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NORMS AND DERIVATIVES

1. Introduction
The main purpose of this note is to investigate the equation
(*) fPeg?=h

where f,g, and h are derivatives. In particular, we shall look for conditions
under which (f2 + ¢2)!/2, the Euclidean norm of the pair (f,g), is again a
derivative. It turns out that the corresponding results hold also for some other
norms. In Theorems 3.7, 3.8, and 6.3 we investigate n-tuples of derivatives,
where 7 is any integer greater than 1.

Setting f(z) = sinl, g(z) = cosi for z # 0 and f(0) = g(0) = 0 we
have derivatives for which f2 4 g2 is not the square of any derivative. On
the other hand we would like to find nontrivial examples of triples (f, g, k) of
derivatives fulfilling (*); this can be done with the help of Proposition 3.6 and
Theorems 3.7 and 3.8. Theorem 6.2 gives information about g and h under
some assumptions about f provided that (%) holds. Theorems 6.3, 6.8, and
6.9 point in the opposite direction; if f and g fulfill certain conditions, there
is a derivative h for which () holds. Examples 2 and 3 indicate that it would
not be easy to weaken the assumptions in Theorems 6.8 and 6.9.

2. Notation

The word function means a mapping to the real line R. By C, L, C,p, D we
understand the systems of all continuous functions, Lebesgue functions, ap-
proximately continuous functions and derivatives on the interval I = [0,1],
respectively. Symbols like f: f, fQ f denote the corresponding Lebesgue inte-
grals. If Y is any system of functions, then.bY [Y'1] stands for the system of
all elements of Y that are bounded [nonnegative].
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Throughout this paper, p is an element of (1,00) and R?2 = R x R. Further
we set S, = {f € D; |f|P € D},

y
T, = {f € D; limsup lx/ |fIP < oo (y— z,y € I) for each z € I}.
y— z

It is well-known that bCeop = bL L C DN Cgp and that a function f
. f— f(z) (y = z,y € I) for each

zel.
For any system Y C D let M(Y) ={g € D; fg € D foreach fe€Y}.

3. Elementary and Known Results

Lemma 3.1 . Let f,g € Cqp, |9| £ f € D. Then g € L.(See [M1],1.8.)
Lemma 3.2 L is a vector space. If f € L, then |f| € L. (Thisis well-known.)
Proposition 3.3 S, is ¢ vector space. If f € S,, then f, |f|P € L.

PRrROOF. Let f € S,. It follows from Lemma 4.4 in [MW] that f, |f|P € L. If
also g € Sp, then f+g € L and |f +g|P < 2°(|f|? + |9]?) € L. By Lemma 3.1
we have |f + g|P € L so that f+g € S,.

Proposition 3.4 Let ¢ € (1,00), + L=1 LetfeS,, g€ Ty. Then
fgeD.

Proor. Let z € I. By Proposition 3.3 we have f — f(z) € S, whence
7z 2 1f = F(e)p = 0. Thus I725 [1(F - f(e))gl £ (5 2 1f - F@)p) e -
(7% 219191 = 0 (y — z,y € I). Hence ;12 [¥ fo = ;1o [(f = f(2))g +
f@)25 29— f(2)9(z) (y = =,y € D).

Definition 1 LetY C D. We say thatY has property V, zf(]a|P+ |8]P)?P €
Y, whenever ¢,B €Y.

Proposition 3.5 LetY have propertyV,. Letn € {2,3,...} and let oy, ..., an
€Y. Then (L], lojIP)/P €Y.

(The proof is left to the reader).
Proposition 3.6 LetY € {C,bCap, Sp,L}. Then'Y has property Vj.

PRroor. It is obvious that C' and bCqsp have property V,. Now let «,3 €
L, v = (|a|P + |B|P) /7. Then v € Cqp, |v| £ |a]+|8] so that, by Lemmas 3.2
and 3.1,y € L. If a, § € Sp, then, by Proposition 3.3, ¥» € L whence v € S,.
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Theorem 3.7 Let Y have property V,. Letn € {2,3,...}, oq,...,an €Y,
YeEMY). Set fj=va; j=1,...,n), h= ¥ (X |ajP)/P. Then fj,h € D
and Y |f;|P = |h[P.

(The proof is left to the reader).

