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MATHEMATICAL AND HISTORICAL COMMENTS

Van der Waerden: Allgemeine Idealtheorie — Contents

The text of van der Waerden’s lecture course Allgemeine Idealtheorie
recorded by Jarnik in his two notebooks consists of five parts (chapters). The
first part does not carry a Roman numeral and has no title. Taking into account
the numbering of sections in Chapters III to V (Sections 18 to 31), it is almost
certain that the sections in the first chapter should have carried numbers 1 to 8,
and the sections in the second chapter numbers 9 to 17. The first notebook
ends with Section 19, and the second begins with Section 20. The contents of
the whole lecture course are as follows:!

[Kapitel L]

1. Einleitung [November 4]

2. Gruppen [November 7 and 11]

3. Ringe [November 11]

4. Quotientenkorper. Ringbildung I. [November 11 and 14]
5. Ringbildung II. Polynomring [November 14 and 18]

6. Ringbildung ITI. Restklassenring [November 18 and 21]

62. Weiteres iiber Polynomringe [November 21 and 25]
7. Idealtheorie der Euklidischen Ringe [November 25 and 28]

Kapitel II. Korpertheorie

1. Primkérper [December 2]
Einfache Korpererweiterungen [December 2 and 5]
Lineare Abhéngigkeit in bezug auf einen Korper [December 5]

Endliche und algebraische Korpererweiterungen [December 5 and 9]

AN e

Galoissche Erweiterungen [December 9 and 12]

1 Just as a matter of interest, we have included the dates of the individual lectures, which
however ended on December 12. The lectures took place twice a week, on Friday and Monday.
The course began on Friday, November 4, 1927.
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Algebraisch abgeschlossene Korper [December 12]
Transzendente Erweiterungskorper

Algebraische Funktionen

© *° N

Erweiterungen erster und zweiter Art

(separable und inseparable Erweiterungen)

Kapitel III. Idealtheorie in Polynombereichen

18. Der Hilbertsche Basissatz
19. Algebraische Mannigfaltigkeiten
20. Nullstellentheorie der Primideale

21. Geometrische Deutung beliebiger Ideale

Kapitel IV. Allgemeine Idealtheorie

22. Basissatz u. Teilerkettensatz

23. Der Zerlegungssatz

24. Idealprodukte und -quotienten

25. Geometrische Anwendung des Zerlegungssatzes
26. Die Eindeutigkeitssétze

27. Theorie der teilerfremden Ideale

28. Der Vielfachenkettensatz

Kapitel V. Ganze algebraische Grossen

29. Moduln in bezug auf einen Ring
30. Theorie der ganzen Grossen

31. Idealtheorie der ganz-abgeschlossenen Ringe

References

Basic information on the literature related to the subject matter is collected
in the end the first section and in the beginning of the third section in Chapter I,
as well as in the beginnings of Chapters III and V. We have found complete
bibliographic references and provide them in the footnotes at the appropriate
places of van der Waerden’s lectures.
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Comments on van der Waerden’s lectures

Chapter I.

The content of the first section (FEinleitung) was delivered in the first lecture
on November 4, 1927. The goal was to provide a motivation for the whole
lecture course. Among other things, van der Waerden included an example of
a “number structure”,? which does not admit unique factorization into products

of irreducible elements:
9=3-3=(2-1V5) - (2+1V5).

A number of concepts that will appear in the subsequent lectures were men-
tioned — Ideal, Hauptideal, Primideal, Zahlkérper, Korper, Erweiterungskorper,
Norm, Polynombereich, Modulsystem, Basiselemente, Ring, Teilbarkeit, Zerleg-
barkeit, Unzerlegbarkeit, hyperkomplexe Zahlen, etc.

A key concept of the whole course is the notion of an ideal. An example of
a principal ideal, which is the product of two irreducible ideals in the previously
mentioned number structure, was given:

(3) = (3, 2—iV5)(3, 2+iV5).

The names of mathematicians who significantly contributed to this part
of algebra were also mentioned during the introductory lecture: Kummer,
Dedekind, Kronecker, Hilbert, Konig, Max Noether, Lasker, Frobenius, and
Emmy Noether.

The second section (Gruppen) presents basic facts in group theory. The
notion of a group is introduced in an axiomatic way, the defining property
being (besides associativity) the solvability of the equations ax = b, ya = b.
The generalized associative law is proved, and followed by the generalized
commutative law in the case of a commutative operation. It is shown that the
existence of an identity element and the existence of inverse elements follow
from the previously mentioned definition of a group. An alternative axiomatic
definition of a group is also provided — besides associativity, one requires only
the existence of a left identity and left inverses.

Briefly mentioned are abelian groups, the notion of a subgroup, and
the structure of cyclic (both finite and infinite) groups. The notion of
an isomorphism is introduced, and isomorphic groups are said to be wvom
selben Typus. In several other parts of the course, the same term refers
to other isomorphic structures. However, the phrase never appears in the
monograph MA.

2 The example refers to the integral domain Z[iv/5] obtained from the domain of all
integers Z by adjoining the number iv/5. Van der Waerden used the symbol v/—5.
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Van der Waerden restricted the material of this section to what was
absolutely necessary for the subsequents parts dealing with commutative rings,
ideals, fields, etc. Hence, for example, the notion of a normal subgroup did not
appear here.

The third section (Ringe) gives an axiomatic definition of rings, demon-
strates their basic properties, and discusses special cases of rings: a ring with
identity (Ring mit Finheitselement), a ring without zero divisors (Ring ohne
Nullteiler), a noncommutative division ring (skew field, sfield), and a field
(Kdérper). A commutative ring without zero divisors is called an integral do-
main (Integrititsbereich), and in general it need not have an identity (the same
terminology is used in MA-I, p. 39). Nowadays, it is usually assumed that an
integral domain possesses an identity.

In his lectures, van der Waerden employed the term FEinheit for the identity
element of a group, Einheitselement for the identity element of a ring, and
again Finheit for a unit of a ring.? He fixed the terminology in the monograph
MA: the term Finselement was used for the identity elements of both groups
and rings (MA-I, pp. 15, 40), while Finheit referred to a unit element of a ring
(MA-I, p. 63). In MA-I, p. 63, he stated in a footnote: Das Wort ,Einheit“
wird oft als Synonym fir ,Einselement* gebraucht. In Untersuchungen iber
Faktorzerlegung aber sind die beiden Begriffe strong zu trennen, da z. B. —1
auch eine Einheit ist.

