
Mařík, Jan: Scholarly works

Jan Mařík
Transformation and multiplication of derivatives

Classical real analysis (Madison, Wis., 1982), 119–134, Contemp. Math. 42, Amer. Math. Soc., Providence, RI, 1985

Persistent URL: http://dml.cz/dmlcz/502139

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

http://dml.cz/dmlcz/502139
http://dml.cz


Contemporary Mathematics
Volume 42, 1985

TRANSFORMATION AND MULTIPLICAT I ON OF DERI VAT I VES

.., ,
J a n Mar ik

ABSTRACT. The author investigate s h omeornorph i s ms h of the
interval [0, 1 ] o n t o itsel f such t ha t the composi t e function
foh belongs to a c e r tain c lass for e ach f belonging to
another class. These classes consis t of derivatives or
approximately c ont inuous functions. Then he investigates
fun c t i o n s g such that the product fg is a derivative for
e a c h derivative f or each Lebesgue function f and shows a
c o n n e c t i o n between families of such f unct i o n s hand g.

o. INTRODUCTION. Le t H b e the family of al l inc rea s ing

homeomorph i sms o f t he i nte r va l [0,1 ] onto i t s e l f. A. M. Bruckne r

c h a r a c t e r i z e d i n {I] the c l a s s of a l l h E H s u ch that the com­

p o s i t e function fa h i s ap p r ox i ma t e l y continuous for each approxi­

mately continuous f . I n [2 ] h e investigated h o me o mo r p h i s ms h E H

s uch t h a t fo h E D for each fED for which f2 also belongs to D,

wh e r e D is the class of all derivatives. M. Laczkovich and G.

Pe t r u s k a characterized in [5] the smaller class of all h E H such

t h a t f s h E D for all fED. R. J. Fle issner described in [4] the

system of all functions g such tha t fg E D for each fED. The

present paper contains , among other things, improvements of some

of the results ob tain ed in t h e ment ioned articles and also shows

conn e c t i o n s between t h es e res u l t s .

The word "function ll means, throughout the paper, a mapping of

a subset of R = (-co, (0) to R* = R U [ - 00 , 00 ] . A function whose range

is in R is called a finite function. Multiplication in R* is

defined in the usual waYi i n particular, aoo = eo for a > o. The

word "continuous" refers to t he usual topology in Ri thus, "con­

tinuous function ll always means a finite function.

The letter J stands for the interval [O,lJ. The system of

all finite [bounded ] deriva tives on J is denoted b y D [bD]. The
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system of all finite functions that are approximately continuous

with respect to J at each point of J is denoted by C ; theap
meaning of b C is obvious.

ap b b
Symbols like S f , J f (t)dt denote the corresponding Lebesgue

a a
or Perron integral. If a,b E R, a < b and if K = [a,b] I we write

also JKf. The meaning of expressions "Le-Lrrt.eqr abLe , It

IIP-integrable" is obvious.

The outer Lebesgue measure of a set S C R is denoted by ISI.

Words like "measurable" always refer to the Lebesgue measure in R.

A finite function f on J belongs to D if and only if
-1 JXf (a) = lim (x-a) a f (x ~ a, x E J) for each a E J. A finite func-

tion f on J is called a Lebesgue function if and only if
-1 JX(x-a) a I f-f (a) I ~ 0 (x'" a, x E J) for each a E J. The system of

all Lebesgue functions is denoted by L. It is easy to see that L

is a vector space, b C e LeD and that each Lebesgue function isap
L-integrab1e. The system of all functions fED such that f2 also

belongs to D is denoted by w.

1.1.

gEe •apHencec ER.

1.4. Wc L. (See [2] I Theorem 1.)

Proof. Let w EW, c E J, g=w-w(c). It follows from the

Cauchy inequality and from the relation g2 E D that
-1 rX 2 -1 JX 2( (x--c ) J C Ig I) < (x-c) C g -+ 0 (x -+ c, x E J) •

1.5. Let fED and let fva E D for each a ER. Then f EL.

Proof. Let c E J, a = f(c). Obviously f+ a = (f c a ) + (f~a)

whence " f 'lo a E D . Since If-al=(fva)-(f'loa), we have If-aIED. Thus
-1 -x

(x-c) J c I f- f (c) I ... 0 (x -+ c, x E J), f EL.

1.6. Let 9 be a fini te function on J such that gvb E D for

each b ER. Then gEe .ap
Proof. It follows from 1.5 and 1.3 that gvc EC for each

ap
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1. 7. Let f be a finite func t i o n such that ( fA a ) vb ED f o r

a n y a "b E R . Then fEC (See [3] , p.SO , Th e o r e m 4.1.)
a p

(This f o l l ows from 1.6.)

1.8. Let f, g E C , fED and Ig I < f. Then gEL.ap -
Proof . We may suppose that g > O. Let c E J, a = f(c),

f
l

= fAa, gl = g ~ a , f 2 = £-fl, g2 = g - g l · Then f 2 = (f c a ) - a,

g2 = (gva) - a. Since f l EbCa ' we have f l,f2 En. Obviously
-1 JX P-1 rX0<g2<f2 , (x-c) c g2«x-c) J c f2 ~ f2 ( c ) = 0 (x~c,xEJ).

Since gl E b Cap' we have gl EL. Thus g = gl + g2 EL.

1.9. W is a vector space. If f,g E W, then fg EL.

Proof. Let f,gEW. It follows from 1.4 and 1.3 that Wee
2 2 ap

Since 21 fg I < f + g , we have, by 1.8, fg EL. Now. it is obvious

that (f+g)2 E D which shows that W is a vector space.

1.10. Let fEL, f>O. Then fl/2 E W•

Proof. Obviously fl/2 < l+f. Now we apply 1.3 and 1.8.

