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LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER .
WITH DISCONTINUOUS COEFFICIENTS

Simple examples show that the basic theorems about

the equation
(1) yv” + ay’ + by = 0,

where a and Db are functions continuous on an interval,
fail, if we drop the assumption of continuity. It

seems to be.of some interest to investigate conditions
under which theée theorems remain preserVed; For this
purpose it is not enough to assume that the solution épace
of (1) has dimension 2. Even in this case it may happeh,
for instance, that there is a point p in the interval

in question such that u(p) = 0. for each solution u.
Theorem 9 of this paper shows, however, that the equation
(1) "behaves normally", if it has two solutions whose
Wronskian is nowhere zero. Let us say that such an equa-
tion is normal. The main goal of this paper is to investi-
gate the "normality" of (l1). Theorem 22 says that (1)

is normal iff it is equivalent to an equation (Fy’') '+

+ G’y = 0, where F,G are differentiable and F 1is
positive. This and 13 gives a necessary and sufficient
condition for (1) to be normal under the assumption

that there isla solution which is nowhere zero. The
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result of 19 is analogous; we suppose there, however,
that we have a solution whose derivative is nowhere

Zero.

l. Conventions and notations. Throughout this
paper, an interval is always a one-dimensional non-
degenerate interval. A function is a finite real func-
tion, a derivative a finite derivative. The symbol
f/(x) will sometimes denote the derivative of £ at
X with respect to a given interval (so that £'(x)
may be a one-sided derivative); similarly for £’ (x).
It always will be obvious from the context which
interval is meant. The meaning of a statement like
"r’ = £ on [0,1)" is now clear. If F,f are func-
tions, I an interval and if F’=f on I, we say
that F is a primitive of £ (on I).

In what follows, I is an interval and a,b are
functions on 1I. For each function y twice differen-
tiable on I we set Ly = y” + ay’ + by. If u,Q are
functions differentiable on I, then Wu;v means
u’v - uv’. If f 1is a function on I and if J e I,
then "“f # O on J" means that f£f(x) # O for

each x € J; similarly for "f > O on J" etc.

2. Let u,v Dbe twice differentiable on I. Then
Wd + aw = vLu - ulv.

vV u,v

(Easy.)
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3. Let v Dbe twice differentiable, v #¥ O on

I. Let V,F be functions such that Vv’ + av = O,

v2F’ =V on I. Define wu = vF. Then W, & =V,

’

vLu = ulv.

Proof. We have Wo v = vz(u/v)’ = v°F/ = V: Dby
’

2 we get vLu - uLv = V'’ + av = 0.

4, Let v Dbe twice differentiable, v’ £ O on

I. Let Q,T be functions such that Q’v’ = bvQ,
T'’v’ = bQ. Define u = Tv - Q. Then Wu v = ov',
. : ?
Lu = T-Lv.
Proof. Obviously T’'v =Q’ so that u’ = Tv’,
W,y = Tv'’v — Tvwv’ + Qv’ = Qv’/, Lu = T'v’ + Tv' + aTv’ +
’

+ bTv - bQ = T-Lv.

5. Let Lv=0, v/ #0 on I. Let V,T be

functions such that Vv’ + av = O, T’v’2 = bV. Define
= -— ’ T = =
u="Tv - V/v’'’. Then Wy =V Lu = O.
Proof. Define Q by Qv’ = V. Then O = Q'v’ +
+ Qv” 4+ aQv’ = Q’'v’ + Q- (-bv). Now we apply 4.
6. Let u,v be differentiable, |[v] + |v’]
> 0, Wu v = O on I. Then u 1is a constant multiple
’
of w.
Proof. Define c(x) = u(x)/v(x), if v(x) # O,
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and c(x) = u’/(x)/v'(x), if v(x) = 0. In the latter
case we have u(x).= O so that ¢ is continuous and
u=cv on  I. Obviously c’(x) = O wherever v(x) # O.

This easily implies that ¢ is constant.

7. Let ILu = Lv = O. We say that the functions

u,v  form a fundamental system of the equation
(1) Ly = O

iff W, v # 0 on I. The equation (1) is called normal

iff it has a fundamental system.

8. Let f£f,g be functions such that £’ + af = g’+

+ag =0 and £ #0 on I. Then g/f is constant.
Proof. Obviously (g/f)’ = O.

9. Let u,v form a fundamental system of (1)
and let Lz = 0. Then there are numbers c¢,d such

that 2z = cu + dv on 1I.