The definition of a ring is not quite consistent, since it requires the
commutativity of multiplication, as well as both distributivity laws; it is
remarked that in the commutative case, one of them is superfluous. The
subsequent exposition is restricted to commutative rings and fields. The
following important theorem is proved: A finite commutative ring without
zero divisors that contains at least one nonzero element is a field.

In this section, van der Waerden used a relatively vague term Bereich
without providing an exact definition; what he had in mind was a set of certain
elements equipped with the operations of addition and multiplication.* In place
of the term homomorphism (or epimorphism), he employed in his lectures the
term Meromorphismus. He demonstrated that (in modern terminology) the
image of a ring under a homomorphism is another ring. He also introduced the
notion of an isomorphism in the usual sense.

The next three sections deal with constructions of rings.

The fourth section (Quotientenkdrper. Ringbildung I.) describes the classical
construction of a fraction field (quotient field, field of quotients) for rings having
no zero divisors and at least two elements. It is first explained in the case when
the original ring is contained in a certain field, and later in the general case

3 In Section 31, the term Einheit refers to the identity element of a ring.

4 Van der Waerden used the term Bereich also in the beginning of Section 3 of the second
chapter. The term does not appear in the subject indices of MA-I and MA-II; it was replaced
by another term System mit doppelter Komposition having the same sense (see MA-I, p. 37).

5 The term Meromorphismus does not appear in the subject indices of MA-I and MA-II.
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without this assumption. In our opinion, this approach to the topic of fraction
fields is quite convenient from a pedagogical view. It is also shown that each
ring without zero divisors has a unique fraction field (up to isomorphism).
A final remark points out the possibility of constructing (in place of a fraction
field) a ring of fractions (quotient ring) in the case when the original ring has
zero divisors.

The fifth section (Ringbildung II. Polynomring) introduces, in the classical
way, the ring of polynomials of a single indeterminate, and finitely or infinitely
many indeterminates with coefficients from a ring R. The exposition proceeds
by showing how the properties of R translate into the properties R[z]
(existence of an identity, nonexistence of zero divisors), defining the degree
of a polynomial, and mentioning substitution of values into a polynomial.

The sixth section (Ringbildung III. Restklassenring) describes a one-to-one
correspondence between congruence relations on a ring R and ideals in R, as
well as their relation to homomorphic images of R. It introduces the notion of
a quotient ring with respect to an ideal or a congruence relation, i.e., the ring
of congruence classes (residue class ring). The topic is in fact related to the
so-called Fundamental Theorem of Ring Homomorphisms, but this term never
appeared throughout the lectures.® The term Meromorphismus is still being
used here.

Recall that the rings under consideration need not have an identity. The
next notions to be introduced are the ideal generated by a subset, a basis of
an ideal, and a principal ideal. It is noted how the ideals look like in a field, in
the integral domain of integers, and what are the corresponding quotient rings.
It is shown that each ideal in the integral domain of integers is a principal one.

The language of divisibility and the corresponding notation, as well as the
language and notation of congruences, are introduced and used.”

The intersection and sum of two ideals (least common multiple, greatest
common divisor) are introduced, as well as the notion of a prime ideal (the
corresponding quotient ring has no zero divisors).® It is shown that maximal
ideals in a ring with identity are prime ideals (the corresponding quotient rings
are fields).

Section 6a ( Weiteres iiber Polynomringe) recalls the division algorithm for
polynomials over a field, or over a ring without zero divisors, and the notion
of a root of a polynomial. It is shown that a polynomial of degree n (over
a field or a ring without zero divisors) has at most n roots, and proved that in
the integral domain of polynomials over a field, each ideal is a principal one.
The field of rational functions K (x1,xa,...,x,) over a field K is defined as the
fraction field of the integral domain K|z1,xa,. .., Zy,].

6 See MA-I, p. 57, where the term appears: Homomorphiesatz fiir Ringe.

7 If an ideal a is contained in an ideal b, then a = 0 (b); we say that the ideal b is a divisor
of the ideal a, and the ideal a is a multiple of the ideal b.

8 In the language of congruences, an ideal g is a prime ideal if the following holds:

ab=0 (g), a Z0 (g) imply b =0 (g).
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The next part of this section returns to the end of the previous section:
Once again, it is proved (using the one-to-one correspondence of ideals) that
maximal ideals in a ring with identity are prime ideals.

In the seventh section (Idealtheorie der Euklidischen Ringe), van der
Waerden coined the term Euclidean ring for a principal ideal domain (with
identity).? All examples that he mentioned (integers, polynomials over a field,
Gaussian integers, and three integral domains obtained from the domain of
all integers by adjoining a primitive third root of unity, or iv2, or /2,
respectively) are however Euclidean rings in the present sense (integral domains
with a Euclidean norm function and division algorithm).

It was already demonstrated for the integers and polynomials over a field
(using the division algorithm) that they are principal ideal domains (see
Sections 6 and 6a). For the remaining four of the above-mentioned examples,
the validity of the division algorithm is confirmed in Section 7. As a conse-
quence, each ideal is a principal one.

Furthermore, it is shown that in a principal ideal domain, every two elements
possess the greatest common divisor, which is their linear combination.

The notion of a unit (Finheit) is defined as an invertible element, but the
relation of associatedness is omitted. Basic notions of divisibility (now in
the language of elements instead of ideals) — divisor and proper divisor — are
introduced. An irreducible element is, somewhat unfortunately, referred to as
a Primzahl.

It is demonstrated that in a principal ideal domain, an irreducible element p
generates a prime ideal p = (p), and the corresponding quotient ring is a field.
At this point, van der Waerden recalled Cauchy’s construction of the complex
numbers.

Important results of the seventh section are the following theorems (in
modern terminology):

A. In a principal ideal domain, each nonzero element has a unique
factorization (up to associatedness) into a product of irreducible
elements.*°

B. If S is a ring with identity and without zero divisors such that the
theorem on the existence and uniqueness of factorization into irreducible
elements holds, then it holds for S[z] as well.

If ¥ is the fraction field of this ring S, then a polynomial f in S[z] is
irreducible if and only if it is irreducible in X[z].

