n C,, S, € P — (M, U M,) and hence x, € C}. As S; = I', we have

CiuCiuCicr.

By 27.28, I' — (C; u C, U C,) has exactly three components G,, G,, G, and
we have
C,uC,cBG), C;uC, cBG,), CyuC, cB(G,),
Ci nB(G,) = C; n B(G,) = Cy n B(G;) = 0,
B(Gl) V) B(Gz) v B(G3) c Cl v Cz |V Ml v M2 .

X. G is connected. We have C; u C, u Cy = K, G n K = (). Moreover, G <= T.
Thus, G is contained in a component of I' — (C, u C, U C,), i.e. we have either
G c G, or G = G, or G = @,. If suffices to finish the proof under the assumption
of G <= G,.
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We have
B(Gl) c Cz \ C3UM1UM2 CK.

We have G K =0, S, n(C, u Cyu M, U M,) = (. Hence,
(Gu S))n BG,) =90.

On the other hand, G U S, is connected (see VIII) and we have
O+Gc(GuS)nG,.

Thus (18.1.8), Gu S; = G,. This is a contradiction, since x, € C; n S;, G; N
NnCy =0

27.2.11. Let P be a spherical space. Let ac P, be P, a + b. Let M — P be a closed
locally connected set. Let M separate the point a from the point b in P. Then there
exists a siniple loop C = M separating a from b in P.

Proof: 1. By 22.1.12, 25.1.2 and 27.2.1 [see also property («)], there exists
a component K of M separating a from b. K is not a one-point set [see property (f)].
Thus (see 17.2.2, 18.2.2 and 22.1.6), K is a locally connected continuum.

II. Let G be the component of P — K containing a. Put H = B(G). By 27.2.10,
H < K and H is a locally connected continuum. Denote by I' the component of
P — H containing b. By 27.2.10, C €« H < Kand Cis a locally connected continuum.
By 22.1.11, C is an irreducible cut of P between the points a, 4. It remains to be
shown that C is a simple loop.

I1I. Choose ue C, ve C, u + ¢v. By 21.4, it suffices to show that C — [(u) U (v)]
is not connected. Let us assume the contrary. Since u, v are distinct points of
a locally connected set C, there is a connected neighborhood U of u in C and
a connected neighborhood ¥ of v in C such that U AV = (). The sets U, V are
continua (see 17.2.2 and 18.1.6). There is an ¢ > 0 such that

xeC, o(x,u) < 2e=>xeU,
xeC, o(x,v) <2e=>x€eV.

Denote by S the set of all xe S with g(x,u) = ¢, o(x,v) = & Then S < C —
— [(@) U ()] and S is closed in C. C — [(#) U (v)] is connected and open in C.
C is a locally connected continuum. Thus, by 23.2.5 there exists a continuum 7
such that S = T < C.

IV. As B(I') = C, B(G) = C, the sets I U (z), G U (u) are connected (see 18.1.7),
so that (see 18.1.4), I' U G U (u) is also connected. On the other hand, I' U G U ()
contains both a and b and we have UG U W)] N (T UV)=@. Thus, TUV
does not separate a from b in P. Similarly we may prove that Tu U does not
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separate a from b. Since (7' U U) A (T u V) is a continuum, we obtain by property (y)
that T U v ¥ does not separate a from b. This is a contradiction, since evidently
ToUuUV=C.

27.2.12. Let P be a spherical spacz. Let ae P, be P, a + b. Let ¢ > 0. Then there
exists a simple loop C = Q(a, €) separating a from b in P.

Proof: Property (@) yields, by 23.2.4, that P = |J P, where P, are locally connected
i=1

continua, 2d(P;,) < &, 3d(P;) < g(a,b). If 1 Si<m, let: [1] ieAd, if aeP,,
[2] i€ A, if on the one hand i dozs not belong to A, and on the other hand
there is an index j (1 £j<m) such that je 4,, P, P; 4, [3] i€ 4, if neither
ieA; norie A,. For k = 1, 2,3 denote by Q, the union of all the P; (1 £ i £ m)
with i€ A4,. Evidently, Q,, O,, O, are closed and locally connected (see 23.1.11)
and we have 0, V0,V 0;=P, aeQy - 0Q,, beQ0;—0,;, 01N Q; =10,
0,V Q, c Qa, e). Thus, Q, separates a from b and, by 27.2.6, there exists
a simple loop C = Q, separating a from b.

27.3. Let P be a spherical space. The word “map” (more precisely, map of the space P)
will signify a system 9 of a finite number (greater than or equal to 2) of simple
arcs, satisfying certain assumptions stated below. The simple arcs Se Wt are said
to be the edges of the map M. The union of all the edges of a map I will be
denoted by | M|. Every end point of an edge of a map is termed a rvertex of the
map. The components of P — | M | are said to be the faces of the map M. We assume
that: [1] if a € P belongs to two distinct edges of the map M, then a is an end point
of every edge in which it is contained; [2] if G is a face of MM, then B(G) is a simple
loop and B(G) is a union of some edges of M.

Let 9 be a map, let S be its edge, let a € S not be a vertex of M. Then (see 20.1.9)
S=S;,uUS,, where S;, S, are simple loops with §; n' S, = (a). Denote by IR,
the system of simple arcs obtained from I omitting S and adding S,, S,. We
see easily that M, is a map. We say that I, is an elementary refinement of the first
kind of the map M.

