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DERIVATIVES AND CONVEXITY

Lemma 4.4 in [MW] says that if the composition of a function F strictly convex
on an open interval containing the range of a derivative f is also a derivative,
then both functions f and F' o f are Lebesgue functions. Theorem 4 of this note
generalizes that result; f is there an n-tuple of derivatives and F is strictly convex
on an open convex set containing the range of f. Theorems 5 and 8 deal with the
one-dimensional case without the assumption that the domain of definition of F
is open.

1. Notation. The symbols D, D*,C,,, L mean the systems of all deriva-
tives, nonnegative derivatives, approximately continuous functions and Lebesgue
functions on the interval I = [0, 1], respectively. Symbols like [° f or Js f mean
the corresponding Lebesgue integrals. The letter n denotes a natural number
and R" the n-dimensional Euclidean space. For z = (z1,...,2,) € R" we write

2| = (2} + -+ + 22)1V2

2. Lemma. Let fi,...,fr € D, z € I. Set f = (f1,...,fn), b= f(z), S =
f(I). Let H be a function on S such that H(b) =0, H o f € D and that for each
e € (0,00) we have

(1) inf{H(z)/|z—b]; z€ S, |2 —b] > €} > 0.

Then

(2) !

y—x

[r=s=0@—qyeD.

Proof. Let € € (0,00) and let o be the infimum in (1). Set ¢ = H o f. Then
@ 2 of|f —b] —€) whence |f —b| £ a"'¢ + € on I. Because ¢ € D and p(z) = 0,
we have lim sup yl—xf;’ |f —b <€ (y — z,y € I) which proves (2).

3. Lemma. Let f,g € Cop, f € D and |g| £ f. Then g € L. (See [M], 1.8.)

4. Theorem. Let F' be a strictly convex function on an open convex set G
in R*. Let fi,...,fn € D, f = (f1,...,fs). Suppose that f(I) C G and that
FofeD. Then fy,...,fn, Fof€L.
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Proof. Let b € G. It is well-known (see, e.g., [Mt], V, 1, Korollar 4) that there
is a linear function A such that A(b) = F(b) and A £ F on G. Since F is strictly
convex, we have A < F on G \ {b}.

Now let & be a positive number such that the set A= {2z € R"; |z — b| =€} is
a part of G. Set H = F — \. Since F' is continuous (see, e.g., [Mt], X, 1, Satz 2)
and H > 0 on A, there is a 8 € (0,00) such that H > 8 on A.

Let 2 € Gand |z—b| > ¢ Setv=(2—0b)/|z—0b], J={t € (—00,00); b+tv €
G}, h(t) = H(b+ tv) (t € J). It is easy to see that h is (strictly) convex. Clearly
h(¢) > B. Thus h(t) 2 th(e)/e > tB/e for each t € J N (g,00). It follows that
H(z) = h(]z—b|) > |z—b|B/e so that, by 2, f1,..., fn € L. Thus Ho f € Co,NDt.
By 3 we have H o f € L whence Fo f € L.

5. Theorem. Let f € D. Let F be a strictly convex function on f(I) such
that Fo f € D. Then f € L. If, moreover, F is continuous, then also F o f € L.

Proof. Let z € I, b= f(z). Set S = f(I). If b € intS, we get (2) as in the
preceding proof. If, e.g., b = min.S, then (2) is obvious (since f Z band f € D).
Thus f € L.

Now suppose that F' is continuous. There is a linear function A such that FF 2 A

on §. Then (F —\)o f € CapN D whence, by 3, (F—A)of € L. Thus Fof € L.

Remark. The example in 7 shows that the relation F o f € L may be false, if
F is not continuous (even if f, F o f € D etc.).
We need first a lemma.

6. Lemma. Let f be a nonnegative (Lebesgue) measurable function on I. Let

%fcffz_’ 1, lim ap f(z) = 0. Then %f;f—*O(w—>0+),

Proof. Let ¢ € (0,00). Set zx = 2%, Ji = [2k,22), Sk = {z € Ji; f(z) >
e} (k= 1,2,...). Let Bx be the measure of Sx. Then zl—kak fS 25 f+eand

= 2z

z_l,:fSk f=< (—2-1: [ - Bi/zk)? — 0 (k — oo) which easily implies our assertion.

7. Example. Let F(z) = 2%(z € (0,00)), F(0) = 1. Let f be a function
such that f € C,,, f is positive and continuous on (0, 1], f(0)=0and 1[5 f2—
1 (z — 0+4). (It is easy to construct such a function.) Then F'o f € D \ C,p and,
by 6, f € D.
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8. Theorem. Let f € D. Suppose that f is not constant. Let F' be a strictly
convex function on f(I) and let F o f € DN C,,. Then F is continuous.

Proof. By 5 we have f € C,,. Define a function Fy on S = f(I) setting
Fo = F on int S and Fy(z) = limF(2) (z — z,z € int S) for z € S\ int S. Then
Fy is continuous on S so that Fyo f € C,p. Set ¢ = (F — Fp) o f. Then ¢ € C,p.
We see that ¢ is a Darboux function that has at most three values. Thus ¢ is
constant, o =0 on I, F = Fy on S, F is continuous.

Remark. Our proof of 8 would fail in more dimensions, because then the limit
used there need not exist. (Take, e.g., G = (0,00) x (0,00) U (0,0), F(z,y) =
z?/y + z? + y? for z,y > 0, F(0,0) =0.)
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