Jan Mařík Vyjádření funkcionály integrálem

Persistent URL: http://dml.cz/dmlcz/502276

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

Vyjádření funkcionály integrálem.

Jan Mařík.

Pracováno při aspirantuře v Matematickém ústavě Československé akademie věd za vedení prof. Miroslava Katětova jako školitele.

novenská skademi volovenská skademi volovenské skolené volovenské skademi volovenské skolené volovenské skademi volovenské skolené volovenské skol

528/62 Kand prate

Vyjádření funkcionály integrálem.

1./ Je známo, že abstraktní integrál lze definovat nejen pomocí míry, nýbrž také - aspoň za jistých předpokladů - pomocí lineární funkcionály na nějakém prostoru , jehož prvky jsou funkce na příslušné množině. Otázka ekvivalence těchto definic úzce souvisí s otázkou, zda lze příslušnou funkcionálu vyjádřit integrálem, definovaným pomocí míry. V této práci jsou uvedeny podmínky, postačující k možnosti takového vyjádření, a je dokázána věta o unicitě příslušné míry (resp. ~-aditivní funkce). Tyto výsledky se dále aplikují zejména na prostory, které jsou částí množiny všech spojitých funkcí na daném topologickém prostoru.

2./ Budiž \mathscr{U} neprázdný systém množin. Řekneme, že \mathscr{U} je (množinové) těleso, jestliže s každými dvěma prvky systému \mathscr{U} patří do \mathscr{U} také jejich sjednocení a rozdíl. Je-li každý pravek tělesa \mathscr{U} částí jisté pevné množiny P a platí-li P $\in \mathscr{U}$, řekneme, že \mathscr{U} je algebra (na množině P). Je-li \mathscr{W} libovolný systém množin, pak \mathscr{W}_{G} (resp. \mathscr{M}_{G}) značí systém všech $\sum_{n=1}^{\infty} M_n$ (resp. $\widehat{\mathscr{M}}_n$), kde $\mathfrak{M} \in \mathscr{M}$ pro $n = 1, 2, \ldots$ Je-li \mathscr{U} tělevo a platí-li \mathscr{U}_{G} (resp. \mathscr{U}_{G} (\mathscr{U}), řekneme, že

U je 6 -těleso (resp.), -těleso). Je-li algebra U 6-tělesem, řekneme, že je U 6 -algebra. Je známo, že každé 6 -těleso je zároveň J-tělesem; naopak je zřejmé, že není každé J-těleso 6 -tělesem. Je-li však množinová algebra J-tělesem, je též 6 -algebrau a tedy i 6 - tělesem. Množinové těleso V je J-tělesem, právě když pro každé T 6 V platí, že systém všech A(T, kde A 6 V, tvoří 6 -algebru na množině T. Je-li V J-těleso, je systém V 6 - těleso.

3./ Budiž ML systém množin, jehož prvky jsou části jisté množiny P. Znakem

E (M)

budeme rozumět systém všech $A \in P$, jejichž průnik s libovolným prvkem ze systému \mathcal{M} opět patří $\mathcal{A}\mathcal{M}$. Zřejmě vždy platí $P \in f$ (\mathcal{M}). Je-li \mathcal{M} těleso (\mathcal{O} -těleso), že f (\mathcal{M}) algebra (\mathfrak{O} -algebra), obsahující \mathcal{M} . 4./ Řekneme, že funkce $\mathcal{M}^{(1)}$ na množinovém tělese $\widetilde{\mathcal{V}}$ je aditivní, jestliže součet \mathcal{M} (A) + \mathcal{M} (B) má smysl a rovná se \mathcal{M} (A + B), kdykoli jsou A, B disjunktní přvky tělesa $\widetilde{\mathcal{V}}$. Platí-li dokonce

$$\sum_{n=1}^{\infty} \mu(A_n) = \mu(\sum_{n=1}^{\infty} A_n)$$

pro každou disjunktní posloupnost A_n prvků z \mathcal{T} , jejíž sjednocení patří také do \mathcal{T} , řekneme, že funkce μ je \mathcal{T} -aditivní. Nezáporné \mathcal{T} -aditivní funkci na množinovém tělese budeme říkat míra.

5./ Každou mírů, definovanou na \mathcal{O} - tělese \mathcal{V} , můžeme zřejně právě jedním způsobem rozšířit na \mathcal{O} -těleso $\mathcal{V}_{\mathcal{O}}$. Je-li \mathcal{W} míra na \mathcal{O} -tělese \mathcal{T} , můžeme vždy (někdy dokonce různými způsoby) rozšířit míru \mathcal{M} na nějakou \mathcal{O} -algebru. Na př. na \mathcal{O} -algebře $\mathcal{F}(\mathcal{T})$ (viz 3.) můžeme definovat rozšíření míry \mathcal{M} předpisem $\mathcal{M}(A) = \mathcal{O}$ pro $A \in \mathcal{F}(\mathcal{T}) - \mathcal{T}$. Vidíme, že míru definovanou na \mathcal{V} -tělese, můžeme vždy rozšířit na nějakou \mathcal{O} -algebru.

6./ Při definici integrálu pomocí míry se zpravidla předpokládá, že je míra dána na nějaké 6 algebře. Budeme definovat integrál také pomocí míry, dané na 2 -tělese; tímto zobecněním, které je pouhou formalitou, dosáhneme jednoduššího znění vět.

Bud \overline{V} \overline{V} -těleso, jehož prvky jsou části množiny P. Řekneme, že funkce f na množině P je \overline{V} -měřitelná, je-li

$$\begin{split} & \underset{\mathbf{x}}{\mathbb{E}} \left[f(\mathbf{x}) > c \right] \in \mathcal{T} & \text{pro každé } c > 0, \\ & \underset{\mathbf{x}}{\mathbb{E}} \left[f(\mathbf{x}) < c \right] \in \mathcal{T} & \text{pro každé } c < 0. \end{split}$$

Je-li nyní \mathcal{M} míra na \mathcal{T} a je-li $\mathcal{F}\mathcal{I}$ -měřitelná funkce, můžeme definovat $\int f d \mathcal{M}$ jako $\int f d \mathcal{M}$, kde \mathcal{M} je libovolné rozšíření míry \mathcal{M}

1.)Budeme vždy předpokládat, že hodnoty funkcí jsou bud reálná čísla nebo $\pm \infty$; operace s těmito prvky definujeme obvyklým způsobem. na libovolnou S-algebru, která obsahuje \mathcal{T} .²⁾ Je vidět. že nezáleží na tom, které rozšíření zvolíme, a že pro integrál, definovaný pro \overline{V} -měřitelné funkce pomocí míry na \mathcal{N} -tělese \overline{V} platí tytéž základní věty jako pro integrál, definovaný pomocí miry na nějaké 6 -algebře.3)

7./ Budeme vycházet z těchto předpokladů :4)

Bud P neprázdná množina; bud Z lineární prostor, jehož prvky jsou(konečné reálné) funkce ne množině P . Necht vlatí

1) $f \in Z = 7 |f| \in Z$

2) $f \in \mathbb{Z} \Longrightarrow (f,1) \in \mathbb{Z}$.

