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25. On Pseudo-compact Spaces

By Jan MARIK
(Comm. by K. KUNUGI, M.J.A., March 12, 1959)

Notations. Let S be a topological space. Let Z be the family of
all sequences {f,(2)},-1,,..., where f, are (finite real) continuous func-
tions on S such that f,(x)—>0 for each xeS. Let Z, be the family
of all bounded sequences {f,}¢Z; let N (resp. E, resp. U) be the
family of all non-increasing (resp. equi-continuous, resp. uniformly
convergent) sequences {f,}€Z. Further we put Ny=N - Z,, E,=E _ Z,.

If b is a real number, we write b, =max (b, 0).

Lemma 1. U~ NCE.

Proof. If {f,}eUw<—N, zeS, e=27>0, then there exist an index
p and a neighbourhood V of z such that |f.(y)|<7 for each n>p
and each yeV. Further we can find a neighbourhood W of x such
that |f.(®)—f.(y)|<e for n=1,-.-, p and for each y¢ W. Obviously
| fou(2)—Ff.(¥)|<e for each n and each ye V- W.

Lemma 2. If {f,)eE, then the function f'(w):i}(If',,(:zt;)l—e)+ 8
continuous for each ¢>0. "

Proof. Suppose that xe¢S and that ¢=27p>0. There exist an
index p and a neighbourhood V of % such that |f,(x)|<7% for each
n>p and that |f,(®)—f.(¥)|<n for each yeV and each n. Now, if
n>p and if yeV, we have |f,(y)|<e, whence (|f.(¥)|—¢).=0. It
follows that f(y)= Zp] (Ifu(y)|—¢). for each ye V, which completes the
proof. "

Lemma 3. If S is pseudo-compact, then NCU.

Proof. If {f,}eN and if é=27>0, then, by Lemmas 1 and 2, the

function f(x)= i (fu(x)—1n), is continuous. Since S is pseudo-compact,
n=1

there exists a number A such that f(x)<A for each zeS. If f,(x)>e,
then (fi(x)—7),>% for k=1,2,---,m, so that m< f(x)<A, n<Ap.
We see that f,(x)<e for each n>An"' and for each xz¢S.

Lemma 4. If S is pseudo-compact, then ECU.

Proof. Let {f,} be a sequence of E and let ¢=27 be a positive

number. Lemma 2 implies that the functions gn(x)zg([ J@)|—n).,

are continuous; obviously {g,}¢ N and so, by Lemma 38, {g,}€U. There
exists an index p such that g,(x)<7n for each x¢S. If m>p, then
we have |f,(@)|<(|f.(@)|—7). +7<9g,(x)+7<2p=¢ for each x €S, which
proves the lemma.

Lemma 5. If N,CU, then S is pseudo-compact.
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Proof. Let f be an unbounded continuous function on S; put
fi(@)=arctg (n*| f@)]). Then {f,}eNy—U.

Theorem. If some of the families E, E, N, N, is contained in
U, then S s pseudo-compact. If, conversely, S is pseudo-compact,
then U=E=EF, U>N=N,.

Proof. Lemma 1 implies that NCE; now it is obvious that
N,C N, N,CE,CE. If some of the families F, E,, N, N, is contained
in U, then we have N,CU and, by Lemma 5, S is pseudo-compact.

Now let S be pseudo-compact. From Lemmas 1 and 4 we see
that E=U, so that E=FE, Lemma 3 implies that NCU; obviously
N=N, and the proof is complete.

Remark. This theorem is a slight generalization of Theorem 3
of [1] and of Theorem 3 of [2].
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