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Abstract

We discuss two papers of Vojtéch Jarnik from 1930 and 1934 which are devoted to the
Minimal Spanning Tree Problem and the Euclidean Steiner Tree Problem. These papers are
historical milestones in combinatorial optimization. (©) 2001 Elsevier Science B.V. All rights
reserved.
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0. Introduction

Jarnik’s status as one of the foremost mathematicians of his time is well known,
see e.g. [28], [30]. With respect to his lasting achievements in number theory and
analysis the aim of this note may seem to be very modest: we want to discuss two
lesser known papers [1,2] which belong to an area different from the major part of
Jarnik’s ceuvre, namely to the area which much later became known as combinatorial
or discrete optimization. These are the only papers by Jarnik related to such problems
and in fact the only papers which do not belong to the main line of his work (i.e.
number theory, analysis and its foundations). Perhaps this would only be enough to
justify a shorter note. But there is much more here than meets the eye. Papers [1,2]
were overlooked for a long time, and, as we shall demonstrate, they are even now
little known. But they are important and, as we wish to demonstrate, Jarnik deserves
much more credit for these truly pioneering works. In both of these papers Jarnik was
lucky to have dealt with problems which have since proved to be cornerstone pieces
of Combinatorial Optimization developed in full in the fifties and sixties in the context
of Linear Programmming and Computer Science.

" This paper is a modified version of a paper included in: B. Novak (Ed.), Life and Work of Vojtéch Jarnik,
Prometheus, Praha, 1999, pp. 37-54.
* Corresponding author.
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_ PRACE
MORAVSKE PRIRODOVEDECKE SPOLECNOSTI
SVAZEK VI., SPIS 4. 1930 SIGNATURA: F 50

BRNO, CESKOSLOVENSKO.

ACTA SOCIETATIS SCIENTIARUM NATURALIUM MORAVICAE
TOMUS VL. FASCICULUS 4; SIONATURA: F 541 BRNO, CECHOSLOVAKIA: 1930,

VOJTECH JARNIK:

O jistém problému minimalnim.
(Z dopisu panu 0. BORUVKOVL)

Zajimavou otdzku, kterou jste PeSil ve své prici »O jistém
prohiému minimdlnime (Price moravské pfirndovédecké spo-
leCnosti. svazek 111, spis 3), lze Fesiti jesté jinym a — juk se mi zdi
—- jednodusSim zpasobem.

Dovoluji si sdéliti Vam v nisledujicim své FeSeni.

Budiz dino n (= 2) prvki. jez oznadim &isly 1,2.....n. Z t&chto
prvki sestroifm § n(n —1) dvojic li. k], kdeZ i | k; ik =12....n:
dvojici |k, i] povaZuji za totoinou s li,kl. Kazdé dvojici li.k| budiz
pFifazeno cislo kladné r, , (7, 1, ). Tato Cislar |, (1 Si<k=n)
v poctu & n(n—1) budte navzijem rizna.

Mnozstvi vsech dvoijic li. k1 ozna¢me M. Jsou-li p.q dvé pFirozeni
&sla =n, p | q. nazvu kaZdou skupinu dvojic z M tvaru

() p.oc)le,clleucl . le,_pcllc,al
fetézcem (p.q). Také jedinou dvojici [p, gl nazyvim Fetdzeem
(p. q).

Cistedné mnozstvi H z mnosstvi M nazva kompletni Sastl
(¢nacka k&), jestlize ke kaZdé dvojici pFirozenych Cisel p.y, jeZ jsou
=n a od sebe razmi, existwe v H tetézec (v, @) (L. j. Fetézec tvaru (1),
jeho? viechny dvojice patif k H). Existuji k& nebot M samo je k&.

Je-li

(LR B (% W AP | PR 9

néjaké Sistecné mnozstvl K z mnozstvi M.') oznadme

R (K).

t

N
PR
i—

ok

')V (2) necht je ka2dd dvojice z K napsina jen jednou.

Fig. 1.

1. On a minimal problem

Jarnik’s paper [1] is a very short one and we can include a translation of most of it
(the original two pages are given in Figs. 1 and 2).

One should see the original and look at a translation of [1]. The problem is stated
and treated with a rigour and clarity which is missing in many later additions to this
area. So we consider this as a good opportunity to present parts of Jarnik’s paper
in full (we include a translation of about two thirds of [1]). We found no mistakes
or even misprints in [1]! The paper [1] also has an interesting form: it is written in
the “first person”-form and the reason for this is explained by its subtitle. We have
tried to preserve Jarnik’s style as closely as possible. In particular, all symbols and
notations are preserved. While a longer discussion will follow, we have included a few
comments within the translation (we use square brackets [ ] for these; the translation
itself is in italics).
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55 VOTIECH JARNIK

Jestlize pro néjakou kompletni &ist K ma K (K) hodnotu mensi
nebo rovnou ne% pro kteroukoliv jinou kompletni &ist, nazva K mi-
nimilni kompletni Cdsti mnoZstvi M (znacka mke).

