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SOME PROPERTIES OF MULTIPLIERS
OF SUMMABLE DERIVATIVES

Introduction. Let J = [0,1]. For every class 3

of functions on J 1let M(%) be the system of all func-
tions f on J such that fp €& for each ®€3d. The
elements of M(3) are called multipliers of 3.

R.J. Fleissner posed in [1] the problem of characterization
of the system M(SD), where SD is the class of all
summable (= Lebesgue integrable) derivatives. This prob-
lem has been solved in [2]. 1In this note we prove that

the set of points of disconﬁinuity of a function in M(SD)
is "small" (in particular, countable and nowhere dense)

and that some continuous functions in M(SD) are nowhere

differentiable.

Notation. The word function means a mapping to (-=,®).
If £ 1is a function on an interval [a,b] and if n is
a natural number, then v(n,a,b,f) denotes the least
n
upper bound of all sums Z£=l !f(yk)-f(xk)i, where
a = xq < Yy £ ... = X, < ¥ = b. Let V Dbe the set of

all functions f on J such that

=

lim supn*@v(n,x-+%,x-&§,r) < » for each x¢][0,1)

251



and

lim supn_’&v(n,x—%,x—%, f) < » for each x€ (0,1].

If f 1is a function on J and if x¢€¢J, we set

w(x, £) = limh_’o_'_(sup{lf(t) -f(x)|; t€J, |t-x| < h}).

Remark. It is obvious that £ 1is continuous at x
(with respect to J) if and only if w(x,f) = O. Hence
(x;w(x,f) > 0} 4is the set of all points of discontinuity

of £.

1. Theorem. A function belongs to M(SD) if and

only if it is a derivative belonging to V.

Proof. Let W Dbe the system defined in section 6
of [2]. It is easy to prove that W = V. Now we apply

Theorem 8 of [2].

2. Lemma. Let f ©be a Darboux function on J and
let n Dbe a natural number. Let a, b, x€J, a < x < b.

Then v(n,a,b,f) 2 nw(x, f).

Proof. We may suppose that w(x,f) > 0. Let =€
(O,w(x,£f)). There is a vy € (a,b) such that
\,f(yl) -£f(x)| > e. Since £ is a Darboux function,
there is an x, € (a,b) such that 0O < }x—xl\, < {x—yl{
and that ‘;f(yl) - f(xl){ > ¢. There is a Y, € (a,b) such

that |x-v,| < !x-xl\ and \f(yz)—f(x)l > & etc.

\

1
2 |
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In this way we construct disjoint intervals with endpoints

J
Hence v(n,a,b,f) > ne which proves our assertion.

xj,y. € (a,b) such that lf(yj) -f(xj)\ > g for 9 = 1,.

3. Lemma. Let f Dbe a Darboux function on J and

let x€[0,1). Then

(1) 1lim sup(y - x) —lu) (y,£) = lim sup v(n,x + ;, X +g, f).
yaxt n-e n n

Proof. Let A Dbe the right-hand side of the in-

equality (1). We may suppose that A < ». Let BE€ (A,=).

There is a p€ (1,«) such that v(n,x+%,x +%. f) < B

for each n > p. Let v€ (x,x +%) and let n Dbe an
integer such that 1/(y-x) < n < 2/(y-x). Obviously

x+% <y < x+% and n > p. Hence, by Lemma 2,

2

nw(y,f) = v(n,x+%,x+;,f) < B which

1A

(y - x) "t (v, £)

proves (1).

4. Lemma. Let £f£€V and let f Dbe a Darboux func-
tion. Let ¢ #¥ T<{x;w(x,f) > 0}. Then T has a left-

isolated point.

Proof. Suppose that no point of T 1is left-isolated.

Choose a bo €T and set ay = bo— 1. Suppose that n is

- .

a

positive integer and that a1+ b are numbers such that

n-1

€T. It is easy to see that there is a b_cT

< bn—l - n

n-1

and a number a, such that a 1< a, < bn < bn-l and

n(bn-an) < w(bn,f) . In this way we construct sequences
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age al,... and bo, bl""

a, < b < bn and n(bn-b) < n(bn—an) < W (bn,f) for each

Let bn-'b. Obviously

n. This contradicts Lemma 3.

5. Proposition. Let fé€é€V and let £f be a Darboux

function. Let @ # Tc{x:;w(x,f) > 0}. Then T has an

isolated point.

Proof. Suppose that no point of T is isolated.
Let L Dbe the set of all left-isolated points of T.