Let 9 be a map, let a, b be two of its vertices, let G be its face, let a € B(G),
b e B(G) and let S be a simple arc with the end points a, b such that S — [(a@) U
U (b)] = G. Denote by M, the system of all the simple arcs obtained from IN
adding S. We see easily (see 22.1.9 and 27.2.9), that M, is a map. We say that I,
is an elementary refinement of the second kind of the map IN.

Let X', M” be maps. We say that M" is a refinement of the map M" if either
WM’ = IM" or there is a finite sequence {M,;}g of maps such that: [1] M, = M,
M, =M, [2] if | i< m, then M, is an elementary refinement of the first or
second kind of M,_,.

If M” is a refinement of M’ and M a refinement of M”, then evidently M'”
is a refinement of W',
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27.3.1. Let M be a map of a spherical space P. Let G be its face. Let S be a simple
arc with end points a € B(G), b e B(G). Let S — [(a) v (b)] = G. Then there exists
a refinement M’ of M such that S is an edge of M’ and | M' | = | M| U S.

Proof: There are evidently maps M,, M, such that: [1] either M, = M or M,
is an elementary refinement of the first kind of M, [2] either M, = M, or M,
is an elementary refinement of the first kind of 9, [3] the points a, b are
vertices of IMM,. Evidently there exists a map M’ such that SeIM’ and M’ is an
elementary refinement of the second kind of 9,. Evidently M’ has the required
properties.

27.3.2. Let M be a map of a spherical space P. Let G be its face. Let C be a simple

loop. Let C < G; let C — G contain at most one point. There exists a refinement M’
of M such that C = | M’ |.

Proof: 1. Let C — G = (a) and hence a € B(G). Choose points b, €C, b,eP -G
such that b, % a + b,. By properties («), (8) and by 22.3.1 (see also 15.5.2, 17.2.1
and 22.1.3) there exists a simple loop B = P — (a) with end points b,, b,. We have
b,e BN G, bye B — G, so that, by 18.1.8, B n B(G) + (J. We see easily by 20.2.7
that there exist points a, € C, a, € B(G) and a simple arc 4 = B with end points
ay, a, such that AnC = (a;), A — (@) = G. As 4 = B, we have a, + a * a,.
As C is a simple loop, there exist (see 21.1.2) simple loops C,, C, with end points
a, a; such that C = C, v C,, C; n C, = (a) v (ay).

Evidently 4 U C, is a simple loop with end points ae€ B(G), a, € B(G), and
Au C; — [(@) v (a;)] = G. Thus (see 27.3.1), there exists a refinement M, of M
such that |M, | =|M|u AU C,. The set C, — [(a) L (a,)] is a connected (see
20.1.5) subset of P — |M, | so that there exists a face I' of M, with C, —
— ((@) v (a,)) = I'. Obviously ae B(I'), a, € B(I'), so that (see 27.3.1) there exists
a refinement M’ of M, such that |M'| =|M,|uv C,, and hence C < |WM’'|.

II. Let C = G. Choose points r, € C, r,e P — G. There exists (see 22.3.1)
a simple arc R P with end points r;, r,. By 18.1.8, R n B(G) =+ (J. We see easily
by 20.2.7 that there exists a simple arc 4 = R with end points a, € C, a, € B(G)
such that A n C = (q;), A — (a;) = G. P — A is open and connected (see 27.2.3).
Hence, P — A is a connected, locally connected and topologically complete space,
so that (see 22.3.1) there exists a simple arc S « P — 4 with end points s, € C,
5, € P — G. We have S n B(G) #+ ¢, so that there is a simple arc B = S with end
points b, € C, b, € B(G) such that BN C = (b;), B — (b,) = G. As Bc S, we
have a; # b,. Thus, there are simple arcs C;, C, with C, UC, = C, C; n C; =
= (a;) v (by)-

Evidently A U C; U B is a simple arc with end points a, € B(G), b, € B(G) and

AVC,UB—-((a)u () =G.
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Thus (see 27.3.1), there exists a refinement M, of M such that | M, | = | M| U
UAUC,UB. C, —[(a;) U (b))] is a connected subset of P — |M, |, so that
there exists a face I' of M, such that C, — [(a;) v (b;)] = I'. Evidently a, € B(I').
b, € B(I'), so that (see 27.3.1) there exists a refinement M’ of M, such that | M'| =
=|M,|u C, and hence C < | M’|.

27.3.3. Let M be a map of a spherical space P. Let ac P, be P, a+b. Let Cc P
be a simple loop. Let C separate a from b in P. Let € > 0. There exists a refinement M’
of M and a simple loop C, such that: [1] Cy = | M|, [2] o(x, C) < ¢ for x € Cy,
[3] C, separates a from b.

Proof: 1. If C = [M], we may put M' =M, C, = C. If C~|M| contains at
most one point then C — | M| is connected, so that there exists a face G of M
such that C — | M| < G. By 27.3.2 there exists a refinement M’ of I such that
C < | 9’| and we may again put C, = C.

