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TRANSFORMATION AND MULTIPLICATION OF DERIVATIVES
Jan Maf{k

ABSTRACT. The author investigates homeomorphisms h of the
interval [0,1l] onto itself such that the composite function
f°-h belongs to a certain class for each f belonging to
another class. These classes consist of derivatives or
approximately continuous functions. Then he investigates
functions g such that the product fg is a derivative for
each derivative f or each Lebesgue function f and shows a
connection between families of such functions h and g.

0. INTRODUCTION. Let H be the family of all increasing
homeomorphisms of the interval [0,1l] onto itself. A. M. Bruckner
characterized in {1l] the class of all h €H such that the com-
posite function feh 1is approximately continuous for each approxi-
mately continuous f. In [2] he investigated homeomorphisms h €H
such that f-h&€D for each f€D for which f2 also belongs to D,
where D is the class of all derivatives. M. Laczkovich and G.
Petruska characterized in [5] the smaller class of all h€H such
that f-h€D for all f&€D. R. J. Fleissner described in [4] the
system of all functions g such that fg €D for each f&€D. The
present paper contains, among other things, improvements of some
of the results obtained in the mentioned articles and also shows
connections between these results.

The word "function" means, throughout the paper, a mapping of
a subset of R= (-»,®) to R¥=R U {~»,»} . A function whose range
is in R is called a finite function. Multiplication in R* is
defined in the usual way; in particular, a==« for a>0. The
word “"continuous" refers to the usual topology in R ; thus, "con-
tinuous function" always means a finite function.

The letter J stands for the interval [0,1]. The system of
all finite [bounded] derivatives on J is denoted by D [bD]. The
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system of all finite functions that are approximately continuous
with respect to J at each point of J is denoted by Cap’ the
meaning of bCa is obvious.

Symbols like fls £, j'ta) f(t)dt denote the corresponding Lebesgue
or Perron integral. If a,b€R, a<b and if K= [a,b] , we write
also IKf . The meaning of expressions "I~integrable,"
"P-integrable" is obvious.

The outer Lebesgue measure of a set SCR is denoted by IS|.
Words like "measurable" always refer to the Lebesgue measure in R.
A finite function f on J belongs to D if and only if
£(a) = lim(x-a) ! f}; f (x»a,x€J) for each a€J. A finite func-

tion £ on J is called a Lebesgue function if and only if

(x-a)-l j')‘_: |f-f(a)l 20 (x=a, x€J) for each a€J. The system of
all Lebesgue functions is denoted by L. It is easy to see that L
is a vector space, bcachcD and that each Lebesgue functi20n is
I~integrable. The system of all functions f&€D such that f~ also
belongs to D is denoted by W. '

1. DERIVATIVES AND APPROXIMATELY CONTINUOUS FUNCTIONS. This
part contains some simple assertions that will be used later. The
proofs of 1.1 and 1.2 are left to the reader.

l.1. Let f£€D, £>0, c€J, f(c)=0. Then f is approxi-
mately continuous at c¢ with respect to J.

1l.2. Let f€L. Let g be a finite function on R such that
lg(y)-g(x) | < ly-x| for any xXx,y€R. Then gef€L.

g Lccap.

Proof. Let c€J. By 1.2 we have |f-f(c)| €D. Now we apply
1.1,

l.4. WcL. (See [2], Theorem 1.)

Proof. Let wE€W, c€J, g=w-w(c). It follows from the
Cauchy inequality and from the relation g2 €D that
lj’ﬁ Igl)zf (x-c)-lf};gz->0 (x=c, x€J).

1.5. Let f€D and let f.a€D for each a€R. Then f€L.
Proof. Let c€J, a=f£f(c). Obviously f+a= (f.a)+ (f~a)

((x=c)”

whence f.a€D. Since |f-al = (fva) - (f.a), we have |f-al €D. Thus
L% ie-f(c)1»0(x~c, x€), £EL.

1l.6. Let g be a finite function on J such that g.b €D for
each b&€R. Then ge€C

(x=c)”

ap °
Proof. It follows from 1.5 and 1.3 that g.c Eca for each

P
C €ER. Hence g€ Cap .
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1.7. Let f be a finite function such that (f~a) +bED for
any a,b€R. Then fECap. (see [3], p.50, Theorem 4.1.)

(This follows from 1.6.)

1.8, Let f,gGCap, f€D and Igl <f. Then g€L.

Proof. We may suppose that g>0. Let c€J, a=f(c),
fl=f,.a, g, =9-~2a, f2=f—fl, 9,=9-97- Then f2= (f.a) - a,

g, = (gva) - a. Sirllce flébca , we have fl,fZED. Obviously
O_<_g2§f2, (x=c) f}c{gzs (x—c)"l f}é f2—>f2(c) =0 (x=*c,x€J).
Since glEbCap, we have glGL. Thus g=gl+g26L.

1l.9. W is a vector space. If f,g€W, then fg€L.

Proof. Let f,g€W. It follows from 1.4 and 1.3 that WC Cap'
Since 2Ifgl5f2+ 92 , we have, by 1.8, fg€&€L. Now it is obvious
that (f+g)2 €D which shows that W is a vector space.

1.10. Let f€1L, £>0. Then £/2ew.

[1/2

Proof. Obviously £ <1l+f. Now we apply 1.3 and 1.8.