Z 1) plyne, že s každými dvěma funkcemi f,g patří do Z také funkce max (f,g), min (f,g) .5)

Bud J nezáporná funkcionála na Z . Nechť je splněna implikace

 $f_n \in \mathbb{Z}$, $f_n > 0^{6} \Longrightarrow \mathfrak{I}(f_n) \rightarrow 0$.

Sestrojime napřed pomocný systém R všech funkcí r na množině P, k nimž existují $f_n \in \mathbb{Z}$ tak, že f_n r. Pro r CR položme

 $J_1(r) = \sup J(f), kde f \in Z, f \leq r, 7)$

Jestliže $\int f d \tilde{\mu}$ neexistuje, Jekneme ovšem, že $\int f d \mu$ ne-

3) Nečinilo by ovšem žádné obtíže definovat přímo integrál (fd & bez přechodu ko-algebře; uvedeného postupu jsme použili jen proto, abychom věc převedli na všeobecně známou theorii.

4) Tento odstavec je v podstatě obsahem Daniellovy práce [1]. Da-niell však nepředpokládá platnost dále uvedeného vztahu 2); význe mu tohoto vztahu je věnována poznámka". Důkazy všech tvr-zení z odst. 7./ lze nalézt též ve článku [6], který byl psán bez znalosti Daniellovy práce.

5) Snadno se zjistí, že z l) neplyne 2) ani naopak. Je-li ovšem funkce f(x) = 1 prvkem Z a platí-li l), platí automaticky též 6) Symboly 7, y značí monotonní bodovou konvergenci. 7) mže být též $J_1(r) = +\infty$

Snadno se zjistí, že ze vztahu $f_n \nearrow r$, kde $f_n \in \mathbb{Z}$, plyne $J(f_n) \rightarrow J_1(r)$; odtud je patrné, že pro $r \in \mathbb{Z}$ je $J_1(r) = J(r)$, takže místo $J_1(r)$ můžeme psát opět J(r). Pro libovolnou funkci f na množině P budiž nyní

$$T(f) = \inf J(r), kde ER \cdot r \ge f^{(8)}$$

 $\underline{I}(\underline{r}) = -\overline{J}(-\underline{r}).$

Vždý je $T(f) \stackrel{\geq}{=} I(f)$; systém těch funkcí f, pro něž je $J(f) = T(f) \stackrel{\pm}{=} t^{\infty}$, označíme L. Je-li f $\in \mathbb{R}$, je J(f) = T(f) = I(f). Fro f $\in L$ můžeme tedy psát

$$J(T) = \tilde{J}(T) = J(T)$$

Dá se nyní ukázat, že funkcionála J na množině L má vlastnosti Lebesgueova integrálu; jsou-li na př. f. g konečné funkce z L, patří též funkce f + g do L a platí J (f+g) = J(f)+J(g). Jsou-liff f_n prvky z L a platí-li f_n f, je

$$J(f_n) = \underline{J}(f); \qquad (\alpha)$$

je-li tedy v tomto případě $\underline{J}(f) < \infty$, je též f E L.

8./ Pro libovolnou část A množiny P můžeme nyní definovat

⁸)_{Nsexistuje-li k funkci f žádné r≧f(r∈R), je J(f) =infør+∞}

horní a dolní míru ma m předpisem

 $\overline{m}(A) = J(c_A), \underline{m}(A) = \underline{J}(c_A),$

kde og je charakteristická funkce množiny A.

Bud \mathscr{U} systém všech A, pro něž je c_A \in L, neboli <u>m</u> (A) = = $\overline{m}(A) < \infty$ Pro A $\in \mathscr{CU}$ pišme m (A) = $\overline{m}(A) = \underline{m}(A)$. \mathscr{CU} je zřejně \mathcal{O} -těleso a funkce m je ne $\mathscr{U}\mathcal{O}$ -aditivní .

Z předpokladu 2) plyne, že pro každé f \in L a každé c>0 (resp. c<0) je

$$[f(x) > e] \in \mathcal{Cl}(resp.] [f(x) < e] \in \mathcal{Cl};$$

je tedy každá funkce f $\in L$ \mathcal{U}_{-} měřitelná. (Viz [6], str.182) Je-li nyní f libovolná nezáporná funkce z L, můžeme sestrojit posloupnost nezáporných "schodovitých" $\mathcal{U}_{-měřitelných}$ funkcí f_n tak, že f_n π f. Pro každé n je zřejmě $J(f_n) = \int_{p} f_n dm;$ z (\propto) (odst.7) a ze známé věty o záměně limity a integrálu plyne dále

$$J(f) = \lim J(f_n) = \lim \int_{P} f_n dn = \int_{D} f dn_0$$

Platí tedy

 $J(\mathbf{f}) = \int_{\mathbf{D}} \mathbf{f} d\mathbf{m}$

pro každou funkci f \in L, jak sa snadno zjistí rozkladem funkce f <u>Re-kladnou</u> a zápornou část. Tento vztah platí tedy tím spíše pro

To vše by platilo, i kdyby požadavek 2) nebyl splněn. Bále bychca se vžak nedostali; jestliže 2) neplatí, nemusí být funkce ze systému Z $\mathcal{U}_{-měřitelné a nemá pak snysl mluvit o jejich$ integrálu podle míry m. Jako příklad lze uvést systém Z všem $funkcí daných v intervalu <math>\langle 0, 4 \rangle$ předpisem f(x) = kx (k libovolné reálné), při čemž klademe na př. J(f) = k. Platí zde L = Z; systém \mathcal{U} obsahuje jen prázdnou množinu. Snadno se zjisť že i v tomto případě lze funkcionálu J vyjádřit integrálem; je však $J(f) = \int_{C} fd \mu$ pro libovolnou míru μ , která splňuje, vztah $\int xd \mu = křímto vztahem zřejmě není míra <math>\mu$ určena jednoznačně. Bez požadavku 2) nelze tedy dokázat větu o unicitě míry, vytvářející funkcionálu. Je otázka, zda by nebylo možné dokázaté bez požadavku 2) aspoň existenci takové míry.

každé fEZ.