Thus, let C — [IM| = ¢ and let C | NV | contain at least two distinct points.

m

I1. By 20.1.12 we may put | M| = U S;, where S; are simple loops of less than
i=1

min [e, o(a, C), o(b, C)]

in diameter. Denote by A the union of all S; (1 £i < m) with Cn S; + @. We
have A + 0, aeP — A, be P — A and A is compact and locally connected. We
have C — |M| = C - A4.

ITI. Let us assume that there exists a component T of C — A4 such that Tu 4 =
T U A (see 8.7.1 and 18.2.2) separates @ from b in P. T is a connected subset
of P — | M|, so that there exists a face G of M such that T < G. T is (see 21.1.6)
a simple arc, the end points of which, ¢,, t,, belong to B(G) and T — [(t,) v (£,)] =
= T < G. Thus (see 27.3.1) there exists a refinement M’ of M such that | M’ | =
=|M|UT =|M|UT. Since 4 is compact and locally connected, this holds
also for T U A. Thus (see 27.2.11), there exists a simple loop Co =« TuU 4 <
< C U A4 separating a from b. Evidently C, has the required properties.

IV. It remains to prove the statement under the assumption that for no
component Tof C — A, TU A = Tud separates a from & in P.

Since C separates a from b in P, evidently C — A separates a from b in P — A.
On the other hand, P — 4 is locally connected (see 22.1.3), so that, by 22.1.12,
there is an irreducible cut R = C — 4 of P — A between a and b.

Evidently RU A = R U A (see 18.5.4) separates a from b in P.

V. Let T be a component of C — 4 with T n R = (J. Let us prove that the two
end points of the simple arc T (see 21.1.6) belong to distinct components of A.
Let, on the contrary, there be a component 4, of 4 such that T — T < 4,.
Put 4, = A — 4y, Ry = R — T. Since R is an irreducible cut of P — A between
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the points a, b, R, does not separate a from b in P — 4,*) so that R, U 4 does
not separate a from b in P.

Since Tu 4 = T U A does not separate a from b in P, T U A, does not separate
a from b in P either. R,ud =R, UAd and Tu A, =T U 4, are closed and
(RyuA)Nn(Tu Ay) = A, is connected. Thus, by property (), (R, v A v
U (T U 4y) > RU A4 does not separate a from b in P, which is a contradiction.

VI. A4 is compact and locally compact and hence (see 23.1.4) it has a finite number
of components and there is (see 17.3.4) a § > 0 such that the distances of distinct
components of A are greater than 4.

Denote by &S the system of all components T of C — A4 with Tn R # (J. For
every Te G, T is (see V) a simple arc, the end points of which belong to distinct
components of A4, so that T is more than & in diameter. On the other hand, T are
simple arcs contained in the simple loop C, and two distinct ones of them have at
most their end points in common. Thus (see 21.1.7), & is finite. Let T; (1 £ j < n)
be all the elements of the system S. By 27.3.1 there exist maps M, = M, M,, ..., M,
such that M; (1 £j < n) is a refinement of the map M;_, and that |M;| =
=M, |OT; =[M_|UT;. Put M = IM,, so that M’ is a refinement of M

and | M| = M| U UT;.
j=1

j=

Since RuA < AV T;, AT, separatesafrom bin P. Thus (see 27.2.11),
ji=1

1
there exists a simple loop Co = 4 U {J T; separating a from b in P. Obviously C,
i=1

has the required properties.

27.3.4. Let M be a map of a spherical space P. Let ¢ > 0. There exists a refinement
M’ of M such that every face of M' is less than or equal to ¢ in diameter.

Proof: 1. Px P is compact (see ex. 17.2). Let Q be the set of all (x,y)e PxP
with o(x, y) = ¢. Q is closed in Px P and hence it is compact.

1I. For every couple (x,y)e Q we may, by 27.2.12, choose a simple loop
C(x, y) = Pseparating x from y in P. Then we may choose a connected neighborhood
U(x, y) of x in P and a connected neighborhood ¥(x, y) of y in P such that

Ux,y) n C(x,p) = V(x, ) n C(x,y) = 0.

HL If (x, y) € Q, then Q N [U(x, y)x V(x, y)] is (see ex. 8.13) a neighborhood
of (x, ) in Q. Thus (see 17.5.4), we may find a finite sequence {(x;, y;)}7 such that
(x;,¥ydeQ for1 £i< mand that

Qc 1U (U(xiy i) x V(x, y) -
=1

*) As TN R # 0, it cannot be R, = R.
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1V. There exists a 6 > 0 such that
Q[U(xbyi)’ C(xiayi)] > 6 ’ Q[V(xbyi)v C(xi»yi)] > 6

for 1 £ i £ m. Applying theorem 27.3.3 m times, we obtain a refinement M’ of M
and simple loops C; = P (1 £i<m) such that: [I] C;<=|M'| (1 2iZ m,
[2] zeCy= o[z, C(x;, ¥)] <6 (1 £i < m), [3] C; separates x; from y, in P
(1 =2im).

