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Summary

Origins of Matrix Theory in Czech Lands
(and the responses to them)

Matrix theory is a relatively new branch of mathematics. Its origins can
be placed in the second half of the 19th century; some of the now familiar
concepts were not conceived until the 20th century. The instigations leading to
the birth of matrix theory were coming from several directions and their roots
are centuries old. The notion matrix can be found about 2000 years ago in China
in connection with the solution of systems of linear equations. After this came
a long (approximately 1800 years) period when matrices were not much studied.
Matrix theory did not develop directly from the problem of solving systems of
linear equations but rather originated from the theory of determinants, bilinear
and quadratic forms and the theory of linear substitutions.

It was the British mathematician James Joseph Sylvester in 1850, who es-
tablished the modern conception of (rectangular) matrix, and used the term
"matrix" for the first time in his article Additions to the articles “On a new class
of theorems”, and “On Pascal’s theorem” [Sy2]. In 1858, the British mathemati-
cian Arthur Cayley, who was Sylvester’s friend, published his article A memoir
on the theory of matrices [Cy3] in the journal Philosophical Transactions of
the Royal Society of London. We usually consider this article to be the ori-
gin of matrix theory. It is very striking that the beginning of the theory of
determinants (1750) predated the origin of matrix theory.

Cayley’s Memoir piqued little immediate interest in Great Britain and it
was practically unknown elsewhere. Moreover, in the second half of the 19th
century many mathematicians gave priority to determinants and it took a long
time until matrix theory became an independent discipline. The process of gra-
dual acceptance of this theory by mathematical community began in the second
half of the 19th century and continued during the first half of the 20th century.
Until then, a majority of mathematicians formulated their results, which are
presently well-incorporated in matrix theory, in terms of determinants, bilinear
and quadratic forms.

Textbooks published between 1860 and 1880 by Václav Šimerka, Josef Smo-
lík, František Josef Studnička, and František Machovec belong among the first
Czech publications on algebra.

Reseach in the fields which are presently classified as belonging to linear
algebra corresponded in the Czech lands with the situation abroad – the oldest
works on linear algebra which were published by Czech mathematicians are con-
cerned with determinants, not with matrices. Their authors are František Josef
Studnička, Karel Zahradník, Eduard Weyr, Matyáš Lerch, Wilhelm Matzka,
etc. It is necessary to say that these were mostly shorter studies, which did
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not bring any significant or original ideas. Rather they revised results already
known abroad and evolved minor improvements of the theory or its application
in other branches of mathematics.

The first Czech mathematician using the matrices was most probably Lud-
vík Kraus. During his studies in Munich and Berlin he attended lectures of
Felix Klein, Karl Theodor Wilhelm Weierstrass and Leopold Kronecker. Since
the two latter named mathematicians belonged to the most noted personalities
in this field, we can assume that the first basic concepts of matrix theory Lud-
vík Kraus acquired actually in Berlin. Kraus’s early death, which was a great
loss for the Czech mathematical community, prevented publication of any of
his work relating to the subject of matrices.

It was probably Kraus who inspired an interest in matrices in the Prague
mathematician Eduard Weyr, who later reached a world’s recognition in this
field.

Eduard Weyr was one of the few mathematicians on the European continent
acquainted with matrix theory and working in this area at the time.

Eduard Weyr was born in Prague on June 22nd, 1852. His father František
Weyr was a famous professor of mathematics at a Realschule in Prague. Eduard
had nine siblings, his older brother Emil (1848–1894) was also an outstanding
mathematician and professor at the University of Vienna.

Eduard Weyr studied at the Prague Polytechnic. He also attended lectures
abroad. Among his teachers were Rudolf Friedrich Alfred Clebsch and Ernst
Friedrich Wilhelm Klinkerfues in Göttingen, Charles Hermite and Joseph Alfred
Serret in Paris, Leopold Kronecker and Immanuel Lazarus Fuchs in Berlin. In
1873, Eduard Weyr obtained a doctor’s degree at Göttingen. In the academic
year 1874/75, he habilitated at the Czech Polytechnic (research in geometry).
The next year he was named a salaried docent and in 1876, he became an
extraordinary professor at the Czech Polytechnic and also a private docent
at the University of Prague. In 1891, he became a substitute professor at the
Czech University in Prague. In the academic years 1884/85 and 1890/91, he
held the post of a rector of the Czech Polytechnic. Eduard Weyr died in Záboří
nad Labem on July 23rd, 1903.

During his life, Eduard Weyr was regarded mainly as a geometer, but was
also concerned with analysis. Nowadays, his results in linear algebra, matrix
theory and his study of the convergence of power series in matrices are more
valued than his contributions to geometry.