1.11. Let f€L. Then there are v,w€&W such that f=vw.
Proof. By 1.2 and 1.10 there are WieW, €W such that
wi=fv0, wg = (-f).0. Set v=w

v,w €EW. Obviously vw=f.

1T Wyr WEW, —W, . By 1.9 we have

2. INTEGRATION AND COMPOSITION. This part is connected with
the problem of finding conditions under which a composite function
is a derivative. Most of the results are of auxiliary character.
However, sections 2.3 and 2.4 contain simple estimates of integrals
and may be of independent interest.

Let a,b€&€R, a<b and let ¢ be a function on the interval
K= [a,b]. If o¢(x)=+» for some x €K, we set var(9,K) ==, If
®(K) cR, we define, as usual, var(¢,K) as the least upper bound of
the set of all sums Ejgllcp(tj) -cp(tj_l)l ., where a=to<t1<... <
tn=b. We write var(¢,K) =var(¢,a,b) =var(9,b,a). Further we set
sup(¢,a,b) =sup(¢,b,a) =sup ¢(K) and var(e,c,c) =0, sup(yp,c,c)
=¢(c) for each c€K.

If o(K)<R, then U+cp(a) [L+cp(a)] is the right upper [lower]
derivate of ¢ at a; the meaning of U o(x), L-cp(x) (for
x€ (a,b]), Uvp(x), Lo(x) (for x€ (a,b)) is obvious. If [a,b] is
the domain of definition of ¢, we write sometimes Ug(a), o' (a)
instead of U+cp(a), cp'+(a) etc.

In 2.1 and 2.2 we state without proof two well-known results
of integration theory. (See, e.g., [6], Chapter VIII.) Symbols
a,b,K have the same meaning as before.

2.1. Let f be P-integrable on K and let ¢ be a finite non-

negative nonincreasing function on K. Then f¢ is P-integrable
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on K and there is a § €K such that [, fo=0¢(a) jg’ £.

2.2. Let f be a function on K that is P-integrable on
[x,b] for each x€ (a,b). If lim__ o f=1€R, then f is
P-integrable on K and ‘J‘K £=1.

2.3. Let o€&€R. Let ¢ be a nonnegative nonincreasing
function on (a,b] such that J”ch<oo. Let f be a function
P-integrable on K such that Ij': fl <o(x-a) for each x €K. Then
the function f¢ is P-integrable on K and IIK fol fchcp .

Proof. Let ¢o,B € (a,b], oa<B . Set fl= f-ao. By 2.1 there
is a £€ [0,8] such that [P flo=0() 25 =0(a) (JS £, - [2E)).
Since r§ f, <0, we have FB fo <M, where M—o F o+ 20cp(a) (a-a)
Taking -f 1nstead of £ we see that lfa fol <M. Since
(a=a) o (o) <‘f ¢ , there is a finite llmlt k—llmj' fo (x—2a+) and
IXIgcdrch. By 2.2 we have k—fom .

2.4. Let c,A€R. Let f be a P-integrable function on K
such that I‘J fl <o(x-a) for each x€K. Let a be a function
on K such that vaar(or.t,b)dt=A. Then fo is P-integrable

on K and
| [ fal < a(2A+ 1 [ al) .

Proof. Suppose first that o(b)=0. Set {(x)=
var (a,x,b) (x € (a,b]), o) = (y+ @) /2, oy = (V=a)/2. By 2.3 we have
p -
lj'Kfajl_gcJKaj for j=1,2. Hence

(1) Ifx fal < oA

In the general case we have [Kla(b) =IK(a(b)—a) +fKa ‘
Jg fo=[g £+ (e=a (D)) + a(b) [ £ so that IKIla(b)| <A+ [, ol and
(see (1)) |fK fol <oA+ la(b) IoIKI <o (2A+ [ al) .

2.5. Let f be L~integrable on K. Let y be a nonnegative
measurable function on K such that O<j’ y <« for each x € (a,b).
Suppose that (x-a) lj' |f=f(a) | 0 and that

(2) limsup(f’;v) JXsup(v,t,x)dt<e  (x-at) .

Then there is a c € (a,b) such that fy is L-integrable on [a,c]

and we have
XN E ey f@) (xoat).

Proof. We may suppose that f(a) =0. For each x € (a,b]
set o(x) = sup( (t-a)-l f: If1; a<t<x}. Obviously oc(a+)=0.
There is a c € (a,b) such that f; sup(y,t,c)dt <=. Choose an
x € (a,c] and set ¢(t) =sup(y,t,x)(a<t<x). By 2.3,
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Ix lflcp<c(x)f @. Since I|fyl<Iflep on (a,x], we have (see (2))
(‘f}; y)~ f fy=0 (x~at).

2.6. Let o,9,f be P-integrable functions on K and let
xER. Suppose that j' ¢ >0 for each x € (a,b), (j‘:cp)-lf;coz"k,
(x-a) "~ f f- f(a) and that

(3) lim sup(_fa 0) j‘a var (o, t,x)dt < » (x> a+).

Then there is a c € (a,b) such that the function fo is P-

integrable on [a,c] and we have

(4) JXo) ™  [Xfamrf(a)  (x-at) .

