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GENERALIZED DERIVATIVES

The classical assertion that there exist continuous,
nowhere differentiable functions can be generalized
in various ways. One such possibility was shown by
L. Filipczak in [l1]. He constructed a periodic continu-
ous function whose upper and lower symmetric derivates
are « and -«, respectively, at each point. I would
like to mention some theorems of J.C. Georgiou and myself
that together generalize Filipczak's result.

Let r Dbe a natural number and let ay < a; <ooo K a ..

r
There are bj such that 2 b.ak =0 for k=0,1,...,

j=0
r r
r -1 and 2 bjaj = r!. For each finite real function f
j=0
on R = (-»,») -and each.pair of real numbers x,h

r
with h # O we define L(f,x,h) =2 bjf(x-kajh),
| B =0

AM(E,x,h) = h—r-L(f;x.h). It is easy to see that
rA(£f,x,h) - f(r)(x) (h-0), if the r-th Peano deriva-
. . _ s _ X s
tive f(r)(x) exists. If aj = 3 > for j Orecesl,
then 1lim )\ (f,x,h) means the r-th Riemann derivative
of £ at x.

Now we may ask whether there is an £f with the

following property:
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(P) The function f has a continuous
derivative of order r - 1 on R and, for
each x € R,

lim sup A (f,x,h) = lim sup ) (f,x,h) = o ,

htO hio
lim inf ) (£,x,h) = lim inf ) (f,x,h) = - .
htO hlO

The following assertion is helpful:
(A) Let F be a continuous, periodic function

on R such that

(Q) for each x € R there are h; +h, €

(==,0) and h3 ,h4 € (0,) with

(-DYL(g,x,h) >0 (i=1,2,3,4)

Then there is an f with property (P).

It is possible to indicate the proof of (A) as
follows: We approximate F by a periodic function G
with a continuous derivative of order r, choose a
large natufél number a, define a suitable positive
number b (we need, in particular, af Tb <1< ap)
and set f(x) =‘§ ka(akx) for each x.

It can be ;zgved that under the assumption
age..a, # O (this is obviously fulfilled, if r is
odd and aj = j - % ) either F(x) = cos x or F(x) =
=COsx +sin 2x has property (Q). Taking r = 1,
ay = -1, a; = 1 and applying (A) we obtain Filipczak's
result,
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If ageerdy, = O, then the situation is not so
simple. If r = 2 and a; = O, then there is no £
with property (P) and, consequently, no F with
property (Q). We have been able to find an F with

property (Q) in the following cases: 3 rgl2

—_ - _..r_.. - = - =
and aj = j‘ X r 2 and g2y O; r 3 and
aoa3 = 0. However, we have not been able to find an
r > 2 and a0'°"'ar for which such an F does not
exist.

o=

on the other hand, by means of an assertion
analogous to (A) we proved that, in any case, there
is a function f with a continuous derivative of

order r - 1 such that 1im sup |[A(f,x,h)] =

htO
= lim sup |A(f,x,h)] = » for each x €R.
hl0
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