1.11. Let f EL. Then there are v,w E W such that f = vw •

Proof. By 1.2 and 1.10 there are w1,w2 E W such that
2 2

wI=fvO, w2=(-f)vO. Set v=wl+w2' w=wl-w2- By l.9wehave

v,w E W. Obviously vw = f •

2. INTEGRATION AND COMPOSITION. This part is connected with

the problem of finding conditions under which a composite function

is a derivative. Most of the results are of auxiliary character.

However, sections 2.3 and 2.4 contain simple estimates of integrals

and may be of independent interest.

Let a, b E R, a < b and let cp be a function on the interval

K = [a,b]. If cp (x) = +00 for some x E K, we set var (cp,K) = (I). If

~(K) C R, we define, as usual, var(~,K) as the least upper bound of
n

the set of all sums 1: °-1' cp (t. ) - cp (t. 1) I I where a = to < t l < ••• <
J- J J-

t n =b. We write var(~,K) =var(cp,a,b) =var(cp,b,a). Further we set

sup (~, a, b) = sup (~,b, a) = sup cp (K) and var (cp,c, c) = 0, sup (cp, c , c)

= cp (c) for each c E K •

If cp(K)cR, then U+cp(a) [L+cp(a)] is the right upper [lower]

derivate of cp at a: the meaning of U-cp(x), L-cp(x) (for

x E (a,b]), Ucp(x), Lcp(x) (for x E (a j b ) is obvious. If [a,b] is

the domain of definition of cp, we write sometimes Ucp (a), cp' (a)

ins tead 0 f U+ cp (a), cp'+ (a) etc.

In 2.1 and 2.2 we state without proof two well-known results

of integration theory. (See, e.g., [6], Chapter VIII.) Symbols

a,b,K have t h e same meaning as before~

2.1. Let f be P-integrable on K and let cp be a finite non­

negativ e nonin creas i n g funct ion on K . Then fcp is P-integrable



122
v'

MARIK

on K and there is a S E K such that f K fcp = cp (a ) f ~ f.

2.2. Let f be a function on K that is P-integrable on

[x,b] for each x E (a,b). If lim J b f = \.' ER, then f is
x~a+ x

P-integrable on K and SK f = ~ •
2.3. Let a ER. Let cp be a nonnegative nonincreas ing

function on (a,b] such that JK cP < CD . Let f be a function

P-integrab1e on K such that IJ~ f I < a (x-a) for each x EK. Then

the function fcp is P-integrab1e on K and ISK fcp I < o fK cP •

Proof. Let a, a E (a,b], a < e. Set f 1 = f-Q'. By 2. 1 there

is a S E [0', el such that f: f 1 cp = cp (0') f~ f 1 = cp (0' )(f~ f 1 - f~ f 1) •

Since JS f
1

< 0, we have JS fcp < M, where M = a Sa cp + 2acp (0') (a-a)a - VQ' - 0'

Taking -f instead of f we see that If: fcp I <M. Since

(a-a)cp(O') <JO' cp, there is a finite limit ~ = 1imJb fcp (x r> a- ) and- a x
1>-.1 < a JK cp. By 2.2 we have A = fK fcp •

2.4. Let a,A ER. Let f be a P-integrable function on K

such that IJr'x f I < a (x-a) for each x E K. Let a be a functiona -
on K such that JKvar(O',t,b)dt =A. Then fO' is P-integrab1e

on K and

IJK fO' I < a (2A + IJK 0' I) •

Proof. Suppose first that 0' (b) = o. Set *(x ) =

var(a,x,b)(xE (a,b]), a
l

= (W+cx)/2, 0'2= (~-O')/2. By 2.3 we have

IJ
K

fa j I <cr J
K

a j for j = 1,2. Hence

(1) ISKfal < crA.

In the general case we have IK I 0' (b) = J K (a (b)-Q') + SKO"

J K fa = J K f· (a-O' (b) ) + a (b) J K f so tha t IK I IQ' (b) I <A + IfK Q' I and

(see (1» IJ
K

fQ'1 <crA+ la(b) lalKI < a(2A+ IJ
K

0'1) •

2.5. Let f be L-integrable on K. Let y be a nonnegative

measurable function on K such that 0 < JXY < CD for each x E (a,b).
-1 x a

Suppose that (x-a) Ja If-f(a)I~O and that

(2 ) 1 im sup (Jx y) -1 JX sup (y , t, x ) d t < CD (x ~ a+) .
a a

Then there is acE (a,b) such that fy is L-integrable on [a,e]

and we have

J
x -1 JX( aY) a fy ~ f (a) (x ~ a+) .

Proof. We may suppose that f(a) = o. For each x E (a,b]
-1 ftset a (x) = sup ( (t- a ) a I f I i a < ·t < x]. Obvious 1y o (a+) = 0 •

There is acE (a,b) such that J~sup(y,t,C)dt<CD. Choose an

xE (a,c] and set cp(t) =sup(y,t,x) (a<t<x). By 2.3,
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J~ Iflcp<cr(x) J~CP. Since Ifyl < Iflcp on (a,x], we have (see (2»

(J~ y)-l J~ fy -+ 0 (x -+ a+).

2.6. Let et, cp, f be P-integrable functions on K and let

x E R. Suppose that J~ cp > 0 for each x E (a,b) I (J~ cp)-1 J~ ex -+ x I

-1 JX(x-a) a f ~ f (a) and that

Jx -1 JX(3) lirn sup ( a cp) a var (a, t,x) dt < et)

Then there is acE (a,b) such that the function fet is P­

integrable on [a,c] and we have

(4) Jx -1 JX( a cp) a fet ~ Af(a) (x ~ a+) •

Proof. We may suppose that f (a) = O. For each x E (a,b)
-1 Jtset cr(x)=sup[(t-a) I afl; a<t<x}. Obviously cr(a+)=O.