Eduard Weyr published his original worldwide reputable results (see the
section on the Weyr theory of characteristic numbers below) in matrix theory
in the 1880s and early 1890s. He discovered the Weyr characteristic, which is
a dual sequence to the better known Segre characteristic, and also the so-called
typical form. This canonical form of a matrix is nowadays called the Weyr
canonical form and it is permutationally similar to the commonly used Jordan
canonical form of the same matrix. There are mathematical problems in which
the solution is rather smarter using the Weyr canonical form and not the Jordan
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canonical form. In some instances the application of the Jordan canonical form
would not lead to the solution because it does not have (contrary to the Weyr
canonical form) the essential properties needed.

The following list is a chronological order of Weyr’s works involving matrix
calculus:

• O základní větě v theorii matric [We2], 1884,
• Sur la théorie des matrices [We5], 1885,
• Répartition desmatrices en espèces et formation de toutes les espèces [We6],

1885,
• O binarných matricích [We8], 1887,
• Sur la réalisation des systèmes associatifs de quantités complexes à l’aide

des matrices [We9], 1887,
• O theorii forem bilinearných [We12], 1889,
• Zur Theorie der bilinearen Formen [We13], 1890,
• O theorii forem bilinearných [We17], 1901.

Because of the connections between matrices and quaternions we can also
mention the paper

• Sur la théorie des quaternions [We3], 1884.

There is no mention of the term “matrix” in the paper

• Note sur la théorie des quantités complexes formées avec n unités princi-
pales [We10], 1887,

which deals with linear associative algebras. Nevertheless, one may translate
its results into terms of matrices. Eduard Weyr did it in his book O theorii
forem bilinearných (1889).

The paper O základní větě v theorii matric is concerned with the proof of
the Cayley-Hamilton theorem.

In the two 1885 papers Sur la théorie des matrices [We5] and Répartition
des matrices en espèces et formation de toutes les espèces Weyr introduced the
basic ideas of his very modern and original theory of characteristic numbers
and discovered the so-called typical form. He described a complete system of
invariants for matrix similarity, which consists of the set of all eigenvalues of
a matrix, and the Weyr characteristic of the matrix. The Weyr characteristic
of a matrix A contains all Weyr characteristics of A associated with all eigen-
values of A. The Weyr characteristic associated with λ is the dual sequence to
the better known Segre characteristic associated with λ. The typical form is
a canonical form of a matrix; nowadays, it is used in a slightly altered form and
called the Weyr canonical form. In these short notes, Eduard Weyr also studied
conditions for the existence of a minimal polynomial of degree smaller than the
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order of a given matrix, and conditions for the diagonalization of a matrix. He
obtained the estimation for the nullity of the product of two matrices.

Weyr developed the basic ideas of his theory in the 111-page book O theorii
forem bilinearných as well as in its German version Zur Theorie der bilinearen
Formen in more detail.1 The titles of the texts are confusing. These works are
primarily concerned with matrix theory, while the theory of bilinear form is
mentioned only on few pages. Weyr was one of the first mathematicians who
contributed to connections between matrix theory and the theory of bilinear
forms.

The German version Zur Theorie der bilinearen Formen was published in
the journal Monatshefte für Mathematik und Physik and it is not a literal
translation. Some parts are expanded and, on the other hand, some parts are
abbreviated or missing.

The German paper Zur Theorie der bilinearen Formen and the French note
Répartition des matrices en espèces et formation de toutes les espèces are the
most cited Weyr’s works in contemporary articles and monographs.

The 1887 paper Sur la réalisation des systèmes associatifs de quantités com-
plexes à l’aide des matrices is focused on the connections between matrices and
linear associative algebras.

In 1887, Eduard Weyr also published the monograph O binarných matri-
cích, which was intended for the Czech mathematical community in order to
support the new theory, introduce its notation and basic properties of matrices.
Surprisingly, this work deals only with matrices of second order.

Weyr’s works represented the only important contribution to matrix theory
by Czech mathematicians in many decades that followed.

There are few Czech papers on matrix theory which were published during
the first decades of the 20th century. Unfortunately, articles by Karel Petr,
Václav Simandl, Václav Hruška, Jaroslav Jarušek, and Karel Rössler contained
neither original nor significant results. The same is true of works which were
written by Bohumil Bydžovský. Nevertheless, it is worth paying special atten-
tion to his book Základy teorie determinantů a matic a jich užití [By1] which
was published in 1930.2 It is one of the oldest monographs in the world whose
title contains the word “matrix”. This publication was important because of its
educational function, Czech terminology and notation.