Jezto existuje aspofi jedna k& a pouze konetny polet ki, existuje
patrné aspodt jedna mmké.

Ukol, ktery jste fedil ve své praci. lze pak formulovati takto:

Uhkol: Dokdzati, ze existuje jen jedna mké a udatl pfedpis pro
ieji konstrukci.

1. pomocnd vite. Budi a, ptirozené éislo = n;

3 Ty gy = M Tq
(k: 1,2.4.4.n)
k¥ a,
Polom kaZdd mké. obsahuje dvojicl [a,, a,).

Dikaz. K budiz k. jex neobsahuje la, a.l Potom ohsahuje K
Fetézec ,

(@ ad) =l b lec el o lepal
kdeZ ¢, Fa. Mizeme phedpokiddati, Ze la,,c,] vystupuie v tomto
tetézci jen jednou -- jinak bychom prosté mohli vynechat vsechny
dvoiice. je# stoil v (a,,a,) pred poslednim vystoupenim dvojice la,. ¢,
Budiz K' mnozstvi dvoiic. jez vznikne z K, vynechim-li v ném [a,, ¢,]
a pliddm la, a.).

Jeli (b, @) libovolny Fetézec z K. dostanu z ndho fetézec (. )
v K, nahradim-li v (p, @) dvoiici la,, ¢,] po kazdé skupinou
[CIPET A FITCS A (RN PR (RN &
Tedy K je k¢, ale jeito vzhledem k (3) je R (K) <R (K). neni K
mk¢, jak bylo dokazati.

Zavedme jesté tyto definice:
Budiz
K=kl lis ko Dkl
Casteéné mnozstyvi z mnoZstvi M. Indexem mnoistvi K nasvu
kaZdé prirozené Cislo, jek se rovnd ndkterému z &isel i, k.. i k.,
Lk
Casteéné mnozstvi K z mnogstvi M nasvu souvislon Casti
jestlize ke dvéma libovolnym navzijem raznym indexum p. g nnoi-

Fig. 2.

Vojtéch Jarnik
On a certain minimal problem
(From a letter to O.Boruvka)

In your article ‘On a certain minimal problem’ (which appeared in ‘ Prace moravské
prirodovédecké spolecnosti’, vol. III, No. 3) you solved an interesting problem. It
seems to me that there is a simpler solution of this problem. Allow me to state my
solution here.

[Thus Jarnik decided to use the same title for his paper as Boruvka [3]. Boruvka was
the first to solve the Minimal Spanning Tree problem, see [20] and comments below.]

Let n elements be given, I denote them as numbers 1,2,... n. From these elements
I form in(n — 1) pairs [i,k] where i # k, i,k =1,2,....n. I consider the pair [k,i]
identical with the pair [i,k]. To every pair [i,k] let there be associated a positive
number riy (rix =ry;). Let these numbers r;(1<i < k<n) be pairwise different.

[It is interesting to note that Jarnik denotes the unordered pair by [i,k], which is
standard usage in graph theory today. This is also a departure from Boruvka’s paper
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[3] where the numbers r;; are denoted by [i,k]. The fact that the numbers rix —
i.e. in later terminology weights of edges — are supposed to be distinct is neither
discussed nor justified. It seems that both Boruvka and Jarnik were aware — as classical
mathematicians — of “perturbation arguments”. Certainly applications that they had in
mind clearly suggest this, see [5,6] and the discussion of the concluding remarks of
Jarnik’s paper below.]

We denote by M the set of all pairs [i,k). For two distinct natural numbers p,q<n,
I call a chain (p,q) any set of pairs from M of the following form:

[p,cil e, 2.5 [es—1, 661 [cs, g (1)
Also, a single pair [p,q] I call a chain (p,q).

[Even today the terminology is not unique — a set of the form (1) is called a path,
trail, walk; Jarnik considers (1) as a family — repetitions are allowed.]

A subset H of M I call a complete subset (k¢ in short), if for any pair of distinct
natural numbers p,q<n there exists a chain (p,q) in H (i.e. a chain of form (1) all
of whose pairs belong to H). There are k¢; M itself is a k¢.

[Jarnik’s lucid Czech mathematical style became famous and standard; he may
well be a bit playful here: k¢ is close to KE — an abbreviation of Czech currency
(‘koruna Ceska’).]

If
Lkl [, k2l - -, [, Ke) (2)
is a subset K of M, we put
t
> rig =R(K).

j=1
If for a complete set K the value R(K) is smaller than or equal to the values for all
other complete sets, then I call K a minimal complete set in M (symbolically mk¢).
As there exists at least one k¢ and there are only finitely many k¢, there exists at
least one mké. The problem, which you [i.e. O. Boruvka] solved in your paper, can
be formulated as follows:

Problem: Prove that there exists a unique mk¢é and give a formula [i.e. an algorithm]
for its construction.

[Of course mk¢ is the unique minimum spanning tree. There is no mention of trees
in this paper.]
First Lemma: Let a, be a natural number <n with

Fara, =min{ra x; k=1,2,....n, k # ar}. 3)
Then every mk¢ contains a pair [ay,a:].

