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ON A SPACE OF FUNCTIONS REPRESENTABLE
BY DERIVATIVES

The present note was inspired by the original
version of [l] where the first three authors proved

that

(A) the characteristic function of a closed set
of real numbers can be expressed as the product of two

derivatives.

This assertion, however, played only an auxiliary
role and is not contained in the final version of {1].
Various generalizations of (A) will appear elsewhere;
some of the corresponding results have been mentioned in

[2], part IV.

This note deals with the space ao of bounded
functions on the interval [0,1] which have only a finite
number of discontinuities and with its uniform closure
&. It is easy to see that ¢ is an algebra containing
all monotone functions. The main result says, in

particular, that for each f € ¢ there are derivatives

£. € ¢ such that f = f

j 1 Lo »

+ff2 3
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Notation. 1° The word function means a mapping
to R = (-=,=). For each nondegenerate interval JcR

let

£(J3) = {(£'; £ is a function differentiable on J} .

2° Let f be a bounded function on a
nondegenerate interval J. For each x € J and each

h e (0,o) set

m*(f,x,h) = sup £(M), we(f,x,h) = inf,f(M) (M==Jf1[x—h,x+h]),
w (£,%) = lim o™ (£,%,h), w,(£,%) = lim w,(£,x,h) (hyO),

ugx) = 0 (£,%) =0, (£,3), 0g(x) = L™ (£,%) %, (£,2))

Lemma 1. Let £f,9 be bounded functions on R.
Then wf+g < mf-bmg. If £ is continuous at a point g,

then X) = |[£(x)]- X).
S wgg (%) = |£(x)|-u(x)
(The proof is left to the reader.)
Lemma 2. Let J = (O,=») and let § € J. Let f
be a nonnegative function continuous on J. Then there
are functions Y ¢ € #([0,»)) which are continuous on

J such that y(0) = $(0) =0, g =0 on (6 ,#) and

Y 20, f=Y+:p2'On J.
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Proof. Choose numbers ¥y such that

6 = YO > yl > ey, Yn - 0, Yn_l/yn - 1. Set
In = ypevg g1, M, = max{£(x);x € J_J. For/

: 1/2
n=1,2,--+- find a S p € J such that 8 M7 < yn/n

and that |£(y)-£(x)| < 1/n, whenever x,y € I
and |y-x| < §,i further choose an integer r_~such

that Y1 =¥y < rnén. Let
S= {yn+k(Yn_l-yn)/rn; n=112'-oll k=l,...,rn}

We have S = {xo,xl.---}, where 3§ =Xq > Xy D> ot

For k = 1,2,..- set Lk = [}cklxk_l]l d—k = x-k_l-xk ’
max{|£(y) - £(x)|: x,y € Lk}. m, = min{f(x);x € Lk],

Wﬁ
I

1, - : .
s, = 2(x‘k+xk-l) . It is easy to construct a function

¢ continuous on Ly such that ¢ > 0 on [x'k'sk]'

® {0 on [sp.,x 3], ¢ =0 on {x.k,xk_l}, cp2 < m
2 =k . ‘
on L, J e=0, [ 9> md -2 "x. In this way

we define a function ¢ on (0,§]. Further we set
=0 on {0} U (8§,=), y=f-:p2 on J, y(0) = 0.
Then ¢,y are continuous on J. Obviously vy > 0,

j‘Lk Yy < wkd'k+ z"kxk. Let x € (0,8]. There are k,n

such that y < %X < X< %X _;<vy, ;- Itfollows from

the choice of r_, r

- Lk that wj < 1l/n
, * = -3
(3 = k, k+1,...). Therefore [ vy ¢ T (w,d.+2 7x;) <
0 = j=k J ] J =
k+1 -k+1 &
xk-l/n+2 %, < x(yn_l/(nyn) + 2 ) 0K ‘['O w =
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1/2 <8 Ml/2 < yn/h < X/n. For x » 0

=ka¢ 7 LM ’

we have k 4 =, n + e so that x-! f Y @ O,

o)
x - [ @ = 0. This completes the proof.
o)
Lemma 3. Let 6§ € (0,=). Let £ be a function bounded

°n R and continuous on R\{O}. Then there are functions
Y®,4 € B(R) which are continuous on R\ {0} such that