V. Let G be a face of the map M’. We have to prove that G is less than or equal
to ¢ in diameter. Let there exist, on the contrary, points xe€ G, ye G with
g(x,y) > ¢. Then (x,y)e Q, so that there is an index i (1 £ i < m) such that
(x,y) e U(x;, y) x V(x;, ). The distances of U(x;, y,), V(x;, y;) from C(x;, y;) are
greater than 6 and the distancee of every point z € C; from C(x;, y;) is less than 4.
Thus, U(x;, y;), V(x;, y;) are connected subsets of F — C;. On the other hand,
x;e Ulx;, y), xe U(xy, ), yie V(x;, y), ye V(x;, ;) and C; separates x; from
y; in P. Hence, C; separates x from y in P. As C; < ||, | M'| separates x
from y in P. This is a contradiction, since x € G, y € G and G is a connected subset
of P — | M.

27.3.5. Let M be a map of a spherical space P. Then M has a finite number of faces
and P is the union of the closures of these faces.

Proof: The boundary of every face of the map M is a union of some edges of .
Hence, there is only a finite number of sets H which are a boundaries of faces
of M. If B(G) = H, then G is (see 22.1.9) a component of P — H. H is a simple
loop. Thus (see 27.2.7), each H is a boundary of at most two faces. Thus, It has
only a finite number of faces. Consequently (see section 8.1), the union of the

closures of all the faces of M is equal to P — |M|. The set | M| is closed and,

by 12.2.4 and 27.2.4, nowhere dense, so that P — | M| = P.

27.3.6. Let P be a spherical space. Let C = P be a simple loop. Let K be a component
of P— C. Let ae C, be C, a % b. Then there is a simple arc S with end points a, b
such that S — [(@) v (b)] = K.

Proof: 1. K is open (see 22.1.4), so that M = K u (a) u (b) is G4(P). Thus (see
15.5.2 and 17.2.1), M is a topologically complete space. The points a, b belong
to K by 27.2.7, so that M is connected by 18.1.7. By 22.3.1 it suffices to prove
that M is locally connected. At every xe K, K is locally connected and, hence,
also M is locally connected at every x € K (see 22.1.2). It remains to prove that M
is locally connected also at the points a, b. Certainly is suffices to prove this for the
point a.

II. Choose an ¢ > 0. We have to prove that there exists a § > 0 and a connected
S < (@u Ksuchthatae S, Kn Q(a,e) = S < Qa, ¢).
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By 27.2.7 there exists a map MM of P with |M | = C. By 27.3.4 there exists
a refinement M’ of M such that every face of M’ is less than ¢ in diameter. The
map M’ has (see 27.3.5) a finite number of faces; denote them by G; (1 < i £ m).

By 2735, P = |J G,.
i=1

If1Si<mlet: [11icAd, if Gic K, aeG,, [2] i€ A, if ae P — G;. There
is a 6 > O such that ie 4,, xe G; imply ¢(a, x) > 5.
If ie A,, we have aeG;, G, < Kn G;, so that (@) U (K G)) is a connected

set (see 18.1.7). Hence (see 18.1.5), also (@) u U (KU G;) = S is connected.
ieAy

Evidently Sc (@)U K, a€ S, S = Q(a, ¢).
We have to prove that K n Q(a, §) = S. Hence, let xe K, ¢(a, x) < 3. As P =
m
= U G, there is an index i (1 £ i £ m) with xe G,. As g(a, x) < 8, i does not
i=1
belong to.A,, so that ae G;. As xe Kn G, and as K, G, are open, we have K n
N G; + 0 by 10.2.6. On the other hand, G; is connected and we have G; = P —
—|M|, BK)=C=|M| < |M|. Thus, G;n BK) =00 £ Kn G;, so that,
by 18.1.8, G, < K. As aeG;, we have ic A,. As ie A,, xe Kn G;, we have
xeSs.

Let P, Q be spherical spaces. Let M be a map of P. Let 9t be a map of Q. We say
that the maps P, Q are isological (and we speak, more precisely, about an isology
(f; g, h) between Pt and N), if: [1] there exists a one-to-one mapping f of the system
of all vertices of M onto the system of all vertices of N, [2] there exists a one-to-one
mapping g of the system of all edges of M onto the system of all edges of N,
[3] there exists a one-to-one mapping 4 of the system of all faces of M onto the
system of all faces of N, [4] if @, b are the end points of an edge S of M, then f(a),
J(b) are the end points of the edge g(S) of R, [5]if G is a face of a map M and if

B(G) = U S;, where S; are edges of M, then B(h(G)) = U g(S).

i=1 i=

If M’ is a refinement of M, if N’ is a refinement of N, and if (f',g’, A') is an
isology between M’ and N', we say that (f’, g’, &') is an extension of the isology
(f, & h), if [1] for every vertex a of M, f'(a) = f(a); [2] if S is an edge of M, if S*
is an edge of MM’ and if S’ = S, then g'(S’) = g(S); [3] if G is a face of M, if G’ is
a face of M’ and if G’ = G, then A'(G’) = A(G).

If M” is a refinement of M’, if N” is a refinement of N’, and if an isology (f”,
g’ h") between the map M” and the map N” is an extension of an isology (', &', #')
between the map 9’ and the map RN’, which itself is an extension of an isology
(f, g h) then evidently (f”, g”, #”) is an extension of the isology (f; g, /).

