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Multipliers of Classes of Derivatives

The origins of this work go back to the fact, published in 1921 by Wilcosz,
that the product of two derivatives need not be a derivative. This suggests
the problem of finding all derivatives whose product with each derivative is
again a derivative. This problem was solved by Richard Fleissner in 1977.
In this paper we solve a similar problem but for several subsets of the class

of all derivatives.
Notation. Set J = [0,1] and let R be the real line. Let

D={f:T—>R : forsome F:I - R z € I implies F'(z) = f(z)}.
Let AC D. Then M(A)={g€ D: fg € D for all f € A}.

To define the classes of derivatives to be consider, we first introduce some
additional notation.
Notation. Let J C I be a closed and nondegenerate interval, let f: J — R

be measurable and let p € (0,00). Then || f||;, = Sﬁ I IfIP)l/p. Also || f]| 7,00
is the usual L*-norm of f on J. If a and b are the endpoints of J , we also
write || f|la,s» for || f||s, even if b < a.

Note that the norm of the function identically 1 on J is 1.
Proposition 1. Let f and J be as above and let 0 < p < q < co. Then
[fllp < 11£1l74- |

Now we define some of the classes to be investigated.
Definition. Let p € (0,00). Then

Sp={9 € D: z € I implies x—l»inEGI llg = I(Y)lyzp = 0}

and
T, ={9 € D:zcIimplies limsup||glyzp < oo}

z—y,z€l

Note that g is continuous at y if and only if limg—y, ez [|lg— I(Y)|ly,z,00 = 0.
So we should think of the condition defining S, as saying that g is continuous
at y in the LP-norm. The meaning of the condition defining T, is not so clear.
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But observe that limsup,_,, .1 ||9]lyz,00 < 00 simply means that there is a
neighborhood of y on which g is bounded. Thus we may think of g € T}, as
meaning that the derivative g is locally bounded in LP-norm on I.
Proposition 2. Let p,q € (0,00) with p < q. Then S; C Sp, T, C T, and
Sp C Tp.

The first two 1nclus1ons in the above proposition motivate the following
definition of the remaining classes to be studied.
Definition. For p € [0, 00) let

Sy ={g9€D:yelimplies lim_|[lg—g(y)llysq= 0 for some g € (p,c0)}

and

T, = {9 € D:y €I implies lim sup lglly,z,q < oo for some q € (p,0)}.

T—Y,T€

Forp € (0,00] let S, = Nyg(0,)S; and T, = Nyg(o5) Ty Finallylet Sy = DNC,,
(the approximately continuous functions), let Tp = D, let Soo = M(T}) and
let Too = bD (the bounded functions in D).
the
Proposition 3. Let p,q € (0,00) with p < q. Then S, C S, C S,
T,CT,CT, S,CT, 5 CT, S; CSy, and T, C T,
So for p € (0, 00) we have o T

S 3 8% >+ 258 28 >S5 D 2% D S
n N n n n N N
To D Th D+ DT, DT, DT, O -+ D Tw DO Tw

We are now ready to state the main theorems.
Theorem 1. Let S; C A C D. Then M(A) = M(D).

For the second theorem we introduce some standard notation.
Notation. Let p € (1,00). Then p’ denotes the unique number in (0, o)
satisfying > + 2; = 1. Also 1’ = 0o and oo’ = 1.

Theorem 2. Let p € [1, oo] Then M(S;) = Ty and M(T,) = Sp. Let
p € [1,00). Then M(S,) = T,/ and M(T,) = Sy. Let p € (1,00]. Then
M(S,) =T, iy and M(T,) = § Op'-
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