Remark 1 The systems M(C) and M(bC,p) have been characterized in [M3]
(Theorems 7 and 12). According to 4.2 in [M1] we have M(L) = bD. Propo-
sition 3.4 says that T, C M(S,); it will be proved elsewhere that M(S,) = T,.

Remark 2 The nezt theorem shows that if Y = Sp, then the assumption a; €
Y can be replaced by the weaker assumption that a; € D and ) |o;|P € D.

Theorem 3.8 Let n € {2,3,...}. Let ay,...,an € D, Y |oj[P € D. Let
Y €Ty, where%+% =1. Set fj = 'KbO’J(J =1,..,n), h= 1/’(2 Iajlp)l/P-
Then f;,h € D and y_ |f;|? = |hJF.

ProoF. Choose an s € (1,p). Then 3 |a;|P € Q,, where Qs is as in Section
5.4 of [MW] (we take » = g; = 1 there), so that we can apply Theorem 5.5
of [MW] (where we take p; = p and s instead of p) and we get a; € L. By
Lemma 3.1 we have |a;|P € L so that a;j € Sp (j = 1,...,n). Now we apply
Proposition 3.4, Proposition 3.6, and Theorem 3.7.

4. Conventions

For any (Lebesgue) measurable set @ C R let |Q| be its measure. If Q is such
a set and b € R, we write d(Q,b) = lim|Q N (b — z,b + z)|/2z (z — 0+),
provided that this limit exists.

Throughout the rest of this note we write M = M(bCop) (= M(bL)).

For v,w € R? let v - w be their scalar product.

If z = (z,y) € R? then ||z||, means (|z[? + ly[P) .

In Lemma 5.2 and Proposition 6.1 we suppose that || - || is a norm in R?
and that @ is a mapping of R? to R? with the following properties:

(i) For each (z,y) € R? we have |y| < [|(2, y)| = ll(z, -y

(i) If z = (z,y) € R?, £ # 0 and 0(z) = (A4, B), then A # 0 and |B| - ||z]| <
z-0(2).

(iii) If v,z € R? and ||v|| = ||2||, then v - 8(z) £ z - 6(2).
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5. Preliminary Results

Proposition 5.1 For each z = (z,y) € R? set ||z|| = ||z||, and set §(z) =
(lzjP—tsgnz, |y|P~rsgny). Then the conditions (i)-(iii) are fulfilled.

PROOF. (i) is obvious. Let z = (z,y) € R?, z # 0, 6(z) = (4, B). Clearly
A#0,2-60(2) = |lzllP = ||z]] - [lzlIP~* and [lz]lP~" = (P + [ylP)=D/P >
ly|P~! = |B|. Now let v,z € R?, ||v|]| = ||z]|. Define ¢ by % +-;- = 1. Then
p=q(p—1) = 14p/q, v-0(2) < |lo||-[|6(z)llg = ||z]]-(lz|P=De+|y|P-De)1/e =
21l - (lzlP + lylP)H e = ||z||**#/e = ||zl = 2 - 6(z).

Lemma 5.2 Let z € R?\{(0,0)}. Set K = z-6(2)/||z||. Thenv-0(z) £ K||v||
for each v € R2,

ProoF. Let v € R?\ {(0,0)}. Set w = v||z||/||v]|. Then ||w|| = ||z|| so that,
by (iii), v - 0(z) = w- 0(2)|[vl/l|ll £ =z - 6()[oll/l]=]] = K[lo]]-

6. Main Results

Proposition 6.1 Let f € M, g € D\ M, f > 0. Suppose the conditions (1)
- (iii) are fulfilled. Then ||(f,9)|| & D.

Proor. Set h = ||(f,9)|| and suppose that h € D. Then all the functions
f,9,h are Lebesgue integrable. By Theorem 12 in [M3] there is a b € I
and a measurable set Q C I such that d(@Q,b) = 0 and that the relation
%an(b—z,b+z)g — 0 (z — 0+) fails. We may suppose that b = 0 and that
lim SuP%an(o,z)g (z — 0+) is positive; call it u. Applying again Theorem
12 in [M3] we get

(1) l/ f—=0(z—04).
T Jen(o,2)
Set z = (£(0), 9(0)),8(z) = (4,B), K = z-6(z)/||z|]|. By Lemma 5.2 we have
(2) Af + Bg S Kh.
Hence

3) A/Zf+B/Zg§K/Zh

for each measurable set Z C I. There are z;,z5,... € (0,1) such that z, — 0
and that, setting Q, = @ N (0,z,) and u, = -zl—an g, we have u, — u and
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u, > 0 for each n. Define ¢, by

(4) A f+B/ g=ta | h.