27.3.7. Let P, Q be spherical spaces. Let M be a map of P. Let N be a map of Q.
Let (f, & h) be an isology between M and N. Let M’ be a refinement of M. Then there
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exists a refinement N’ of N and an isology (f',g', h') between M’ and N' such that
(f', g', k) is an extension of the isology (f, g, h).

Proof may be done, of course, under the assumption that 9’ is an elementary
refinement of the first or of the second kind of M. (Then, N’ will be the same
refinement of N.) This is quite evident for elementary refinements of the first kind
and may be easily proved for elementary refinements of the second kind considering
theorems 27.2.9 and 27.3.6. A

Now, we are able to prove theorem 27.1.2.

Proof: 1. Choose (see 27.2.12) a simple loop C = P and a simple loop D < Q.
It is easy to construct (see 27.2.7) a map M, of P and a map N, of O such that
[ My = C, |My| = D and such that there exists an isology (fo, 8o, fo) between
M, and N,.

II. We shall construct recursively a sequence {I,}5 of maps of P and a sequence
{N,}5 of maps of Q such that M, and N, are the maps just constructed and such
that: [1] for n =1,2,3,..., M, is a refinement of M,_, and N, is a refinement
of M,_,, [2] for n=0,1,2,... there exists an isology (f,,&n,h,) between 9,
and R, (already constructed for n = 0), [3] for n = 1,2,3,..., (f,, 8, h,) is an
extension of the isology (f,—1>8&s—1,/n-1), [4] for n =1,2,3,..., every face of
the map M, and every face of the map N, is less than n~' in diameter.

IlI. Let us assume to be determined, for some n = 1,2,3,..., the map M, _,
of P, the map M,_, of Q and an isology (f,—1,&n—1>Ha—1) between I, _, and
N,_,. We have to determine the maps M, , N, and the isologies (f,,8,, #,). By 27.3.4,
there exists a refinement M’ of M,_, such that every face of M’ is less than n~'
in diameter. By 27.3.7 we may determine a refinement R of M, _; such that there
exists an isology (f’,g’, h’) between M’ and N’, which is a refinement of (f,_,,
€n—1, lta—1). By 27.3.4 there exists a refinement N, of N’ such that every face of N,
is less than n~! in diameter. By 27.3.7 there exists a refinement 9%, of M’ such that
there exists an isology (f,, &, 1,) between M, and N,, which is an extension of
the isology (f*, &', ). The maps M, , N, and the isology (f,, &, h,) evidently satisly
the assumptions pronounced in II.

1V. Let x e P. By 27.3.5, for every n (= 0, 1, 2, ...) there exists at least one face
of M, such that its closure contains the point x. Let G (1 < i < k,) be all such
faces of M,,. Put

kn kn

4,0 =UG", B = U hG").
i=1

i=1

If 1 £j < kuiq, then GP*Y is a connected subset of P — | M, | = P — | M, ],

so that there is a face G of M, such that GI'*) < G. As xe Gy Y, we have
x € G. Hence, there exists an index i such that ! £i < k,, G = G". Thus, for
every j (1 £j < k,4,) there is an i (1 < i < k,) such that G¢*" < G{™. Since
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the isology (fn41>8n+15Pa+1) IS an extension of (f,,g,,h,), we also have
By ((GTHD) < B (G™). Thus, A,4,(xX) © A(x), B,+,(x) < B,(x). Evidently B,(x) +

+ 0, By() = B,(x). Thus, by 17.5.1, () B(x) + .
n=1

If1 i<k, wehavexe G(_") Since (f,, g,, h,) is an isology between the map I,
and the the map 9N,, we may prove easily that there exists a point y, € Q such that

y, € h(G™) for 1 < i < k,. The sets h(G") are less than n~! in diameter. Thus,

B,(x) are less than 2. n~ ! in dlameter Thus, n B,(x) is a one-point set, i.e. there
n=1

isa.point y € @ with (y) = ﬂ B,(x). Put y = ¢(x).

V. Thus, we have defined a mapping ¢ of P into Q. In the same way we define
a mapping Y of Q into P. It is easy to prove that, for xe P, ye Q,

¥y = ¢(x) ifandonlyif x = y(»).

Thus, ¢ is a one-to-one mapping of P onto Q and we have Y = ¢_,.

VI. Choose a point a € P and a number ¢ > 0. There is anindex n with4 . n~! < ¢.
By 27.3.5 there is a 6 > 0 such that g(a, G) < & for every face G of M, such that
aeP — G.If xeP, o(a, x) < 8, by 27.3.5 there is a face G of M, such that xeG.
Since o(a, x) < 8, we obtain a e G by the choice of 8.

Thus, G < A4,(a) N 4,(x) (see IV), so that 4,(G) = B,(a) N B,(x). Thus, B,(a) N
N B,(x) #+ 0. In IV, we took notice of the fact that the sets B,(x) are less than
2.n7! in diameter. Evidently ¢(a) € B,(a), ¢(x) € B,(x), so that g(¢(x), p(a)) <
< 4.n"! < ¢ Thus (for a given a € P), for every ¢ > 0 there is a § > 0 such that
xeP, g(a, x) < 6 imply g(¢(a), (x)) < &. Thus, ¢ is continuous. By the same
argument (or, by 17.4.6), ¥ is also continuous, i.e., ¢ is homeomorphic.