Proof. We may suppose that f(a) =0. For each x € (a,b)
set o(x) = sup{ (t-a) lj' fl; a<t<x}. Obviously o(a+)=0.
There is a c € (a,b) such that j' var (¢, t,c)dt <». By 2.4 we have
lj' fal <o (x) ( IJ“ a|+2f var (o, t,x)dt) for each x € (a,c] . This
ea51ly implies (4)

2.7. Let b€ (0,«), K=[0,b] . Let g be a continuous
increasing function on K, h=g—l. Set y(b)=Ug(b), Yy=Ug on
(0,b). Let M be a number less that IK sup(y,t,b)dt. Then there
exist an a€ (0,b) and a nonnegative piecewise linear function £

on K such that £=0 on (0,a) U{b}, Igfgx for each x €K and

Ig(K) foh>M.

Proof. For each x € (0,b] define o(x) =sup(y,x,b) .

Suppose first that ¢(c) =« for some c € (0,b) . Set
A=2IMl/c. There is a z € [c,b] such that y(z) >A. There are
numbers p,q such that either p=z or g=z, gq/2<p<g<b and
g(q) -—g(p) »A(g-p). There are numbers ¢,B such that p<aoa<B<g
and g(B) -g(e) >A(g-p) . Let f be a function such that £=0 on
[0,p] and on [g,b] (which means (b} for g=b), f£=p/(g-p) on
[¢,B] and that £ is linear on [p,o] and on [B,q]. Since Igf=0
and j'Kf<p, we have j'}gf<x for each x€K. Since 2p>g>z>c,
we have Ap>M. Obviously j'g(B) foh= (g(B)-g(a))p/(gq=p) >Ap so
that J“g (k) foh>M.

Now suppose that ¢((0,b)) <R . There are numbers c€ (0,b),
Q€ (l,») and € € (0,«) such that j'l;cp>QM+bc. There are
tO""'tn such that c=t, <t <...<tn=b and that ti<Qti_l

0 1
for i=1,...,n. There are integers s and jk (s >1) such that
¢(ty) =e(ty -1) > oty ) =@ (ty -1’ >e(ty ) =...>0(t, ) =t 1)

1 1 2 2 Jg-1
Set j,=0, j_=n, Vk=tj (k=0;40neB)y Ak=cp(tj _y) =
k k



124 MARIK

(k=1,...,8). For k=1,...,s-1 there is a 2z, € [t. _,,t; ] such
k Ik 1 Jy

that Y(zk) >Ak; there is a Z € [tn_l,tn] such that y(zs) >AS "

Note that Vk<sz' There are ak,bk such that either ay = 2y

X’ al<b1<°" <as <bs_<_b, Vk<Qak and g(bk)-g(ak)>

Ak(bk-ak) for k=1,...,s. There are numbers e Bk such that

ak<ozk<Bk <]:>k and that g(ek)-g(o«k) >Ak(bk-ak). Let F be a

function on [0,b] such that F=0 on [O,al] U [bs,b] and on

or bk=z

[by .2y ;] for k=1,...,s-1, F= (vk—vk_l)/(bk-ak) on [e,B, ] and
that F is linear on each of the intervals [ak,cvk] and [Bk,bk]

a
B _ . K+ 1 _
for k=1,...,s. Set a_ ,=b. Obviously j'ak g(FB<)Vk V1. If
X k -
a, <x<a ,, then IO F <v, <Qa, <Qx. Further g (o) foh

(g(By) =gy )) (Vk-Vk__l)/(bk-ak) >Ak(vk-vk_l) . Since A, = o (t,)-e
for i= jk_l,...,jk—l , we have Ak(vk—vk_l) =

I g -
imgpe_q#1 @ (Bim1) (8785 0) = ¢ (i) 2]y @7 Vgoy) . Hence
-J‘g(K) Foh >j'v(s)<p—¢b >QM. Now we set £=F/Q.

2.8. Let a,b€R, a<b, K= [a,b] . Let g be a continuous
increasing function on K and let A,B€R. If Ug>A on (a,b),
then g(b)-g(a) >AlIKI ; if Ig<B on (a,b), then g(b)-g(a) <BIKI.

Proof. If Ug>A on (a,b), then, by Theorem 7.4 of Chapter
IV of [6], we have g(b)-g(a) >AlKI.

Now let Ig<B on (a,b) and let N be the set of all points
X € (a,b) for which g'(x) does not exist. By Theorems 4.4 and
6.5 of Chapter VII of [6] we have Ig(N)| =0 and Ig(a,b)\NI| <BIKI.
Therefore g(b)-g(a) =Ig((a,b))| <BIK]I.

2.9. Let g be a continuous increasing function on [a,b].
Then

lim inf Ug (x) 5L+g(a) i U+h(a) <1lim sup Lg (x) (x»at).

(This follows at once from 2.8.)

2.10. Let b€ (0,»). Let § be a finite nonincreasing
function on (0,b] with §(b) =0 and let Q be a number less than
j‘gw . Then there are numbers tg,...,t such that

0<t <...<tn<b, y 1s continuous at tj for j=1,...,n and

0
n
P t.—-t. t.) 30 .
(5) so1 (E5mt5 1) ¥(Es) >0
Proof. There is a to € (0,b) and an integer n>1 such that
(6) j‘g ¥ >0+ 2by (ty)/n.