¢p=¢=0 on R\(-élé)l

(1) £ =vy+o4, £A£0) <y £V £0), o2 = ¥ < |£-£00)],

1/2
(2) w, < We o wcp % w¢ < 2 wg

Proof. We may Suppose that £(0) = 0. TrLet

fl =£fv o, f2 = (-f) v 0. By Lemma 2 there are functions
Yj'¢j*€ 4(R) which are continuous on R\{0} such that
Yj(O) =0, %5 =0 on R\ (-§,5), Y 2 0 and that

= 2 s s i o = .
£ = Yj*@5 (3 =1,2). set y = Y1= Y2 @ =9 +q,,
= P1-%5s A = {x € R; £(x) 20}, B=R\A. on a
we have Yo =%, =0,0g vy = Y, € fl' =9 =14,
¢§ £ =|£f]: on B we have Y] =9, =0,
-£, ¢ Y, =Y L0, 9 = P = =¥, 95 ¢ £, = |£]. Obviously

f =v+@y. This proves (1).

Now let g (t) = y *(£,0, lt]), 8,(t) = w,(£,0,|t])
(t #0), B*(O) = W (f 0), 8,(0) = w, (£, O) It follows
from (1) that 9, <y g 8%, @2 = 42 < 6 -0,. This
easily implies (2).

138



Lemma 4. Let a,b € R and let A be a finite
set of real numbers. Let f be a function on R which
is continuous on R\A such that a < £ < b. Then there

are functions v,9,y € £(R) such that

£=vy+py, a<y<b, g>=4¢2<b-a,

L1/2
w, < We o wcp v Wy < 2 mf/

(This follows easily from Lemma 3.)

Lemma 5. Let o,y € J(R). Suppose that o¢,§ are
bounded and that at each point of R at least one of

the functions ¢,y is continuous. Then oy € &(R).

(The proof is left to the reader.)

Lemma 6. Let £ be a bounded function on the
interval J = [O,li: let nn € (0,») and let we < 2n
on J. Then there is a function h continuous on J

such that h(0) = 0.(0), h(l) = 0g(1) and |h-£| < n.

Proof. Let Y be the set of all points y ¢ (0,1]

with the following property:

(P) There is a function g continuous on [O,y]

such that g(0) = cf(o) and |g-£f| <n on [0,y].

There is a Y, € (0,11 such that- \f-—cf(o)\ < m
on [O,yl]. Setting g = of(o) on [O,yl] we see that

¥y -€ Y. Therefore s = sup Y > O. There are s S

17’72
such that 0 <« s, <s<s, and that ]f-—cf(s)\ < m on
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J N [sl ,sz]. Choose a y e Y nNn (sl » S] and a fuhction
g as in (P). Let X be a linear function such that
k(sl) =0, A(y) = 1. Define a function h on [O,sz]
setting h = g on [O,sl], h = gi—k-(cf(s)-g) on

[sl +¥Yl, h= Gf(s) on [y,szl. Then h is continuous
on [O,sz], h(o) = cf(o) and |h=-£f| < n on

[0,52] N J. This shows that s = 1 and that our assertion

holds.

Lemma 7. Let £ be a bounded function on the
interval J = (0,=). Then wf(o+) = 0 if and only if
there is a function h continuous on J such that

(£-h)(0+) = 0.

Proof. If there is such an h, then, for each
X € J, mf(x) = wf_h(x) and, obviously, wf_h(0+) =0,
Now suppose that mf(0+) = 0. Let x, €J, Xq > Xy > e,
X, ®» 0. Let Np = l/h-ksup[wf(x); x < x¢ xn-l}' It
follows from Lemma 6 that there is a function h
continuous on J such that [f-—h\ <n, on
(%, %71 (n=1,2,--+). It is easy to see that

(E-h)(0+) = 0.