27.4. 27.4.1. Let P be a locally connected unicoherent space. Let G = P be an open
connected set. Let n =0,1,2,.... P — G has exactly n components if and only if
B(G) has exactly n components.

Remark: By 22.1.14 and 25.2.4, or by 27.1.1 and 27.2.1 we may put, in theorem
274.1, P =S,.

Proof: 1. Obviously it suffices to prove that the number of components of P — G
is less than or equal to n, if and only if the number of components of B(G) is less
than or equal to n.

II. Let the number of components of B(G) be less than or equal to n. We have
to prove that the number of components of P — @G is less than or equal to n. Let
us assume the contrary. Then there exist mutually distinct components A,
(0 £ i £ n)of P — G. Since P isunicoherent, it is connected. Evidently ¢ + 4, + P.
Thus (see 18.1.8), B(4;) +@. As P is locally connected, we have (see 22.1.9)
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B(A;) c B(P — G) = B(G). The sets A; are closed (see 18.2.2 and 8.7.4), so that
B(A;) = A;. Hence, there is a point a;€ A; n B(G) (0 < i < n). Since there are
less than or equal to n components, we have n > 0 and there is a component K
of B(G) and indices j, k (0 £ j < k £ n) such that g; € K, a, € K. Since G is open,
we have B(G) < P — G. Thus, a;, a, belong to a connected subset K of P — G so
that they belong to the same component of P — G. This is a contradiction.

III. Let the number of components of P — G be less than or equal to n. We have
to prove that the number of components of B(G) is less than or equal to »n. Let us
assume the contrary.

First, if n = 0, we have P — G = ¢, hence G = P, hence B(G) = () and hence
the number of components of B(G) is zero. Thus, let n = 1.

By 18.3 and 18.3.11 there are mutually distinct quasicomponents 4; (0 < i = n)
of B(G). Choose an a;e A; (0 £ i < n). As G is open, we have B(G) =« P — G.
Since the number of comronents of P — G is less than or equal to », there exists
a component K of P — G and indices j, k (0 £j < k £ n) with g;eK, a, e K.

Since a;, a, belong to distinct quasicomponents of B(G) = G — G, the set
P — B(G) = G u (P — G) separates a; from a, in P. By 22.1.12 there exists an
irreducible cut C =« G U (P — G) of P between the points a;, a;. C is connected
by 25.1.2. As C = G u (P — G), we have, by 18.1.2 (see also 10.2.2), either C < G
orCcP-G.

If C = G then G separates a; from a, in P. This is a contradiction, since a; € K,
a, € Kand K is a connected subset of P — G. If C = P — G, then P — G separates a;
from a, in P. This is a contradiction, since a;€ G, a,€G and G is connected
(see 18.1.6).

27.4.2. Let P be a compact, locally connected and unicoherent space. Let G < P,
I' © P be connected open sets. Let there exist a homeomorphic mapping f of G
onto I'. Let n =0,1,2,.... B(I') has exactly n components if and only if B(G) has
exactly n components.

Remark: By 17.10.2, 22.1.14 ane 25.2.4 we may put, in theorem 27.4.2, P = S,.

Proof: 1. Evidently it suffices to prove that if the number of components of B(G)
is greater than n, then the number of components of B(I') is also greater than n.

II. Let B(G) have more than n components. Then (see ex. 10.3 and 18.11) we
may put B(G) = |J 4, where 4; #+ (J and the sets 4, are disjoint and closed in B(G)
i=0

and hence (see 10.3.1) closed in P. 4; are compact (see 17.2.2), so that (see 17.3.4)
there is an ¢ > 0 such that 0 £ j < k < n implies o(4;, A;) > 2¢. (For n =0
choose the ¢ > 0 arbitrarily.)

III. For 0 £i<n put U; = QA4;,¢). Evidently U; are disjoint and open
(see 8.6). Moreover, BG) =G — G< Y U; .
i=0
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n n
Put C=G - |J U,, so that C = G. Obviously C =G — | U,, so that C
i=0 i=0

is closed. Thus (see 17.2.2), C is compact, so that f(C) = I' is also compact and
hence (see 17.4.2) closed in P.

IV. Choose an a;ed; (0 £i<n). By 8.2.1 there exist sequences {b;}:-,
(0 £ i £ n) such that b;; € G, limb;; = a;. We may assume that, for every i, 4,

A-
o(bi, a;) < &, and hence b;; € G N U,.

As b;; € G, there exist points f(b;;) € I'. As P is compact, we may, for 0 < i < n,
find a subsequence {c;;}7.; of {b;:}i=1 such that lim f(c;;) = «; exists. We have
flci)eT and hence a;el’ (0 £ i < n). ine

If, for some i (0 £ i £ n), there were a; € I', we would have (since f is homeo-
morphic) lim ¢;; = f_,(«;) € G, which is a contradiction, since (see 7.1.2) lim ¢;; =

A-oc A=

=a,6G — G. Thus, a;e I’ — I' = B(I') for 0 < i £ n. Thus, B(I') + () and the
proof for n = 0 is finished.