[Summary of proof: The First Lemma is proved by a textbook argument: if K is
a k¢ not containing [a;,a;], then consider a chain (ay,a;) = [ai,¢1],[c1,¢2);- .-, [cr,a2]
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and form a new set K’ by removing [ay,c;] from K while adding [a,a;]. Then K’ is
again a k¢ and R(K’') < R(K).]

We introduce the following: Let K = [ii, ki1, [i2,k2),...,[ir, k] be a subset of M.
An index of K I call any natural number from among i\, ky,ir, k,...i,,k,. A subset K
of M I call a connected subset if for any two distinct indices p,q of K it is possible
to find in K a chain (p,q) (i.e. a chain (p,q) consisting of pairs from K only).

2. Lemma: Let S be a connected subset; let hy,hy,...,hs be all the indices of S,
let s < n.

Let 1y, 15,...,1, be numbers from 1,2,...,n which fail to be indices of S, let
Tab = min {r;,hll; i=12,...,s, Jj= 1,2,...,[}. (4)

Then I claim.: every mkc¢ containing S contains [a,b] as well.

[We do not translate the proof but just summarize it. The Second Lemma is proved
again by a textbook argument: let K be a k¢ containing S and not containing [a,b]. Let
a be an index of S. Then there exists in K a chain (a,b)=[c,,c1],[c1,¢2];s- -5 [Cus Cor1]
with ¢, =a, c,x1 = b, v=1. Let ¢, be the last of the numbers ¢,,c;,...,c, which is
an index of S. Then define subset K’ by removing [c,,cw+1] and adding [a,b]. K’ is
again a k¢. Here Jarnik considers two cases: ¢, = a and c, # a. But R(K’) < R(K)
and thus K fails to be an mkc¢.

Jarnik does not mention that Lemma 1 is a special case of Lemma 2. Indeed, in
his setting Lemma 1 is not a special case of Lemma 2 as a single vertex does not
correspond to the index set of any £¢.]

Let us now introduce a certain subset J of M [J for Jarnik?] as follows:

De finition of set J:

J =lai,a2).[as,a4], ..., [az—3,a2,—2] where ay,a,,... are defined as follows:

First Step:

Choose as a, any of the elements 1,2,...,n. Let a, be defined by the relation
Fag =Minrg; (1=1,2,...,n;1 # ay)

kth Step:

Having defined

ay,az,ai,...,ax-3,a%-2 (2<k <n) (&)

we define ay_,ax by ra,_,a, =minr;; where i ranges over all the numbers ay,a;,
...,axy—2 and j ranges over all the remaining numbers from 1,2,...,n. Moreover, let
axy.—1 be one of the numbers in (5) such that ay. is not among the numbers in (5).
It is evident that in this procedure exactly k of the numbers in (S) are different, so
that for k < n the kth step can be performed.

The solution to our problem is then provided by the following

Proposition

1. J is an mkc.
2. There is no other mk¢.
3. J consists of exactly n — 1 pairs.
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[Summary of Proof: The proof is by induction on n. Jarnik defines J, = [ay,a;]
by the First Lemma. Given a connected set J; with k£ indices Jarnik uses the Sec-
ond Lemma to define Ji,. He proves carefully that J;,; is connected. He then puts
J=J,]

Remark:

The following is a visual interpretation of the solved problem:

We are given n balls numbered 1,2,...,n which are joined pairwise by %n(n -1)
sticks. Let r, be the mass of the stick joining balls a and b. Let the sticks be bent
if necessary so that they do not touch. From this system we want to remove some
of the sticks so that the n balls hold together and the mass of the remaining sticks
is as small as possible.

In Prague, Feb. 12, 1929.

[It is interesting to note how tempting it was for both Boruvka and Jarnik to for-
mulate an application of the problem. Boruvka was led to the problem by his friends
from the Electric Power Company of Western Moravia in Brno, cf. [5], and indeed pub-
lished a note in an electrotechnical journal [4]. Jarnik added a geometric interpretation
— in R3.]

2. Jarnik’s paper in a historical perspective

A noncombinatorialist may wonder why we have discussed Jarnik’s paper [1] in
such detail, and why it is worth translating. The reason is very simple as the following
problem is perhaps the central problem of combinatorial optimization and a cradle of
many key notions:

Minimal spanning tree (MST). Given a set V" and a weight function w: (}) — R,
find a tree (V,E) such that ), .. w(e) is minimal.