Direct and more comprehensive responses from Czech mathematicians to
Weyr theory of matrices were written in Brno, mainly in the 1950s. The best
known of the followers of Weyr in this Moravian town is Otakar Borůvka. At
the end of World War II, he began to direct the research of Masaryk University
towards differential equations. In the academic year 1946/47 he set up a Differ-
ential equations seminar. He and his colleague Jiří Čermák used Weyr theory
to solve systems of linear differential and difference equations.

1The 1891 note O theorii forem bilinearných is a Weyr’s short, 3-page contribution to
a Prague congress.

2 The second edition of this book appeared in 1947 under the title Úvod do teorie deter-
minantů a matic a jich užití.
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Borůvka also wrote the lecture notes Matice [Bo4] in 1947 (2nd edition:
1948, 3rd edition: 1966) and the textbook Základy teorie matic [Bo8] in 1971.
The latter is the first Czech book explaining Weyr theory.

The approach of Miroslav Novotný, another Brno mathematician, was rather
unusual for that time. He tried to present Weyr theory in a quite abstract lan-
guage (in terms of the so-called projective A-spaces and their A-collineations).

Other more significant reactions to Weyr’s outcomes appeared in our lands
again after several decades. In the last decade of the 20th century a team of
authors published the monograph Eduard Weyr (1852–1903). The book was
initiated by Jindřich Bečvář who also contributed the majority of the text con-
tained in the monograph. Besides the biographical part devoted to Eduard
Weyr and his family, Jindřich Bečvář also compiled list of publications of this
mathematician and above all he reformulated Weyr’s about 100 year’s old the-
ory of characteristic numbers into the modern language of vector spaces and
homomorphisms.

∗ ∗ ∗

Weyr theory of characteristic numbers

The basic ideas of the Weyr theory of characteristic numbers as well as the
relationship between the Weyr characteristic and the Segre characteristic are
the subject of this section.

1 Remark. We shall always assume that A is a complex matrix. We denote
the rank of a matrix A by r(A).

2 Definition. Let A be a square matrix of order n. The set of all vectors v
which satisfy AvT = oT is called the nullspace or kernel of A. This set forms
a subspace of Cn and we denote it by KerA.

3 Definition. Let A be a square matrix of order n. Then the positive integer

nullA = n− r(A)

is called the nullity of A.

The nullity of A is equal to the dimension of KerA.
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4 Remark. Let A be a square matrix and λ its eigenvalue. Obviously, a matrix
A− λE is singular. Hence, null (A− λE) > 0. Moreover

null (A− λE)k ≤ null (A− λE)k+1 for all k = 0, 1, . . .

If s is the multiplicity of λ, then null (A− λE)k = null (A− λE)k+1 if and
only if null (A − λE)k = null (A − λE)k+1 = s. Thus, there exists a positive
integer t ≥ 1 such that

0 < null (A− λE) < null (A− λE)2 < . . .

. . . < null (A− λE)t = null (A− λE)t+1 = . . . ,

and

s = null (A− λE)t = null (A− λE)t+1 = . . .

5 Definition. Let A be a square matrix and let λ be its eigenvalue. The smallest
positive integer t satisfying

null (A− λE)t = null (A− λE)t+1

is called the index of A associated with the eigenvalue λ.

6 Definition. Let A be a square complex matrix, let λ be its eigenvalue and
let t be the index of A associated with λ. The characteristic numbers of A
associated with λ are defined as the positive integers

η1 = null (A− λE),
η2 = null (A− λE)2 − null (A− λE),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ηt = null (A− λE)t − null (A− λE)t−1.

The sequence η(λ) of positive integers η1, η2, . . . , ηt is called the Weyr charac-
teristic of A associated with λ. We write η(λ) = (η1, η2, . . . , ηt).

7 Theorem. Let A be a square complex matrix, let λ be its eigenvalue of
multiplicity s and let η(λ) = (η1, η2, . . . , ηt) be the Weyr characteristic of A
associated with λ. Then

(i) η1 ≥ η2 ≥ . . . ≥ ηt > 0,
(ii) η1 + η2 + . . .+ ηt = s.

8 Definition. Let λ1, λ2, . . . , λu be mutually distinct eigenvalues of a complex
square matrix A, let (α1, α2, . . . , αt1) be the Weyr characteristic of A asso-
ciated with the eigenvalue λ1, let (β1, β2, . . . , βt2) be the Weyr characteristic
of A associated with the eigenvalue λ2 etc. and let (υ1, υ2, . . . , υtu) be the
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Weyr characteristic of A associated with the eigenvalue λu. Then the system
of positive integers

η(A) = [(α1, α2, . . . , αt1), (β1, β2, . . . , βt2), . . . , (υ1, υ2, . . . , υtu)]

is called the Weyr characteristic of A.