V. For n > 0, it remains to prove that the points «; (0 < i < n) belong to distinct
components of B(I'). Let us assume the contrary. Then there are indices j, k
(0 £/ <k £ n) and a component K of B(G) such that a;e K, a, € K.

Since P is locally connected and as the set f(C)eI'« P — B(I') = P —
— ((2;) U () is closed, there exists a connected neighborhood ¥V, of a; and
a connected neighborhood V, of «, such that ViUV, c P — f(C). V;uV,UK

is connected (see 18.1.4). Since lim f(c;;) = %;, limf(cy,) = a,, there exists an
A—© A=

index u with f(c;) e V,, flcy) e V,.
VI. Since ¢;, € U;, ¢y, € Uy, since the sets U; (0 < i < n) are disjoint and open,
n
and since C = G — U U;, C evidently separates c;, from ¢, in G. Since f is
i=0
a homeomorphic mapping, f(C) separates f(c;,) from f(c,,) in I'. Thus, f(C) U
U (P — T separates f(c;,) from f(c,,) in P.

Hence (see 21.1.12), there exists an irreducible cut S < f(C)u (P —T) of P
between f(c;,) and f(cy,). By 25.1.2, S is connected. Since f(C), P — I are separa-
ted (see 10.2.1), we have, by 18.1.2, either S = f(C)or Sc P — I.

If S < f(C), then f(C) separates f(c;,) from f(cy,) in P. This is a contradiction,
since f(c;,), f(c;,) belong to the connected set Vi UV, UKc P — f(C). If Sc
< P — T, then P — T separates f(c;,) from f(cy,) in P. This is a contradiction,
since I' is connected and contains both f(c;,), f(cx,)-

27.4.3. A set G = S, is homeomorphic to E, if and only if: [1] G is open and connected,
[2] S, — G is connected.

_ Proof: 1. Let G be homeomorphic to E,. Then (see 26.1.1) G is homeomorphic
to S, — (w). Thus, G is open by 26.4.5. G is connected by 19.2.4. P — G is connected
by 27.4.2 (see also 27.4.1).
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1I. Let G be open and connected, let S, — G be connected. By 17.9.1, G is
a separable and locally compact space. Hence (see 17.9.2), there exists a compact
space P and a point a € P such that there exists a homeomorphic mapping ¢ of G
onto P — (a).

It suffices to prove that P is a spherical space. In fact, P is then homeomorphic
to S, by 27.1.1, so that G is homeomorphic with E, by 17.10.4.

Thus, we have to prove that P has properties («), (), (y) stated in 27.1.

[II. Define a mapping f of S, onto P as follows. If x € G, let f(x) = ¢(x); if xe
€S, — G, put f(x) = a. (We have S, — G + (J, since S, — G is connected.)

We shall prove that f is continuous. Let x,€S,, x€S,, x, - x; we have to
prove that f(x,) — f(x). First, if x € G, then (as G is open) there is an index p such
that, for n > p, x,e G and hence f(x,) = ¢(x,), so that lim f(x,) = lim ¢(x,) =
= @(x) = f(x).-Secondly, let xe S, — G, hence, f(x) = a. We have to prove that
lim f(x,) = a. Assume the contrary. Then there is an ¢ > 0 and a subsequence
{ya}1 of {x,} such that g[a, f(y,)] = ¢ for every n. Thus, for every n, f(3,) * a,
i.e. ¥.€G, f(3,) = ¢(y,). Denote by M the set of all ze P with g(a,z) = &. M is
closed in P and hence (see 17.2.2) compact. Thus, there is a subsequence {y,}{
of {y,} and a point ze M with lim ¢(y,) = z. As M = P — (a) and ¢ is homeo-
morphic, we have lim y, = ¢_,(z) € ¢ [P — (a)] = G. This is a contradiction,
since limy, = xe S, — G by 7.1.2.

IV. Since f is continuous, P is a continuum by 18.1.10 and 19.2.5. G is locally
connected by 22.1.3 and 22.1.14. Since ¢ is a homeomorphic mapping, ¢(G) =
= P — (a) is also locally connected. Hence, P is locally connected at every xe€ P —
— (a), so that P — L(P) = (@) by 22.2.1. As P is a continuum, we have L(P) = P
by 22.2.5, so that P is locally connected by 22.2.2. Thus, P has property (a).

V. Property (B) requires P — (y) connected for every y € P. This is evident for
¥ = a, since P — (a) is homeomorphic with the connected G. Thus, let y % a,
so that there is an xe G with P — (y) = f[S, — (x)]. S, — (x) is connected, so
that P — (y) is connected by 18.1.10.

VI. It remains to prove that P has property (y). Let A, B be sets closed in P and
such that 4 n B is either void or connected, and let u, v be two distinct points of
P — (A U B) such that neither 4 nor B separates # from v in P. We have to prove
that 4 U B does not separate u from v in P.

S, is compact. Moreover, f is a continuous mapping of S, onto P such that, for
y€P, f_ () is either a one-point set, or f_,(y) = S, — G, so that f_ () is connected
for every y € P. Thus (see 19.1.8), f_,(S) is connected whenever S < P is connected.

Choose points reS,, se€S, with f(r) = u, f(s) = v. Put 4y = f_,(A), B, =
= f_.(B). Evidently, r, s are distinct points of S; — (4, U By).