Q'l n Q’l
Since g £ h, we have [ta] [, g = ltal fo. B = |Al fo. f+ 1Bl [, 9, [talun <
|Al2E fo. f +|Blua; by (1) we get limsup |tn] £ |B|. Hence we may suppose
that the sequence (t,) converges to some t. Then t £ |B|. By (ii) we have
|B| < K so that t < K. There is an m such that ¢, < K for each n > m.
From (4) and (3) with Z = (0,2,)\Qn weget A [7" f+B [~ g S K [ h—
(K —tn) [q, h whence K [ThZ A f+Bfy" g+ (K —tn) fo, 9 (n >m).
We see that u < co. Since z - 6(z) = K||z|| and ||z|| = h(0), we have

Kh(0) 2 Af(0) + Bg(0) + (K —t)u = K||z|| + (X —t)u > Kh(0);
a contradiction.

Theorem 6.2 Let f € M, g,h € D, f > 0 and let f? + |g|P = |h|P. Then
g,heM.

PRrOOF. We may suppose that > 0. Then h = ||(f,9)||,. By Proposition 5.1
and Proposition 6.1 we have g € M. Since h £ f + |g|, it follows easily from
[M3] (see condition (ii) in Theorem 12) that h € M.

Remark 3 Let 1=z0> 2, >+, 2, =0, 2,/2py1 — 1. Set dy = 2,1 —
Z,. Let 2, < Yn < 2n < Tn_1,2n—Yn < dp/n. Let | be a nonnegative function
on I such that /(0) = 1, [ is continuous on (0,1], { = 0 on (0,1} \ U(¥n, 2n)
and f;:l =d, (n=1,2,...). It is easy to see that | € D. Now let v, €
(Zn,¥n), Wn € (2n,Zn-1), Wn — vp < dn/n. There is a function w such that
0 Sw<1lonl,wis continuous on (0,1}, w = 1 on U(yn, 2n) and w = 0 on
I\ U(vn,wn). It is obvious that lim ap I(z) = 0 (z — 0+), w € bCqp and
lw =1on (0,1]. Since (lw)(0) = 0, we have lw ¢ D so that | ¢ M.

Now it is clear that there are I, p € D¥ \ M continuous on (0, 1] such that
1(0) = u(0) = 1, lim ap I(z) = lim ap p(z) =0 (z — 0+) and iz = 0 on

Remark 4 Ezample 1 shows that the requirement “f > 0” in Theorem 6.2
cannot be replaced by “f > 0 on (0,1]”.

Example 1 Let | be as in Remark 1. Set f(z) =z (z €1I), g=1+1, h=
(f2+9¢*)Y2, o = f/g. Then p € C and h = g(p*+ 1)1/2. Since D* C M(C)
(see, e.g., Theorem 7 in [M3]), we have h € D. Clearly f € M, f*+ 4% =
h?, ge D\ M.
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Remark 5 If f,g,h € D, f2+¢% = h? and ifliminf ap h(y) >0 (y — z,y €
I) for each z € I, then, by Proposition 4.6 of [MW], there are o, f, and 9
(namely ¥ = h) such that

©) f=ayp, g=pB¢, a,f € Cop.

Examples 1 and 2 in [MW] (sections 5.12-5.13) indicate the importance of
the corresponding assumptions. If we set a(z) = zsin -;—, B(z) = z cos %, P(z)
= L(z € (0,1]), a(0) = B(0) = $(0) =0, f = o, g = B, h= (f2 + ¢?)'/2,
we see that the assumption liminf ap h(y) >0 (y — z,y € I) foreach z € I
does not imply that A > 0 on I (even if (5) holds and f, g € bD).

Now we would like to find conditions for f and g that would allow us to
deduce from (5) the existence of an h € D fulfilling f2 + g2 = hZ.

Theorem 6.3 Let n € {2,3,...}, fi,...,fan € M, on,...,an € Cqp. Let
Ea;‘-’ >0 on I. Lety be a function on I such that f; = a9 (j =1,...,n).
Then there is an h € M such that 5 |f;|P = |hJP.