9 Theorem. Let A be a complex square matrix of order n, let λ1, λ2, . . . , λu

be its mutually distinct eigenvalues and let

η(A) = [(α1, α2, . . . , αt1), (β1, β2, . . . , βt2), . . . , (υ1, υ2, . . . , υtu)]

be the Weyr characteristic of A. Then the sum of all characteristic numbers of
the Weyr characteristic of A is equal to the order n of A.

The sum of the characteristic numbers associated with the eigenvalue λi is
equal to its multiplicity si, and the sum of all multiplicities of the mutually
distinct eigenvalues is equal to order n of A. Thus,

n =
u∑

i=1

si,

where

s1 =

t1∑

i=1

αi, s2 =

t2∑

i=1

βi, . . . , su =

tu∑

i=1

υi.

10 Theorem. Two complex matrices are similar if and only if they have the
same distinct eigenvalues and the associated Weyr characteristics.

11 Theorem. Let A be a square complex matrix, let λ1, λ2, . . . , λu be its
mutually distinct eigenvalues and let t1, t2, . . . , tu be the numbers of their
characteristic numbers (i.e. the indices of A associated with λ1, λ2, . . . , λu).
Then

(λ− λ1)
t1(λ− λ2)

t2 . . . (λ− λu)
tu

is the minimal polynomial ofA.

12 Definition. Let A be a square complex matrix, let J be its Jordan ca-
nonical form and let λ be its eigenvalue. The nonincreasing sequence
ξ(λ) = (ξ1, ξ2, . . . , ξq) of orders of the Jordan blocks associated with the ei-
genvalue λ of A is called the Segre characteristic of A associated with the
eigenvalue λ.
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13 Definition. Let α = (α1, α2, . . . , αt) be a nonincreasing sequence of posi-
tive integers. The Ferrers diagram corresponding to the sequence α is defined
as a diagram which is formed by t columns of dots, such that the j th column
(from the left) has αj dots.

14 Definition. Let α = (α1, α2, . . . , αt) be a nonincreasing sequence of po-
sitive integers. The sequence α∗ is said to be dual to α if it is the sequence or
row lengths of the Ferrers diagram corresponding to α (read upwards).

15 Remark. The dual sequence is often referred to as the conjugate sequence.

16 Theorem. The Weyr characteristic of A associated with the eigenvalue λ
is the dual sequence to the Segre characteristic of A associated with the same
eigenvalue λ.

Hence, the first characteristic number η1 of the Weyr characteristic
(η1, η2, . . . , ηt) of A associated with the eigenvalue λ is the number of blocks
in the Jordan canonical form associated with λ. The number η2 is the number
of blocks in the Jordan canonical form that have order at least 2, the number
η3 is the number of blocks in the Jordan canonical form that have order at
least 3, etc.

For example, if ξ(λ) = (7, 5, 3, 2, 2), then the corresponding Ferrers dia-
gram is

•
•
• •
• •
• • •
• • • • •
• • • • •

and η(λ) = (5, 5, 3, 2, 2, 1, 1).

17 Definition. Let A be a square complex matrix, let λ be its eigenvalue.
The generalized eigenspace GKer (A − λE) of A associated with λ is the set
Ker (A− λE)t, where t is the index of A associated with λ.

Clearly GKer (A− λE) = Ker (A− λE)n.

The multiplicity of λ is equal to the number of the dots in the corresponding
Ferrers diagram and it is also equal to the dimension of GKer (A− λE).

For i ≥ j, the notation i×jE denotes the matrix with i rows and j columns
in which the first i rows form the identity matrix and the remaining i− j rows
consist of zeros.
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i×jE =




1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . 1
0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . 0








j



 i−j

18 Definition. Let A be a square complex matrix, let λ be its eigenvalue and
let η(λ) = (η1, η2, . . . , ηt) be the Weyr characteristic of A associated with λ.
The Weyr block of A associated with λ is defined as the matrix of the form




λ 0 . . . 0
0 λ . . . 0
...

...
. . . 0

0 0 . . . λ

η1×η2E O . . . O

O

λ 0 . . . 0
0 λ . . . 0
...

...
. . . 0

0 0 . . . λ

η2×η3
E . . . O

O O

λ 0 . . . 0
0 λ . . . 0
...

...
. . . 0

0 0 . . . λ

. . . O

...
...

... . . . ηt−1×ηtE

O O O . . .

λ 0 . . . 0
0 λ . . . 0
...

...
. . . 0

0 0 . . . λ




,

where O is the zero matrix.

19 Definition. Let A be a complex square matrix. The block matrix whose
diagonal blocks are the Weyr blocks associated with all distinct eigenvalues
of A is called the Weyr canonical form of A.