9./ Mějme nymí nějaké \mathcal{O} -těleso \mathcal{V} , které je částí \mathcal{U} . Bud μ míra na \mathcal{I} taková, aby pro každé fEZ platilo

$$J(\mathbf{r}) = \int_{\mathbf{P}} \mathbf{r} d\mu \,. \tag{3}$$

(Tím je zároveň vyslovem předpoklad, že každá funkce $f \in Z$ je \overline{V} -měřitelná). Limitním přechodem zjistíme, že (β) platí také pro každé $f \in \mathbb{R}$. Buď $A \in \overline{V}$, $\varepsilon > 0$. Podle definice čísla m (A) = $J(c_A)$ existují r_1 , $r_2 \in \mathbb{R}$ tak, že je $c_A \leq r_1$, $-c_A \leq r_2$ a mimo to

$$J(r_1) < m(A) + E$$
, $J(r_2) < -m(A) + E$

Odtud plyne

$$m(A) - \mathcal{E} \langle -J(\mathbf{r}_2) = \int (-\mathbf{r}_2) d\mu \leq \int c_A d\mu = \mu(A) \leq \int \mathbf{r}_1 d\mu = J(\mathbf{r}_1) \langle m(A) + \mathcal{E},$$

tedy

$$\mu(A) = m(A) .$$

Vidíme, že na \mathcal{I} -tělese \mathcal{V} existuje právě jedna míra (totiž míra m)taková, aby pro každé f \in Z platil vztah (β). Budiž nyní

nejměnší
$$\mathcal{O}$$
-těleso, obsahující všechny množiny tvaru
 $\mathbb{E}\left[f(\mathbf{x}) > 1\right]$, kde f $\in \mathbb{Z}$. ($\mathcal{V}_{\mathbf{z}}$ je zřejmě nejmenší ze všech
 \mathcal{O} -těles \mathcal{T} takových, že každá funkce f $\in \mathbb{Z}$ je \mathcal{V} -měřitelná.)
Klademe-li $\mathcal{W}(\mathbf{A}) = m(\mathbf{A})$ pro $\mathbf{A} \in \mathcal{V}$, platí zřejmě vztah (β)
pro každé f $\in \mathbb{Z}$. Odtud plyne :

Na δ - tělese V_{Z} existuje právě jedna míra μ taková, aby pro každé f $\in Z$ platil vztah (β).¹⁰

10./ Uvidíme, že podobnou větu lze dokázat i bez předpokladu, že funkcionála J je nezáporná; slovo "míra" musíme však na-

10) V této větě je důležité, žeJ-těleso \overline{V}_Z závisí jen na systému Z a nikoli na funkcionále **K** (kdežto na př. \mathcal{U} závisí na J). hradit slovy "G-aditivní funkce". Příslušný integrál definujeme takto: Bud $\mathcal{I}\mathcal{I}$ -těleso, jehož prvky jsou části množiny P. Bud \mathcal{G} -aditivní funkce na \mathcal{I} ; nechť $\mathcal{G}(\mathcal{G}) = 0$.¹¹) Definujme na \mathcal{I} funkce \mathcal{G} , \mathcal{L} předpisem

 $\mathcal{G}_{\mathcal{F}}(\mathbb{T}) = \sup \mathcal{G}(\mathbb{A}), \text{ kde } \mathbb{A} \subset \mathbb{T}, \mathbb{A} \in \widetilde{\mathcal{V}},$ $\mathcal{G}_{\mathcal{F}}(\mathbb{T}) = \sup (-\mathcal{G}(\mathbb{A})), \text{ kde } \mathbb{A} \subset \mathbb{T}, \mathbb{A} \in \widetilde{\mathcal{V}}.$

Potom jsou suprema, definující \mathcal{G}_{+} (T) a \mathcal{G}_{-} \mathcal{G}_{-} (T), dokonce was ximy. Aspoň jedna z funkcí \mathcal{G}_{+} , \mathcal{G}_{-} je tedy konečná; jetli funkce \mathcal{G}_{-} konečná, jsou obě funkce \mathcal{G}_{+} , \mathcal{G}_{-} konečné. Funkce \mathcal{G}_{+} , \mathcal{G}_{-} jsou míry a platí $\mathcal{G} = \mathcal{G}_{+} - \mathcal{G}_{-}$. Položíme nyní

$$\int_{P} \operatorname{rd} \varphi = \int_{P} \operatorname{rd}$$

pokud má pravá strana smysl. (Nemá-li smysl, řekneme ovšem, že $\int f d\varphi$ neexistuje.)

11./ Dále budeme potřebovat tuto větiu:

Bud P neprázdná množina. Bud Y lineární prostor, jehož prvky jsou funkce na P. Nechť s každou funkcí f patří do Y také funkce |f|. Bud J aditivní funkcionála na Y; nechť platí implikace

 $f_n \in \mathbb{T}, \quad f_n \downarrow 0 \Longrightarrow \mathfrak{I}(f_n) \to 0.$

Potom lze funkcionálu J vyjádřit jeko rozdíl dvou nezáporných funkcionál, pro něž tato implikace teké platí.

Důkaz : Je-li f≧0, f∈Y, položme

 $J_{+}(f) = \sup J(g), kde g \in I, 0 \leq g \leq f.$

Snadno se zjistí (viz na př. [4], str. 232-233), že J_{+} je

11) Rayby bylo $\mathcal{Y}(\emptyset) \neq 0$, bylo by buć identicky $\mathcal{Y}(\mathbb{A}) = +\infty$ nebo identicky $\mathcal{Y}(\mathbb{A}) = -\infty$; tyto triviální případy můžemo zřejmě vyloučit, aditivní na množině všech nezáporných prvků z X; ukážeme, že J, nabývá jen konečných hodnot. Předpokládejme tedy, že pro některé f \in X, kde f \geq O, je J, (f) = ∞ . Pak existuje, g₁ tak, že platí $0 \leq g_1 \leq f$, $J(g_1) \geq 1 + |J(f)|$. Je-li $J_+(g_1) = \infty$, volíme $f_1 = g_1$; pak máme

$$\begin{split} \mathbf{J}_{+}(\mathbf{f}_{1}) &= \infty , \quad |\mathbf{J}(\mathbf{f}_{1})| \geq 1, \quad 0 \leq \mathbf{f}_{1} \leq \mathbf{f} . \qquad (\mathcal{G}) \\ & \mathbf{e}-\mathbf{li} \quad \mathbf{J}_{+}(\mathbf{g}_{1}) < \infty , \quad \text{volime} \quad \mathbf{f}_{1} = \mathbf{f}-\mathbf{g}_{1} \cdot \mathbf{Pak} \quad \mathbf{je} \quad \mathbf{J}_{+}(\mathbf{f}_{1}) = \infty \\ & \leq \mathbf{f}_{1} \leq \mathbf{f} ; \quad \mathbf{dale} \quad \mathbf{je} \quad |\mathbf{J}(\mathbf{f}_{1})| = |\mathbf{J}(\mathbf{f}) - \mathbf{J}(\mathbf{g}_{1})| \geq \end{split}$$

 $\leq J(g_1) - |J(f)| \geq 1$, takže (g) opět platí.

Tak sestrojime posloupnost funkci fn, splňujicích vztahy

$$J_{+}(f_{n}) = \infty$$
, $|J(f_{n})| \ge n$, $0 \le f_{n} \le f_{n-1}$

pro $n = 1, 2, \ldots$; kladema $f = f_0$.

Pak je $f = f_0 \stackrel{\geq}{=} \frac{f_1}{1} \stackrel{\geq}{=} \frac{f_2}{2} \stackrel{\geq}{=} \dots \stackrel{\geq}{=} 0, 0 \stackrel{\leq}{=} \frac{f_n}{n} \stackrel{\rightarrow}{=} 0,$ vedy $\frac{f_n}{n} \lor 0$, ale $J(\frac{f_n}{n}) \stackrel{=}{=} \frac{1}{n} J(f_n) \stackrel{\geq}{=} 1$, což je spor.

