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On Generalized Derivatives

Terminology and introduction. ILet R = (- ,=).

The words measure, almost etc. refer to the Lebesgue
measure in R. If ScR and x ¢ R, we write
d(x,S) = inf {|y-x|3y € S}. If, moreover, S 1is
measurable, then mS denotes its measure. The notions
of the kth Peano derivative fk and of the kth approxi-
mate Peano derivate f(k) of a function f are de-
fined in the usual way (see, e.g., [1] and [3]); f(k)
means the classical kth derivative.

Property Z of a real function g on R 1is de-
fined as follows: If x ¢ R, ¢ >0, n >0, then
there is a § > O such that for each interval
Ic (x-258,x +§) with either g(I) c [g(x), =) or

g(I) ¢ (-»,g(x)] we have

(1) mye I le(-e)] ze) g ne (@I +ax,I)).

Property Z wés introduced in [4] by Weil. He proved,
among other things, that if k> O and if fk exists
everywhere; then fk has Property Z. The proof,
however, is complicated. In (17, Babcock generalized

this result replacing £ by f(k)’ but a part of his

k
proof (actually a part qf the proof of Lemma 6.1)
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consists of hints how to modify the mentioned proof in
[4]. 'The main purpose of this note is to prove a pro-
position (namely the presept.Theoreﬁ 1) enabling us to
simplify the proof of Babcock's assertion which is
stated here as Theorem 2. The present Theorem_3 is a
simultaneous generalization of Lemma 3.4 in [2] and
(with j=%k) of Theorem 3 in [3].

At this opportunity I would like to express my

thanks to Prof. C. E. Weil for his encouragement to

write this note.

Lemma 1. Let £ be a monotone differentiable

function on a bounded interval I. Let ¢ >0, B>0

and let m{x €1 ;If'(x)l.é_s} Z2 B. Then there is an
interval J € I such that mJ = B/4 and that

|£] 2 €B/4 on J.

Proof. We may suppose that f’ = 0 on I. Let
(a,b) Dbe the interior of I. There is a c € [a,b]

such that £ =0 on (a,c) and . £f=20 on (c,b).

Set B = (x€I;f'(x) =z ¢}. 1If m(B N (c,b)) = B/2
and if x € (b-B/4,Db), then £(x) =z j‘xf' =
C- .
2 em (BN (c,x)) 2 e(m(BN(c,b)) - (b-x)) 2 e(B/2-B/4) =

= eB/4. If m(BN(a,c)) = B/2, then, analogously,
£fs-¢B/4 on (a,a+p/4).

Lemma 2. Let I be a bounded interval and let j

be a natural number. Let g be a function such that



either g3 20 on I or ¢ 50 on I. rLet
>0, B>0 and let m{xe€l ;lg(j)(x)[ z ¢} z B.
Then there is an interval J < I such that. m(T==B/4J

and that |g]| z epl ottt Il o gl

(Follows by induction from Lemma 1.)

Theqrem l. Let %k be a natural number, let

X € R and let f be a function such that f(k)(x)
k ; .

exists. Define P(y) = 2 (y—x)l-f(i) (x)/i! (y €R).
i=0

Let € >0, n>0. Then there is a & > 0 with the

following properties:

a) If I 1is a subinterval of (x-6,x+8), J an
integer with 0 < j = k and'if either f(]) = P(J) on
£(3) 5 p(3)

I or on I, then

Copen. 12 ] C j £l -~ 1{_ j < '
(2} - _;:I;lf(J)(y)-P(j)(y)|a=e[y—x| ]} =n. (mI+d(x,I)).
b) If I 1is any subinterval of (x-6, X+ §),

then (2) holds with J = 0.

Proof. Let g=£f-P, a = 4l+2+"'+k.

There is
a measurable set A and a 61 > O such that x 1is a
point of density of A and that, for each

y €A N (X-Gl, x4—61), we have

<.

A

(3) 3 algy) | = enFly-x

Further, there is a § E(O,él) such that, for each

h € (0, 38), we have

89



(4) 3-4jm([.x—h,x+.h-]'\A) =hn.

Now let I be a subinterval of (x-6, x+3) and let
j Dbe an integer, 0 =3 s k. Let |
ely-x|%3),p = % 0B,
mI + d(x,I). Now (2) becomes 38 = nh. Thus, we

I

B=(yex; |3 (p|
h

may suppose that B > 0. Let C =B\ (x-B, x+B).

nw

eBk—J on C and

Now h<38,I < [x-h,x+h], Ig(j)l
mC zp. If j >0 and if either g(J) Z0 on I or
g(j) =0 on I, then, by Lemma 2, there is a set

S €I such that

(5) . ms = B/4d
and that
(6) alg|l z eB® 3 .p3 = ¢g* on s

if j =0, then these relations hold with § = IE

cC.
g X _k .
there is a y € S NA, then, by (6) and (3), 37¢B™ =

§'3ka|g(y)| éenkhk so that 38 =snh. If snNa=d,
then, by (5) and (4) , 38/47 s3ms = 3m([x-h,x+h]\a) =

= hn /47 whence 38 = nh again.

Lerﬁma 3. Let k be a natﬁral number and let f
be a function such that f(k) 2 0 on an interval 1I.
e(k) _
Then - £ = f’(k) on I.

(See [1], Theorem 4.1.)



Theorem 2. Let %k be a natural number and let
f be a function such that f{EY” exists everywhere.

L]

Then £ has Property Z.

(k)

Proof. Let X € R, € >0, n > 0. Choose a §
according to Theorem 1. If P 1is as above, then,

obviously, P(k)

= f(k)(x). Let I be a subinterval
of (x-8,x+8) such that e;ther f(k)(y) = f(k)(x)
for each y €I or f(k)(Y) =z f(k)(x) for- each

y € I. By Lemma 3, f = f(k) on I. Thus, (1)

with . g = £x) 1is the same as (2) with J = k.

Lemma 4. Let Jj Dbe a natural number. Let o be
a positive continuous function on an interval 1I: Let

g Dbe a function such that g(j) exists (everywhere)

v

on I and let. |g(j)|
(3)

© almost everywhere on I.
Then g exists on I and either g(j) >0 on I

or g(j) <0 on i.

Proof. Let x € I. There is an ¢ > 0 and an
interval J such that x € J €I and that o > ¢ on
J. Thus, lg(j)l > € almost everywhere on J. |
According to Corollary on p. 291 in [1l] we have.

Ig(j)l Z e on J; in particular, g(j)(x)-# 0. It
follows from Corollary on p. 290 in [1] that either
g(j) > 0 on I or g(j) <0 on I. Now we app}y

Lemma 3.
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Theorem 3. Let 3j,k. be integers, 0 s j sk,
k>0. Let X €R and let r Le a function such that
k :
£ (x) exists. Define P(y) = Z)(yux)l»f oy (x) /it
(k) ol (1)
(YE€ER). Let € >0, n>0. Then there is a § > 0
with the following property: If L is a subinterval of
(x-686,x+8) such that f(j) exists on L and that
lf(j)(y)-P(J)(y)l 2 ely-—xlk-j for almost all y € L,

then mL = nd(x,L).

25992. Let § Dbe chosen according to Theorem 1,
where n is replaced by nl =n/(l+n). Now let I
be as above. If L N (x,=) # g, set I=L0N(x,=) ;
otherwise set T = LN (-=,x). If i > 0 then it
follows easily from Lemma 4 that either f(j) > P(j)
on I of £(3) < P(j) on I. According_té Theorem 1
we»have mI = nl(nlI + d(x,I)) whence m1I = n d(x,I) .

In particular, d(x,I) >0 so that I = L.
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