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MULTIPLICATION ANP TRANSFORMATION OF DERIVATIVES

We shall investigate finite real functions on the

interval J = [0,1]. For each system S of functions
on J  let S+ (bS] be the system of all nonhegati%e
[bounded] functions in 8. Let D {L,cap] be the system
of all derivatives [Lebesgue functions, appr@ximately

continuous functions} on . Let H be the system of all

increasing hgme&morphisms of J onto J . Hl ==

{h € ®; 0 < h' < = on J}, 0 ={h € H: foph € C&p for

-~ each f ecf?é‘} (where (f o h) (X} = £(h(x)}} ang

P
W= 1{f € D; £°“ € D). For each system S © p  let

M(s)

]

{o €D: of € p for each f € g} ang

T(S) = {h € H; foh € p for each f € g},

The systems ¢, M{D}) and T(D) have been characterized

in [1], [3] and (41, respectively; the system T(W} has
been investigated in [2]. It is not difficult to show
that

(1} bcap “W<SL< Dpn Capr

{(2) M) c bcap’ M{L} = bD,

(3} L= {f

g
4y Q9 = T(bC__).
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shalli need the following
(2;}) Let h €Q, a €3. 7h

& 0 uch that hix) ~hia)|; [ %
(A.}) Let s D, h €H,, g
& L -

LWo assgsertionss

The proof of (A;} can be found in [1l: th
(AZE is very simple.
Let £, ¢ b NC. _, £, €W \bD and let £
. S z
. . . . . s e 3
where w 18 a function in W such that w”
{1} - (3} we have :?f? © M{LI\M({D}, £, € M{m\M

o~

. % e g N wg fre . -

£, € M{C__N\HM(W), and it follows
3 ap

the obviocus inclusions

{5) T} < LYy © TW) <«

are proper. We also see from (2}

an h € Hl\\T{ﬁ) such th

To formulate the main reguli

notations If f is a functior

Df (x} [Df(x}] iz the uppe

X; if x € {0,1}, we mean, of c
unilateral derivates. 7Tf Y is
[0,°] and if a, b € J, a # b,
sup{y(x); x € T}, where I is t
endpoints &, b. If y{x] = o f

hat both functions

(A5}
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(A} that
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12 closed interval with
or some x® € I, let



var(y,a,b) = «; otherwise let var{y,a,b} be the

variation of v on T.

(33? Let h €¢H, g=h . ~Let Yy be a mapping of
J to [0,%] such that Dg g v < Dg. Then we have
h €T(L) if and only if

1 X

i ; . 1 ._ YA . oo
{6) lim sup SEIPTIEY Ja sup{y,t,x}dt <

{x ~a, x € J) for each a ¢ J:

we have h € T(D} if and only if

x .
(7} lim sup gﬁzﬁ%E?ET'f var{y,t,z}dt
e e X G a N

A

{(x » a, x € J) for each a € J.

The charactarization of  T{D} by (7) is different

from the characterization given in [47},

It follows easily from (6) that the set
{x € J; phix) = 0} is finite for each h € T{L}. We
see that there are infinitely differentiable functions in
H\T(L}. Rcéarding to {Ai}f there are convex functions
in H\Q:; by (4) and (5), in H\T(D). It can be proved,

however, that h € T{D}) for each convex function
he o 0NH,

It follows from (68) that h € T{L}, if both h and
h 1 are Lipschitz functions.
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It 1s easy to prove that h € T(D) for each

that h’ is of bounded variation. It is, however,

difficult to construct a function h € B such that

is continuous and h' > 0 on {g,171.
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