For example, if the eigenvalues of a matrix A are the numbers 2 and −3
and if the Weyr characteristic of A associated with the eigenvalue 2 is
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η(2) = (3, 2, 1, 1) and the Weyr characteristic of A associated with the eigen-
value −3 is η(−3) = (3, 2), then the Weyr canonical form W of A is

W =




2 1
2 1

2
2 1

2
2 1

2
−3 1

−3 1
−3

−3
−3




.

20 Theorem. Up to permutation of the Weyr blocks, each square complex
matrix A is similar to a unique Weyr canonical form.

∗ ∗ ∗

Responses to Weyr theory abroad

Despite the fact that several of Eduard Weyr’s results advanced the foreign
knowledge, he practically gained no recognition abroad for about a century.3

Weyr is cited in several articles, monographs or encyclopaedias. However,
there were only sporadic acknowledgements in few publications until the 1980s.
On top of it the Weyr characteristic was often recognised only as a dual sequence
to the Segre characteristic. Weyr’s name in association with canonical form of
matrices was almost never mentioned. From the 8th decade of the 20th century
this situation began to change. Group of mathematicians close to Hans Schnei-
der and Daniel Hershkowitz published a significant number of articles devoted
to the Weyr characteristic, defined in terms of matrix theory, and various other
characteristics introduced in terms of graph theory. Works concerning these
problems have been published even in the 3rd millennium.

Since the 1980s, the Weyr characteristic in connection with the so-called
matrix pencils began to be suitably used by mathematicians belonging to Greek
school (Nicos Karcanias, Grigoris Kalogeropoulos, Panayiotis Psarrakos, etc.).
Then followed the reactions of Spanish mathematicians (Juan Miguel Gracia,
Inmaculada de Hoyos, Ion Zaballa, María Asunción Beitia, Francisco Enrique
Velasco, etc.), who studied problems closely linked with the so-called control

3 During Weyr’s life, his works were appreciated by James Joseph Sylvester, who was then
an authority in the worldwide mathematical community.
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theory. On the turn of the 20th and 21st century the Weyr characteristic was
also recognised by mathematicians working in Sweden (Erik Elmroth, Bo Kåg-
ström, Pedher Johansson, Stefan Johansson, etc.), who used it in the stratifi-
cation of orbits and bundles of matrices and matrix pencils).

Further awareness of the Weyr characteristic can be merited to Helene Sha-
piro who in 1999 published the article The Weyr characteristic [Sh2]. This
gave the basic knowledge of the Weyr characteristic and Weyr canonical form
in a simple and intelligible manner. The work was published in The American
Mathematical Monthly magazine, which is intended for a wider mathematical
community (not just experts in linear algebra), therefore the fundamental facts
of Weyr theory became known to a relatively large number of readers.

The Weyr canonical form can be found in literature since the 1980s. However,
it does not reflect the acknowledgements of Weyr’s results in the real sense. The
mathematicians working with this form rediscovered it themselves while search-
ing for a new form of matrices with certain properties. They often never heard
of Eduard Weyr before. Personalities most responsible for the revival of the
Weyr canonical form are Genrich Ruvimovich Belitskii, Vladimir Vasil’evich
Sergeichuk, Junzo Watanabe, Tadahito Harima, Kevin C. O’Meara, Charles
Irvin Vinsonhaler and Helene Shapiro. It was probably the last named mathe-
matician who used the historically correct term, i.e. Weyr canonical form for
the first time in a published text. It was in the above mentioned article The
Weyr characteristic in 1999. Vladimir V. Sergeichuk became aware of the con-
nection of the Weyr characteristic and Weyr canonical form even before. Prior
to 1999 this term was used under different names, such as the second Jordan ca-
nonical form, modified Jordan matrix, H-form, etc. Nowadays, more than one
century since Weyr’s death, the Weyr characteristic and the Weyr canonical
form occur rather frequently in contemporary foreign language works. In 2013,
Roger Alan Horn and Charles R. Johnson published second edition of their
famous monograph Matrix Analysis [HJ1], which appeared in 1985 for the first
time. Roger A. Horn rewrote one chapter dealing with the canonical forms,
and recast the exposition in terms of the Weyr characteristic. The Weyr ca-
nonical form has become much better known in the last few years and even
the monograph Advanced Topics in Linear Algebra: Weaving Matrix Problems
through the Weyr Form [OCV1] devoted to this topic was published by Kevin
C. O’Meara, John Clark a Charles I. Vinsonhaler in 2011.

Although Weyr’s outcomes were almost forgotten for approximately a cen-
tury, their recognitions in the last decades affect various and very specialized
branches of mathematics. It is therefore impossible to present expert contents
in brief. Let us mention at least the elements of one of the disciplines which
operates with Weyr characteristic and whose results were published in great
deal. It concerns the above mentioned works of Hans Schneider, Daniel Hersh-
kowitz and their co-authors who studied a close connection between the Weyr
characteristic and certain sequences formulated in terms of graph theory.
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1 Remark. We will denote the spectrum of a square matrix A, i.e. the set of
all eigenvalues of the matrix A, by σ(A).