Tím ickázene, že J, nabývá jen konečných hodnot. Funkcionálu J, lze zřejmě právě jedním způsobem rozšížit na celé Y; položíme-li ještě J = J, - J, je J nezáporná funkcionála a platí $J = J_{+} - J_{-}$.

Dokážeme nyní, že platí $J_{+}(f_{n}) \rightarrow 0$, kdykoli $f_{n} \in \mathbb{Y}$, $f_{n} > 0$. Předpokáždejme tedy, že to pro některou posloupnost $f_{n} > 0$ neplatí. Posloupnost $J_{+}(f_{n})$ má pak kladnou limitu \mathcal{Z} . Existují $g_{n} \in \mathbb{Y}$ tak, že platí

(*)

$$J(g_n) > J_+(f_n) - \frac{\varepsilon}{2^n}$$
, $0 \leq g_n \leq f_n$.

Bud $h_n = \min (g_1, \dots, g_n)$. Dokážeme indukcí, že je

$$J(h_n) > J_+(r_n) - \sum_{\ell=1}^{n} \frac{\varepsilon}{2^1}$$

Tento vztah zžejmě platí pro n=1; nechť platí pro nějaké n .

$$J(k_n) \leq J_{+}(f_n) - J(h_n) < \sum_{i=1}^n \frac{\varepsilon}{2^i}$$

Dále pletí

$$\begin{aligned} \tilde{s}(n_{n+1}) &= \tilde{s}(g_{n+1}) - \tilde{s}(k_n) > \tilde{s}_+ (f_{n+1}) - \frac{\varepsilon}{2^{n+1}} - \sum_{i=1}^n \frac{\varepsilon}{2^{i+1}} = \\ &= \tilde{s}_+ (f_{n+1}) - \sum_{i=1}^{n+1} \frac{\varepsilon}{2^{i}} \end{aligned}$$

Tím je proveden indukční krok a je dokázána platnost vztahu (*) pro každé n. Odtud plyne limitním přechodem

$$\lim J(h_n) \ge \lim J_+(f_n) - \xi - \xi ,$$

což není možné, protože $0 \leq h_n \leq g_n \leq f_n$, $f_n > 0$, $h_{n+1} \leq h_n$, tedy $h_n > 0$. Ze vztahu $f_n \in \mathbb{T}$, $f_n > 0$ tedy plyne $J_+(f_n) \rightarrow 0$ a tedy i $J_-(f_n) \rightarrow 0$. Tím je věte dokázána.

12./ Větu z konce odst. 9./ můžeme nyní zobecnit takto : Buď P neprázdná množina ; buď Z lineární prostor, jehož prvky jsou reálné funkce ne množině P. Nechť platí

$$|f| \in \mathbb{Z}$$
, min $(f,1) \in \mathbb{Z}$

pro každé f $\in \mathbb{Z}$. Buď J aditivní funkcionála na Z, která splňuje vztah

$$f_n \in \mathbb{Z}, f_n > 0 \Longrightarrow J(f_n) \to 0$$
.

Bud Znejmenší \mathcal{O} -těleso, obsahující všechny množiny $\mathbb{E}[f(x) > 1]$, kde f $\in \mathbb{Z}$. Potom existuje na $\mathcal{V}_{\mathbb{Z}}$ právě jedna \mathcal{O} -aditivní funkce \mathcal{G} taková, že pro každé f $\in \mathbb{Z}$ platí

$$J(f) = \int f d \varphi;$$

funkce q je konečná.

Důkaz : Podle předešlých vět existují na \widetilde{V}_Z konečné míry μ, ν takové, že pro každé $\boldsymbol{\varepsilon} \in \mathbb{Z}$ platí

$$J(f) = \int_{P} fa \psi - \int_{P} fa \psi.$$

Klademe-li $\varphi = \mu - \nu$, je tedy

$$J(f) = \int_{P} f d \varphi$$

pro každé f \in Z. Bud nyní ψ taková \mathcal{F} - aditivní funkce na \mathcal{V}_{Z} . Ze pro každé f \in Z platí

$$J(f) = \int f d \psi$$
.

Pak pro každé f E Z platí také

$$\int \mathbf{r} \, d \, \boldsymbol{q}_{+} = \int \mathbf{r} \, d \, \boldsymbol{q}_{-}$$

neboli

 $\int \mathbf{r} d \left(\mathcal{Y}_{+} + \mathcal{Y}_{-} \right) = \int \mathbf{r} d \left(\mathcal{Y}_{+} + \mathcal{Y}_{-} \right) .$

Vidíme, že míry $\mathcal{G}_{+} + \mathcal{G}_{-} + \mathcal{G}_{+} + \mathcal{G}_{-}$ definují na * touž funkcionálu. Odtud podle odst. 9. plyne $\mathcal{G}_{+} + \mathcal{G}_{-} = \mathcal{G}_{+} + \mathcal{G}_{-}$ a tedy $\mathcal{G} = \mathcal{G}_{+} + \mathcal{G}_{-} = \mathcal{G}_{+} - \mathcal{G}_{-} = \mathcal{G}_{+}$

Poznámka : Smadno se zjistí, že k funkcionále J_{+} patží míra \mathcal{G}_{+} .

13./ V konkrétních případech nás zpravidla zajíná ctázka representace na př. všech funkcionál, které jsou na daném lineámním prostoru spojité v určité topologii. Je Však známo, že za dosti obecných předpokladů lze každou spojito22 funkcionálu vyjádřit jako rozdíl dvou nezáporných funkcionál. (Viz na př. [7], str. 18 - 19). Omezíme se proto v dalším na vyšetřování nezáporných funkciónáh. Pro stručnější vyjadřování zavedeme tuto definici :

14./ Bud P neprázdná množina. Bud Z lineární prostor, jehož prvký jsou funkce na množině P. Nechť platí $|f| \in \mathbb{Z}$, min $(f,1) \in \mathbb{Z}$ pro každou funkci $f \in \mathbb{Z}$. Dále předpokládejme, že pro každou nezápornou funkcionálu J na Z platí implikace

 $f_n \in \mathbb{Z}$, $f_n \lor 0 \Longrightarrow \mathcal{J}(f_n) \to 0$.

Pak řekneme, že prostor Z má vlastnost (J).

15./ Viděli jsme, že každou nezápornou funkcionálu na prostoru, který má vlastnost (J), lze vyjádřit integrálem. Budeme se tedy snažit najít nějakou podmínku, postačující k tomu, aby nějaký prostor měl vlastnost (J). Napřed však dokážeme jednu větu negativního rázu.

16./ Bud X lineární prostor, jehož prvky jsou omezené funkce na dané neprázdné množině P. Nechť s každou funkcí f patří do Y také funkce |f|. Nechť existují funkce $f_n \in X$ tak, že platí $f_n > 0$, ale že konvergence není stejnoměrná. Pak X nemá vlastnost (J).