There is acE (a,b) such that Je var (a,t,c)dt < cx>. By 2.4 we have

J
x JX JX aI fa I < (J (x) ( I et 1+ 2 var (a,t,x)dt) for each x E (a,c]. This
a - a a

easily implies (4).

2.7. Let bE (0,00), K= [O,b]. Let g be a continuous
-1 -increasing function on K, h = g Set y (b) = U g (b), y = Ug on

(O,b). Let M be a number less that JKsup(y,t,b)dt. Then there

exist an , aE (O,b) and a nonnegative piecewise ,l i n e a r function f

on K such that f=O on (O,a) U(b}, J~f<X for each xEK and

Jg(K) foh >M.

Proof. For each x E (O,b] define cp(x) = sup(y,x,b) .

Suppose first that cp(c) = et) for some c E (O,b). Set

A = 2IMI/c. There is a z E [c,b] such that y (z) >A. There are

numbers p,q such that either p=z or q=z, q/2 < P < q <b and

g(q) -g(p) >A(q-p). There are numbers a,S such that p<a<S <q

and g(S) - g(a) >A(q-p). Let f be a function such that f= 0 on

[O,P] and on [q,b] (which means [b ] for q=b), f =pi (q-p) on

[a,S] and that f is linear on [p,a] and on [6,q]. Since J~f=O

and J K f <P, we have J~ f < x for each x E K. Since 2p >q > z > C ,

we have Ap >M. Obviously J~~~~ foh = (g(13)-g(a) )p/(q-p) >Ap so

that Jg(K) foh>M.

Now suppose that cp«O,b»cR. There are numbers cE (O,b),

QE (l,a» and e E (O,a» such that J~CP>QM+be. There are

to' • • • , t such tha t c =to < t l < • •• < t = band that t. < Qt. 1n n 1. 1.-

for i = 1, ••. ,n. There are integers sand jk (s > 1) such that

cp (to) = cp (t. - i) > cp (t. ) = cp (t . 1) > cp (t. ) = • •• > cp (t . ) = cp (t 1) •
Jl J 1 J 2- J 2 J s - 1 n-

Set jO=O, j =n, vk=t. (k=O, •.. ,s), A.. =cp(t. _l)-e
s J k --k Jk
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(k = I, ••• , s) • For k = I, ••• , s-l there is a zk E [ t
J
. 1 ' t

J
. ] suc h

k- k ·
that Y(zk»A. ; there is a z · E [t l,t] such that y(z »A •--k s n- n s s
Note that vk < QZk. There are ak,bk such that either ak = zk.

or b k = zk' a 1 < b 1 < • •• < as < b s < b, vk < Qak and g (bk) - 9 (ak) >

~ (b
k
-a

k)
for k = 1, •.• , s. There are numbers Q'k' f'k such that

~<ak<ek<bk and that g(ek)-g(Ctk»Ak(bk-ak). Let F be a

function on [O,b] such that F=O on [O,al] U [bs,b] and on

[bk'~+l] for k=l, ••• ,s-l, F= (vk-vk_l)/(bk-ak) on [Q'k'~k] and

that F is linear on each of the intervals [ak'O'k] and [Sk,bk]
ak +1

for k=l, ••• ,s. Set a l=b. Obviously J F<vk-vk_ 1 . If
s+ ak (f')

x 9 k
a

k
<x < a k+ 1, then I oF < V k < Qak < Qx. Further I g (cx

k
) foh =

(g(~k) -g(O'k» (vk-vk_l)/(bk-ak) >Ak(vk-vk _ l)· Since Ak=cp(ti)-e

fo~ i = jk-l' ••• ' jk-1 I we have ~ (vk-vk _ l) =
Jk vk

L.. lCP{t. l)(t.-t. l)-e(vk-vk l»J cp-e(Vk-Vk 1)· Hence1.=J ' + 1.- 1. 1.- - - V -k-l · v k-l
I g (K) Fo h > I v s cp - b > QM. Now we set f = F IQ ·

. 0
2~8. Let a,b ER, a <b, K= [a,b]. Let 9 be a continuous

increasing function on K and let A,BER. If Ug>A on (a,b),

then : g(b~-g(a) >AIK I ; if Lg<B on (a,b), then g(b)-g(a) <BIKI •

. Proof. If Ug > A on (a,b), then, by Theorem 7.4 of Chapter

IV of [6], we have g(b)-g(a) >AIKI.

Now let Lg<B on (a,b) and let N be the set of all points

x E (a,b) for which s ' (x) does not exist. By Theorems 4.4 and

6.5 of .Ch a p t e r VII of [6] we have Ig(N) I =0 and Ig(a,b)\NI <BIKI.

Therefore g(b)-g(a) = Ig«a,b» I .<BIKI.

2.9. Let g be a continuous increasing function on [a,b].

Then

liminfUg(x) <L+g(a), U+h(a) <limsupIq(x) (x ~ a+) •

(This follows at once from 2.8.)

2.10. Let b E (0, (0). Let t be a finite nonincreasing

function on (O,b] .with , (b) = 0 and let Q be a number less than

I~ .... Then there are numbers to' ••• ' t n such that

O < to < ••• < t n <b , t is continuous at t j for j = 1, •.• ,n and

n
( 5 ) L: • 1 (t. - t. 1 ) ,I, (t .) > Q •

J= J J- 'i' J

Proof. Th.er~ ..is a to E (O,b) and an integer n > 1 such that

(6) f~ +>Q+2b+(to)/n.o
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Let Zj = t o + j (b- t O) /n (j = 0, • .• ,n). There are

such that + is continuous at t. (j = 1, .•• ,n).
n n+1 J

S=l:. l(t.-t. l ) + ( t . ) , T=l:·_I(t.-t. 1) (t. 1)·
]= J J- ] J- J J- J-

J b
t

'It <T, t. - t . 1 <2b/n so that J b
t

-S <T-S =o - J J- -
n+1 O.