2 Definition. The spectral radius �(A) of a square matrix A is defined to be

�(A) = max {|λ| ;λ ∈ σ(A)} .

3 Definition. Let A = (aij) be a square complex matrix or order n. Then A
is called reducible if there exists a permutation matrix P such that PAPT has
the form

(
K O
L M

)
,

where K and L are square matrices of order at least 1 and O is the zero matrix.
If no such permutation exists, then A is said to be irreducible. In other words,
a square complex matrix is reducible if it can be transformed into the above-
mentioned form by the same permutation of rows and columns. If A is a square
complex matrix of order 1, then A is irreducible.

4 Definition. A matrix A is said to be nonnegative if all of its entries are
nonnegative. A matrix A is said to be positive if all of its entries are positive.

5 Definition. A square matrix A is called an M-matrix if there is a nonnegative
square matrix B and a number k ≥ �(B) such that A = kE −B.

The development of the Perron-Frobenius spectral theory (1907, 1912) of
nonnegative matrices was followed by an intensive study of the interrelation be-
tween the spectral properties of matrices (for example, the Weyr characteristic)
and certain graph theoretic properties (for example, the level characteristic).
The most important results of this type are formulated in the following theo-
rems.

6 Theorem. Let A be a square nonnegative matrix. Then the spectral ra-
dius �(A) of A is itself an eigenvalue of A. Futhermore, if A is an irreducible
matrix, then �(A) is a simple eigenvalue of A and there is a positive eigenvector
associated with the eigenvalue �(A).

Some results of the Perron-Frobenius theory can be extended to singular
M -matrices.

7 Theorem. A singular M-matrix A has a nonnegative nullvector v, i.e. a non-
zero vector v which satisfies AvT = oT . Furthermore, if A is irreducible, then
0 is a simple eigenvalue of A with an associated positive eigenvector.
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It is natural to study properties of the eigenvalue �(B) of a nonnegative
matrix B. Clearly, an M -matrix A = kE−B is singular if and only if �(B) = k.
It is also well known that a matrix B has an eigenvalue λ of multiplicity s if
and only if the matrix λE − B has the eigenvalue 0 of multiplicity s. For
convenience, results are usually formulated in an equivalent form in terms of
a singular M -matrix with respect to the eigenvalue 0. Thus, we may equivalently
study the zero eigenvalue of a singular M -matrix A = �(B)E −B instead of
studying the spectral radius �(B) of a nonnegative matrix B.

8 Definition. Let A be a square matrix of order n. The graph G(A) of A is
the graph with vertices 1, 2, . . . , n which has an arc from i to j if and only if
aij �= 0.

It is well known that a square nonnegative matrix is irreducible if and only
if its associated directed graph is strongly connected.

9 Remark. All the graphs in this summary (and also in the monograph) are
simple directed graphs.

10 Definition. Let A be a block matrix of the form



A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 . . . App


 .

The reduced graph R(A) of A is defined to be the directed graph with vertices
1, 2, . . . , p and such that there is an arc from i to j if and only if Aij �= O.

11 Definition. Let A be a matrix in a p × p form whose every diagonal
block Aii, i = 1, 2, . . . , p, is square. A vertex i in the reduced graph R(A)
is called singular if the matrix Aii is singular.

12 Definition. The path in a graph is a sequence (v1, v2, . . . , vm) of distinct
vertices such that each two consecutive vertices vk and vk+1, k = 1, 2, . . . , vm−1,
are joined by an arc in the graph. We also consider one vertex to be a path.
The length of a path is the number of vertices on this path.

13 Definition. Let A be a block matrix of the form



A11 O · · · O
A21 A22 · · · O
...

...
. . .

...
Aq1 Aq2 . . . Aqq


 .

If all blocks which lie on the main diagonal are irreducible square matrices,
then we say that this form is the Frobenius normal form.

403

DM 56 - Stepanova - Pocatky teorie matic - text.indd   403 2.3.2015   13:33:40



It is well known that every square matrix can be transformed by the same
permutation of rows and columns (i.e. by permutation similarity) to the Fro-
benius normal form.

14 Definition. Let R(A) be the reduced graph of a square matrix A and let i
be a singular vertex in R(A). The level of the singular vertex i in R(A) is the
maximal number of singular vertices on a path in R(A) that terminates at the
vertex i.

15 Definition. Let m be the maximal level of a singular vertex in
the reduced graph R(A) of a square matrix A. We say that the sequence
λ(A) = (λ1, λ2, . . . , λm) is the level characteristic of A if λk is the number of
singular vertices of R(A) of level k.