Proof. We have Wu,v' z + W§’2° u + Wz,u v = O,

By 2 and 8 the functlons Wv,z/Wu,v’ Wz,u/Wu,v are

constant.

10. Let a=A'" on I. Let Lu= Lv = O. Then

A .
e W 1s constant.
u,v

(Follows from 2 and 8.)

11. Let a have a primitive. Let u,v be
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linearly independent solutions of (1) and let
[vl + |v'] >0 on I. Then u,v form a fundamental
system of (1).

(Follows from 10 and 6.)

12. Let a have a primitive, Lu = Lv = O,
P €I, u(p) = u’(p) = O. Suppose that there are

x, €I such that x £ p, X_ - P, u(x,) £ 0. Then

n

Proof. Let [v(p)[‘+ [v'(p)| > O. There is a
8§ > 0 such that |v] + |[v’] >0 on I n (p-3& p+38).

It follows from 11 that Wy v(p) #Z O - a contradiction.

"13. Let a have a primitive. Let Lv = O,

v#0 on I. Then (1) is normal.

Proof. We apply 3 with V = e_A, where A’ = a.

The proofs of the next two statements are left

to the reader.

14. Let £ Dbe differentiable and let g be
continuously differentiable on I. Then £f’'g has a

primitive.

15. Let £f Dbe a function on I. Suppose that
for each ¢ € I there is a .6 > 0 such that £ has
a primitiye on- I n(c-8 c+8. Then £ has a

primitive on 1I.
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16. Let the e@uatioh (1) be normal. Then there

are functions A,G such that A’ =a, G’ = Db eA on I.

Proof. Let u,v form a fundamental system of
(1); set A = -log ]Wu'v[. According to 2 we have
A’ = a. Now let c € I. Let, e.g., v(c) £ O. There
is a 8 >0 . such that vZ0 on IJ=In (c-8&, c+38).
We have beP = —(eAv')’/V on J. Now we apply 14

and 15.

17. Let Q be an open set in the two-dimensional
Euclidean space. Let H,h be functions continuous
on Q. Suppose that, for each p € Q, h(p) is the
partial derivative with respect to the first variable
of H at p. Let £f Dbe a differentiable function on
I such that <x,f(x)> ¢ Q for each x £ I. Then

the function f£f/(x) *H(x,f(x)) (x € I) has a primitive.

Proof. Let ¢ € I. There is a & > O and inter-

vals Jl' J with the following properties: J, =

2 1
In (=6 c+d)r £(J;) ©Jy;i J; x J, € Q. For each
x €3, set K(x) F®) g (x, ) at, q(x) £y (%, ) at.
f (c) f(c)

Since .g 1is continuous, there is a Q such that
Q' =g on Jy. Obviously (K-Q)'(x) = £'(x) - H(x, £(x))

for each x ¢ Jl' Now we apply 15.

'18. Let £,g be functions on I. Let £’ exist

and let g’ be continuous on I. Let F be a function
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continuously differentiable on an open interval J.
Let ‘@ Dbe a function such that o’ = f’g on I and
that ¢ (I) € J. Then the function £'(x) - F(p(x))

(x € I) has a primitive.

Proof. It is possible to extend the functions

f,g9,p to an open interval I, 2 I in such a way that

1
our requirements are fulfilled, even if I is replaced
by I, Therefore, we may assume that I 1s open.

Set ¥ =fg -, Q= [(<x,y>ix €I, g(x)ey - ¥(x) € J}.
For <x,y> € Q define H(x,y) = F(g(x):y - ¥(x)).
Obviously H(x;f(x)) = F(p(x)) (x € I). Since F’,

g’ and ¥’ = fg’ are continuous, we may apply 17.

19. Let ILv =0 and let v/’ #0 on I. Then

(1) is normal iff b/v’ has a primitive.

Proof. I.) Let (1) be normal. By 16 there are

A,G such that A’_= a, G’ = b . set @ = viheh,
Obviously o' = —beAv = -G'v, b/v’' = G'/¢. Now we appiy
18 (with £ =G, F(t) = 1/t etc.).

II.) Let f’ = b/v’. By 14 and 18 there are
functions ¢,T such that o' = £f'v, T' = £.e%, Now

we apply 4 (with Q = em).