Ao and B, are closed in S, (see 9.2). Evidently 4y N By = f_ (4 n B). Since
A n B is void or connected, A, N B, is also void or connected.
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Since A does not separate # from v in P, u, v belong to the same quasicompo-
nent of P — A. On the other hand, P is locally connected and P — A is open. Thus
(see 22.1.3 and 22.1.5), u, v belong io the same component K of P — A. Since K
is connected, f_,(K) is also connected. Moreover, f_(K)<= S, — Ay, ref_,(K),
s € f-(K). Thus, 4, does not separate r from s in S,. Similarly we may prove that B,
does not separate r from s in S,. S, has property (y). Thus, A, U B, does not sepa-
rate r from s in S,.

If A U B separates u from v in P, we have P — (Au B)=Uvu V,ue U, veV,
UnV =0 and U,V are open in P — (4 u B) and hence in P. Then, however,
S; — (4o — By) = f ()L fo (V) ref- (U), sef-y(V), [-1(U)nfy(V) =0,
and f_,(U), f- (V) are (see 9.2) open, i.e. A, v B, separates r from s in S,, which
is a contradiction.

2744.Let G = S,, ' = S,. Let G be open and connected; let S, — G have a finite
number n (= 0,1, 2,...) of components. I is homeomorphic with G if and only if:
[1] T is open and connected, [2] S, — I’ has n components.

Remark: Theorem 27.4.3 is a consequence (see 17.10.4) of the case with n = 1
of theorem 27.4.4. Of course, the proof of theorem 27.4.3 was not superfluous;
we shall need theorem 27.4.3 in the proof of theorem 27.4.4.

Proof: 1. Let I' be homeomorphic with G, so that I' is connected. I" is open by
26.4.5 and S, — I' has n components by 27.4.1 and 27.4.2.

II. Choose mutually distinct points 5,€S, (1 =1,2,3,...) and put M, = S, —
— U (sy); hence, My = S,, M,,, = M, — (s,+,)- Since two sets, each of which
A=1

is homeomorphic with a third one, are homeomorphic, it suffices to prove, for
everyn (=0, 1, 2, ...), the following theorem V,: Let G = S, be open and connected,
let S, — G have n components; then G is homeomorphic with M,,.

Theorem V,, is evident: if S, — G has no component, we have S, — G = () and
hence G = S, = M. Theorem V, follows by 27.4.3, as we remarked above. Thus,
it suffices to prove theorem V,,, assuming the validity of theorem V, (for a given
nzl).

III. Thus, let theorem V, be valid for a given n =1,2,3,..., and let G = S,
be open and connected; let S, — G have n + 1 components. We have to prove
that G is homeomorphic with M, .

Denote by K; (0 < i < n) the components of S, — G, so that K; = S, are con-
nected closed sets.

Put G, = G U K,. Then G, is an open set. By 19.3.1 we have G n K, = B(G) N
N Ky, =B, — G)n K, + 0, so that G, = [G U (G N K,)] U K, is connected by

18.1.5 and 18.1.7. We have S, — G, = U K;, so that S, — G, has n components.
i=1

Thus, by V, there exists a homeomorphic mapping f of G, onto M,.



27. Topological characterization of the sphere 265

Put f(G) =T, f(K,) = &£. K, is connected, so that & is also connected; K, is
closed in S, and hence compact, so that & is also compact and hence closed in S,.
G is connected, so that I' is also connected. We have S, = M, u (S, — M,) =

n

=Tu 2 u U (sy) with disjoint summands. Since & is closed, we have evidently
n A=1

UGy =T and hence I' =€ S, — & < T, so that S, — & is connected. Moreover.

A=1

certainly S, — & is open and S, — (S, — ¢) = & is connected. Thus, by 27.4.3,
there exists a homeomorphic mapping ¢ of S, — % onto E,. Put ¢(s;) = u,
(LA n).

For xe G put g(x) = ¢[f(x)]. Obviously g is a homeomorphic mapping of G

n+1
onto E, — | (u,). Hence, it suffices to prove that the sets M, ., =S, — U (5),
n A=1 A=1
E, — U (u;) are homeomorphic, which is easy (see 17.10.4).
a=1

Exercises

27.1. Deduce theorem 27.2.5 from 27.1.1 and from theorems of § 26.

27.2. Similarly deduce theorem 27.2.6.

27.3. Similarly deduce theorem 27.2.8.

27.4. Deduce theorem 27.2.9 from 27.2.6 and 27.2.7 without use of theorem 27.2.8.

27.5. Generalize theorem 27.8.8 (and its proof) in such a way that one may speak about n simplc
arcs instead of C;, C,, C3.

27.6. Proving theorem 27.1.2, we chosed a simple loop C < P and a simple loop D < Q. We
constructed there a homeomorphic mapping ¢ of P onto Q such that ¢(C) = D. From tkis
we may prove easily the following theorem: Let C; =S, and C, =S, be simple loops
and let G; be a component of S; — C; (i = 1, 2). There exists a homeomorphic mapping ¢
of G, onto G,. We have ¢(C,) = C,. [In addtion theorem 26.4.5 yields that under every
homeomorphic mapping ¢ of G, onto G, we have ¢(C;) = C,.]
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