Důkaz : Definujme na prostoru Y normu předpisem $|| f || = \sup_{X \in \mathcal{P}} |f(x)|$. Je známo (viz [3]), že prostor Y můžeme representovat jako prostor X^{T} , jehož prvky jsou spojité funkce na jakémsi kompaktním prostoru Q. Je-li $f_n > 0$ ($f_n \in Y$) a odpovídá-li funkci f_n funkce $f_n^{T} \in Y^{T}$, je ovšem $f_1^{T} \ge f_2^{T} \ge \dots \ge 0$. Platí-li však f_n^{T} (t) > 0 pro každé t $\in Q$, je konvergence funkcí f_n^{T} a tedy i konvergence funkcí f_n stejnoměrná. Není-li tedy konvergence funkcí f_n stejnoměrná, existuje takové $t_0 \in Q$, že lim f_n^{T} (t_0)>0. Položme

 $J(f) = f^{\pi}(t_0)$

pro každé f \in Y. Pak je J nezáporná funkcionála, ale není J (f_n) \rightarrow 0; prostor Y tedy nemá vlastnost (J).

17./ Negativní ráz uvedené věty je způsoben tím, že předpokládáme omezenost funkcí prostoru Y . Odstraníme-li tento předpoklad, je situace zcela jiná. Základ příslušného vyšetřování tvoří následující věta :

18./ Bud Y lineární prostor, jehož prvky jsou funkce na neprázdné množině P. Nechť každé posloupnosti prvků $f_n \in Y$, kde $f_n > 0$, lze přiřadit posloupnost indexů $i_1 < i_2 < \cdots$ a funkci g $\in Y$ tak, aby (každému ≥ 0 existovala funkce $h \in Y$, splňující vztahy

 $\sum_{n=1}^{N} (r_{1} - \xi_{g}) \leq h \quad (N = 1, 2, ...).$

Pak pro každou nezápornou funkcionálu J na prostoru Y platí

$$J(f_n) \rightarrow 0$$
,

12.

kdykoli f_n E Y, f_n > 0.

Důkaz : Bud J nezáporná funkcionála , $f_n \in X$, $f_n > 0$; nechť není $J(f_n) \rightarrow 0$. Bud lim $J(f_n) = 2\eta > 0$. Nechť k posloupnosti f patří podle předpokladů věty funkce geX a indery $1_1 < 1_2 < \dots$ Zvolme $\varepsilon > 0$ tak malé, aby platilo $\varepsilon J(\varepsilon) \leq \eta$; k tomuto E určeme funkci hEY. Protože J ($f_1 - Eg$) = = $J(f_1) - \mathcal{E}J(g) \ge 2\gamma - \gamma = \gamma$, platí pro každé N $\mathbb{N}_{\gamma} \leq \sum_{n=1}^{N} J(f_{i_{n}} - \mathcal{E}_{g}) = J(\sum_{n=1}^{N} (f_{i_{n}} - \mathcal{E}_{g})) \leq J(h);$

to je zřejmý spor.

19./ Abychom mohli další věty přehledně vyslovit, zavedeme ještě některá označení. Je-li ř funkce, bud

 $N_{\varphi} = \left[f(x) \neq 0 \right] ,$

Jsou-li \mathcal{M}, \mathcal{N} nějaké systémy funkcí na množině P, je-li \mathcal{N} c \mathcal{M} e platf-li implikace

$$f \in \mathcal{M}, g \in \mathcal{N}, \mathbb{N}_{f} \subset \mathbb{N}_{g} \Longrightarrow f \in \mathcal{N},$$

řekneme, že N je normální část M. (Je-li spujitá na příklad M systém všach spojitých funkcí na topologickém prostoru P a je-li \mathcal{N} systém všech spojitých funkcí, pro něž je $\overline{N_{f}}$ kompaktní, je \mathcal{N} normální část \mathcal{M}). Dále píšeme f₁ = max (f,0).

20./ Budiž 06-algebra na množině P. Budiž lineární přostor normální částí množiny všech konečných U-mčřitelných funkcí. 2 Potom má Z vlastnost (J).

Důkaz : Prostor Z zřejmě obsahuje s každou funkcí f též funkci |f| s min (f,1). Nechť nyní $f_n \in Z$, $f_n > 0$. Zvolme ve větě 18 $i_n = n$, $\varepsilon = f_1$, $h = \sum_{n=1}^{\infty} (f_n - \varepsilon f_1)_+$. Funkce h je zřejmě \mathcal{U} - měřitelná. Je-li pro dané x $f_1(x) = 0$, je též - 13 -

 $f_{2}(x) = f_{3}(x) = \dots = 0, \text{ tedy též } h(x) = 0. \text{ Je-li } f_{1}(x) > 0,$ je pro velká n $f_{n}(x) \leq \ell f_{1}(x), \text{ tekže řade definující } h(x)$ obsahuje jen konečný počet nenulových členů. Funkce h je tedy konečná. Protože $M_{h} \subset M_{f_{1}}$ je h $\in \mathbb{Z}$. Pro každé N je zřejmě $N = \frac{N}{2} (f_{n} - \ell f_{1}) \leq h$. Podle 18. má tedy Z vlastnost (J).

21,/Voléme-li v předešlé větě za systém Z množinu všech konečných \mathcal{U} -měřitelných funkcí, vidíme, že ke každé nezáporné funkcionále J na Z existuje na algebře \mathcal{U} právě jedna míra \mathcal{U} (protože zřejmě $\mathcal{U} = \frac{1}{2}$) tak, aby pro každé f \in Z platilo J(f) = $\int_{\mathcal{U}} f d \mathcal{U}$, Podle míry je pak integrovatelná každá konečná

 \mathcal{U} -měřitelná funkce. Vyšetříme nyní takovcuto míru podrobně. Kdyby existovala disjunktní posloupnost B_1 , B_2 , prvků $\mathbf{z} \ \mathcal{U}$, pro něž by platilo $\mathcal{U}(B_n) > 0$, snadno bychom sestrojili konečnou nezápornou \mathcal{U} -měřitelnou funkci f tak, aby $\int fd \mathcal{U} = \infty$. Taková posloupnost B_1 , B_2 , tedy neexistuje; odtud plyne snadno, že množinu P (pokud má kladnou míru) lze rozdělit na konečný počet disjunktních množin A_1 , ..., A_n , které sice mají kladnou míru, ale žádná z nich již neobsahuje množinu s menší kladnou měrou. Klademe-li ještě $\mathcal{U}_1(A) = \mathcal{U}(AA_1)$ pro libovolné $A \in \mathcal{U}$ (i = 1, 2, ..., n), vidíme, že míru \mathcal{U} můžeme vyjádžit jako součet dvouhodnotových měr.

Je-li neopak \mathcal{M} součtem konečného počtu konečných dvouhodnotových měr, je každá konečná \mathcal{U} -měřitelná funkce \mathcal{M} -integrovatelná.

Pro případ, že Uje systém všech částí dané množiny, uvádí tvrzení tohoto odstavce G.W.Mackey v [5].