9 See the definition in the beginning of Section 7: Ein Euklidischer Ring ist ein Ring
ohne Nullteiler und mit dem FEinheitselement, wo jedes Ideal Hauptideal ist. In MA-I, p. 60,
he already used the term Hauptidealring: Ein Integrititsbereich mit Einselement, in dem
jedes Ideal Hauptideal ist, heifit ein Hauptidealring.

10 For the integral domain of all integers, this result is referred to as the Fundamental
Theorem of Arithmetic.
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C. If ¥ is a field, then the theorem on the existence and uniqueness of
factorization into irreducible elements holds in the integral domains
D3] /T o
Nowadays we know that each Euclidean ring is a principal ideal domain!?
and that each principal ideal domain is an integral domain for which the
theorem on the existence and uniqueness of factorization into irreducible
elements holds. However, there exist integral domains where the theorem no
longer holds. Such an example was provided by van der Waerden already in
the introductory motivational section: Z[iv/5]. See also MA-I, p. 66, which
mentions the integral domain Z[iv/3]. It is possible to give additional examples
of this type (Z[2i], Z[iV/7], etc.).

Van der Waerden provided six examples of Euclidean rings, but no example
of a principal ideal domain which is not a Euclidean ring.'? Neither did he
give an example of an integral domain which is not a principal ideal domain,
but in which the theorem on the existence and uniqueness of factorization into
irreducible elements holds. He could have easily done this. According to the
above-mentioned Theorem B, the theorem on the existence and uniqueness
of the factorization holds for the integral domain Z[z] (polynomials over the
integral domain Z). On the other hand, the integral domain Z[z] is not
a principal ideal domain, since, for example, the ideal (2, z) is not generated by
a single element. Another example is the integral domain K|z,y], where K is
a field.

We remark that in the second edition of MA-I published in 1937, van der
Waerden already made distinction between Euclidean rings and principal ideal
domains (see MA-I, 1937, p. 60), and showed that each Euclidean ring is
a principal ideal domain.

Neither in his lectures nor in the 1930 monograph MA-I did van der Waerden
distinguish between irreducible elements and prime elements. Let us recall that
every prime element is irreducible, but the converse is not true in general. Both
concepts coincide in an integral domain where the theorem on the existence and
uniqueness of factorization into irreducible elements holds.'3

11 Neither in his lectures nor in his 1930 monograph MA-I did van der Waerden consider
integral domains that are now known as the Euclidean domains.

12 For example, Z[% (1 + 1\/@)]

13 MA-I, p. 63, introduces unzerlegbares Element or Primelement; the corresponding term
in the integral domain of all integers is Primzahl, and irreduzibles Polynom in the integral
domain of polynomials. This passage remained unchanged in the second edition of MA-I, as
well as in the third edition from 1950.

A prime element is an element p having the following property: if p divides a product ab,
then it necessarily divides a or b. In the example from Section 1 of the first chapter, the
elements 3, 2 +iy/5 are irreducible, but they are not prime elements.

We remark that the distinction between prime elements and irreducible elements appears
e.g. in Jacobson’s textbook Lectures in Abstract Algebra I — Basic Concepts, D. Van Nostrand
Company, Toronto, New York, London, 1951, xii + 217 pages, see pp. 115-116.
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Chapter II. Korpertheorie

The first section (Primkdrper) introduces the notion of a prime field. It is
shown that every field contains a unique prime field, and that a prime field
is isomorphic either to the field of rational numbers, or to one of the fields of
residue classes of integers modulo a prime number (quotient ring Z/pZ = Z,,).
The characteristic of a field is also introduced.

The second section (Einfache Korpererweiterungen) introduces the ring and
field adjunction of a set of elements. It continues by studying the adjunction
of a single element (simple extension), defining algebraic and transcendental
elements, describing the results of adjoining such elements, and introducing the
degree of an algebraic element. The style of exposition is similar to the passage
on fraction fields — adjunctions are first considered in a previously given field
extension, and later without this assumption. The proof of the uniqueness (up
to isomorphism) of a simple algebraic or transcendental extension is followed
by an explanation why two roots of an irreducible polynomial give rise to
isomorphic (so-called equivalent or conjugate) extensions.

In this context, van der Waerden once again recalled Cauchy’s construction
of the field of complex numbers.

The third section (Lineare Abhdngigkeit in bezug auf einen Koérper) presents
a system of axioms of a vector space over a field, without explicitly mentioning
the term vector space (van der Waerden again used the somewhat vague term
Bereich). The notions of linear dependence and independence are introduced,
as well as linear equivalence of two sets (one set generates the other and vice
versa). The Steinitz exchange lemma (Austauschsatz — with a reference to
Steinitz) is proved, and is followed by its corollaries — the notions of a basis
(unabhdngige lineare Basis) and dimension (Rang) are introduced.

In MA-I, p. 95, van der Waerden considered a ring containing a field with
a common identity element; therefore he needed no axioms; he defined linear
dependence and independence of elements of this ring over the given field.
However, in his lectures he provided an axiomatic definition of a vector space
over a field; thus, it was necessary to add the axiom of a zero element o, e.g. in
the form 0 - u = o for each w.

In the second edition of MA-I published in 1937, van der Waerden mod-
ified the original Section 28 Lineare Abhdngigkeit von Gréfien in bezug auf
einen Korper (MA-I, 1930, pp. 95-99), which resulted in Section 33 Lineare
Abhdngigkeit von Grifien tber einem Schiefkdrper (MA-I, 1937, pp. 104-109).
Here he presented a system of axioms of a module over a (not necessarily com-
mutative) field. He proceeded in a similar way in Section 14, Vektorraume und
hyperkomplexe Systeme (MA-I, 1937, pp. 46-49), which is missing in the first
edition; he provided an axiomatic definition of an n-gliedriger Linearformen-
modul, or n-dimensionaler Vektorraum.

In the fourth section (Endliche und algebraische Kérpererweiterungen), the
results of the previous section are applied to field extensions. Distinction is
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made between finite and infinite extensions, the degree of a finite extension
(Koérpergrad) is introduced, and the multiplicativity formula for degrees (i.e.,
transitivity of finite extensions) is proved. Algebraic and transcendental
extensions are defined, it is proved that every simple algebraic extension is
finite, and every finite extension is algebraic. Another important result of this
section is the transitivity of algebraic extensions.