Lemma 8. Let £ be a bounded function on R,
let n € (0,) and let A be a finite set of real numbers.
Suppose that mf(t) =+ 0 (t #» x) and ’wf(x) < 2n for
each x € A. Then there is a function h on R which
is continuous on R\A such that lh| < n and that f£-h

is continuous at each point of A.
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Proof. There are disjoint open intervals I, such

that x € I, and [f-0.(x)| <nm on I_(xe€A). Let
X € A. By Lemma 7 there is a function hx on R which
is continuous on R\{x} such that hX(x) = f(x) and
that f--hx is continuous at x. There is a closed
interval Jk containing x in its interior such that
Je © I, @and that lhx-cf(x)l <n on J.. Now it is
easy to construct a function h on R which is
continuous on R\A such that |h| < n and that

h = hx-df(x) on Jx for each x € A. It is obvious

that f£-h is continuous at each point of A.

Notation. 1In the rest of this note, J will
stand for [0,l]. Let db be the system of all bounded
functions £ on J such that £ is continuous on J\a
for some finite set A. Let ¢ be the system of all

bounded functions £ on J such that

(3) wf(t) -0 (teJ, t=+x) for each x € J

Proposition 1. Let £f be a bounded function on

J. Then £ € ¢ if and only if the set (x € J; mf(x) > nl

is finite for each n € (0,=).

(The proof is left to the reader.)
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Proposition 2. Let f be a bounded function on

J. Then £ € ¢ if and only if for each x € J there is
a function h on J which is continuous on J\({x} such

that £-h is continuous at x.

(This follows easily from Lemma 7.)

Proposition 3. Let fn €ad (n=1,2,...) and let

fn @+ £ uniformly. Then £ € 4.

Proof. It is easy to see that we -
n

We uniformly.

This implies (3).

Remark. Obviously ab ©d. If £ 1is a bounded
function on J such that f£(x+) exists for each
x € [0,1) and that £(x-) exists for each <x € (0,11,
then £ € ¢. 1In particular, each function of bounded

variation on J is in 4.

Lemma 9. Let £ € ¢g. Let a, € (0,=), 2 Gy >

max{mf(x);XEJ},ao>cl>---, Za < =, Let

An = {x € J; ey € wf(x)/z < an}

o’ hl' e« on J such

that g is continuous on J, h, is continuous on

Then there are functions g, h

J\An " f--hn is continuous at each point of A,

(4) \hn] <a (n=0,1,...) and f = g+ 2 h
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Proof. For n =0,1,... let hn be a function

constructed according to Lemma 8 where we take A = An,
=]

n =a . It is easy to see that the function £ - Z)hn
n=0

is continuous.

Proposition 4. Let f be a function on J. Then

f € @ 1if and only if there are fn € do such that fn 4+ £

uniformly.

(This follows from Lemma 9 and Proposition 3.)

Proposition 5. Let f£f,9 € ¢. Then £f+g, £fg9 € 4.

Proof. If £,g € do, then, obviously, f+g, fg ¢ do.

Now we apply Proposition 4.

Theorem. Let f € d, ¢ € (0,=), € > max[wf(x); X € J}.
Then there is a function g continuous on J and functions

Mg,y € @ N B(JF) such that

(5) £ =g+X+o¥, [£-g| < e/2, |A| < €/2, mzv f<(e,

() w, g 5Gu)2, w v, < 207

Proof. Set n =¢/2, & = £#(J). Choose a By € (0,=)
such that max[wf(x); X € J}) < 2 Bé < ¢ (hence Bg < m) and

then a b € (0O ,%- such that

(7) B +Db(2+48,) < n
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Further choose Bn € (0,) such that BO > Bl 5 brn

and % B, < b. Notice that
n=1

(8) (By+b)% < 7

Set a, = Bi and find sets A and functions g, h

n n

according to Lemma 9. It follows from (4) and (7) that

|£-g] < n§o a, < ay+b < m.

By Lemma 4 there are Yn’ ®Pn’ $n € £ such that

(9) hn = Yn+cpn‘w"n ’
(10) lval <eqe lopl =l < Bn-zl/z .
(11) oy S e ug Ve, <2 mlll:z
Because of (10) we may defing y = ;gYn ’
= ' = =
® = ;Eg@n ¢ Y= n§g¢n ¢ P = ¢¢"nzg¢n¢n7 further set
A =yYy=-p. Obviocusly vy,p,¥¥ € &. Since l¢j¢k{ < 2 BjBk

and, according to Lemma S5, .V, € # whenever j ¥ k,

we have p € £#. Therefore A € &#. By (4) and (9),

-]
f=g+y+ L @ t_ =g+\+aoy
n=0 nn

For each nonnegative integer p let Sp be the
set of all pairs (j,k) of nonnegatiVé integers such
that j #p #k # j d let o_ =2 o.1, j .k S_).

