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MULTIPLIERS CF VARIOUS CLASSES OF DERIVATIVES

(Lecture presented at Real Analysis Symposium in Waterloo.)

Let £ be a function (= mapping to (-=,=}} on the interval
J = [0,1] and let & be a system of functions on J. We say
that f is a multiplier of & if and only if fQ€§ forveéch
€%, The system of all multipliers of & will be denoted by
M(%} . Ii, e.g., & 1is closed under multiplication and if the func-.
tion @(x) = L(x€J}) belongs to &, then, obviously, M(E) = §. It
ig well knéwn, however, that derivatives behave badly with respect
to multiplication. It is therefore of some interest to investigate

the system M(3), if ¢ is a "reasonable" class of derivatives.

Let D'[C,A,Cap] be the system of all finite derivatives
{continuous functions, differentiable  f., approximately continu-
ous £.] on J. For each system ¢ of functions on J let
¢+t [b%] be the system of all nonnegative [bounded] elementsz of

$.

R.J. Fleissner characterized in [1] and [2] the system M(D).
For this purpose he introduced the notion of a function of diétapt
bounded variation. This ncﬁion'can be defined in various wéys.?
It seems that the simplest way is the following: Let £ be a
function on J. We say that f is of distant bounded variation

if and only if 141



1im smph%ﬁ+vax€x-%hfx-%2“£f} < = for each x€[0,1)
and
limAsuphﬁo+var€x~»2hRXw*h;f} < = for each x€ (0,1].

The first of these two conditionsg is, of course, equivalent to
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lin =1pn4mvar{x~%nyx-+;¢ﬁi < = for each x€ [0, 1)
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Fleissner posed in [1] the problem of characterizing the system
M (8D}, where B58D is the class of all summable (Lebesgue integrable)

erivatives. This problem has been solved in [3]. H

re I will
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formulate the

O

orresponding result in
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different way.

If £ 1is a function on an interval [a,b] and if n is a
natural number, let v(n,a,b,f}] be the least upper bound of all

sums i - {f{yk}~vf€xkﬁi# where a = x; < vy, %, <y, E..0E

x, <Y, = b. Let V Dbe the system of all functions £ on J
I i

1 3
£1 % im sup win, ¥ T £ £y & o« ey g oo ey 1
(1} Lua-upnmm\z;x+rfﬁf:w:ﬁ L e for each =€ [0,1)

, . 1 . . ‘ .
(2} lim sup v(n5h-“}x-;yf} < w for each =x€ (0,1].




It is obvious that Ycv. A solution of the mentioned problem

is now given by the relation
M(SD} = DNV,

Anocther "natural"' class of derivatives is DT. The vector
space E generated-by it is, obviocusly, the system of all
functions f£€D - such that - lf]l = g for some gé€D (so

that, e.g., DBDCE)..  To describe M(E) we need the following

notation. .If £ is a bounded nonnegative function on an inter=- -

val [a,b] and if 'y is a natural number, we. set .
Alr a.b £) = 71 2‘3:"’ %tz F{[x x 1 |
s G D k=1 SUP TULEp_qexp )

where x = a+Xk(b-a)/r. Then M(E} is the system of all

bounded functions £ on T such that

limr,n—mA (r.x,x--z—ff;, | £~ £ (%) 1) = 0 for each x€[0,1)
and
llmr"n A (r,xw;:,x, |£-£(x)|{}) = 0 for each x€ (0,1].

It is not difficult to prove that M(D+) = (M(E})+ and that
(3) M (D} CM(SD) M (E) cbC_

with proper inclusions. Further we have M(D)\C ¥ d, ‘
MNM(D} # @, CWM(SD) ¥ g. Some elements of C NM(SD) are

nowhere differentiable. These facts show that the role of
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continuity or differentiability in the investigation of multi-
pliers is smaller than we might expect. We have, however,
ACM(SD) and CCM(E).

Let fGSbCaP and let T be the set of all points of dis-
continuity of £. If fE€M{D), then T is finite. IFf FEM(SD),

then T is countable and each nonempty subset

isolated point: in particular, T

’

then T has measure zero (so that §F

e NTF

We see that the set of points of discontinuity

longing to some of the first three systems in
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convergence. It can be shown, however,

over, if f£E€M(E}] and if o ig

then the composite function @ f

g

agy to construct

is continuous on (O

o on 1:2,...,. Then

It is also easv to cons

truct

o

not hold:

& be the Cantor set. Let Ff be a

following properties: £ =0 on §;
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is nowhere dense.

£ €M (D)

stem of all continuous funct

that the
a function contis
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If f£&M(E)
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Riemann integrable).

of a function be-
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V' such that
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we see that

sed under uniform
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is a component of J\S, b-a =37, let £=0 on (a,a] U

[BsD): £(c) =1 and let £ be linear on [o,c] and on {c.B]1s

~TI

where ¢ = (a+b)/2 = (@+B)/2, B~a = 9 Then f€M(DT) and

f 1is discontinuous at each point of 8.

Let 1> a; > a, > ..., a,*0, a /a There is a

n+l
function fE&C such that f({Q) = 0, f is continuocus on

ap
(0,117, f(an} =2 for each n -and Q= f=2 on J. It is
easy to ‘construct a function g € D" such that g(0) =1 and
that fg 2z g on (0,1]. (Such a g may be continuous on
(0.1].) Since (fg)(0) = 0, we cannot have fg€D. We see

that the function £ belongs to DbC and is Riemann integrable;

ap
but does not belong to M(E).

: Proofs of the above results wmll appear in Real Analysis

Exchange.
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