22./ Mějne opět 6-algebru \mathcal{U} na množině P. Předpokládejme, že je na \mathcal{U} dána míra \mathcal{V} ; zvolme ještě p > 0 a utvořme systém Z_p všech konečných \mathcal{U} -měřitelných funkcí f¹², pro něž

 $\int_{\mathcal{P}} |\mathbf{r}|^p \, \mathrm{d} \, \mathcal{V} < \infty$. Platí pak tato věta :

Bud lineární prostor Z normální částí Z_p . Potom má Z vlastnost (J).

Důkaz : Je-li $f_n \in \mathbb{Z}$, $f_n \setminus 0$, je též $f_n^p \setminus 0$, tedy $\int f_n^p dv_2$. ¹²)Mluvíme skutečně o funkcích , nikoli o třídách funkcí. Zvolme indexy $i_1 < i_2 < \dots$ tak, aby platilo $\sum_{n=1}^{\infty} \int_{p}^{p} d\nu < \infty$ v případě r < 1 a $\sum_{n=1}^{\infty} (\int_{p} f_{i_n}^{p} d\nu) p \cos \nu$ případě $p \ge 1$. Každému $\varepsilon > 0$ přiřadme nyní funkci $h = \sum_{n=1}^{\infty} (f_i - \varepsilon f_1)_+ \cdot \text{Snadno}$ se zjistí, že $h \in \mathbb{Z}$. Z věty 18 (kde ovšem klademe $g = f_1$) plyne, že má Z vlašnost (J).

23./ Předpokládejme nyní, že P je topologický prostor. Uvidíme, že platí i pro tento případ věta, obdobná větě z předešlého odstavce.:

Bud Linsární prostor Z normální částí množiny všech spojitých funkcí na prostoru P. Potom má Z vlostnost (J).

Důkaz : Nechť $f_n \in \mathbb{Z}$, $f_n > 0$. Buď $g = \sqrt{f_1}$. Každému $\varepsilon > 0$ přiřadme funkci $h = \sum_{n=7}^{\infty} (f_n - \varepsilon g)_+$. Je-li g(x) > 0, je pro některé N $f_N(x) < \varepsilon g(x)$. V důsledku spojitosti platí tento vztah i v jistém okolí U bodu x . Je-li n > N, $y \in U$, platí tím spíše $f_n(y) < \varepsilon g(y)$. Na množině U je tedy funkce h dána součtem $\sum_{n=7}^{N-1} (f_n - \varepsilon g)_+$ a je tedy spojitá v bodě x . Je-li však g(x) = 0, můžeme zvolit takové okolí U bodu x, aby pro $y \in U$ bylo $g(y) \leq \varepsilon$. Potem platí pro každé n a pro každé $y \in U$

$$f_n(y) \leq f_1(y) = g^2(y) \leq \xi g(y)$$
,

takže je $\lambda(y) = 0$ pro $y \in U$. Funkce h je tedy všude spojitá, provože $N_h \subset N_g = N_{c_1}$, je h $\in \mathbb{Z}$, $g \in \mathbb{Z}$. Ostatní plyne snadno z všty 18.

24./ Větu z předešlého odstavce můžeme vyslovit též v poněkud jiné formě. K tomu připomeneme tuto definici : Je-li \mathcal{M} systém množin, buť $\mathcal{J}(\mathcal{M})$ nejmenší \mathcal{J} -tělesc, obsahující \mathcal{M} . Je-hi P topologický prostor, buď $\mathcal{G}_{\mathcal{I}}^{*}$ systém všech množin tveru $\mathbb{E}\left[f(x) > 0\right]$, kde f je spojitá funkce na P. Buď $\mathcal{L} = \mathcal{J}(\mathcal{G}_{\mathcal{I}}^{*})$, (\mathcal{L} je tedy nejmenší \mathcal{S} -algebra, vzhledem k níž jsou všechny spojité funkce měřitelné). Prvky systému \mathcal{L} nazveme Baireovými množinami ; míru, definovanou na \mathcal{L} , nazveme Baireovou měrou. Myní platí : Bud literární prostor Z normální částí systému X všech spojitých funkcí na topologickém prostoru P. Buď J nezáporná funkcionála na Z. Pak existuje Baireova míra μ tak, že pro každé f \in Z platí

$$J(\mathbf{f}) = \int \mathbf{f} \, d\mu;$$

hodnoty míry μ na T_2 13) jsou určeny funkcionálou J jednoznačně.

Dåkaz : Víle, že ne \mathbb{Z} existuje právě jedna taková níra \mathcal{U} a že je nožné (viz 5.) tuto míru rozšířit ne S-algebru $f(\mathbb{Z})$. Stačí tedy dokázat, že systém $f(\mathbb{Z})$ obsahuje všechny Baireovy množiny. Máme tedy dokázat, že je $\operatorname{TB} \in \mathbb{Z}_{\mathbb{Z}}$ pro každé $\mathbb{T} \in \mathbb{F}_{\mathbb{Z}}$ a každé $\mathbb{B} \in \mathcal{K}$. Buť \mathcal{M} systém všech množin tvaru $\mathbb{F} [f(x) > 1]$. kde $f \in \mathbb{Z}$. Dokážeme napřed, že je $\operatorname{VG} \in \mathcal{M}$, kdykoli $\mathbb{V} \in \mathcal{M}$. $G \in \mathcal{O}f^*$. V tombo případě totiž sxistují $f \in \mathbb{Z}$ a $g \in \mathbb{Y}$ tak,

$$T = \frac{1}{2} \left[f(x) > 1 \right], \quad G = \frac{1}{2} \left[g(x) > 1 \right];$$

máine potom

 $VG = \frac{1}{2} \left[h(x) > 1 \right] ,$

kde h = min (f,g). Protože Z je normální částí Y, je h $\in \mathbb{Z}$, tedy VJ $\in \mathcal{H}$,

Zavedeme ještě toto označení : Je-li A množina a \mathcal{M} systém množin, psk A \mathcal{M} bude znamenat systém všech AN, kde M $\in \mathcal{M}$. Dokážeme vztah

 $\binom{*}{*}$

 $\wedge \mathcal{J}(m) = \mathcal{J}(\Lambda m).$

A $\mathcal{O}(\mathcal{M})$ je zřejně \mathcal{O} -téleso, obsabující A \mathcal{M} ; je tedy

AJ(m)) & (A m).

Bud naopak \tilde{V} systém všech $T \subset P^{14}$, pro něž $AT \in \mathcal{J}$ (A \mathcal{M}).

13) Definici Z viz v odst.9.

14) Předpokládáme, že množina A i všechny prvkyMjsou části množiny P. Je zřejmé, že \mathcal{V} je \mathcal{J} -těleso, obsahující \mathcal{M} , a že $\mathcal{A}\mathcal{V} = \mathcal{J}(\mathcal{A}\mathcal{M})$. Odtud plyne $\mathcal{J}(\mathcal{M}) \subset \mathcal{V}$, tdy

$$\Delta J'(m) \subset \Delta T = J(\Delta m).$$

Tím je vztah $\binom{x}{x}$ dokázán. Dokázali jsme již, že V $\mathcal{Y}^* c \mathcal{V}_Z$ pro každé V $\in \mathcal{W}$. Je tedy též

$$\mathbf{v}\mathcal{L} = \mathbf{v}\mathcal{J}(\mathcal{Y}^{\#}) = \mathcal{J}(\mathbf{v}\mathcal{Y}^{\#})\mathcal{L}_{\mathbf{Z}}$$

pro každe V E X) neboli

pro každé $B \in \mathcal{L}$. Odtud plyne

$$\mathbb{B}\widetilde{V}_{\mathbb{Z}} = \mathbb{B}\mathcal{J}(\mathcal{H}) = \mathcal{J}(\mathbb{B}\mathcal{H}) \subset \widetilde{V}_{\mathbb{Z}}$$

pro každé $B \in \mathcal{U}$, což jsme chtělí dokázat.