ProoF. Set v = (3 |e;[P)Y/?, B; = |ej/vIP~* -sgn aj, h =Y B;fj. Then
Bj € bCqp so that h € D; clearly h € M, h =93 fia; =9 |o;P/yP~! =
¥y whence |h[P = P[P = 37 |e P = 31517

Remark 6 The reader may compare this theorem with Proposition 5.10 and
Theorem 5.11 in [MW].

Our next goal is Theorem 6.8 which is a modification of Theorem 6.3 with
n = 2. In Theorem 6.8 we still assume that f; € M, but the requirement
f2 € M is replaced by other conditions. We need a few lemmas.

Lemma 6.4 Let f € M, g € D, f2+¢%> >0, g 2 —|f|]. Let a,B,% be
functions on I such that (5) holds. Leta,b€ I, a <b and let 1) > 0 on (a,b).
Then 9(a) > 0.

PROOF. Clearly 9¥(a) # 0. We distinguish two cases.

(i) f(a) #0. Set v = (a? + f?)'/2, p = ya?/v. Since ¢ 2 0 on (a,b) and
¢ = fa/y € D, we have ¢(a) 2 0, ¥(a) > 0.

(if) f(a) =0. Then a(a) =0, B(a) # 0, g(a) 2 —|f(a)| = 0. Since 3y > 0 on
(0,6) wehave 2 ~Jal on (3.0}, 5(0) 2 ~Ia(a)] =0, 5(0) > 0 ¥(a) >

Lemma 6.5 Let f,g,«a,B,% be as before. Then sgn 1 is consiant.
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PROOF. Set o = sgn 9. Clearly ¥ = (af + 89)/(a? + 5?), 0 = ¢/|¢|. Then
o is a Baire one function. Let G be the set of all points where ¢ is continuous
(with respect to I). It is easy to see that G is open in I and that o is constant
on each component of G. Let F = I \ G. Suppose that F # 0. Then there is
a b € F such that o is continuous at b with respect to F'. There is an open
interval J such that b € J and that ¢ is constant on F N J. By Lemma 6.4
o is constant on the closure of each component of G. Hence ¢ is constant on
J NI C G, a contradiction. Thus F =@, G = I and ¢ is constant on I.

Lemma 6.6 Let A = {(0,y);y € (—0,0]}, G = R?\ A. Define a function F
on G setting F(z,y) = ((|z|P + Iy]P)l/" —y)/z (z#0), F(0,y) =0 (y > 0).
Then F is continuous.

ProorF. It is obvious that F is continuous at each point (z,y), where = # 0.
Now let yo, € € (0,00). Let y > yo/2, |z| < yo(ep)/P=1)/2. Set t = ¢|z|/v.
Then |z[P~1 < yP=lep, |zP < yPtp, [zlP +yP < yP(1+1tp) S yP(1 4+t =
(y+elz|)?, (Jz? +y?)/P —y < €|z|, |F(z,y)| < . This proves the continuity
of F at (0,y0)-

Lemma 6.7 Let G, F be as before. Let k € (0,00), H = {(z,y) € G; y =
—k|z|}. Then |F|S2k+1 on H.

ProorF. If z,y € (0,00), then 2? +y? < (z+y)? so that 0 < F(z,y) < 1. Now
let 2 >0, —kz £ y < 0. Then (& + |yP)1/? — y < o+ o] + Jul < 2k + 1)a
whence 0 < F(z,y) S 2k + 1. Clearly F(—=z,y) = —F(z,y).

Theorem 6.8 Let f € M, g € D, f2+ g% > 0. Let a,B,v be functions such
that (5) holds. Let k € (0,00), g = —k|f|. Then (|f|P + |g|P)}/? € D.

ProoF. Let G, H, F be as before. By Lemma 6.5 we may suppose that ¢ > 0.
Then (a(t), B(t)) € H for each t € I. Clearly y + zF(z,y) = (|z|P + |y|P)*/?
for each (z,y) € G. Hence (|f|P + |g|P)}/? = g + fF(f,9) on I. 1t is easy to
see that F(f,g) = F(a,B); by Lemmas 6.6 and 6.7 we have F(a, §) € bClp.
Thus fF(f,g) € D which proves our assertion.