E · 1 (t . - t. 1) ( ", (t. 1) -" (t . ) ) < 2b (to ) /n. Th1S
J= J J- J- J-

(5).

t. E (z. 1'z.)
J J- J

Set t n+ 1 =b ,

Obviously

and (6) proves

2.11. Let a,b ER, K = [a,b]. Let g be a continuous

increasing function on K, h = g-1 Let y be a function on K

such that L+9 (a) < y (a) < n"g (a ), L-g (b) < y (b) < u"9 (b) and that

Lg < y < Ug on (a,b) •

Let A be a number less than var (y ,K). Then there is a

function f piecewise linear on K such that f (a) = f (b) =

J K f = 0, 'f: f I <1 for each x E K and that

J9(K) foh >A.

Proof. Suppose first that there is acE K such that

y (c) = (X). Let le. g., u+9 (c) = to. Set s = (c+b ) /2. Let F be a

nonnegative piecewise linear function on [s,b] such that

F(s)=F(b)=O and f~F=1. Set B=fg~~~Foh• . There is a
g(bO)-g(c) 9

b O E (c,s) such that b >A+ B. There is a 0 E (O,to) such
O-c

that c+ 26 <bO and that (g(bO-6)-g(c+6»/(bO-C-6) >A+B. Let:
1be a function on K such that f (t) = 0, if a < t < c, f = (bO-c-o)

on (C + 6 , b
O

- o] , f=O on [ba's], f=-F on [s,b] and that f is

linear on Ic s c- s l and on [bo-o,ba]. Then f(a) =f(b) =JKf=O,
g(b )

If~ fl < 1 for each xEK and f g (K ) foh=fg(c~ fOh+f~~~~ foh >

A+B-B=A.

Now suppos e that y (K) CR. Then there are number s to I • • • I t n
and Tl such t h a t a =t

O<t1
< ••• <tn=b

, 11>0 and that

n
(7 ) E . i ' Y (t . ) -y (t. 1) I > A + 2nTl •

J= J J-

We may suppose that (y(t j)-y(t j_1 » · (y(t j +1)-y(t j
» <0 for

j = 1, ... ,n-1. Let, e.g., y (to) >y (tI ) <y (t2) > •••• Then

n
(8 ) r . 1 I y (t . ) -y (t. 1) ' =

J= J J-

n-l n
y (to) - 2y (t1) + ••• + 2 (-1) y (tn- I) + (-1) y (tn > •

Choose an eE(O,to) such that 2e<t.-t' I for j=l, ••• ,n. There
J j-

a r e z. E (a, b ) such tha t (g (z . ) -g (t . » (z. - t .) > y (t .) - 11 for j
J J ] J] J

even, (g(z .)-g(t.»/(z.-t.) <y(t.) + Tl . for j odd and Iz.-t.1 <.e
J J ] J J J J

for j = 0 , ... , n •
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If z. < t. , set a. = z ., b. = t . ; if z . > t . , set a. = t. ,
J J J J J ] J ] J J

b
j

= Zj. Obviously a = aa <b
a

< ·a l < ••• <bn =b. There is a

o E (0, ee such that 20 <b .-a. for j = 0, ••• , n and that
J J

(g (bj-o )-g (aj+o» / (bj-aj-o) > y (t j )-11 for j even,

(g (b . ) -g (a . ) ) / (b .-a . - 0) < y (t . ) + 11 for j odd. Now let
J J J ] J

e. = (b . - a .-0)-1 (j = 0, ••• ,n) and let f be a function on K such
J J J .

that f=c
O

on [a
O

+ 6,b
O-6],

f=2(-1)J c
j

on [a j + 6, b j - 6]

(j = 1, •.• , n-1), f:: (-1) n c on [a + 0 , b - 0 ] , f = 0 on
n n n

K \ U .no (a . ,b .) and f is linear on each of the intervals
J= J J

[a.,a.+ 0] and [b .-6,b.]. Set sa=a, s =b and Sj = (a.+b.)/2 for
J J J . J n

b
b J ]

j=l, ••• ,n-l. It is easy to see that SaO f = 1 , f a
n f = (_l)n,

s . b.. s.O n
f J f = S J f = (-1) J for j = 1, ••• , n-1 , J J f = 0 for j = 1, .•• , n

a. s , s. I
J ] J-

and that IJ~ f I <1 for each x E K. If j is even and 0 < j < n,
9 (b.)

then J ( J) foh>2c.(g(b.-o) -g(a.+ o» >2y(t.) -211; if j is odd
9 a. J J J J

J g (b . )
and 0 < j < n I then J ( J) f oh> - 2 c . (g (b . ) -g (a . » > - 2 Y (t . ) - 2 'n.

g a. J J J J
g (ba) J 9 (b )

Similarly, fg (a
o

) f oh > y ( t O) - ll and f g (a:) f s h > (-l)ny(t
n ) - ll .

Thus (see (7), (8» S (K) foh > y (to) - 2y (tl) + •.. +
n-1 ~

2 (-1) y (tn- l ) + (-1) y (tn ) - 2n 11 > A •

2.12. Let bE (O,a:» I K= [O,b]. Let 9 be a continuous
-1

increasing function on K , h=g • Let Y be a function on (O,b]

such that L-g(b) <y(b) <U-g(b) and Lg<y<Ug on (O,b). Let M

be a number less than SKvar(y,t,b)dt. Then there is an a E (O,b)

and a function f piecewise linear on K such that f=O on (O,a),

f(b) =fKf=O, If~fl <x for each xEK and f g (K ) f oh>M.