Poznámka : Pro případ, že Z je systém všech spojitých funkcí na daném prostoru, uvádí tuto větu E. Hewitt v [2].

25./ Větu z odstavce 23. lze takto zobecnit :

Bud $\mathcal V$ Baiseova mira ha part P; bud p > 0 . Budiž dále Y, množina všech spojitých funkcí f na prostoru P, pro něž je ÍR $\int |f|^p d v < \infty$. Bud Z normální částí Y_p . Potom má

vlastnost (J).

Mukaz: Nechť $f_n \in \mathbb{Z}$, $f_n > 0$. Volme indexy $i_1 < i_2 < \dots$ tak, aby platilo $\sum_{n=1}^{\infty} \int r_{i_n}^p d v < \infty v p i p a d p < 1 a$ $\sum_{n=1}^{\infty} \left(\int_{P} \mathbf{f}_{\mathbf{i},n}^{p} d\mathcal{V} \right) \frac{1}{p} < \infty \quad \forall \text{ případě } p \ge 1 \text{ . Fotom je } +$ $\int \left(\sum_{n=1}^{\infty} f_{i_n}\right)^p dV \angle \infty$. (Hunkce $\sum_{n=1}^{\infty} f_{i_n}$ nemusí ovšem být spojita) Bud dále $A_1 = \frac{1}{2} \left[f_1(x) > 1 \right]$, $A_n = \frac{1}{2} \left[\frac{1}{n-1} \ge f_1(x) > \frac{1}{n-1} \right]$ pro n > 1. Je $\sum_{n=1}^{\infty} \int_{A_n} r_1^p dv = \int r_1^p dv \angle \infty$. Existují proto konečná

kladná čísla c_n tak, že je c_n ∞ a $\sum_{n=1}^{\infty}$ c_n $\int_{A_n} f^p d v < \infty$. Položme b_n = c_n a definujme v intervalu < 0,∞)funkci \mathcal{G}_0 předpisem

$$f_{0}(0) = 0$$
, $f_{0}(\frac{1}{n}) = \frac{1}{b_{n}}$

 \mathcal{G} je lineární v každém intervalu $\langle \frac{1}{n+1}, \frac{1}{n} \rangle$,

$$\mathscr{G}(\mathbf{t}) = \frac{1}{\mathbf{b}_1} \quad \text{pro } \mathbf{T} \ge 1$$

Dale bud pro $t \ge 0$

 $\varphi(t) = \max (\varphi_0(t), \sqrt{t}).$

Funkce φ je tedy spojitá neklesající $v < 0, \infty$), platí $\varphi(0) = 0$ a $\varphi(t) \ge \frac{1}{b_n}$ pro $t \ge \frac{1}{n}$ (n = 1, 2, ...). Budiž ještě $\varphi(0) = 0,$ $\varphi(t) = \frac{t}{\varphi(t)}$ pro T > 0.

Protože pro t > 0 $je\psi(t) \leq \frac{t}{t} = \sqrt{t}$, je funkce ψ spojitá $v < 0, \infty$) a platí v tomto intervalu

 $t = \varphi(t) \cdot \varphi(t)$.

Budte g, k funkce na prostoru P, definované vztahy

$$g(x) = \varphi(f_1(x)), \quad k(x) = \varphi(f_1(x)).$$

Funkce g, k jsou spojité a platí $f_1 = gk$. Dále je pro $x \in A_n$ g(x) = $\frac{f_1(x)}{\varphi(f_1(x))} \leq b_n f_1(x)$, tedy

$$\int_{P} \mathbf{g}^{\mathbf{p}} \, \mathrm{d} \, \mathcal{V} \leq \sum_{n=1}^{\infty} \int_{A_n} \mathbf{b}_n^{\mathbf{p}} \, \mathbf{f}_1^{\mathbf{p}} \, \mathrm{d} \, \mathcal{V} = \sum_{n=1}^{\infty} \mathbf{c}_n \int_{A_n} \mathbf{f}_1^{\mathbf{p}} \, \mathrm{d} \, \mathcal{V} < \infty$$

Protože $N_g = N_{f_1}$, je $g \in \mathbb{Z}$. Zvolme nyní $\mathcal{E} > 0$ a utvožme funkci $h = \sum_{n=1}^{\infty} (f_1 - \mathcal{E}g)_+$. Je-li $f_1(x) > 0$, je též g(x) > 0 a stejně jako v odst. 23 zjistíme, že funkce h je spojitá v bodě x . Je-li $f_1(x) = 0$, je též k(x) = 0 a v jistém okolí U bodu x je k(y) < E; pro každé y $\in U$ a každé n je pak

 $f_{i_n}(y) \leq f_1(y) = g(y) k(y) \leq \varepsilon_{\mathcal{E}}(y)$.

Junkce h je tedy spojitá a splňuje vztah h $\leq \sum_{n=1}^{\infty} f_n$. Další

postup je zřejmý.

26./ Jako příklad normální části systému všech spojitých funkcí na daném topologickém prostoru P jsme uvedli systém Z všech funkcí f, pro něž je uzávěr množiny N kompaktní. Z věty v odstavci 23./ plyne tedy, že Z má vlastnost (J). Mlžeme však dokázat obecnější větu. K tomu zavedeme tuto definici : Řekneme, že množina A (P je relativně pseudokompaktní, jestliže každá funkce f, která je spojitá na P, je na A omezená.

Nyní platí :

Bud P topologický prostor. Bud Z lineární prostor, jehož prvky jsou spojité funkce na P. Nechť množina N_f je relativně pseudokompaktní pro každé $f \in Z$. Nechť s každou funkcí f patří do Z také funkce |f| a min (f,l). Nechť ke každému $f \in Z$, kde $f \ge 0$, existují spojité nezáporné funkce g, k tak, že $g \in Z$, N_k = N_f a že $f \le gk$.¹⁵) Potom má Z vlastnost (J).