MST was first solved by Boruvka [3] and [4]. Jarnik quickly realized the novelty
of this problem and immediately contributed his elegant solution [1]. Boruvka never
returned to this problem although he lectured about his solution in Paris [5]. Other early
contributions were illustrious too: by G. Choquet [7], by K. Florek, J. Lukasiewicz,
J. Perkal, H. Steinhaus, S. Zubrzycki [9]. And after 1955 progress has been very fast
and a number of general procedures and special algorithms were formulated. A rich
spectrum of these results and a history of the problem is described in [20], [26] and
[27]. Let us just note that O. Boruvka is quoted by both standard early references: J.
Kruskal [23] and R. C. Prim [29]. Vojtéch Jarnik’s article only began to be quoted
later, see e.g. K. Culik, V. Dolezal, M. Fiedler [17], despite the fact that his treatment
was very precise (like all his mathematical work) and modern. This should be clear
from the above translation. His algorithm is identical with Prim’s algorithm [29] and
his argument is a standard proving argument even now after 65 years. Perhaps it is
time to do justice to this elegant procedure and call it the Jarnik—Prim algorithm. Jarnik
returned to this topic only once more in his second paper [2], which we will discuss
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below. We believe that the geometrical interpretation given in the final lines of [1]
provided his definitely nonplanar motivation for [2].

3. On minimal graphs containing n given points

We proceed as in Section 1: First we provide a translation of the key parts of the
Jarnik—Kossler paper [2]. We have decided (mainly because of space limitations) to
translate only the first two sections of this paper. They are devoted to general properties
of “Steiner trees”. It appears that virtually all general properties of Steiner trees have
already been explicitly stated in [2]. Even today they are attributed to others and even
today one can find in [2] arguments superior to those in common use (such as the local
planarity of k-dimensional Steiner trees; cf. Theorem 3(c) of [2] and p. 77 of [21]).
We hope to return to this paper in the near future and give a critical version of the
whole paper [2]. Below we give a brief discussion of its context and later development.
Let us note that what follows may be the first translation of the essential parts of [2].
Such a translation is badly needed. Even the recent papers and books (such as [21])
are not aware of what a rich source of ideas is provided by [2]. Some of the main
misquotations will be discussed below.

[2] is a paper with 13 pages, numbered 223-235. We include a translation of
p. 223-229. The first and last pages are reproduced in Figs. 3 and 4.

On minimal graphs containing n given points
Vojtéch Jarnik and Milos Kossler
(received Feb. 10, 1934)

In this paper we consider the following problem: given n points C,,Cs,..., C,, we
want to find a connected set consisting of finitely many segments, which contains
the points Cy,C,,...,C,, so that ‘the total length’ of this set is the least possible (of
course for n=2 such a “shortest connection” is a line segment joining points C, and
C,). In Section 2 we prove the existence of such a ‘minimal graph’, and in Section
3 we consider the case when the points C,,C,,...,C, form the vertices of a regular
n-gon.

The nature of this article is completely elementary. Also some of the steps in the
proof are routinely known and thus we are brief there.

[The reader should bear in mind that this paper was published before e.g. Konig’s
book [11] and no references are given.]

Let R, (k=1) be the k-dimensional Euclidean space.
[So already this first line contradicts the common belief that, while Jarnik—Kossler
pioneered the Euclidean Steiner problem for the plane, the k-dimensional case was
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CASOPIS PRO PESTOVANI MATEMATIKY A FYSIKY

CAST MATEMATICKA

O minimalnich grafech, obsahujicich n danych
odu.
Vojiich Jarnlk & Milod Kdssler.
(Dodlo 10. tnors 1934.)

V tomto tlénku zabyvime se touto alohou: je déno m boda

C,, Cy, ..., Ca; hleddme souvislé mnoistvi, slotené t koneEného

podtu usedek A obsahujicf body Cy, Cy, . . ., Ca tak, aby ,,celkové

délka* tohoto mnoZstv{ byln co ne)men!( (pm noa=2 jnne oviem

wuw ,nejkratéf upo)mc( uuékn spo)u)tul body 0, Cy). V § 2 do-

tho grafu*, v § 3 zabjvéme

so ptipadom, kdy body C, Cy ..., Ca tvoﬂ vrcholy pravidelného
#-Ghelnfka.

Charakter tohoto &lénku je zcela elementérn{; mimo to ndkteré
body dikazu jsou zoola b&Zné avahy a proto je providime struénd.

§1

Budif Re(k > 1) k V4 lid rostor. N
bodové mnoistvi @ ¢ Rinazveme gruhm v x. mi-li tyto vluzno-u

1. @ je souvislé; 2. bud ae @ skléds 7. jediného bodu nebo je G
souttem kone&ného pobm uzaviengch useéek.!) Je-li P & 7 a existu-
je-li privé n (nikoliv viuk n + 1) Geedek, Jledicich v grafu G, majfcich
P za bod konoovy, z nichi Zidné dvé nemaji kromé bodu ¥ spo-
Jongch bodu, budeme Hkati, £o P jo bodem n-tého tdu grafu G.7)

1) Oxnaleni: A (B maki: A jo atl mnolstvi B; A ¢ B_wnadi: 4 )0
prvkem mnotstvi B; A . B je pranik mookstvi A, B. Znakem MN snafime
usavieaou deodku (¢, }. vBotnd koncovych bodd) o konoovyoh bodech AL, N;
MN anati polopapresk o koncovérm bods M, jant obsabujo bod N (vetub
bodu M). Znaky o(MN), (MN),, o(MN), mai mnolstvi viech bodd Gwes-
ky M » vyloudentin bodu M, rep. budu N, rep. obou bodd A, N & pod.
Uhel a dvou isedok /"M, PN, majicich jeding spoletny bod P, béfeme vidy
v intervalu 0 < a § x. Znak MN bude ndkdy mnaditi 84 orientavanou

UseSku (zutitetul bod X, konoovy N); nskidy bude MN mnediti Wi détku
o My nedorosuwmdni neul theba se obaveti.
V grafu G existujo bod nultého Hdu tohdy a jon tehdy, jo-li @ jedno-
hudovy gral.
Casspls pre platevial matemstixy & fyuiky. Rotafk 63 16

Fig. 3.

considered only by Gilbert and Pollack in [19]. In fact the whole paper [2] is written
for £ dimensions.]