Proof. For each x E (a,b] define V (x) = var (y,x,b) .

Suppose first that V(c) = eo for some c E (O,b). There is an

a E (O,e) such that s ' (a) exists. Then, obviously,

y (a) = g 1 (a) = L+9 (a) = U+ g (a ) and va r (y , a , b) = co • It fa 110ws from

2.11 that there is a piecewise linear function F on [a,b] such

that F(a) =F(b) =f~F=O, If~FI <1 for each xE (a,b) and that

a rg(b) Foh>M. It is easy to see that the function f defined by
J 9 (a)

f=O on [O,a] and f=aF on (a,b] satisfies our requirements.

Now suppose that V( (O,b] ) CR. Choose a number Q with

M < Q < J
K

V, find numbers t. according to 2. 10 and set t 1 = b •
n J n M

Then Q < I: . -1 (t . - t. 1) V(t .) =- to '¥ ( t 1) + 2: •-1 t. (V (t .) - V(t. 1» <
J- J J- J J- J J J+-

I: .n1 t. var(y,t .,t.+l). Since V is continuous at t., y is
J= J J J J
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continuous at t; . as well. It follows easily from 2.9 that
J

g' (t,) exis t s for j = I, ••. , n , Le t e E (0, (Q-M) / (nb». By 2. 11
] +

(note that y (t
l)

= g' (t
l)

= L 9 (t
l)

etc.) there are functions f
j

piecewise linear on [t"t, 1] such that f,(t,)=f,(t'+l)=
t J J+ J J J J

I j+l IX []t f , = 0, I t f . I <1 for each x E t
J
" t

J
,+1 and that

j J j J

9 (t j + l )I (t) f ,0 h > var (y It, , t '+1) - € • Let f be a function on K such
9 j ] J J

that f = 0 on [0, t 1 ] and f = t . f . on [t" t .+1 ] (j = 1, ••• , n) •
r J J n J J

Then f (b) = J K f = 0 and J9 (K) fo h > L: j =1 t j (var (y, t j , t j+ 1) - e ) >

Q-nbe >M. If tj<x<tj +1, then If~fl = 'f~. fl <t j <x , This

completes the proof. J

3. TRANSFORMATIONS VIA INNER HOMEOMORPHISMS. Let AC be the

system of all absolutely continuous functions on J. Let H be

the system of all increasing homeomorphisms of J onto J and let

a be the system of all functions h E H such that fo h E C forap
each f E C For each system SeD let Tr S be the system of

ap
all functions h E H such that f oh E D for each . f E S •

The system 0 has been characterized in [1]. We shall see

in 3.5 that O=TrbC Thus TrScO for each S withap
bee SeD. Theorem 3.6 descrLbes Tr L. It is easy to proveap
that we have even fo h E L for each f ELand each h E Tr L (see

3.7). If hEH and if both functions hand h- l satisfy the

Lipschitz condition, then (9) is obviously fulfilled so that

h E Tr L. In 3.8 we show that a function h EH belongs to Tr L

if and only if wohEW for each w E W. In this way we obtain an

improvement of Theorem 4 in [2]. Theorem 3.9 gives a characteri­

zation (which is simpler than the characterization found in [5])

of the system Tr D.

We shall see in 4.7 that the obvious inclusions

TrDcTrL cTrbC (= 0) are proper. If, however, h is a convexap
or concave element of a, then h E Tr D. This is proved in 3.12

(with the help of 3.11).

First we introduce an auxiliary system.

3.1. Let B be the system of all functions 9 E H n AC with

the following prop erty: If S is a measurable subset of J and

if x E J is a point of dispersion for S, then g (x) is a point

of dispersion for 9 (S) •
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Remark. It is easy to see that 9 (S ) is mea surable when e v e r

S is measurable, S c J and g ·E AC •

The assertions 3.2 and 3.3 follow easily from Theorems 1 and

2 and Lemma 6 in [1].

3.2. We have h Ea if and only if h-
l

E B.

3.3. Let h Ea, a E J. Then there is a {) E (0,1) such that

Ih(x)-h{a) 1/lx-aI 6 -t O (x~a, xEJ).

3.4. ac AC •

Proof. Let h Ea, S c J, IS I = O. There is aGo set T such

that ScTcJ and that IT I =0. Suppose that Ih(T) I >0. The set

heT) is obviously measurable. Let X be a point of density of

h (T). It follows easily from 3.2 that h -1 (x) is a point of

density of T ~ this, however, is impossible. Thus Ih(T) 1= 0,

Ih (S) I = 0, h E AC •

3.5. a=TrbCa p•
Proof. If hEa and CiEbC , then CiohEbC cD so thatap ap

h E Tr be. Now let h E Tr b C and et E C • Let a,b E R,ap ap ap
~. = (CiA a) -b , Then e EbC, «Cio h) A a) vb = ~ ° h E D. By 1. 7 we haveap
Cio h E C • Thus h Ea.

ap -1
3.6. Let hEH, g=h • Then hETrL if and only if

-1 JX(9) limsup(g(x)-g(a» asup(ug,t,x)dt<ClO (x~a,xEJ)

for each a E J •

Proof. Suppose that (9) holds for each a E J. It is easy

to see that there is a finite set Se J such that g fulfills the

Lipschitz condition on each closed interval contained in J\S.

This shows that 9 E AC so that 9 is an indefinite integral of Ug.

Let f EL. It follows from 2.5 that f·Ug is L-integrable on J.