20. Let I = (-1,1). Then there are functions
a,b,b* on I with the followinglproperties:
1) Each of the functions a,b is continuous on

I - {0} and has a primitive on 1I;
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2) b=Db* on I - {0};
3) the equation (1) is not normal:

4) the equation
(1%) v" + ay’ + b*y = 0O

is normal.

Proof. Set f£(x) = x°cos %2, g(x) = x> sin x 2
(x # 0), £(0) = g(0) = 0, K(x) =2 (£(x)g(x) +3x)
(x €R). It is easy to see that f and g are
differentiable on R and that f’g - fg’ =3 on
R - {0}. It follows that
(2) K’ =%—(f’g+fg’+f’g—fg’) = f'g on R - {0}.
Set b= £f’ on I, b* = f’ on I - {0}, b*(0) = %,-
There is a function v such that v’ = (l-i-g)—l on

I, v(0) = 0; - v 1is twice differentiable on TI.

Since v’ > 0 on I, we may define a function a on

I by v/ +av’ + bv = 0. Since v(0) = O, we have

(3) v/ + av’ + b*v = 0 on I.

Further (see(2)) b*/v’ = b* (l+g) = £ + f'g = (f+K) '

on I - {O}; since f’(0) = O, we have (b*/v’) (0)
=2 = (£+K) '(0).. Thus b*/v’ = (E+K) ' on I.
According to 19 and (3), (1*¥) is normal; by 16, a
has a primitive on I. As (b/v’) (0) £ (b*/v’) (0),
the function b/v’ does not have a primitive on I.

By 19, (1) is not normal.
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21. Let F,G,H be functions continuous on I
et F >0 on I, c¢c €I and let o, be numbers.
Then there is a function u such that wu(c) = a ,

u’(c) = B and
(4) (Fu’ +Gu) ' = Hu’ on I

Proof. Set E = 1/F, y = F(c)*B + G(c)-a ;

further let uO be the zero function on I . We

define, by induction, functions Uj,uy,...  as follows:
If u has a continuous derivative on I , we set

X v t
= a + fE(t)(y-—G(t)un(t)-ijué ydt (x € I).

C C

(5) un+l(X)

Obviously
X

(6) u/, (%) = E(x) (y-G )y, (x) + [Hu! )

c
is continuous on I (n = 0,1,...) and

(7) un(c) =g (n=1,2,e04).

: — ’ - ’ = 3 -
Define fn =ulq u! (n 1,2,...). Since un+l(c)
- un(c) = O , we have

X
(8) u_,(x) - u (x) = Ifn (n=1,2,...; x € 1I).
_ c
It follows easily from (6) and (8) that
b4
(9) £,00 = BE®[EE) - ) (Dat
c

(n=1,2,...: x € I).

Let J Dbe a compact interval, ¢ € J ¢ I . There are

numbers M,N,P such that ]fl(x)! <M [E®] LN
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-

JH(t) - 6(x)] £ P for any x,t € J. Now it is easy

to prove by induction that

(10) £ ;] < M@EP|x-c])®/n! (x €J; n=o0,1,...).

It follows that <ué> converges locally uniformly on
I . By (7), <un> converges locally uniformly on I

as well, Let u - u. Then ué - u’. According to

(6),
X

(11) ul(x) = E(x)(y-—G(x)u(x)-+IHu' )

X
Cc

so that (Fu’+Gu) (x) = y + fﬂu' (x € I); this implies

: <
(4). By (7), (11) and the definition of vy we have

u(c) =a, u’(c) =8 .

22. The following three conditions are equivalent
to each other: H

i) There are functions F,G such that F > O ,
a=F'/F, b=G'/F on I,

ii) There are functions A,G such that A’ = a ,
G’ =be® on 1.

iii) The equation (1) is normal.

Proof. It is obvious that the conditions i) and
ii) are equivalent to each other.
1) Let i) hold. Let ¢ €¢I . It follows from

21 that there are functions u,v such that u(ec) =0,

u’(ec) = v({e) = 1 and that

(12) (Fy’+Gy) ' = 6y’
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on I for y = u,v . The equation (12) is, obviously,
equivalent to

(13) (Fy’) ' + G’y = 0 .

If y satisfies (13), then y' = Fy'/F is differentiable
so that vy’ + (F'/F)y’ + (G'/F)y = O . We see that u,v
solve (l1). Since a has a primitive and W v(c) =1,

u,

the functions u,v form a fundamental system of (1)

(see 10).

2) If (1) is normal, then ii) holds by 16.
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