0
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)

Let zj=to+ j(b-to)/n (3=0,...,n). There are tJE (zJ 1425
such that ¢ is continuous at t, (j=1,...,n). Set kg™ =b,
S=2j:1(tj-tj P¥(Es), T= 2§+]l_(t ~t;_)¥(t;_;) . Obviously
j‘b ¥ <T, tj-tj_1<2b/n so that j‘léo ¥-S <T-S =

rj”i(t -ty ) (¥ (Eg l)-t(tj))_<_2b¢(to)/n. This and (6) proves

(5).

2.11. Let a,b€R, K=[a,b]. Let g be a continuous
increasing function on K, h=g-l . Let ¥y be a function on K
such that L+g(a) <vy(a) §U+g(a), L_g (b) <v(b) 5U_g (b) and that
Ig<y<Ug on (a,b).

Let A be a number less than var(y,K) . Then there is a
function f piecewise linear on K such that f(a) = £f(b) =

[.£=0, I[¥fl <1 for each x €K and that
K a -

jg(K) feh>A.

Proof. Suppose first that there is a c € K such that
y(c) =». Let, e.g., U+g(c)=oo. Set s= (ctb)/2. Let F be a
nonnegative piecewise linear function on [s,b] such that

F(s) =F(b) =0 and ‘J" F=1. Set B= j'g(b) Feh. There is a
g(by)-g(c)
b0 € (c,s) such that bo‘c
that c+ 2% <b0 and that (g(b -6)—g(c+6))/(b -c-§) >A+B. Let f
be a function on K such that f(t)=0, if a<t<c, f= (b -c-5)"
on [c+6,b0-6], f=0 on [bo,s], f=-F on [s,b] and that f is

linear on [c,c+8] and on [by-6,by]. Then f(a)-f(b)—j‘ f£f=0,
g (by)
X P ° — o g(b) o >
|/ fl<1 for each x €K and Jgx) £ J“g(c) £ h+jg(s) foh

A+B-B=A.
Now suppose that y(K)<R. Then there are numbers to,. % 'tn

and T such that a=t0<tl<...<tn=b, N>0 and that

n
(7) 50 Iv(t5)=v(ty )1 >A+ 20T,

>A+B. There is a 8§ € (0,«) such

We may suppose that (y(tj)—y(tj_l))- (y(tj+1)-y(tj)) <0 for
j=1,...,n=-1. Let, e.qg., y(to) >y(tl) <Y(t2) >... . Then

n -
Yitg) =2y (t)) + oo+ 2(-1)" Ty (e )+ (<D Py(t) .

Choose an ¢ € (0,») such that 2e <t.-t. for j=1,...,n. There
are z € (a,b) such that (g(zj)-g(t ))/J(z -t )>y(t ) -1 for 3j
even, (g(z )—g(t ))/(z —t )<y(t ) + 1M for j odd and IzJ-tJI <e

for 3—0,...,n.
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£ . <t. t .=z., b.=t.; 1if z.>t., set a,.=t,
If zy<ty. set ay=2z4, Dy=%y j 755 s

= i = ' < = 1s
b. zj. Obviously a a0<b0<al<... bn b. There 1s a

8§ € (0,®) such that 2% <bJ-a for j=0,...,n and that
(g(bj-b)-g(aj+6))/(bj-aj-e) >y(t )=T for j even,
(g(b )-g(a ))/ (b. —aj-a) <y(t )+n for j odd. Now let

(b —aj-&) -1 (j Qyesaal) and let f be a function on K such
that f—c0 on [a + 6,b -5], f=2(-1)3cj on [aj+ 6,bj-6]
(j=1,...,n-1), f—(l)n on [a +6,b -38], £=0 on

K\Uj_o(aJ b.) and f is llnear on each of the intervals

[a. ,aJ+ 8] and [b -5 b] Set s,=a, s_ =b and sy = (aj+bj)/2 for
0 bn . _ n
j—l,...,nl It is easy to see that j' £f=1, J‘a £f=(-1)",
n
jan j‘Jf—( 1) for §=1,...,n-1, J‘J £=0 for j=1,...,n
J J-l
and that I‘]"aflgl for each x€K. If j is even and 0<j<n,
g(b.)
then jg(aj)foh>2c.(g(b.-a)-g(aj+5))>2y(tj)-2n; if § is odd
J
g (b )
and 0<j<n, then | g2 )f°h>-2cj(g(b )=g(ay)) >-2v(ty)-21.
g (by) ] g(b )

similarly, [ (ao)fh>y(t )-1 and [_ )fh>( -1y (k)=

Thus (see (7} 5 (8)) J‘rg(K) foh >y(t, )-2y(t )+ eeat
2(-1)" Y(tn )+ (L) (e )-2nﬂ>A

2.12. Let b€ (0, oo), K= [0,b] . Let g be a continuous
increasing function on K, h=g_l. Let vy be a function on (0,Db]
such that L-g(b)gy(b)gU-g(b) and Ig<y<Ug on (0,b). Let M
be a number less than IK var(y,t,b)dt. Then there is an a € (0,b)
and a function f piecewise linear on K such that £f=0 on (0,a),
£(b) = [, £=0, IJOfl<x for each x €K and [ g(x) ER>M.