Let Q(x) = J~ f.Ug (x E J). By 2.5 we have

(g (x) -g (a) ) -1 (Q (x) -Q (a) ) ~ f (a) (x ~ a , x E J)

for each a E J. Hence (Qoh)' = f s h on J,h E Tr L.

h . -1 f XNow suppose t at, e.g., lJ.msup(g(x» Osup(Ug ,t,x)dt=CX)

(x -t 0+) • There are c E (0,1) such that c ~ 0 and that
n c n

ng(c ) <T ·, where T = Jo
n sup(Ug,t,c )dt. There are

n . n n n
b E (c ,2c) n(O,l) such that ng(b )<T and that g'(b) exists.

n n n b n n n

Then ng(bn) <Jonsup(Ug,t,bn)dt (n=l,2, •.• ). I t fol lows easily

from 2.7 that there is a subsequence (a ) of (b ) a nd nonnegative
n n

continuous functions f such that 2a 1 < a , f = 0 on
x n n+ n n

[0, a n+ l] U [an,l], J 0 f n < x for x E J and that
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g( a )
f n f 0 h > ng (a ) (n = I, 2 , ••• ). Set A = 9 (a ), f = ~ n-1 f •
'0 n n n n a n

rX _ -1 JX eo -1 I k
Let an < x <an - l • Then J 0 f - (n-1) 0 f n- l + I: k=n k 0 f k <

-1 -1 eo -1 -1 -1
(n-l) x + n 2: k=n a k < (n-l) x + n 2an < (n-l) 3x. This shows

that fED. It is easy to see that f EL. However,
A An 1 n .f o foh>n- f o fnoh>An so that foh~D, hrJ-TrL.

Remark. It follows from 3.6 that the set (x E Jj Lh{x) = O}

is finite for each h E Tr L.

3.7. Let hETrL and fEL. Then fohEL.

Proof. Let aER. By 1.2, fvaEL. Thus fohED,

(foh)vaED. By 1.5 we have fohEL.

3.8. Let h EH. Then h E Tr L if and only if w» hEW for

each w E W •

Proof. If hETrL and wEW, then w,w2EL (see 1.9),

woh, (wQh)2 ED, woh EW.

Now suppose that wo hEW for each w E W • Let f EL. By 1. 11

there are v,w E W such that f = vw ; Thus foh = (voh) (woh) E L

(see 1.9), h E Tr L.
-1

3.9. Let h EH, g=h • Let y be a function such that

Lg <y <Ug on J. Then the following three conditions are equiva­

lent to each other:

i) There is a function cp such that g(a) = J~ cp and that

-1 IXlim sup (g (x)-g (a» a var (cp, t,x)dt < co (x ~ a, x E J)

for each a E J j

ii) h E Tr D i

iii) the condition

-1 IX(10) limsup(g(x)-g(a» avar(y,t,x)dt<co

is fulfilled for each a E J .

(x ~ 0+) •

It follows from

Set

Proof. Suppose that i) holds. Let fED.

2.6 with et = cp that fcp is P-integrable on J.

Q (x) = J~ fcp (x E J). By 2.6 (with A=l) we have

(g(x)-g(a»-l(Q(x)-Q(a» ~f(a) (x r- a , xEJ) for

to- h) I = fo h on J, h E Tr D •

Now let h E Tr D. Suppose that, e.g.,

-1 JXlim sup (g (x) ) 0 var (y, t,x)dt = ee

each a E J • Hence

There are c E (0,1) such that c ~ 0 and that ng(c ) <v , where
c n n n n

vn=JOnvar(y,t,cn)dt. There are b
n

E (c
n,2cn)

n (0,1) such that
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b
ng(bnl <V

n
and that g' (b

n
> exists. Then ng(bn > < Sonvar(y,t,bddt

(n = 1,2, ••• ) • It follows easily from 2.12 that t h e r e i s a sub­

sequence (a ) of (b ) and functions f continuous on J such
n n n x

that a l<a, f =0 on [O, a 1] U [a ,1], J J f =0, ISofn l < xn+ n n n+ n n -
for each x E J and that

g (a )
(11) J o n fnoh>ng(an) (n=1,2, ••• i ,

Set f=~n-lf , F=O on (a} u (al,l], F(x) =n- l J X f for
n a n+ l n

x E (a l' a ]. It is easy to see that F I = f on J. By assumption
n+ n

there is a function G such that G' = f'- h on J. For n= 1,2, •••

set qn= (G(B)-G(A»/B, where A=g(an+ l), B=g(an). Since

G' (0) =0, we have q = (G(B)/B)-(A/B) (G(A)/A) ~O. However, by
n B

(11), G (B)-G (A) = n- l f A fnoh >B whence qn > 1 for each n , This

contradiction proves iii).

Suppose, finally, that iii) holds. It is easy to see that

there is a finite set Se J such that var (y ,K) < (X) for each

closed interval KC J\S. This shows that g E AC. Thus (i) holds

with cp = y •

Remark 1 . Suppose that h E H, h ' > 0 on J and that

var (h I , J) < 00. Then var (g' , J) < ex) and (10) holds for each a E J .

Thus h E Tr D. The remark in 3.6 and the example in 3. 13 show

that the requirement hi> 0 is essential.

Remark 2. Let h E Tr D. It follows easily from 3.9 (see the

proof of the implication iii) ~ L) that there is a finite set

ScJ such that for each a E (O,l)\S the unilateral derivatives

h'+{a), hl-{a) exist and that there is a countable set T cJ such

that for each a E {O,l)\T the derivative h' (a) exists: we must,

of course, admit also infinite derivatives. The next example

shows that h ' may be infinite on an uncountable set. (See also

[5], p.195.)

3.10. Example of an h E Tr D such that h' = (X) on a perfect

set.