The fifth section (Galoissche Erweiterungen) presents the construction of
a splitting field of a polynomial (Zerfallungskérper, Wurzelkérper) and proves
that it is unique up to isomorphism. The derivative of a polynomial (Ableitung)
is introduced, and it is shown that a polynomial has a multiple root if and
only if the greatest common divisor of the polynomial and its derivative is
nontrivial. Irreducible polynomials are divided into separable and inseparable
ones, depending on whether they have only simple roots in their splitting fields.
It is demonstrated that irreducible polynomials over a field of characteristic
zero are always separable, and a characterization is provided for inseparable
polynomials over a field of characteristic p.

A Galois (normal) extension of a field ¥ is defined as an extension such that
every irreducible polynomial in X[z] with at least one root in the extension
splits in the extension.'* It is shown that a splitting field of a polynomial in
Y[z] is a Galois extension of the field ¥. The notion of a separable element
over ¥ is introduced (a root of a separable polynomial in X[z]). It is shown
that if o1, ..., 0, are algebraic elements over 3, where each o; is separable over
Y(o1,...,0i-1) and X(o1,...,0,) is a Galois extension of 3, then the number
of automorphisms of (o1, ..., 0,) which leaves the elements of ¥ fixed equals
the degree of the extension ¥ C X(o1,...,0,). If some of the o; are inseparable,
then the number of automorphisms is strictly smaller.

Moreover, the field X(o1,. .., 0,) is separable over ¥, i.e., each of its elements
is separable over X. It is remarked that an adjunction of finitely many separable
elements to ¥ gives rise to a separable extension of the field X.

The sixth section (Algebraisch abgeschlossene Kérper) contains the defini-
tion of an algebraically closed field. It is shown that if KX C Q is an algebraic
extension and every polynomial in K[z] splits into linear factors in Q[x], then
Q) is algebraically closed. The construction of an algebraically closed extension
of a coutable field is presented, and it is shown that the extension is unique up
to isomorphism. The end of the section mentions the possibility of a general
approach; we remark that in MA-I, p. 199, the theorem is stated without the
countability requirement in the following form:

Zu jedem Korper P gibt es einen algebraisch-abgeschlossenen algebraischen
Erweiterungskérper Q. Und zwar ist dieser Korper bis auf dquivalente
Erweiterungen eindeutig bestimmt: Je zwei algebraisch-abgeschlossene algeb-
raische Erweiterungen Q, Q' von P sind dquivalent.

14 In MA-I, p. 103, van der Waerden imposed the additional requirement that the
extension has to be an algebraic one.
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The proof is based on Zermelo’s Well-Ordering Theorem (see MA-I, p. 194),
which was published by Ernst Zermelo in 1904.1°

The seventh section (Transzendente Erweiterungskorper) introduces alge-
braic dependence and independence of elements over a field. By adjoining
n algebraically independent elements to a field K, one obtains the so-called
purely transcendental extension (rein transzendente FErweiterung), which is
isomorphic to the field K(zq,...,2,). Algebraically equivalent systems are
introduced; if they are algebraically independent, they have the same number
of elements.

Let K C € be an extension and M a subset of ). If there exist
n algebraically independent elements in M on which all remaining elements
of M are algebraically dependent, then we say that the transcendence degree
of M over K is n (Transzendenzgrad). If a field §2 has transcendence degree of n
over K, then it is possible to obtain {2 by adjoining n algebraically independent
elements to the field K, followed by adjunction of additional elements which
are algebraically dependent on the previous n elements; thus, by performing
first a purely transcendental extension, followed by an algebraic extension.

The conclusion of the section mentions the possibility of an infinite tran-
scendental extension by means of Zermelo’s Well-Ordering Theorem.

In van der Waerden’s lectures, the topic of this short section was mentioned
only very briefly. A much more detailed treatment is given in MA-I, pp. 203-
208.

We point out that in MA-I, an algebraically independent set is called
irreduzibel.  For the sake of comparison, we include the following more
comprehensible formulation from MA-I, p. 205:

Fine Menge 9 heifit irreduzibel (in bezug auf P), wenn kein Element von M
algebraisch von den tibrigen abhdngt.

Der Korper P(OM), der durch Adjunktion eines irreduziblen Systems I an P
entsteht, ist isomorph dem Koérper der rationalen Funktionen einer mit 9

gleichmdchtigen Menge X von Unbestimmten xz;, d. h. dem Quotientenkérper
des Polynombereichs P[X].

Man nennt jeden Korper P(OM), der durch Adjunktion eines irreduziblen
Systems MM an P entsteht, eine rein transzendente Erweiterung von P.

The eighth section (Algebraische Funktionen) introduces algebraic functions
of indeterminates (variables) z1,...,z, as the elements of an algebraic exten-
sion of the field K(z1,...,z,), where K is an infinite field. Let y1,...,ynm be
such algebraic functions, and let each y; be a root of an irreducible polynomial
h;(z) with coefficients from K (x1,...,2Zn,¥y1,...,%i—1). Then a regular system
(reguldres Argumentwertsystem) consists of values xf,...,z], from K or its

15 E. Zermelo: Beweis, daff jede Menge wohlgeordnet werden kann, Mathematische
Annalen 59(1904), pp. 514-516. See also E. Zermelo: Neuer Beweis fir die Mdglichkeit
einer Wohlordnung, ibid. 65(1908), pp. 107-128.
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algebraic extension for which the denominators of the coefficients of the poly-
nomials hq(2),...,h,(z) are nonzero. These values gives rise to the so-called
corresponding system of values 1, ...,y (zugehoriges Funktionswertsystem),
where each y; is a root of the polynomial h;(z), whose coefficients are evaluated
at o’ ! / / 16

1s > naylv" '7y171'

It is demonstrated that for a polynomial f € K[z1,...,Zn,91,-..,Ym], the
following two statements are equivalent:

(1) For each regular system zf,...,z, and its corresponding system of
values ¥,...,y.,, we have f(z},..., 2,91, ., yn,) = 0.

(2) f(‘rlv'-wxn:ylv--wym) =0.

The ninth section (Erweiterungen erster und zweiter Art) begins by recalling
some basic facts on the derivative of a polynomial, existence of multiple roots,
and the notions of a separable or inseparable polynomial (or its root). All these
facts were already presented in the fifth section of the second chapter.