Proof. For each x € (0,b] define Yy (x) =var(y,x,b) :

Suppose first that {(c) =« for some c€ (0,b). There is an
a€ (0,c) such that g'(a) exists. Then, obviously,
vy(a) =g'(a) =L+g(a) =U+g(a) and var(y,a,b) =«. It follows from
2.11 that there is a piecewise linear function F on [a,b] such

that F(a)=F(b) =[°F=0, I[¥FI <l for each x€ (a,b) and that

anEb; Feh >M. It is easy to see that the function f defined by

f=0 on [0,a] and f=aF on (a,b] satisfies our requirements.
Now suppose that ¢((0,b])cR. Choose a number Q with

=b -

)) <

M<Q<J’K¢ , find numbers tj according to 2.10 and set t

Then <z ;0 (b=t )V (E5) ==tay(t) +2 0 £ (4 () - v (e

>3 t. var PN A o
JlJ (Yotyetye) -

nt+1l
J= j+1

Since { 1is continuous at tj’ Yy is
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continuous at t. as well. It follows easily from 2.9 that

(t ) exists for j—l,...,n. Let ¢ € (0, (Q-M)/(nb)) . By 2.11
(note that y(t ) =g (t )—L g(t ) etc.) there are functions f]
plecewz.se linear on [t tj+l] such that f (t )=£f. (t3+l)

J+l -

It. =0 lj' l<l for each x € [t t3+l] and that
g (&5 +1) :
g(t;) f:J h>var(y,tJ t3+l) . Let f Dbe a function on K such
that £=0 on [O, tl] and f=tjfj on r[xtj tj+l] (1=1e0e:D)
Then  £(b)i= ], £=0 and j k) £R>T 5o tyvar(vityity q)-¢€) >

X R :
Q-nbe >M. If t ;<x<ty ., then ljo £l=1[¢ £ <ty<x. This

completes the proof. J

3. TRANSFORMATIONS VIA INNER HOMEOMORPHISMS. Let AC Dbe the
system of all absolutely continuous functions on J. Let H be
the system of all increasing homeomorphisms of J onto J and let
d be the system of all functions h €H such that fc'hECap for
each fECap . For each system ScD let TrS be the system of
all functions h €H such that fe-hé&€D for each f€S.

The system ¢ has been characterized in [l1]. We shall see
in 3.5 that d=TrbCap. Thus TrScd for each S with
bCaPCSCD . Theorem 3.6 describes Tr L. It is easy to prove
that we have even feh €L for each f€L and each h&€Tr L (see
3.7). If h€H and if both functions h and h™ T satisfy the
Lipschitz condition, then (9) is obviously fulfilled so that
heTr L. In 3.8 we show that a function h€H belongs to TrL
if and only if weh €W for each w&€W. In this way we obtain an
improvement of Theorem 4 in [2]. Theorem 3.9 gives a characteri-
zation (which is simpler than the characterization found in [5])
of the system TrD. ’

We shall see in 4.7 that the obvious inclusions
TrDC Tr LCTrbCap (= @) are proper. If, however, h 1is a convex
or concave element of &, then h€TrD. This is proved in 3.12
(with the help of 3.11).

First we introduce an auxiliary system.

3.1. Let B be the system of all functions g €HNAC with
the following property: If S is a measurable subset of J and
if x€J is a point of dispersion for S, then g(x) is a point

of dispersion for g (S) .
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Remark. It is easy to see that g(S) is measurable whenever

S 1is measurable, ScJ and g€AC.

The assertions 3.2 and 3.3 follow easily from Theorems 1 and
2 and Lemma 6 in [1].

3.2. We have h€¢g if and only if h™ ~€4.

3.3. Let h€@, a€J. Then there is a 6§ € (0,1) such that
lh(x)-h(a) I/lx-alé-'o (x>a, x€J) .

3.4. dcAC.

Proof. Let h€d, ScJd, ISI=0. There is a Gé set T such
that ScTcJ and that IT|I =0. Suppose that |h(T)| >0. The set
h(T) is obviously measurable. Let X be a point of density of

h(T). It follows easily from 3.2 that h_l(x) is a point of

1

density of T ; this, however, is impossible. Thus |h(T)I| =0,
Ih(S)| =0, h€AC.

3:54 d=TrbCap.

Proof. If h€d and aEbCap, then ozohébcapcD so that
hETrbCap. Now let hETrbCap and aECap. Let a,b€R,
B = (e¢~a)vb. Then B Gbcap, ((eech)aa)vb=geh €D. By 1.7 we have
athCa « Thus h€ag.

p -
3.6. Let h€H, g=h"1. Then h€TrL if and only if

(9) lim sup(g(x)=-g(a) y jq; sup (Ug,t,x)dt <= (x»a, x €J)

for each a€J.