A nonempty point set G<Ry is called a graph in R, if it has the following
properties:

1. G is connected,
2. either G contains one point only or G is a sum of finitely many closed segments.

[From now on we use the word union instead of sum. Now follows a footnote where
Jamik in his characteristic style clearly defines all used symbols starting with 4 € B
and ending with o(MN), (MN)y, o(MN), for half-open and open line segments; MN
denotes a line segment, an oriented line segment or the length of this segment; ‘one
does not have to be afraid of a misunderstanding’.]

If P € G and there exist exactly n (and not n+ 1) segments of G for which P
is an end-vertex and which do not have common points except for P, then we say
that P is a point of nth order [or degree] of G. The points of order one are called
endpoints, points of higher order are called branching points (in every graph there
are finitely many of both types of points). If P is a point of nth order in G, then we
put V(P)=n -2, and we further put V(G)=>_V(P). V(P) is called the weight of
point P.
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238

viak bod M, rfejmé nele2f v A(I"), jest A(I") % A(I), jak bylo
dokézati. Pipad B) je symetricky s piipadem A).

Obr. 8. Obr. 9.

Z tvrzeni 9 plyne ihned tvrzenf 8: Existuje-li typicky graf I,
lyne = tvrzeni 9 existence posloupnosti typickych grafa I,
w s, . .. takové, Ze pro § < 7 jest A(I7) pravou Gasti budového
mnahtvi A(F) tedy Iy & I pro s <1, jak bylo dokézati.
.
8ur les graphes minima, contenant n points donnés.
(Extroit de l'article précédent.)

Soient C,, Cy, .. ., C. 7 points d un espace euclidien. Conll
dérons tous les aux

suivantes: 1. G contient les points (), C. 1 Ca. 2. G vst lu s5omme
d’un nombre fini de segments tels que deux quleanqum entre eux
n'aient qu'un point commun tout au plus. Soit I(G) la somme des
longueurs de ces segments. Dans ocet article, on démontre 'exi-
stence d'un G,, pour lequel [(G,) atteint ls valeur minimum;
ensuite, on démontre quelques propriétés de l'ensemble G, et on
détermine G, complétement dans le cas partioulier ol les points
C,,Cy, ..., Ca sont les sommots d’un polygone régulier (» > 13.)

Fig. 4.

A cycle is a graph which is a closed, simple, continuous curve. A graph, no part
of which is a cycle, is called a tree. Now the following well-known theorem holds:

Theorem 1: If G is a tree, then V(G) = -2

[A note is added, stating that any tree with at least 2 points has at least 2 end-vertices.
A typical proof by induction on the number of vertices is given. The authors take care
in defining vertices of G.]

2.

Let n (n=2) points Cy,Cs,...,C, in the space Ry (k=1) be given. These points
are called basic points. Let G be a graph in R; containing points Cy,C,,...,C,.

[Recall that a graph is defined as a topological realization of a graph in the usual
sense and that it is always connected.]
By a vertex of graph G we shall understand.

1. basic points
2. all points of G of order > 2
3. all points of G of order 2 in which two noncollinear line segments meet.
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A segment MN C G is called a ‘side of graph G’ [i.e. an edge] if (MN, does not
contain a vertex and both M and N are vertices. The graph G is then a union of
its sides. Obviously there are only finitely many vertices and sides in a graph; if two
sides have a common point, then this point is endpoint of both sides. The sum of all
side-lengths is called the length of G and denoted by 1(G).

Let M denote the set of all graphs in Ry containing Cy,...,C,. In what follows
let us fix a lower bound d for all graph lengths in M. If I(G)=d, then G is called
a ‘minimal graph in R with respect to the points Cy,...,C,’. First we prove

Theorem 2: Let C,Cy,...,C, be points of Ry (k=1,n>=2). Then there exists at
least one minimal graph in R, with respect to the points C,,C,,...,C,.

We first introduce some notation. Let G € M. A free end of G is an endpoint of
G which is not a basic point. A free corner of G is a vertex of order 2 which is not
a basic point. Let N be the set of all G € .M which are trees and which have no
free ends. Let P be the set of all G € N which have no free corners. First we prove
the following statements:

Proposition 1: Let G € M —N". Then there exists G| € N such that I(G,) < I(G).

Proposition 2: Let k=3 and G € N — P. Then there exists G, € P such that
I(G)) < I(G).