Let C be the Cantor set. Let G be a function such that

G(O) = 0 and that G' (x) =dist(x,C) for each x E J. Then IG"I = 1

a.e. whence var(GI,t,x) = Ix-tl for all x,tEJ. Let a,bEJ,

a<b. Then Sbvar(G',t,b)dt= Sb(t-b)dt={b-a)2/2. Set q=1/3.
a a

h . . t 2 - h n-l b n-2 ,T ere 1.S an a.n eger n > such t at q < -a < q . De f i.rie

tk=kqn (k=O, ••• ,3
n).

There are j,k such that t. l<a<t.,
J- - J

t k < b < ~+l. It is easy to see that k > j + 2 and that at least

one of the intervals (t"t'+l)' (t. l,t, 2) is contained i n J\C.
J J ]+ J+
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Let, e.g., rnc=$i1 with 1= (tj,tj+1). For xEr set

~(x) =min(x-t.,t. I-X). Then re (a,b), III =qn> (b-a)/9, G I >~
J J+ 2 · 2

on I and G (b)-G (a) > JI ~ = I I I /4 > (b-a) /324. Hence

(G (b) -G (a» -1 Jb var (G I, t,b)dt < 162. Now set g = 28G, h = g -1 •
a -

• ( ) 00 n-l n) 2/ / ESJ.nce G 1 =2:n=12 (q 4=128, we have h H. By 3.9,

h E Tr D. Obviously hi = 00 on g(C).

3.11. Let 9 E B and let g be convex. Then

limsupxg'+(x)/g(x) <co (x-+O+).

Proof. Suppose that the assertion is false. Then there are

a E (0,1) such that 2a <a 1 and a gl+(a ) >ng(a ) for
n n n- n n n

n = 1,2, • ••• Set b = (1 + n-1) a , A = g (a ) I B = g (b ) I S = U(a , b ).
n n n n n n nn

It is easy to see that Isn (O,x)l/x-+O (x-)O+). However,

B -A >(b -a )gl+(a) >ng(a )(b -a )/a =A so that
n n- n n n n n n n n

Ig (S) n (O,B ) I >B -A >B /2. Thus 0 is a point of dispersion
n n n n

for S, but not for g (S) which is a contradiction.

3.12. (Cf. [5], Theorem 5.) Let h EH and let h be con­

cave. Then the following three conditions are equivalent to each

other : ( i ) h E Tr D i ( i i ) h Ea; ( i i i ) 1 i m sup h (x) / (xh I + (x ) < ee

(x -+ 0+) •

Proof. The implication (i) -+ (ii) follows from 3.5; the

implication (ii) -) (iii) follows from 3.2 and 3.11. Now suppose

that (iii) holds. Set g=h- l, y=Ug (=g'+ on [0,1]). We prove

first that (10) holds for a = O. Let 0 < t <x < 1. Since

-1 JX /var(y,t,x) <y(x), we have (g(x» Ovar(y,t,x)dt<xy(x) g(x) and

(10) follows from (iii). The reader easily verifies that (10)

holds for each a E (0,1]. Now (i) follows from 3.9.

Remark 1. It follows at once from 3.3 that there are con­

cave functions h E H\a i by 3. 12, such an h does not fulfill (iii).

It is, however, easy to construct a concave function h E H

violating (iii) such that h(x) <xl/2 (x E J).

Remark 2. Condition (iii) is certainly fulfilled (for h in

H and concave), if h'+(O) <co. In particular, each differenti­

able concave element of H is in Tr D. Similarly, h E Tr D for

each differentiable convex function h EH. If, however, h E H

and if h is the difference of two differentiable convex func­

tions, we need not have even h E a as the following example shows.

3.13. Example of an h E H\a such that h " is continuous on

J and h' > 0 on (0, l] •
-n .

Let an = 3 (n = 0, l, ••• ). Set cp (x) = x - s in x,
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o -1 -n
~ (x ) = 2na (x-a), et = 10 , a = 9Q1. Note that cp' (0) = cp' (2n) =

n n o0 n n n n
cp" (0) = cp" (2iT) = 0 and that cp increases. Let W(0) = 0,

-1 0

W = QI + S (2 1'T) et> 0 ). on (a , 2a ], ~ = et 1 on (2 a , 3a ].n n n n n n- n n
Obviously *(a +) = a , W(2a ) = a + ~ = O! 1 so that ~ is con-

n n n n n n- n 0

tinuous and nondecreasing on J. We have W I = a 3 q>' 0 A gn n
~ 11 = 2 TT~ °9n cp 11 0 X

O

= 18n (9/ 10 ) n sin 0 A on (a , 2 a ). We see that the
n n n n n

functions t¥ I and V11 are continuous on J as well. Set

hex) =~(x3+v<x»(xEJ). Then hEH, h' >0 on (0,1] and h" is

continuous on J. Set A =h(2a ), B =h(3a ) (n=1,2, ••• ),
n n 19 n n

oS = U (A , B ) . Obviously B -A =-2 27-n• If A <x<A 0 1 , then
n n n n n - n-

IS n (O,x) I < L: k
oo

(Bk-A.) = 51~ 27
1-n• Since A > IjI (2a ) /2 = 101-n/2 ,- =n --k n

1
n

we have IS n (O,x) l/x~O (x r- Ot-}, However, h- (S) =U(2a ,3a ).
-1 n n

This shows that h %B. By 3.2 we have h E H\t1 •

4. MULTIPLICATION. For each system SeD let Mu S be the

family of all functions et such that fa E D for each f E S •

There is a close connection between Mu Sand Tr S. To see this,

choose functions fED and h E H such that 0 < hi < CD on J. Let
-1

g = h • It follows from the chain rule that fg lED if and only

if fo h E D. This shows that, for any SeD, we have h E Tr S if

and only if g I E Mu S. This observation helps us to describe Mu D

(see 4.5). We need first the a~~iliary assertion 4.1 from which

we obtain easily in 4.2 the result Mu L = bD. It is also true

that Mu bD = L. This, however, will be proved elsewhere together

with the description of systems Mu S for some other families

SeD.