The fifth section of the second chapter was also the starting point for the next
theorem: A finite extension K, = K(ay,...,a,) of a field K has in a suitable
extension as many isomorphisms which map it into conjugate fields as is the
degree of the extension K C K., provided that each a; is separable over K;_;.
In the opposite case, their number is strictly smaller.

Chapter III. Idealtheorie in Polynombereichen

In Section 18 (Der Hilbertsche Basissatz), it is proved that if each ideal in
aring R with identity has a finite basis (in R gilt der Basissatz), then the same
property is inherited by the ring R[z], and therefore also by K{[z1,za,...,zy],
where K is a field, as well as by F[x,za,...,2,], where FE is a principal ideal
domain.

We remark that commutative rings with identity in which each ideal has
a finite basis are sometimes called Noetherian rings, or Noetherian integral
domains if they have no zero divisors.!” Then Hilbert’s theorem may be
expressed as follows: If R is a Noetherian ring, then R[z] is a Noetherian
ring as well.

In Section 19 (Algebraische Mannigfaltigkeiten), an algebraic variety (mani-
fold) is defined to be the set of all common roots of a system of polynomials, or
of all polynomials belonging to an ideal in the integral domain K[z, xa, ..., ]
(Nullstelle eines Ideals); it is a subset of the Cartesian product K™. If we as-
sign to the given variety all its annihilating polynomials, we get the so-called
belonging ideal (zugehdérige Ideal).'®

16 See MA-II, Engl., 1950, p. 50: ... allowable system of argument values, ... system of
function values belonging to these arguments.

17 See e.g. the 5th edition of van der Waerden’s monograph (MA-II, 1967, p. 120).

18 If all elements of a variety M are roots of a polynomial f, or of all polynomials in an
ideal p, then it is said that f contains M, or p contains (enthdalt) M.
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To an intersection of ideals corresponds the union of the appropriate
varieties, while a sum of ideals corresponds to the intersection. A variety
is called indecomposable or irreducible (irreduzibel) if it cannot be obtained as
the union of two smaller varieties. It is proved that a variety is irreducible if
and only if the belonging ideal is a prime ideal.

It is also possible to study varieties in K", where K’ is an extension of the
original field K.

We remark that in MA-II, pp. 51-54, van der Waerden introduced varieties
in an algebraic extension of the field K; in his lectures, he mentioned this
possibility only in the next-to-last paragraph of Section 19.

Section 20 (Nulistellentheorie der Primideale) begins by proving the fol-
lowing theorem. If K is a field and K(&,...,&,) its extension, the system
of all polynomials f € K[xy,...,x,] satisfying f(&1,...,&,) = 0 is a prime
ideal p, the quotient ring Klz1,...,z,]/p is isomorphic to the integral do-
main K[¢q,...,&,], and thus the corresponding fraction fields are isomor-
phic. For each proper prime ideal p C Kl[z1,...,x,], there exists a field
K(&,...,&,) such that the prime ideal p consists of all polynomials f sat-

isfying f(&1,...,&,) =0.

The field K(&1,...,&,) is a so-called root field (Nullstellenkérper) of the
prime ideal p, and (&1, ...,&,) is a so-called generic root (allgemeine Nullstelle)
of the prime ideal p.

The elements &1, . . ., &, might be regarded as algebraic functions.'® For each
regular system, the corresponding system of values gives rise to an element of
the variety M corresponding to the ideal p.2® The algebraic functions &, ..., &,
provide a so-called parametric representation (Parameterdarstellung) of the
variety M.

The dimension (Dimension) of a variety M, or a prime ideal p, is the
transcendence degree (Transzendenzgrad) of the system &;,...,&, over K. It
is a pity that in his lectures, van der Waerden gave no illuminating example
such as in MA-I1.2!

The following theorems are proved:

A. If p’ C p are prime ideals having dimensions d’, d, then d’ > d, with
inequality replaced by equality if and only if p’ = p.

B. If a prime ideal p’ has dimension d’, then each of its roots has

19 Section 89 in MA-II begins with this assumption: Sind £1,...,&, algebraische
Funktionen von t1,...,tr, ... .

20 A more detailed and poignant description of the one-to-one correspondence between
the ideal p, variety M and generic root &1, ..., &y is described in MA-II, pp. 58-61, or in the
second edition of MA-II from 1940, pp. 52-59.

21 For example, in K[z1, 2, 3], we have the prime ideal (xlxg—xg, x2x3—zi’, x%—x%xz),
whose generic root is (3, t4, t°), see MA-II, p. 61.
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transcendence degree at most d’. If the dimension of p’ is zero, then
each root is algebraic and generic.

C. To an irreducible nonconstant polynomial p corresponds a prime ideal
of dimension (n—1).

Section 21 (Geometrische Deutung beliebiger Ideale) is based on the previous
results.

To each irreducible factor of a polynomial f corresponds an (n—1)-dimen-
sional variety or hypersurface (Hyperflache), which is counted as many times as
is the multiplicity of the given factor. To an ideal — as a system of polynomials
— corresponds a system of hypersurfaces, and to a prime ideal corresponds
a system of hypersurfaces containing the appropriate irreducible variety.

There follow nine examples of ideals in K[xz,y,z], where K is the field
of all complex numbers that are not prime ideals. Basic properties of the
corresponding hypersurfaces are given.

Using the so-called primary properties of a polynomial with respect to the
corresponding irreducible variety M, the notion of a primary ideal q in the
integral domain of polynomials is introduced: An ideal q is called primary if
there exists an irreducible variety M such that

1. if fg =0 (q) and g does not contain M, then f =0 (q),
2. if f =0 (q), then f contains M,

3. if g contains M, then g" = 0 (q) for a certain natural number h.

The irreducible variety M can be replaced by the belonging prime ideal p.
In this way, we arrive at the definition of a primary ideal q that makes sense
in a general ring:

L. if fg=0(q), g #Z0 (p), then f =0 (q),

2. if f =0 (q), then f =0 (p),
3. if g =0 (p), then g" =0 (q) for a certain natural number h.

An equivalent formulation is:
1. if fg€q,9¢p, then f €q,
2.9Cp,

3. if g € p, then ¢" € q for a certain natural number h.