We shall always assume that A is a square matrix of order n and that
A is in the Frobenius normal form. Then the level characteristic is uniquely
determined.

Suppose we wish to determine the level characteristic of the real matrix

A =




0 0 0 0 0 0
0 2 −3 0 0 0
1 −4 6 0 0 0
2 0 2 2 0 0
1 0 0 −3 0 0
3 0 0 −2 0 0




.

The reduced graph of A is given in Figure 1.

1

2

3

4
5

Figure 1

In figures, the singular vertices have been highlighted. The paths (5, 3, 2, 1)
and (4, 3, 2, 1) terminate at vertex 1 and contain the maximal number of sin-
gular vertices (vertices 5, 2, 1 and 4, 2, 1) among all paths in R(A). The level
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of the singular vertex 1 is three. There are two paths in R(A) which terminate
at vertex 2. Both of them include two singular vertices. Thus, the level of the
singular vertex 2 is two. The level of the singular vertex 4 is one. The same is
true of the singular vertex 5. We have λ(A) = (2, 1, 1).

16 Definition. For a singular matrix A of order n let t be the maximal positive
integer such that nullAt−1 < nullAt. The sequence η(A) = (η1, η2, . . . , ηt) is
called the height characteristic of A if ηk = nullAk − nullAk−1.

The height characteristic of A agrees with the Weyr characteristic of A
associated with the eigenvalue 0.

One may ask about the connection between the height characteristic (or
equivalently the Segre characteristic) associated with the eigenvalue 0 of a sin-
gular M -matrix and its associated reduced graph.

Research in this direction has a long tradition and originated in the early
work of Hans Schneider at the beginning of the second half of the 20th century.
See, for example, Schneider’s article The elementary divisors associated with 0,
of a singular M-matrix [Sc2], which was published in 1956. Authors of the
early works did not explicitly use graphs. They mentioned neither the height
characteristic nor the level characteristic.

Progress was made in the 1970s and 1980s when people began to use graph-
theoretic methods. See, for example, the article On the singular graph and the
Weyr characteristic of an M-matrix [RS1], which was written by Daniel James
Richman and Hans Schneider in 1978.

There are two extreme cases in which the height characteristic is equal to
the level characteristic. The next two theorems were proved by Schneider in his
thesis Matrices with non-negative elements in 1952 without using a graph.

17 Theorem. Let A be an M-matrix. Then the following statements are equiva-
lent:

(i) The height characteristic η(A) of A is (t) (or, equivalently, the Segre
characteristic is (1, 1, . . . , 1)).

(ii) The level characteristic λ(A) of A is (t).
Thus, in the case when each path of R(A) has at most one singular vertex

we have
λ(A) = η(A).

18 Example. Consider

A =




a 0 0 0 0
−b 0 0 0 0
−c 0 d 0 0
0 0 −e 0 0
0 0 −f 0 0




,
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where a, b, c, d, e, f are positive numbers. The matrix A is an M -matrix, it is
in the Frobenius normal form, the blocks on the main diagonal are matrices of
order 1. The reduced graph of A agrees with the graph of A and is shown in
Figure 2.

1

2

3

4
5

Figure 2

The levels of all singular vertices of the reduced graph R(A) are one and
we have λ(A) = (3). Let’s compute the powers of matrices A, A2, . . . and
determine their nullities: nullA = nullA2 = 3. We have η(A) = (3) and
λ(A) = η(A).

19 Theorem. Let A be an M-matrix. Then the following statements are equiva-
lent:

(i) The height characteristic η(A) of A is (1, 1, . . . , 1) (or, equivalently, the
Segre characteristic is (t)).

(ii) The level characteristic λ(A) of A is (1, 1, . . . , 1).

We have
λ(A) = η(A)

again. This is the case when all singular vertices of the reduced graph R(A)
of A lie on a path.

20 Example. Let

A =




0 0 0 0
0 a 0 0

−b −c 0 0
−d 0 −e 0


 ,

where a, b, c, d, e, f are positive numbers. The matrix A is an M -matrix, it is
in the Frobenius normal form, the blocks on the main diagonal are matrices of
order 1. The reduced graph of A agrees with the graph of A and is given in
Figure 3.

406

where a, b, c, d, e, f are positive numbers. The matrix A is an M -matrix, it is
in the Frobenius normal form, the blocks on the main diagonal are matrices of
order 1. The reduced graph of A agrees with the graph of A and is shown in
Figure 2.

1

2

3

4
5

Figure 2

The levels of all singular vertices of the reduced graph R(A) are one and
we have λ(A) = (3). Let’s compute the powers of matrices A, A2, . . . and
determine their nullities: nullA = nullA2 = 3. We have η(A) = (3) and
λ(A) = η(A).