4.1. Let Q' be a function on J such that 1im sup C! (x) = 00

(x~o+). Then there is an fED such that f(O) =0, f is con­

tinuous and nonnegative on (0,1] (in particular, f E L) and fO' %. D.

Proof. If a is not a derivative on (0,1], then there is an

a E (0,1) such that a is not a derivative on (a, 1] • Then the

function f such that f (x) = x on [0, a) and f = a on [a, 1] ful­

fills our requirements.

Now suppose that et is a derivative on (0,1] • . There are

a E (0,1) such that 2a < a 1 and a (a ) > n ; There are
n n n- n

b nb E (a , 2 a ) such tha t Jr (i > n (b -a ) (n = 1, 2 , ••. ) • There is an n n ann
n

function f continuous and nonneqa t Lve on (0,1] such that
a

f=a /(n(b -a » on (a ,b ) and that J n-l f<2a In. If
n nn nn a n

n
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-1 JX -1 San- l
an<x<an_l, then x Of <an 0 f<4/n. Set f(O)=O. Then

fED. Suppose that there is a Q such that Q I = fa on J. We

may suppose that Q (0) = O. Obviously Q I (0) = 0 so that

(Q (b ) -Q (a » /b = (Q (b ) /b ) - (a /b ) Q ( a ) / a ~ o. However,
n n n n n nn n n

b
Q(b )-Q(a ) = (a /(n(b -a ») J na>a >b /2 for each n which is

n n n nn ann
a contradiction. n

4. 2 • Mu L = bD •

Proof. Let fEL, aED, lal<l, cEJ. Then

I (x-c) -1 JX (f-f (c». et I < (x-c) -1 JX I f-f (c) I -? 0,
C - c

-lJX(x-c) e f (c) • et ~ f (c) a (c) (x ~ c, x E J) • Thus fetE D, ex E Mu L.

Now let ex EMu L. It is obvious that ex E D and it follows

easily from 4.1 that ex is bounded.

4.3. MuDcbC • (See [4], Theorems 4 and 8.)-- ap
Proof. Obviously Mu DeW nMu L. Now we apply 1.4, 1.3 and

4.2.

4.4. Let W be a finite nonincreasing function on (0,1).

Let A=limsup(V(x)-+(2x», B=limsupx-
1 J~(+(t)-,(x»dt (x-'O+).

Then A<2B, B<2A.

Proof. If A < Al < (x), then there is a 0 E '(0 , 1 ) such that

~ (x/2) - W(x) < AI' whenever 0 < x < s , Choose such an x ; Obvious ly

W(x/2n)-,(x) <nAl for n=1,2, ••• so that J~(,(t)-w(x»dt<

(X) / n1: n=l nA1 x 2 = 2AlX. Thus B < 2A1, B < 2A •

If B<B
1

<00, then there is a 0 E (0,1) such that

J2xo (W (t)-W (2x) )dt < 2B1X, whenever 0 < x < s , Choose such an x ,

Then 2Blx>J~(V(X)-W(2X»dt=x(",(x)-"'(2x» so that A<2B1,A:;;2B.
4.5. Let a E D. Then et EMu D if and only if

(12) limsupvar(et,(a+x)/2,x) <= (x~a,xEJ) for each aEJ.

Proof. If (12) holds, then, by 4.4,
-1 JXlimsup(x-a) avar(a,t,x)dt<(X) for each aEJ. Let fED, aEJ.

It follows from 2.6 with cp = 1, ~ = et (a) that fex is P-integrable
-1 JXand that (x-a) a fa ~ (fa) (a) (x ~ a, x E J). Thus fex E D, ex EMu D.

Now let et E Mu D. It follows from 4. 3 that there is acE R

such that et+c>O on J. Let y=et+e, gl=y/JJ Y ' g(O)=O.
. -15J.nee g E Hand g I EMu D, we have g E Tr D whence, by 3.9,

. -1 JX1J.msup(g(x)-g(a» avar(g',t,x)dt<= for each aEJ.

-1 JXTherefore 1im sup (x-a) a var (et, t, x) dt < ee (x ~ a, x E J) for each

a E J and (12) follows from 4.4.
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TrDcTr LcTrbC (=a) are proper.ap
Proof. It is easy to see that there is a nonnegative func-

2 . 3
tion cp E D such that cp E D, cp %D. (Such a q) may be continuous

on (0,1].) Let V=cp+ 1, g' = v/fJv, g(O) =0, h=g-l. Choose an

et EbC .. Since Of,V EW, we have (see 1.9) «s ' EL so that.
ap 2 2

Qloh ED, h ETrbC • However, cp g' f/.D so that cp oh~D. Thus
2 ap

(since cp E L) h f. Tr L. This shows that the second inclusion is

proper. It follows from 4.6 that the first inclusion is proper.

4.6. Example of an hEH\TrD such that ;<h l <2 on J.

(Cf. [2], Example 2.)

Let CiED\C , 2- 1 / 2 <et<21/2 • (We may choose, e.g.,
ap 1 -1

et (0) = 1, et (x) = 1 + 4 s in x for x E (0, 1] • ) Let g' = et / JJet,
-1 etg(O) =0, h=g • From a ED it would follow (see 1.4 and 1.3)

that etEC i thus etg' f-D, Q'oh~D, hEH\TrD. Obviously
1 ap
"2 < g' < 2, .! < h' < 2 on J •

2
4.7. The inclusions
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