Remark 7 Taking f(z) = sinl (z € (0,1]), f(0) =0, g = ¢ = f and
a = f =k =1 wesee that the assumptlon “f249% > 0” in Theorem 6.8 cannot
be dropped. If, however, f € Mt, g € D, B € Cap, B is bounded below and
g = B, then, clearly, (fP+|g[P)"/? = g+ fp, where = (1+]8F)}/2 - € bCay
so that (f? + |g|P)!/? € D. Thus we may ask whether “fZ 4 g2 > 0” can
be replaced by “f 2 0”. The next theorem gives a positive answer to this
question.
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Theorem 6.9 Let f € M*, g € D. Let a, 3,9 be functions such that (5)
holds. Let k € (0,00), g 2 —kf. Then (f? + |g|P)}/? € D. :

PROOF. Set h = (P + |g|P)'/?. If f(z) = g(z) = 0, set p(z) = 0; otherwise
set p(z) = F(f(z),g(x)), where F is as il Lemma 6.6. Clearly h = g + fo
and, by Lemma 6.7, |[¢| £ 2k +1 on I. A simple computation shows that g =
(ke + B| — k|a|)[3]. Thus we may suppose that a,% 2 0. Set W = {f > 0}.
On W we have 9 > 0 and ¢ = F(e, ) so that ¢ is approximately continuous
at each point of W. It follows easily from Proposition 11 in [M3] (see condition
(iv)) that 2= [¥ fo — f(z)p(z) (y = 2,y € I) for each z € W. If f(z) = 0,
then the inequalities ¢ < |g| S h < |g| + f £ g + (2k + 1)f imply that
745 J2 h — g(z) = h(z). Thus h € D.

Remark 8 Let f =1, g € C;, ND, [[lgl =c0. Seta=9y =1, B=g4.
Then f € M, f2+ g2 > 0, (5) holds, but, obviously, (f2 + ¢g2)1/2 ¢ D. We
see that the requirement “g > —k|f|” in Theorem 6.8 or Theorem 6.9 cannot
be dropped. This example raises naturally the question whether “g > —k|f|”
cannot be replaced by “f; |g| < 0o”. Example 2 shows that this is not possible;
the corresponding function g is the difference of two nonnegative derivatives.
(Not every Lebesgue integrable derivative can be expressed in this way.) A
more complicated example (not given here) shows that not even “|g| € D” can
replace “g 2 —k|f|” in Theorem 6.8 or Theorem 6.9.

Example 3 in [MW] (section 5.14) shows that the requirement “f € M” in
‘Theorem 6.8 cannot be replaced by “f € Dt”. Our Example 3 shows the same
thing in a simpler way. Theorem 6.11 shows that the assumption “f € M” is
very essential. This theorem follows easily from Proposition 6.10 that is stated
without proof.

Example 2 Let I, 4 be as in Remark 1, section 15. Set f =1, g=1—p, h=
(f24+g)Y% a=9¢ =1, f=g. Then f € M and (5) holds. However,
h 2 |g| =1+ p on (0,1] whence liminfl [Fh 2> 1(0) + p(0) = 2 > 1 = A(0).
Thus h & D.

Example 3 Let [, 4 be as before. Set f=1+1, g =1+pu, h = (f2+ ¢2)1/2.
Then f,g € D, g/f € Cqp. Since 12 + p? = (I 4+ p)? on (0, 1], we have there
h? > 142(1+p)+ 124 p? = (1+1+4)? so that liminf L [¥ h 2 1+1(0)+4(0) =
3 > 2v/2 = h(0). Thus h ¢ D. It is obvious that g > —|f| and that (5) holds
witha=1, f=g/f and ¥ = f.

PI‘OPOSitiOH 6.10 Let f € D\ M and lete € (0,1). Then thereis a B € Cqp
such that |8 — 1| < € on I, Bf € D and (f2 + (8f)*)/2 ¢ D.
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Theorem 6.11 Let f € D\ M and let f > 0 on I. Then there is a k €
(0,00) and functions g,«,B,¢ such that (5) holds, g € D, g 2 —k|f| and
(f2 4927 ¢ D.

PROOF. Let € = -%- and let G be as in Proposition 6.10. Now it suffices to take

a=k=1,¢=f and g=pf.
Remark 9 Some of the results of this note with p = 2 have been stated without
proof in [M2].
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