The relation between a primary ideal and the corresponding prime ideal,
which complements property (3), is proved next:

A. The prime ideal corresponding to a primary ideal g is the set of all
elements f such that f € q for a certain natural number h.
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Chapter IV. Allgemeine Idealtheorie

Section 22 (Basissatz u. Teilerkettensatz) shows that the following four
statements are equivalent:2?

(1) Basissatz: Every ideal in the ring R has a finite basis.

(2) Teilerkettensatz: The ring R contains no infinite increasing chain of
ideals.

(3) Mazimalsatz: Every nonempty set of ideals in the ring R has a maximal
element.

(4) Prinzip der Teilerinduktion: If an ideal a in the ring R has a property F
whenever all ideals containing a as a proper subideal (including the
ideal R) have this property, then every ideal in R has property E.

Thus, in a Noetherian ring, all increasing chains of ideals are finite.

Furthermore, it is proved that if a ring R has these properties, then its
homomorphic images have them, too.

In this section of his lecture, when proving the equivalence of statements (1)
to (4), van der Waerden included two brief references to the axiom of choice.
A more detailed explanation can be found in MA-II, p. 26:

Nimlich: Auf Grund des Auswahlpostulats (§58)* denke man sich in jeder
nichtleeren Untermenge von o ein Element ausgezeichnet. Es sei nun a ein
Ideal, a1 das ausgezeichnete Element von a. ...

In the second edition of MA-II from 1940, the author was already more
succinct when proving the implication (2) = (1):

Es sei ndmlich a ein Ideal, ay irgend ein Element von a. ... (p. 21)

However, he attached the following footnote: Beim Beweise wird das
Auswahlpostulat benutzt. Vgl. dazu O. Teichmiller, Deutsche Mathematik
Bd. 4 (1939) S. 567.

Section 23 (Der Zerlegungssatz) begins by introducing the notion of a pri-
mary ideal (Primdrideal) in a general ring, independently of varieties, hyper-
surfaces, as well as prime ideals (see §21). An ideal q in a ring R is called
primary, if ab = 0 (q), a Z 0 (q) implies b = 0 (q) for a certain natural num-
ber h; the set of all elements ¢ € R satisfying ¢ = 0 (q) for a certain natural
number h makes up the corresponding prime ideal p.

The following theorems, which are linked in a natural way, are proved under
the assumption that the ring R satisfies the condition of finiteness of increasing
chains of ideals (Teilerkettensatz).

22 See MA-II, Engl., 1950, pp. 18-22: Basis Condition, Divisor Chain Condition, Maxi-
mal Condition, Principle of Divisor Induction.
23 See §58. Das Auswahlpostulat und der Wohlordnungssatz, MA-I, pp. 194-196.
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A. An ideal which is not primary is a nontrivial intersection of two ideals.
B. Every ideal is the intersection of finitely many primary ideals.

C. The intersection of finitely many primary ideals, which correspond to
the same prime ideal, is a primary ideal corresponding to the same
prime ideal.

D. Every ideal is an irredundant intersection (unverkirzbare Darstellung
als Durchschnitt) of primary ideals (none of them can be omitted) which
correspond to mutually distinct prime ideals. Such an expression is not
unique in general, as is demonstrated by an example.

Section 24 (Idealprodukte und -quotienten) introduces the product ab of two
ideals a, b by means of the relation ab = {Eaibi ;a; €a, b; € b}, describes the
properties of this operation, and its relation to previously defined operations
(sum and intersection of ideals).?* Tt is shown that if q is a primary ideal and if
the corresponding prime ideal p has a finite basis, then p* C q C p for a certain
natural number h.

Next, the quotient a : b of two ideals a, b is defined by means of the relation
a:b= {c; cb=0 (a)}, and its properties are studied.?> Among other things,
it is demonstrated that if q is a primary ideal and a # 0 (q), then q : a is
a primary ideal corresponding to the same prime ideal.

Finally, a reverse version of Theorem C from Section 23 is presented:

A. If an irredundant intersection of finitely many primary ideals gives
a primary ideal, then all these primary ideals correspond to the same
prime ideal.

In Section 25 ( Geometrische Anwendungen des Zerlegungssatzes), the results
of Section 23 are applied to ideals in integral domains of polynomials, and
carried over to corresponding varieties (see §19). The following result is stated
only very briefly:

A. Every algebraic variety can be represented as an irredundant union of
irreducible varieties. Such an expression is unique.

A more detailed and succinct explanation could have been included in the
lectures, possibly as follows: If an ideal a is expressed as an irredundant
intersection of primary ideals q;, to which correspond pairwise distinct prime
ideals p;, then the variety M corresponding to the ideal a is the union of
irreducible varieties M; corresponding to primary ideals q;. However, the
varieties M; also correspond to appropriate prime ideals p; (hence, they are
irreducible).26 We distinguish between isolated varieties (M; is not contained

24 The product of ideals appeared already in the first motivational section of the first
chapter.

25 Section 31 introduces the notation p~! =R : p.

26 This is not explicitly mentioned in the lectures. See MA-II, p. 65: Also ist die
Mannigfaltigkeit eines Primdrideals q # o irreduzibel und gleich der Mannigfaltigkeit des
zugehorigen Primideals.
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in any other M;) and imbedded ones (the remaining ones). Imbedded varieties
are not considered in the above-mentioned expression of the variety M.

Furthermore, the following results are proved:

B. Hilbertsche Nullstellensatz: If a polynomial f vanishes for all roots of
an ideal a, then f* =0 (a) for a certain h, which depends only on a.

C. If polynomials fi,..., f, vanish for all roots of an ideal a, then every
product of h factors f; is contained in a.

Section 26 (Die Eindeutigkeitssdtze) is a direct continuation of Section 23.
Van der Waerden included the following results:

A. Every two representations of an ideal a as irredundant intersections
of primary ideals, i.e., a = [q1,...,q,] = [q],...,q).], where all q; as
well as all q;- correspond to pairwise distinct prime ideals, contain the
same number of primary ideals, i.e., » = 7/, to which correspond (up to
ordering) the same prime ideals.