Proposition 3: Let d| be a lower bound for all lengths of graphs G € 2.

Then there exists at least one graph G, € M with I(G,)<d,.

Proposition 4: If G is a minimal graph in Ry with respect to the points Cy,C,,...,Ch,
and if K is the smallest convex set in Ry containing C,C,,...,C,, then G CK [i.e.
the convex hull contains all the Steiner points].

Theorem 2 follows from Propositions 1 — 4 as follows:

A) If k=3, then Propositions 1 and 2 yield d\ = d and Theorem 2 follows from
Proposition 3.

B) If k<2, then we embed Ry in Rs. From A) we get a minimal graph G in R;
with respect to the points C,,C,,...,C,. But Proposition 4 implies G C Ry.

Thus it suffices to prove Propositions 1 — 4.

[Note again that for Jarnik the k-dimensional case is essential.]

[Proof of Proposition 1 is by deleting endpoints together with the corresponding
sides. The proofs of the remaining Propositions are elegant and more interesting, and
we outline the Jarnik—Kdossler arguments in a greater detail.]

Proof of Proposition 2: Let k23 and G € /" — P, i.e. G € M is a tree without
free ends containing at least one free corner M, in which two non-collinear sides
MM, and M\M; meet. M, is not a basic point. We prove: there exists a graph
G’ € A with less free corners satisfying 1(G') < I(G).

[It now follows that by repeating this argument one obtains Proposition 2.]
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We shall distinguish two cases:

Case 1: Both M, and Ms are basic points. Then the set G — [(MyM,) + (M Mj )]
is the union of two disjoint trees G,,G3,M; € Gy, My € Gs. The segment MMz
contains at least one point of G, (say M,) and at least one point of G3 (say M3).
Thus let P,, P3 be points of the segment MyMs such that P, € Gy, P3 € Gy and no
point of the segment o(P2P3)g belongs to either G, or Gs. Then the graph G' ={G —
[o((MaM)) + (M 1M3)0]} + P2P; is in A and has less free corners than G.

[This is justified in detail.]
Obviously I(G") < I(G).

Case 2: One of the points M>,M5 — say M, — is not a basic point. Let S be a
[(k — 1)- dimensional] hyperplane containing M, but not Ms. If M, is any point of
S, then we denote by G(M3) the graph obtained from G by replacing all sides M;M,
of G by segments M;M;. Put MoyM, + M\M; — MoMs =a > 0. It is clear that there
exists 6 > 0 such that every graph G(M,) for which 1\72]&72’ < 0 satisfies:

1. (G(M3)) < I(G) + Ya, MjM, + M{M5 — MjM; > 1a,

2. the graph G(M,) has the same vertices (of the same order) and the same sides as
G with the exception that instead of the vertex M, and sides M>M; we have M,
and M;M;.

[This may be seen as follows:]

Let us consider all lines through M5 and some other point of G. These lines intersect
S in a set > which consists of finitely many points, segments and half-lines. As k>3
[and thus S is at least 2-dimensional] there exists at least one My € S — Y such that
MM}, < §. This graph then has properties 1. and 2. Moreover, the graph G(M}) has
the following property: no point of G(M3) belongs to the segment o(M;Ms)o.

[This is justified in a detailed footnote.]
Now define the graph G'={G(M3)—[MjM, +M,M3]} +M;M5. Clearly G’ € A", G’
has less free corners than G, and finally from Condition 1 it follows that I(G") < I(G).

Proof of Proposition 3: This is a routine limit argument. Let G|,Ga,... be a se-
quence of graphs from 2 and let lim,—, I(G,)=d,.

[We preserve as before all the notation of [2]].

As C\ € G,, all graphs G, lie in a closed ball with centre C, and diameter equal
to the upper bound of the numbers I(G,) (r = 1,2,...). All vertices of the graph G,
are basic or branching points. By Theorem 1 it follows that V(G,)= —2. As all the
endpoints (with weight —1) are basic points, we have at most n of them. Thus the
number of branching points (with weight at least 1) is at most n—2 and the graph G,
has at most 2n — 2 points. Hence there exists a subsequence G{,G5,... of Gi,Ga,...
such that all G| have the same number of vertices. We denote the vertices of G. by
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X, X],...,X] such that X! = C; for 1<i<n. For graph G. define the matrix

0 ap, di3 - d
r r ¥
as) 0 ayy o 4y
r r r
asz  axp 0 B

r r r
a; a; a; e 0

where aj; =1 or 0 according to whether or not X! X is a side of the graph G;.
[So this is the adjacency matrix of GJ.]
As there are only finitely many such matrices, there is a subsequence G

51° Gl
such that the same matrix

§20 0

0 ap a3z - a;
ar 0 ay - ax
ay ax a3z -+ 0

corresponds to every graph of the subsequence. Finally, as the sequences X', X?,X?,...
(i=12,...,2) are bounded, we can find a subsequence Gt/wGr’:"" such that all the
limits limp:ooXi"’ =X; (i =1,2,...,2) exist. Let Gy denote the union of segments
XX, (1<i < 1<2) for which a; = 1.
[Footnote: Of course some of these segments may degenerate to points.]
Obviously G, € M and the following holds:

(G )= > auX X",
I<i<i<z
IGo)< Y. auXiX; = lim (G, )=d.
1<i<i<z p=e
This completes the proof.