By Lemma 4 there is an a, €L. Set bo = a.+1l. Suppcse

0]
that n is a positive integer and that a _,, b _; are

— )
numbers such that bn—l > an—IEL' Set TO = (an_l,bn_l) nT.
By assumption T, # . By Lemma 4 T, has a left-isolated

point, say a; it is easy to see that anEL. There is
& _ ;
a bn € (an'bn—l) such that n(bn an) < w(an, f). 1In this
way we construct sequences 2gs Ays ey bo, bl’
i < -
Let a *a. Obviously a, < a < bn and n(a an) <

n(bn—an) < w (an,f) for each n. This contradicts the

"symmetrical version" of Lemma 3.

6. Theorem. Let f€M(SD) and 1let <€ (0O,«). Then
the set {x€J; w(x,f) > ¢} 1is finite and each nonempty

subset of {x; w(x,£f) >0} has an isolated point.

Proof. According to Theorem 1 £ is a Darboux func-
tion belonging toc V. It follows from Lemma 3 that

w(y,f) =0 (y=+x, y€J) for each x€J. This easily
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implies that the set (x; w(x,f) > ¢} is finite. The

second assertion follows at once from Proposition 5.

Remark. It is obvious that each function monotone
on J belongs to V. However, such a function may be
discontinuous at each point of a dense set. We see that
in Theorem 6 the assumption £ €M(SD) cannot be replaced

by the requirement £ € V.

7. Lemma. Let A, B, aj., 2 ., D b be

2’ ll 2'
‘ . A = b <
positive numbers such that Shesn 3, = Aan, Cheen bk = an

for each n and that supy akbk < =». Let fl' fz,

be functions on J such that ‘\fnl =a, on J and that

\fn(y) —fn(x){ ébn"y—xl, whenever x, v€J (n=1, 2, ...).

Then Zxc::lfn €M (SD).

Proof. Let Q = sup,. akb Let n be an integer

L
k
greater than b,. It is obvious that supy by = =. Let

K Dbe the smallest natural number such that bK > n.

A N § -5 - o
Let o, BE€J, B = -L+n. Set Cp—'_‘k<K fk' q;—uk%K fk' f=9+1.

It is easy to see that v(n,c,8,9) = %EkG{ bk s B+1)Db /n =

K-1
<= by < < =

B+1, v(n,a,B,{) =2n - ak=2n(A-i-l)aK=2(A+l)Qn/bK =

20(A+1) so that v(n,a,8,f) = B+1+2Q(A+1). Hence fEV.

Since £ 1is continuous, we have f € M(SD).

8. Lemma. Let A, B, al, a b b be

2' LA Y J ll 2l
it - b ¥ = p =
positive numbers such that “4esn 3, = Aan. “en bk = an

for each n and that 2A+3B < 1. Let ®© Dbe a 2-periodic

1. Set f{x) =

_>_<__
IIA

function such that o(x) = |x| for
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E:zl a, e (bk ak_lx) . Then for each real x we have

DYE(x) = », D_f(x) = -= or D,f(x) = -=, D £(x) = =,

Proof. Let x€ (-»,®) and let n be a natural num-
ber. Set 4 = an/bn' There is an integer j such that
|x -dj| = 4/2. Set y = (j+1)d, z = (j-1)d. Suppose
first that j 1is even. For each k let qok(t) =

1

a, @ (by ak‘ £) (t€ (-=,®)). We have £(y) -f(x) =

< - = -
Dheen (@ (V) 0 (%)) +o (v) -, (%) g O (¥) —2g 0 (%) I
is easy to see that !ka (v) -0 (x)| = by (y -x) for each
k; moreover, ®_(y) =a®(j+1) =a, 0 =9 (x) = an/2.
] < -3— _ = -
Since y-x = 354, we have an/2 = dbn/2 2 Db (y-x) /3
- = - - Pl =7 =
so that f£(y) -£f(x) = -(y-x) D enPrc +an/2 Zysndx =
—(y—x)an+an/2-Aan = -(y—x)an+ (bn(y—x)/B) (1 -22) =
(y—x)cn, where ¢ = bn(l -2A-3B)/3. 1In the same way

it can be proved that £f(z) -£(x) = (x-2) c - If 3 1is

odd, we proceed similarly. Set jn = i, Y, = ¥ 2, = Z.
- = 4
Then z, < x < ¥t zn4x, yn-*x, for 3], even we have
flyy) —£6) £(zp) - £(x)
- x = Cn, > - % = _Cn’
Yn n

for jn odd we have

£ - f(x £{z - f(x
(v,) ) ) )
—_— = -, =z c .
v -X n zZ_ -X n

Obviously c . This completes the proof.
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9. Theorem. Let g€ (6,»). Let ® Dbe as in Lemma 8.
For each x€[0,1] set £f(x) = Z§=l q-km(qka). Then
f is continuous, f€M(SD) and f is nowhere differen-
tiable.

Proof. We apply 7 and 8 with a, = gk, b, = g5,

A=B=1/(g-1).
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