An isolated primary ideal in the decomposition of an ideal a is an ideal g;
whose corresponding prime ideal p; does not contain any other prime ideal p;.
An isolated component is an ideal [q1, . .., q,] such that none of the correspond-
ing prime ideals pi,...,p, contains none of the corresponding prime ideals
Prnt1,---,Ps. The following theorem is proved:

B. Every isolated component [qi,...,qy] of the ideal a is uniquely deter-
mined by the corresponding prime ideals py,...,p,.

Section 27 (Theorie der teilerfremden Ideale) investigates relatively prime
ideals a, b in a ring R with identity, that is, ideals a, b such that (a,b) = R;
this means there exists a representation 1 = a + b, where a € a, b € b. It is
proved that:

A If (a,b) =R, (a,¢) =R, then (a,bc) =R and (a,bN¢c)=TR.

B. If (a,b) =R, then anb = ab. Ifay,...,a, are pairwise relatively prime
ideals, then [ay,...,a,] = []a;.%"

C. If q1, g2 are primary ideals and pj, po the corresponding prime ideals,
then (p1,p2) =R implies (q1,92) = R.

D. If (a,b) = R, then the system of congruences ¢ = « (a), £ = 3 (b)
has a solution. If aj,...,qa, are pairwise relatively prime ideals, then

the system of congruences ¢ = a; (a;) has a solution.?®
E. If aj,...,a, are pairwise relatively prime ideals and if we let
b, =[a1,...,0i-1,0i41,...,0.], c¢=][a,...,a.],

27 We recall the notation: [a,b] = an b.
28 This is the Chinese Remainder Theorem. Van der Waerden did not mention the name,
not even in MA-II, p. 46.
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then R = (by,...,b,), i.e., each element of the ring R can be expressed
in the form ) b;, where b; € b;, and this representation is unique
modulo ¢. If the representation is unique, i.e., if ¢ = 0, we speak about
a direct sum. (One can proceed to a direct sum by replacing R with
the quotient ring R /c.)

In Section 28 (Der Vielfachenkettensatz), two conditions dealing with chains
of ideals in a ring R are considered.

(1) Uneingeschrankte Vielfachenkettensatz: Every descending chain of
ideals in the ring R is finite.

(2) Eingeschrankte Vielfachenkettensatz: Every descending chain of ideals
in the ring R that is bounded from below by the nonzero ideal is finite.

The following results are proved:

A. A ring without zero divisors that fulfills condition (1) is a field.

B. Condition (2) holds in R if and only if condition (1) holds in R/a for
each nonzero ideal a in the ring R.

C. If condition (2) holds in the ring R, then:
— R/ais a field for each nonzero prime ideal a in R.
— Each nonzero prime ideal in the ring R is maximal.
— Two nonzero prime ideals in the ring R are relatively prime.

D. Let R be a ring with identity which contains no infinite increasing chain
of ideals ( Teilerkettensatz). If an ideal a is expressed as the intersection
of primary ideals in the form a = [qi,...,q,] (according to Section
23), then the ideals q; are uniquely determined. Every two primary
ideals corresponding to distinct proper prime ideals are relatively prime.
Thus, it is possible to write a =[] g,.

Chapter V. Ganze algebraische Grdssen

Section 29 (Moduln in bezug auf einen Ring) contains an axiomatic definition
of an R-module over a ring R, which need not have an identity. (We recall
that in a similar manner, the third section of the second chapter introduced
the notion of a vector space over a field, which was however later used only for
field extensions.) If N is a submodule of a module M, then M is referred
to as a divisor of the module N, and N is a multiple of the module M;
this fact is denoted by N = 0 (M). We remark that the notion of a left
R-module is introduced in MA-II, pp. 86-87 (in general, the ring R need not
be commutative).

A finite module (endlicher R-Modul) is a module generated by finitely
many elements. For modules, the condition of finiteness of increasing chains of
submodules ( Teilerkettensatz) is considered; it is equivalent to the condition of
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finiteness of all submodules (Basissatz).?? Taking into account that the ring R
is an R-module, the condition of finiteness of increasing chains of submodules
in the R-module R reduces to the condition of finiteness of increasing chains
of ideals in the ring R.

A submodule N of a module M is called a divisor of an ideal ¢ in a ring R,
if cM =0 (N).

The important results of this section are as follows:3°

A. If the condition of finiteness of increasing chains of ideals (Teiler-
kettensatz) holds in a ring R and if M is a finite R-module, then
the condition of finiteness of increasing chains of submodules (Teiler-
kettensatz) holds in the R-module M, and therefore every submodule
is finite.

B. If the condition of finiteness of bounded descending chains of ideals
(Eingeschrankte Vielfachenkettensatz) holds in a ring R and if M
is a finite R-module, then the condition of finiteness of bounded
descending chains of submodules (Eingeschrankte Vielfachenkettensatz)
holds in the R-module M.

C. If the condition of finiteness of descending chains of ideals containing
a nonzero ideal ¢ holds in a ring R and if M is a finite R-module, then
the condition holds for submodules of the R-module M that are divisors
of the ideal c.

We remark that the second edition of MA-I from 1937 included a new
section Vektorrdume und hyperkomplexe Systeme (pp. 46-49) containing an
axiomatic definition of an n-dimensional left R-module over a (not necessarily
commutative) ring R with identity (n-dimensinaler Vektorraum, n-gliedriger
Linearformenmodul).

Section 30 ( Theorie der ganzen Gréssen) introduces the notion of an integral
quantity or integral algebraic quantity (ganz, ganz algebraisch) with respect to
a ring. Given a pair of rings R C S, an element a € S is called an integral
quantity over R if the R-module (R,a,a? a®,...) has a finite basis. This
definition generalizes the notion of an algebraic element over a field (see Section
2 in the second chapter).

It is shown that the following statements hold in a ring with identity:

A. Sums and products of integral quantities are integral quantities.

B. A root of a polynomial a”+ba" =1+ - -+b;,, whose coefficients by, ..., by,
are integral quantities, is an integral quantity.

C. If all elements of the ring S are integral quantities over R and an
element ¢ is an integral quantity over S, then a is an integral quantity
over R.

29 Lecture participants were referred to the analogous result in Section 22. For a proof
see MA-II, p. 87.

30 The proof of theorem A is carried out for a ring R with identity, while the proofs of
theorems B and C, which are similar, are omitted.
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An integral domain R is called integrally closed (ganz abgeschlossen) in its
fraction field P if every element a € P which is an integral quantity over R is
contained in R.