[This is a word-for-word, symbol-preserving translation. And even today the most
elegant argument!]

Proof of Proposition 4: Let G € # be a graph which violates G C K. Then there
exists a hyperplane S [(k — 1)-dimensional] such that all basic points lie on one side
of S and a nonempty subset G' of G lies on the other side of S. Define a graph G,
by replacing the subset G' by an orthogonal projection of G’ onto the hyperplane S.
Obviously G| € M and 1(Gy) < I(G), which completes the proof.

[k dimensions are essential again.]

Now we can easily prove Theorem 3 which describes the structure of minimal
graphs in greater detail.

Theorem 3: Let G be a minimal graph in R, (k>1) with respect to points C,,Ca,...,
C, (n=2). Then G has the following properties:

a) G is a subset of the smallest convex set containing C,Cs,...,C,.
b) G is a tree without free ends and free corners.
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Fig. 5.

¢) If two sides of G have a common point, then their angle is at least %n:.
d) Every branching point of G has degree 3. The three sides of the graph incident
to a branching point lie in a (2-dimensional) plane and any two have angle %n.

[Here as elsewhere k dimensions are essential. We have not found d) in later literature.
This yields a better and stronger argument than e.g. in [21] p. 77.]

Proof of Theorem 3: Property a) follows from Proposition 4. To prove b) we
can assume (by a)) that k=3 (if k <3 then we can embed Ry into R3). Then b)
follows from Propositions 1 and 2. Property c) we prove as follows: let G € /M and
let PM, PN be two sides of G with angle o < %n. We construct a point M’ in the
interior of side PM and a point N' in the interior of side PN such that PM’=PN =h.
Then we have (see Fig. 5)

2
MW =NW = M’W——= hsm 500
PW =PX — WX = hcos ja — —=hsin Ja

V3
and thus
M'W + N'W +PW = h(\/3sin {a + cos La) < 2h = PM’ + PN".

[This step is justified in a detailed and characteristic footnote: We have
(d/dx)(v/3sinx + cosx) = v/3cosx — sinx = cosx(v/3 — tanx) > 0 for 0 <x < %n
and thus \/3sinx + cosx is an increasing function for 0<x< %n, hence we have for
0 <x < yn (Fig. 5):

V3sinx + cosx < V3sinin + cosin=2]

Define graph G, =[G — (M'P + N'P)] + MW + N'W + PW. Obviously G, € A,
I(G1) < I(G) and thus G is not a minimal graph.

Property d) follows immediately from c): three line segments incident in a point
and not lying in a plane form angles whose sum is less than 2n.

Remark: From Theorem 3 we obtain the following for the minimal graph G: if
P is a branching point, then V(P) =1, whereas V(P) = —1 for every endpoint P.
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From V(P)= -2 it follows that the number of branching points equals the number
of endpoints —2.

This is the end of the first two sections of the Jarnik—Kossler paper. This is a re-
markable text in both its clarity and contents. This part deals with general properties
of Steiner trees, and these properties are generally attributed to later contributors al-
though they are explicitly stated in the Jarnik—Kdossler paper. Here is a sample of such
instances, mostly taken from a recent monograph [21] devoted to ‘the Steiner Tree
Problem’.

The fact that for a Steiner tree all branching points are of degree 3, as well as
the angle condition, the number of branching points, the convex hull result (i.e.
Theorem 1.1, Theorem 1.2 of [21]) are attributed to Courant and Robbins [8], Coro-
llary 1.1, Corollary 1.5 of [21] are attributed to Gilbert and Pollak [19]. These results
are all explicitly contained in [2] as various parts of Propositions 1-4 and
Theorems 2-3.

Moreover, the generalization to £ dimensions treated in [21], Section 6.1 is not only
mentioned but instrumental in [2]. In fact the whole paper is written in £ dimensions.
And the complicated argument of [21], p. 77 is replaced by the pleasant Jarnik—Kdossler
argument that three sides incident with a branching point are coplanar.

Even after all these years the Jarnik—KOssler paper in its general part (i.e.
Sections 1 and 2) is an example of clear style and elegance, and it is worth studying
even today. The clarity of the introduction to the problem is not shared by many later
texts.

No wonder, the ‘Steiner problem’ is due to Jarnik and Késsler and was elaborated
by them to a degree surpassed only 30 years later.

The Jarnik—Kossler paper [2] continues with the treatment of regular n-gons. They
solve the cases n = 3,4,5 explicitly and carefully with all details (without referring
to any earlier work for » = 3) and remark that for n = 6 the situation is entirely
different: the solution is given by 5 sides of a regular hexagon. By an elegant argu-
ment they solve the case of all regular n-gons for all n>13. They leave open cases
7<n<12 and remark that this is a finite problem which could be directly solved with
a certain amount of effort. Indeed, their method of solution for n = 3,4,5 suggests
that they were aware of the finiteness of the problem (proved much later by Melzak

[25D).