Důkaz : Nechť f_n VO. Sestrojme takovéto funkce, g, k k funkci f = f₁. Zvolme $\xi > 0$; buď h₀ = $\sum_{n=1}^{\infty} (f_n - \xi g)_+$. Buď F = $\frac{1}{k} [k(x) \ge \xi]$. Jako v odstavci 25 zjistíme, že funkce h₀ je spojitá a že na P - F nabývá jen nulových hodnot. Utvožme nymí pomocnou funkci k = min (k, ξ). Funkce ξ -k' je nezápormá a pro x ξ P-F kladná. Funkce g je na F kladná, protože $M_k = M_{f_1}$. Funkce g $\xi = \xi - k'$ je tedy všudo kladná, takže funkce

¹⁵)Patří-li na př.: s každou funkcí $f \ge 0$ do Z též funkce \sqrt{f} , můžeme volit $g \ge k \ge \sqrt{f_1}$; je-li $1 \in \mathbb{Z}$, lze položit g = 1, $k \ge f$. $g = \frac{1}{g + \varepsilon - k} \text{ je spojitá na P a tudíž omezená na } F \subset \mathbb{N}_{f_1}$ Avšak pro x \in F je g'(x) = $\frac{1}{-1}$; existuje proto $\mathcal{O} > 0$ tak, že pro x \in F je g(x) $\geq \mathcal{O}$ g(x) Je-li na F h_o(x) \leq D, je h_o $\leq \frac{D}{\mathcal{O}}$ g. Ve větě 18 můžeme proto volit h = $\frac{D}{\mathcal{O}}$ g.

Poznámka : Jednoduchým příkladem prostoru, který má mnoho ,, dobrých vlastností a který nemá vlastnost (J), je množina Z všech spojitých funkcí f v intervalu < 0, 1>, pro něž je f(o) = 0 a pro něž existuje derivace zprava v bodě 0. Lze však snadno ukázat, že množina Z₀ všech funkcí ze systému Z, pro něž je derivace zprava v bodě 0 rovna nule, opět má vlastnost (J).

27./ V destavci 20. jsme se zabývali prostorem Z. všech konečných \mathcal{U} -měřitelných funkcí, kde \mathcal{U} je nějaká \mathcal{O} -algebra. Nyní budeme předpokládat, že je na \mathcal{U} předem dána míra \mathcal{V} a budeme zkoumat prostor \mathbb{Z}/\mathbb{Z}_0 , kde \mathbb{Z}_0 je množina těch $f \in \mathbb{Z}$, které se rovnají mule skoro všude vzhledem k míže \mathcal{V} .

Bud tedy \mathscr{U} 6 -algebra na množině P; bud \mathscr{V} míra na \mathscr{U} . Množina $A \in \mathscr{U}$ nazveme \mathscr{V} -atomem, je-li $\mathscr{V}(A) > 0$ a je-li pro každé $B \in \mathscr{U}$, kde $B \subset A$, bud $\mathscr{V}(B) = \mathscr{V}(A)$ nebo $\mathscr{V}(B) = 0$. Je-li $B \in \mathscr{U}$, nechť

 $\nu_{\mathbf{R}}$

značí míru, definovanou vztahem $V'_B(A) = V(AB)$ ($A \in \mathcal{C}$). Je-li celý prostor P sjednocením posloupnosti množin s konečnou měrou, řekneme, že míre je \mathcal{C} -kom čná.

Nyní můžeme dokázat tuto větu :

Bud γ σ -konečná míra na σ -algebře \mathcal{U} . Bud Y množina všech konečných \mathcal{U} -měřitelných funkcí ; bud Y₀ množina všech funkcí z Y, které jsou rovny nule skoro všude (vzhledem k ν). Bud J nezáporná funkcionála na Z = Y/Y_0 . Potom existuje míra μ o těchto vlastnostech :

1.) Míra μ je nezápornou lineární kombinací ¹⁶) měr tvaru γ , kde A je γ -atom;

2.) $J(f) = \int f d \mu pro každé f \in Z$.

16) Musíme ovšem připustit též prázdný součet.

Nacpak každá míra w s vlastností 1.) definuje na Z nezápornou funkcionábu.

Důkaz : Bud J nezáporná funkcionála na Z. Zřejmě můžeme pokládat J za nezáporncu funkcionálu na Y; je pak ovšem J(f) = 0 pro každé $f \in \mathbb{Y}_0$. Podle odst. 21 existují na \mathscr{U} dvouhodnotové míry $\mathcal{U}_{1/\cdots,i}$ \mathcal{U}_n ($n \geq 0$) tak, že $J(f) = \int fd \mathcal{U}$ pro každé $f \in \mathbb{Y}$, při čemž $\mathcal{U} = \sum_{i=1}^n \mathcal{U}_i$. Je-li $\mathcal{V}(A) = 0$ a

je-li f charakteristická funkce množiny A, je ovšem $f \in \mathbf{T}_{0}$, tedy $0 = J(f) = \int f d\mu = \mu(A)$. Tím spíše platí implikace

 $\begin{array}{l} \mathcal{V}(A) = 0 \Longrightarrow \mathcal{\mu}_{i}(A) = 0 \quad (i = 1, 2, \ldots, n) \quad \text{Odtud plyne, že axista$ $existují <math>g_{i} \in \mathbb{Y}$ tak, že míry \mathcal{M}_{i} mají tvar $\mathcal{M}_{i}(A) = \int g_{i} d\mathcal{V}$. Množina $A_{i} = \frac{n}{2} \left[g_{i}(x) \neq 0 \right] \quad \text{je zřejmě \mathcal{V}-atom; míra \mathcal{V}_{i} je$ tedy dvouhodnotová a je konečná, protože je 6 - konečná.ⁱ Je-li $<math>\mathcal{V}_{A_{i}} \quad (A) = 0$, je též $\mathcal{M}_{i}(A) = 0$; je-li $\mathcal{V}_{A} \quad (A) \neq 0$, je $\mathcal{V}_{i} \quad (P-A) = 0$, tedy $\mathcal{U}_{i} \quad (P-A) = 0$, $\mathcal{U}(A) \neq 0$, takže míra \mathcal{U}_{i} je násobkem $\mathcal{V}_{A_{i}} \quad \mathcal{M}_{i} \quad \mathcal{M}_{i}$

Poznámka : Podobně lze vyšetřit na př. prostory L_p , kde p > 1 (při 6-konečné míře) a dokázat, že mezi prostory $L_p a L_q$, kde $\frac{1}{p} + \frac{1}{q}$, platí vztah duality.

Literatura.

[1] P.J. Daniell : A general form of integral, Annels of Mathematics, 19 (1917-18), str. 279-294. 2 E. Hewitt : Linear functionals on spaces of continuous functions, Fundamenta Mathematicae, 37 (1950), str. 161-189. [3] S. Kakutani : Concrete representation of abstract (M) -spaces, Annals of Mathematics, 42(1941), str. 994-1024. 1. B. Kanmopolur, J. Z. Bymin, A.T. Tunckep: [4] функциопаль ний анализ в палуупоридогенных иространствах, Москва - менинград 1950. 5 G.W. Mackey : Equivalence of a problem in measure theory to a problem in the theory of vector lattices, Bull, Amer. Math. Soc., vol. 50 (1944), str. 719 -722. 6 J. Mařík : Lebesgueův integrál v abstraktních prostorech, Časopis pro pěstování matematiky, 76 (1951), str. 175-194. [7] J. Mařík : Vrcholy jednotkové koule v prostoru funkcionál na daném pouspořádaném prostoru, Časopis pro pěstování matematiky a fysiky, 79(1954), str.3-40.