a i #FpFk 3 and le 5 Z)qjyﬁ ((3,k) ¢ p)
Obviously
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2
(12) logl < 2" < b

%* * *
Set Yp = Y-Yp. ¢p = ¢-—mp, Wp = w-—wp. We have
(see (10))
*
(13) ly] v [YP\ < ag+b ,
(14) logl Vv ¥5] < b-21/2
and, by (8),
* * 1/2 1/2
(15)  Je| v legl v [¥] v ¥ ] < (By+Db)-2 /2 o Y
It is easy to show that
(16 _ * * g
) P = @pip ¥ IgPp* %

Taking p = O we get, according to (10), (14) and (12),
lp] < 2-2 Bob+-b so that, by (13) and (7), |A| <

ao-bb-+4BOb-+b < m. This proves (5).

Now let x € J. If £ is continuous at X, then

all the functions hn' Ya?r *°°* + A9,y are continuous at

n

X. Otherwise we choose a p such that x ¢ Ap. Then

* *
the functions Y;, ¢P, ¢p' Up are continuous at x.
Since f--hp is continuous at x, we have w0y (x) =_wf(x).
P
Now it follows from (1ll) that wY(x) =w, (x) € welx) ¢
)1/2 :

_ 1/2 _
(ug o)™, g t0) = g (0) g 20ug ) 2, w,(x) = ay ()

< 2(wf(X))l/2. By (16), Lemma 1 and (15) we get
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% * 1l/2 1/2
0, (%) < u (x)-\wp(x)l-+wwp(x>-1¢p(x)| < 4lu (x) 172,172,

@
P
Therefore wk(X) < S(ewf(x))l/z. This proves (6) which

implies that X\,9,{ € 4.

Remark. It is natural to ask whether each function
f € d can be expressed as Y-?¢$, where v,p,y € & = £5(J)
and where at least one of these three functions is
continuous. The answer to this question is contained in

Proposition 6. We need four lemmas.

Lemma 10. Let a,b,c € R, O £a<bgl, c>o.
Let ¢,y € 2 and let ¢y >c on (a,b). Then

p(a)y(a) > c.

Proof. For each x € (a,b) we have (x-—a)2-c <

1722 , &
(' (o9 /2 : - [ 4 (L= (a,x)).
IL P < IL (@l - _1¥] IL -] a,x

Lemma 11. Let a € (0,1). Let Yy be a function on

J which is continuocus at a and let ¢,y € &. Define

£f=y+au,

(17) A, = lim sup £(x), A, = lim inf £(x) (xvwa) ,
(18) A_ = lim sup £(x), A_ = lim inf f£(x) (xAa) ,
(19) M =max(A_,A_), m = min(A_,A_)

1° If vy(a) < M, then f(a) > M

2° If vy(a) > m, then f(a) ¢ m

146



Proof. Suppose that y(a) < M. Let, e.g., M = h+.
Choose numbers p,g such that ‘vy(a) < P< g < M. There
is a b € (a,1) such that vy < P, 9< £ on (a,b).
Then oy = £f-y >g-p on (a,b). By Lemma 10 we have
(p¢)(a) > g-p whence (gy)(a) 2 M-y(a), £(a) > M.

This proves 1° which easily implies 2°.

Lemma 12. Let a € (0,1) and let f be a function
on J. Define m, M by (17)-(19). If m< f(a) < M,
then £ cannot be expressed as Yy+e@y, where vy is

a function continuous at a and o,{ € 5.

(This follows at once from Lemma 11.)

Lemma 13. Let ¢ € # and let @ be a function
continuous on J. Then there is an interval L < J such

that the restriction of the function ¢y to L is in

£(L).

(This follows from [l1], Theorem 4.)

Proposition 6. Let £ be an increasing function

on J. Suppose that the set (x € (0,1); £(x-) < £(x+)}
is dense in J and that £(x-) < £(x) < £(x+) for some
x € (0,1). Let £ = y+qpy, where Y, 9,y € . Then none

of the functions vy,p,§y is continuous on J.

(This follows from Lemmas 12 and 13.)
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