4. Jarnik-Kossler’s paper in a historical perspective

The problem of finding a shortest connection between » given points in the plane has
a long history. Indeed, it is one of the oldest optimization problems and it was, and is,
frequently used as an example of maximality (and minimality) arguments. However, for
most of the time in the long history of the problem, only the case n=3 was considered.
This goes back to a question posed by Fermat, was considered by Mersenne and solved
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by Torricelli and Cavalieri. The elegant solution of this problem of elementary geometry
of course attracted many researchers such as Simpson and Steiner who also considered
a generalization of the 3-point problem in a different direction: given » points in the
plane, find a single vertex with the smallest sum of distances.

The history is involved and there are several sources available, such as [24] and
[14], and also early industrial applications such as the book [13] and the thorough
mathematical treatment in [12].

K.F. Gauss came close to Steiner tree problem when he modified a question posed
to him by H.C. Schumacher and wrote [10]:

‘If one considers a version of rectangle problem where one speaks about shortest
connecting system then one has to consider more individual cases and one gets an
interesting mathematical problem. This problem is close to my interests as I had several
times an opportunity to consider it in connection with the railroad connecting Hamburg,
Bremen, Hanover and Brauschweig. I got an idea that this could be a nice problem
for our students.” So Gauss had 4-point problem clearly in mind.

Gauss continues by drawing four possibilities for Steiner trees on 4 points (there
are four possibilities in his handwriting and only three in the printed version [10]: one
of the possibilities seems to be not clearly relevant and two possibilities are in fact
rotations of each other). Gauss closes by saying that he has no more time that day.
He does not seem to return to this later in his correspondence.

(We thank R. L. Graham and H. Harborth who informed me about the Gauss con-
tribution.)

However, prior to 1934 the problem of the shortest connection of n points was not
considered. It was first considered by Jarnik and Kdssler [2], with a clarity and rigour
which we hope is clear from the translation of the first two sections.

It is difficult to speculate why the authors considered this problem. In Jamik’s ceuvre
the papers [1] and [2] present the only singularity. As a possible solution to this puz-
zle one could perhaps stress the fact that Jarnik instantly recognized the novelty of
Boruvka’s problem and saw it as an n-point minimization problem. His interpretation
of the minimal spanning tree problem given at the end of [1] (Section 1 of this paper
contains a translation of this) may suggest how naturally he may have arrived at the
problem considered in [2]. That could also suggest why Jarnik considered essentially
the k-dimensional problem. He did not arrive at it from the geometry of the plane
but from spatial geometry (see again the Remark at the end of [1], translated in
Section 1).

Like Boruvka, Jarnik never returned to this problem again.

The 3-point problem was a classical optimization problem and it found its way
into the Courant-Robbins book [8] where the problem for n = 3 (i.e. the Fermat—
Torricelli-Cavalieri—-Simpson—Steiner problem) is called the Steiner problem and the
problem of the nearest point to a given set of points (i.e. the problem considered by
Steiner) is called a ‘mathematically sterile generalization’. The problem of the shortest
interconnection between n points is called the generalized Steiner problem [8]. This is
clearly Jarnik’s problem or the Jarnik—-Kdossler problem or Gauss-Jarnik problem.
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These attributions (and some stylistic expressions) suggest that Courant and Robbins
were motivated by [12,14]. (Neither Gauss nor Jarnik and Kessler are mentioned in
(81)

In the thirties Jarnik was an internationally famous mathematician (a speaker at both
the Ziirich 1932 and the Oslo 1936 Congress of the International Mathematical Union)
and thus the main reason for the omission probably was that Courant and Robbins did
not know about his work outside number theory and analysis. The ‘Steiner’ problem
was then dormant for another 30 years until it was revived by Melzak [25], Gilbert and
Pollack [19] and others with the vigour and confidence of the newly developing fields
of combinatorial (discrete) optimization and the theory of algorithms, see [16]. The
problem is hard both theoretically [18] and practically, and for its direct applications in
VLSI [22] and other fields (see, e.g. [21]) it is still intensively studied. (The euclidean
problem however may be approximated by a recent result of Arora [15].) The problem
is far from being solved.

Summarizing, let us just say that with these combinatorial papers [1,2] Jamik was
very lucky. Single handedly (with the help of Boruvka and Kdssler) he started impor-
tant branches of fields which in his time were not born yet. The style and rigour of
his contributions have lasting value. Jamnik’s contribution is widely unrecognized (e.g.
neither the recent Handbook of Combinatorics nor the Handbook of Computational
Geometry mention him).

It is not a marginal contribution by a passerby. It is rather an important contribution
by a major mathematician. Combinatorics was gaining strength while slowly emerging
from the ‘slums of topology’, through the expertise and brilliance of mathematicians
from other fields. From number theory these were Erd6s and Turan and Jarnik.
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