Proof. Suppose that (9) holds for each a€J. It is easy
to see that there is a finite set Sc J such that g fulfills the
Lipschitz condition on each closed interval contained in J\S.
This shows that g € AC so that g is an indefinite integral of Ug.
Let £f€L. It follows from 2.5 that f-Ug is I~integrable on J.
Let Q(x) =f5 f-Ug (x€J). By 2.5 we have

(g(x)-g(a)) t(x)-0(a)) » £(a)  (x~a, x€J)

for each a€J. Hence (Q°h)'=f-h on J,hé€Tr L.
Now suppose that, e.g., 1lim sup(g(x))-'l -JP}(; sup(Ug,t,x)dt =
(x20+). There are an (0,1) such that cn->0 and that
n
ng(cn) <Tn' where Tn=j'o sup(Ug,t,cn)dt. There are

b € (¢ ,2c,) N (0,1) such that ng (b)) <T ~and that g° (b ) exists.

b
Then ng (b, ) <f0n sup (Ug, t,b_)dt (n=1,2,...). It follows easily
from 2.7 that there is a subsequence (an) of (bn) and nonnegative

continuous functions £, such that 2an+l<an, fn=o on
[0,a

X
arqd Y [an,l], IO f <x for x€J and that
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g(an) -1
o f ch>ng(a ) (n=1,2,...). Set A =g(a ), £=In " f .

a
rAX — _ -1 px -1 k
Let a <x<a ;. Then [jf=(n-1) " [ f ,+Z, %k ["f <

(n—l)-l X + n_l z k:n a, < (n-l)"l X + n_l 2an < (n-l)-l 3x . This shows

that £f€D. It is easy to see that f € L. However,
J“zn fthn—lfzn £ °h>A_ so that fohfD, hgTrL.

Remark. It follows from 3.6 that the set {x € J; Lh(x) =0}
is finite for each h € Tr L.

3.7. Let h€Tr L and f€L. Then f-h€L.

Proof. Let a€R. By 1.2, f.a€L. Thus f-h€D,
(feh)va€D. By 1.5 we have foh € L.

3.8. Let h€H. Then h€TrL if and only if weh €W for

each weEw.
Proof. If h€TrL and wéEW, then w,wzéL (see 1.9),

weh, (woh)ZED, weh €W,
Now suppose that weh €W for each wéw. Let f€L. By 1l.1l1
there are v,w€&€W such that f=vw. Thus fech= (veh) (weh) €L

(see 1.9), hE€TrL.
3.9. Let hE€H, g=h_l. Let y be a function such that

Ig<y<Ug on J. Then the following three conditions are equiva-

lent to each other:
i) There is a function ¢ such that g(a) =‘rgcp and that

lim sup (g (x)-g (a)) " [Xvar (e, t,x)dt <o  (x>a, x €J)

for each a&€J;
ii) hé€TrD;
iii) the condition
(10) 1lim sup(g(x)-g(a))_l ‘fz var (y,t,x)dt <o (x=2a, x €J)

is fulfilled for each a€J.

Proof. Suppose that i) holds. Let f€D. It follows from
2.6 with o=¢ that f¢ is P-integrable on J. Set
Q(x) =j'}é fo (x€J). By 2.6 (with A=1l) we have
(g(x)-g(a))-l(Q(x)-Q(a)) »f(a) (x»+a, x€J) for each a€J. Hence
(Q°h)' =fh on J,h€TrD.

Now let h € TrD. Suppose that, e.g.,

lim sup(g(x))-l j’}gvar(y,t,x)dt=m (x=0+).

There are an (0,1) such that cn-*O and that ng(cn) o where

@
_ n
Vn‘fo Var(Y,t,cn)dt . There are b_¢ (cn,2cn) N (0,1) such that
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b
ng(bn) <V and that g'(bn) exists. Then ng(bn) <‘J"0nvar(‘y,t,bn)dt
(n=1,2,...). It follows easily from 2.12 that there is a sub-

sequence (an> of (bn) and functions fn continuous on J such

X
that a  ,<a, £ =0 on [0,a ] Ula 1], J;£,=0, 1[gf 1 <x
for each x €J and that
g(a) L
(11) fo £ ~h>ng(a) =120
== = = _ -1 rX
Set £f=%¢n fn, F=0 on {0} U(al,l], F(x) =n Jan+lfn for

X € (an+l,an]. It is easy to see that F'=f on J. By assumption
there is a function G such that G'=f°h on J. For n=1,2,...
set g = (G(B)-G(a)) /B, where A=g(a . ). B=g(a ). Since

G' (0) =0, we have q, = (6(B)/B)-(A/B) (G(A)/A) >0 . However, by
(11), G(B)=-G(Aa) =n-1 j'i fn°h >B whence qn>l for each n. This
contradiction proves iii).

Suppose, finally, that iii) holds. It is easy to see that
there is a finite set Sc J such that var(y,K) <« for each
closed interval K< J\S . This shows that g€ AC. Thus (i) holds
with 9o=v.

Remark 1. Suppose that h€H, h' >0 on J and that
var (h',J) <®. Then var(g',J) <« and (10) holds for each a€J.
Thus h € TrD. The remark in 3.6 and the example in 3.13 show
that the requirement h' >0 is essential.

Remark 2. Let h&€ TrD. It follows easily from 3.9 (see the
proof of the implication iii) »i)) that there is a finite set
ScJ such that for each a€ (0,1)\S the unilateral derivatives
h'+(a), h' (a) exist and that there is a countable set Tc J such
that for each a€ (0,1)\T the derivative h'(a) exists; we must,
of course, admit also infinite derivatives. The next example
shows that h' may be infinite on an uncountable set. (See also
[5], p.195.)