D. If the unique factorization holds in R, then R is integrally closed in P.

Suppose an integral domain R has the following properties:

1. Teilerkettensatz: each increasing chain of ideals is finite.

II. Ganz-abgeschlossen im Quotientenkérper: it is integrally closed in its
fraction field P.

If P(s) is a simple algebraic separable extension of the integral domain R and
S is a ring satisfying R C § C P(s), then the following statements hold:
E. The R-module S is finite if and only if all elements of S are integral
quantities over R.

F. If the R-module S is finite, then increasing chains of R-modules in S
are finite (Teilerkettensatz), and increasing chains of S-modules (i.e.,
ideals) are finite as well. See (A), § 29.

G. If all descending chains of ideals in R containing a nonzero ideal ¢ are
finite, then all descending chains of submodules in S that divide the
ideal ¢ are finite. See (C), § 29.

In Section 31 (Idealtheorie der ganz-abgeschlossenen Ringe), integral do-
mains having the following properties are studied:
1. Teilerkettensatz: each increasing chain of ideals is finite.

II. Fingeschrdnkte Vielfachenkettensatz: each descending chain of ideals
which is bounded from below by a nonzero ideal is finite.3!

III. Ganz-abgeschlossen im Quotientenkdrper: it is integrally closed in its
fraction field.

Taking into account earlier results (see Sections 23 and 28), each ideal in
such an integral domain is the product of relatively prime primary ideals.
The following statements are proved:

A. Every primary ideal is the power of a prime ideal.
B. Every ideal is the product of powers of prime ideals, and this represen-
tation is unique.

A reverse statement is proved in the end of this section.

C. If R is an integral domain with identity where unique factorization into
prime ideals holds, then the ring R is integrally closed in its fraction
field.

A final scheme presents several basic types of rings with typical examples and
crucial results dealing with ideals.

31 We remark that at this point, MA-II, p. 97, requires each nonzero prime ideal to be
a maximal ideal; this fact is a consequence of the condition II (see §28).



204
Final remarks

Transcription. Vojtéch Jarnik was quite accurate when copying van der
Waerden’s lectures. In our transcription of his records, we have corrected
only few language errors (e.g., komutativ, Manigfaltigkeit). More significant
changes that we have performed (corrections, insertions) are pointed out in
the footnotes (e.g., a substitution of the word Ideal by Integral). Otherwise,
Jarnik’s lecture notes were kept in their original form — not even minor errors,
e.g. in the articles, were corrected. It seems that Vojtéch Jarnik never returned
to his notes, since he did not correct even obvious and eye-catching errors (e.g.,
Ideal — Integral).

In Jarnik’s notes, several theorems are highlighted on their left-hand sides,
while others are not. In our transcription, the passages highlighted by Jarnik
are marked by a double line.

One problem we had to face during the transcription process is the division
of individual lectures into paragraphs, because the structure in Jarnik’s records
(in small size notebooks) is not always apparent; thus, we have tried to follow
the logical structure of the text.

The transcription of notation posed another problem. From Jarnik’s records,
it is not obvious what kind of alphabet did van den Waerden use to denote sets,
groups, rings, fields, ideals, etc., and whether he kept the same style throughout
the lecture course. In our transcription, we have strived for consistency
whenever possible.

Terminology and notation. Some terms used by van der Waerden
throughout his lectures never appeared in his monograph Moderne Algebra
(e.g., vom selben Typus), while other were modified (e.g., Einheit, Einheits-
element, Meromorphismus).

As far as terminology is concerned, van der Waerden was not always con-
sistent in his lectures. For example, he introduced the term Integrititsbereich
for a ring without zero divisors, but he kept using the original term Ring ohne
Nullteiler quite as often. We have already pointed out some terminological cu-
riosities and inaccuracies in the previous text, as well as in the footnotes to the
transcription of Jarnik’s notes. The same remarks apply to notation. However,
such small inaccuracies in terminology and notation are inevitably present in
every lecture, and especially in its transcription.

To a certain extent, van der Waerden used set-theoretic terminology and
notation. Although he used the term Menge in the axiomatic definitions of
a group and a ring, he mostly avoided it in the subsequent text. A remark in
the beginning of Section 4 of the first chapter makes it clear that set-theoretic
notation (€, C, C, etc.) was still not quite common in the year 1927. A further
evidence is provided by the fact that van der Waerden did not use the currently
common symbol K" for the n-ary Cartesian power of a field K.
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Spirit of the lecture. Van der Waerden'’s lecture Allgemeine Idealtheorie
was probably rather demanding for the audience because of its modern scope
and high abstractness. Including a larger number of concrete examples would
have surely increased its lucidity.

It seems clear that van der Waerden aimed to proceed in an effective way,
without unnecessary detours, and omitted notions and facts whenever he was
sure they are not needed for the remaining lectures. Thus, the section on groups
completely lacks the fundamental notion of a normal subgroup.

In our opinion, some parts of the course would have benefited from a more
detailed exposition (e.g., Sections 19, 20, 21, 25).32 In such cases, we have
provided footnotes with references (emphasized more than elsewhere) to the
corresponding sections of van der Waerden’s monograph. On the other hand,
there are certain parts where van der Waerden somewhat redundantly returned
to the already covered material (see e.g. the conclusion of Section 6a of the first
chapter, or Section 9 of the second chapter).

Comparison of van der Waerden’s lectures and his monograph. It is
interesting to compare the choice of topics, their ordering and elaboration in van
der Waerden'’s lectures in the year 1927/1928 with his two-volume monograph
Moderne Algebra from the years 1930 and 1931. At this point, we emphasize
that certain parts of the lectures are missing in the monograph.

The following table provides a summary of the relations between the sections
of van der Waerden’s lectures and the corresponding sections of his two-volume
monograph Moderne Algebra.

§ [Chapter I]

1. ——

2 MA-I, pp. 15-26, 29-30

3 MA-I, pp. 36-45

4. MA-I, pp. 46-49

5 MA-I, pp. 49-53

6 MA-I, pp. 53-60

6a. MA-I, pp. 52-53, 59-60, 69-70
7. MA-I, pp. 60-67, 73-76

32 Tt is possible that van der Waerden had the feeling of time pressure.
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