19 Theorem. Let A be an M-matrix. Then the following statements are equiva-
lent:

(i) The height characteristic η(A) of A is (1, 1, . . . , 1) (or, equivalently, the
Segre characteristic is (t)).

(ii) The level characteristic λ(A) of A is (1, 1, . . . , 1).

We have
λ(A) = η(A)

again. This is the case when all singular vertices of the reduced graph R(A)
of A lie on a path.

20 Example. Let

A =




0 0 0 0
0 a 0 0

−b −c 0 0
−d 0 −e 0


 ,

where a, b, c, d, e, f are positive numbers. The matrix A is an M -matrix, it is
in the Frobenius normal form, the blocks on the main diagonal are matrices of
order 1. The reduced graph of A agrees with the graph of A and is given in
Figure 3.

406

DM 56 - Stepanova - Pocatky teorie matic - text.indd   406 2.3.2015   13:33:44



1

2

3

4

Figure 3

All singular vertices lie on the same path. The level of the vertex 4 is one,
the level of the vertex 3 is two and the level of the vertex 1 is three. Thus,
λ(A) = (1, 1, 1). Because nullA = 1, nullA2 = 2, nullA3 = nullA4 = 3, we
have η(A) = (1, 1, 1) and λ(A) = η(A).

This equality does not hold in general. For example, the height characteristic
of the following matrix is not equal to its level characteristic.

21 Example. Consider

A =




0 0 0 0 0
0 0 0 0 0

−a −b c 0 0
−d −e −f 0 0
0 0 0 −g 0




,

where a, b, c, d, e, f, g are positive integer. The reduced graph of A agrees with
the graph of A and is given in Figure 4.
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The level characteristic λ(A) is (1, 1, 2) and the height characteristic η(A)
is (2, 1, 1).

It is natural to ask about the relationship between the level characteristic
λ(A) and the height characteristic η(A), where A is an M -matrix.

In 1989, Hans Schneider and Daniel Hershkowitz introduced the concepts
of height basis, level basis, and height-level basis for a generalized nullspace
of an M -matrix A in their article Height bases, level bases, and the equality
of the height and the level characteristics of an M-matrix [HS3]. Then they
gave twelve conditions equivalent to λ(A) = η(A), most of them in terms of
above-mentioned basis. They added another twenty three equivalent conditions
in their article Combinatorial bases, derived Jordan sets and the equality of the
height and level characteristic of an M-matrix [HS4], which was published in
1991.

22 Definition. Let α = (α1, α2, . . . , αt) and β = (β1, β2, . . . , βt) be se-
quences of nonnegative integers with the same number t of elements. We say
that β majorizes α if

α1 + α2 + . . .+ αt ≤ β1 + β2 + . . .+ βt for all k < t

and

α1 +α2 + . . .+αt = β1 + β2 + . . .+ βt.

We denote this relation by α � β.

23 Theorem. For an M-matrix A we have

λ(A) � η(A).

We focused on M -matrices (or, equivalently, on nonnegative matrices) be-
cause their spectral and graph properties were studied for about seventy years
after the Perron-Frobenius theory was published. Other classes of matrices were
investigated later. The expansion of the study to more general matrices resulted
in many theorems during the last 25 years.

We formulate at least the following one which was proved in the article
A majorization relation between the height and the level characteristics [He1],
published by Daniel Hershkowitz in 1989.

24 Theorem. Let A be a block triangular matrix with square diagonal blocks
such that 0 is a simple eigenvalue of the singular diagonal blocks. Let λ̂ be the
level characteristic of A reordered in a nonincreasing order. Then

λ̂(A) � η(A).

Because the length of this summary is limited, we restricted our discussion
to the level characteristic only. However, for certain classes of matrices, the
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level characteristic can be replaced by other sequences denoted by δ(G(A))
and π(G(A))∗. These sequences are majorized by the height characteristic and
they simultaneously majorize the level characteristic.

∗ ∗ ∗

Conclusion

Instead of writing a “typical conclusion”, let us quote Rogen Alan Horn, the
author of the monograph Matrix Analysis:

Weyr’s 1890 paper in vol. 1 of Monatshefte Math. Physik ... is astonishing-
ly modern in its notation and spirit. It could be read and understood by any
(German-speaking) student today who has had a first course in linear algebra.
In contrast, the 1870 book of C. Jordan ... that contains his eponymous canon-
ical form is unintelligible to a modern reader; no one thinks of linear algebra
in terms of “substitutions” any more. I hope that the second edition of Matrix
Analysis will help many students and researchers to learn a little about this
great man’s contributions to mathematics.
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