3.10. Example of an h€TrD such that h' =« on a perfect
set.

Let C be the Cantor set. Let G be a function such that
G(0) =0 and that G'(x) =dist(x,C) for each x€J. Then IG"I=1
a.e. whence var(G',t,x) = Ix-t| for all x,t€J. Let a,b€dJ,
a<b. Then [ovar(G',t,b)dt=[>(t-b)dt= (b-a)’/2. set q=1/3.
There is an integer n >2 such that qn'-l<b-a__<_qn_2 . Define
=kqn (k=0,...,3n). There are j,k such that t._

t
k j=-1
tk<b_<_tk+l. It is easy to see that k>j+ 2 and that at least

<a<t;,
J

one of the intervals (tj,t Y (t'+l’tj+2) is contained in J\C.

J+1 5|
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Let, e.g., INC=@ with I= (t t3+1) For x€1I set
p(x) =min(x- tJ t3+l -x). Then IC (a,b), III =q" > (b-a)/9, G'>u
on I and G(b)-G(a)>j' b= 1I1%/4> (b-a) /324 Hence
(G(b)=-G(a))~ f var (G',t,b)dt <162. Now set g = 28G, h=g—l.
since G(1) =2n:l 2%t (q®)%/a=1/28, we have h€H. By 3.9,
h€TrD. Obviously h'==o on g(C) .

3.11. Let g€pF and let g be convex. Then

lim supxg'+(x)/g(x) <@ (x=0+) .

Proof. Suppose that the assertion is false. Then there are
anE (0,1) such that 2an<an-l and ang'+(an) >ng(an) for
n=1,2,... . Set bn= (l+n"l)an, An=g(an), Bn=g(bn), S=U(an’bn)'
It is easy to see that 1SN (0,x) I/x-’O (x=20+) . However,

Bn—Anz (bn-an)g'+(an) >ng(an) (bn—an)/an=An so that
Ig(s) N (O,Bn) | >Bn—An>Bn/2 . Thus 0 is a point of dispersion
for S, but not for g(S) which is a contradiction.

3.12. (Cf. [5], Theorem 5.) Let h€H and let h be con-
cave. Then the following three conditions are equivalent to each
other: (i) h€TrD; (ii) hé€@; (iii) limsuph(x)/(xh't (x)) <=
(x->0+).

Proof. The implication (i) = (ii) follows from 3.5; the
implication (ii) - (iii) follows from 3.2 and 3.11l. Now suppose
that (iii) holds. Set g=h_l, v=Ug (=g'7 on [0,1]). We prove
first that (10) holds for a=0. Let 0O0<t<x<1l. Since
var (y,t,x) <y (x), we have (g(x))_l j'}é var (y,t,x)dt <xy(x) /g (x) and
(10) follows from (iii). The reader easily verifies that (10)
holds for each a€ (0,1] . Now (i) follows from 3.9.

Remark 1. It follows at once from 3.3 that there are con-
cave functions h€H\@ ; by 3.12, such an h does not fulfill (iii).
It is, however, easy to construct a concave function h €H
violating (iii) such that h(x)fxl/2 (x€J).

Remark 2. Condition (iii) is certainly fulfilled (for h in
H and concave), if h'+(0) <®, In particular, each differenti-
able concave element of H is in TrD. Similarly, h€TrD for
each differentiable convex function h€H. If, however, h€H
and if h is the difference of two differentiable convex func-
tions, we need not have even h €& as the following example shows.

3.13. Example of an h € H\¢ such that h" is continuous on
J and h' >0 on (0,1].

Let an=3-n (n=0,1,...) . Set ¢(x)=x-sinx,
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= -1 = ~-n = o ! — =
kn(x) =2ma_ (x-an), @ =10 7, B, =9« . Note that o' (0) ="' (2m)
®" (0) =" (2n) =0 and that ¢ increases. Let ¢{(0) =0,
e : ol
¥=o +B_ (2m) “eer on (a ,2a ], y=a _; on (2a_,3a ].

Obviously “an+) =o_, W(Zan) = ozn+ Bn= @1 SO that ¢ is con-

n ,
tinuous and nondecreasing on J. We have §'= Bn3ncp'°kn,

V" =2ran9n <p"o1n=18n(9/10)nsin°1n on (an,2an). We see that the
functions ¢§' and {§" are continuous on J as well. Set

h(x) =3(x>+ y(x)) (x€J). Then h€H, h'>0 on (0,1] and h" is
continuous on J. Set An=h(2anié Bn=h(3an) in=1,2,..4)z

—3 1 —-— _— — -n .
S U(An,Bn). Obviously Bn An 5 27-n, 1f An<x5An_l, then

® 19 ,,1=n . 1-n
Is N (0,x)1 <2, _o (Bk-Ak) =355 27 . Since Agl>¢(2an)/2 =10~ /2,
we have 1SN (0,x)!/x=0 (x-0+). However, h " (S) =U(2an,3an).
This shows that h-lﬁﬁ . By 3.2 we have h€H\7.

4. MULTIPLICATION. For each system ScD let MuS be the
family of all functions o such that fo €D for each f€S.

There is a close connection between MuS and Tr S. To see this,
choose functions f£€D and h€H such that 0<h' <« on J. Let
g=h-l. It follows from the chain rule that fg' €D if and only
if f-h€D. This shows that, for any ScD, we have h€TrS if
and only if g' € MuS. This observation helps us to describe MuD
(see 4.5). We need first the auxiliary assertion 4.1 from which
we obtain easily in 4.2 the result MuL=DbD. It is also true
that MubD =L. This, however, will be proved elsewhere together
with the description of systems MuS for some other families
ScD.

4.1. Let o be a function on J such that limsupc«¢(X)=o
(x20+). Then there is an £ €D such that f(0)=0, £ is con-
tinuous and nonnegative on (0,1] (in particular, f€ L) and fo ¢D.

Proof. If o 1is not a derivative on (0,1l], then there is an
a€ (0,1) such that o is not a derivative on (a,l]. Then the
function f such that f(x)=x on [0,a) and f=a on [a,l] ful-
fills our requirements.

Now suppose that o is a derivative on (0,1]. " There are
a €(0,1) such that 2a <a , and o(a ) >n. There are
b_€ (a ,2a ) such that fana>n(bn-an) (n=1,2,...). There is a

n
function f continuous and nonnegative on (0,1] such that

a
) - n-1
f=a_ /(n(b -a )) on (a_,b ) and that j'an f<2a /n. If
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-1 px -1 ®n-1 _
n-1¢ then x = [of<a Jo f<4/n. Set £(0)=0. Then
f €D. Suppose that there is a Q such that Q'=fo on J. We
may suppose that Q(0) =0. Obviously Q'(0) =0 so that
(@ )-0(a )) /b = (Qb_ )/b )=-(a /b )o(a )/a -0. However,

Q(bn)-Q(an) = (an/(n(bn-an))) Iaz @>a >bn/2 for each n which is

a <x<a
n —_—

a contradiction.
4,2. MuL=DbD.
Proof. ILet f€L, €D, lal<1l, c€J. Then
-1 -1

| (x-c) I}c{ (f=f(c))-al < (x~c) f}élf-f(c) =20,

(x-c)_lj‘zf(c)-a-’f(c)a(c) (x*c,x€J). Thus fao €D, o €MulL.

Now let o €MulL. It is obvious that o €D and it follows
easily from 4.1 that o is bounded.

4.3. MuDCbCap. (See [4], Theorems 4 and 8.)

Proof. Obviously MuDcWNMuL. Now we apply 1.4, 1.3 and
4.2,

4.4. Let § be a finite nonincreasing function on (0,1).
Let A=limsup((x)-y(2x)), B=1limsupx = [¥(y(t)-y (x))at (x~0+).
Then A<2B, B<2A.

Proof. If A<Al
¥ (x/2)=1(x) <A,, whenever 0<x<§. Choose such an x. Obviously
¢(x/2n)-¢ (x)<nAl for n=1,2,... so that f’g(vy(t)—¢(x))dt<

<o, then there is a 6§ € (0,1) such that

z nAlx/2n=2Alx. Thus B<2A,, B<2A.

If B<Bl<m, then there is a 6§ € (0,1) such that
(z)x(q;(t)-\y(ZX))dt<2le, whenever 0<x<§. Choose such an x.
Then 2B,x >j’c§(q,(x)-q,(2x))dt=x(¢(x)-¢(2x)) so that A<2B,, A<2B.

4.5. Let o€D. Then o €MuD if and only if

[ o]
n=1

(12) 1limsup var(a, (a+x)/2,x) <o (x-a,x€J) for each a€J.

Proof. If (12) holds, then, by 4.4,
lim sup(x—a)—lf}; var(o,t,x)dt <o for each a€J. Let f€D, a€J.
It follows from 2.6 with ¢=1, A=a(a) that fo is P-integrable
and that (x—a)-:L f}; fo- (fo)(a) (x2a,x€J). Thus fa €D, o €EMuD.
Now let o €MuD. It follows from 4.3 that there is a c €R
such that ¢o+c>0 on J. Let y=a+cC, g'=y/j'Jy, g(0) =0.
Since g€H and g' €MuD, we have g-IETrD whence, by 3.9,

limsup (g (x)-g (a))”* [Xvar(g',t,x)dt <= for each a€J.

Therefore lim sup(x-a)_l ‘J"};var(a,t,x)dt<°° (x»>a, x €J) for each
a€J and (12) follows from 4.4.
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4.6. Example of an h € H\TrD such that %<h' <2 on J.
(CE. [2], Example 2.)

Let aED\Ca 5 2"]'//2<o/<21/2 . (We may choose, e.g.,

«(0) =1, a(x)=l+%sinx-l for x€ (0,1].) Let g'=cv/chv.
g(0) =0, h=g-1. From a® €D it would follow (see 1.4 and 1.3)
1l:hat €C__; thus og' D, ach £D, h€H\TrD. Obviously
§<g‘<2,§<h'<2 on J.

4.7. The inclusions TrDcTr LC TrbCap (=d) are proper.

Proof. It is easy to see that there is a nonnegative func-
tion ¢ €D such that cpz €D, cp3,€D . (Such a ¢ may be continuous
on (0,1].) Let y=o0+1, g' =¢:/wa, g{0) =0, h=g-l. Choose an
aEbCap. Since a,y €W, we hav2e (see 1.9) og' €2L so that
a°h €D, hZETrbCap. However, o g' ﬁ?D so that o ohﬂD. Thus
(since ¢“ €L) h€ Tr L. This shows that the second inclusion is

proper. It follows from 4.6 that the first inclusion is proper.
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