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FINITE ELEMENT METHODS FOR ELLIPTIC 
MIXED BOUNDARY VALUE PROBLEMS 
CONTAINING SINGULARITIES 

by J. R. WHITEMAN. and R. E. BARNHILL* 

1. INTRODUCTION 

This paper is concerned with Galerkin solutions to two dimensional mixed boundary 
value problems for Poisson's equation in which the function u(x, y) satisfies 

- A[u(x, y)] = g(x, y), (x, y) e Q, (1.1) 

u(x, y) = A (x, y), (x, y)e8Cl1, (1.2) 

^ ^ - = fi{x,y), (x,y)eda2, (1.3) 

where Q c E2 is a simply connected open bounded domain with polygonal boundary 
3Q satisfying a restricted cone condition, 3QX is the union of some of the sides of 3Q 
and <3Q2 = dQ — SQ1? fx GL2(O

>Q1), f2 eL2(3Q2) and djdv is the derivative in the 
direction of the outward normal to the boundary. 

In recent years many finite element solutions with theoretical error bounds have 
been derived using both the Rayleigh —Ritz and Galerkin methods for Dirichlet 
problems for Poisson's equation, that is, the problem (1.1) — (1.3) with dQ2 = 0; 
see e.g. [ l ] - [ 7 ] , [9], [10], [12], [18]-[20]. Much less work has been done on 
finite element methods for mixed problems of the above type, and correspondingly 
fewer results are available. 

2. THE G A L E R K I N METHOD 

In finite element analysis the region Q is divided into geometric elements, having 
some generic length h, m internal nodes and n boundary nodes, over which piecewise 
approximation is used. We consider the Sobolev space JV2(Q), / a non-negative 
integer, of functions with all /th order generalized derivatives existing and in L2(Q). 
A norm on W\ (Q) is 

II " ||<cTY) = { I (|| D*v ||L2(o))2}1/2, (2.1) 
_ _ _ _ _ _ _ _ \a\£l 

.) This invited paper was presented by J. R. Whiteman at EQUADIFF 3 — the Czechoslovak 
Conference on Differential Equations and Their Applications — Brno, Czechoslovakia, August 28 — 
September 1, 1972. 
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where a = (o^, a2), Da = dajdxaidyal and | a | = ax + a2. The space of functions 
from Wl

2 (iQ) which together with all their derivatives of order ^ / — 1 are identically 
zero on dCl is Wl

2 (Q), and a norm on Wl
2 (Q) is 

IIHki(n) = { E (II ^ IUW2}1/2- (2.2) 
| a [ = . 

We define the bilinear functional a(u, v) to be 

a(u'v)=\\{^^ + ly--SyL)dxdy foraI1 « ' o e^-(°)- ^3> 
Then the weak problem corresponding to (VI) — (1.3) is that of finding ue W\(£l) 
satisfying (1.2) and (1.3) (i.e. ue W\(£l) + f + f2) such that 

a(u, v) = (g, v) for all v e W\(Q). (2.4) 

The solution u of (2.4) is called the generalized solution of (1.1) —(1.3), and it is this 
that is approximated with the Galerkin technique. 

Following [I] we let u interpolate u, where the interpolation conditions are 

Lh(u) = Lh(u), i = \,...,m, 

M)(u) = Mh(u), j = 1 , ...,n, ( 2 '5 ) 

and Lh and M) are interpolation functional such that the Lh(u) are unknown and the 
Mhj(u) are known from the boundary data (V2) and (V3). Let Vh be an (m + ^-di­
mensional subspace of W\(Q) such that the L) and M) are linearly independent over 
Vh. Then Vh has a basis of functions {Bt(x, y)}?= t and {Cj(x, y)}n

j== t that are biortho-
normal with respect to Lh and M) [8]. Let Sh be the subset of W\(£l) which consists 
of functions v of the form 

m n 

v(x, y) = X aflix, y)+Y, M){u) CJ(X, y), 
i=l j=l 

where the at are constants, and let Sh be the m-dimensional subspace of W2(:Q) 
generated by the Bt. In the Galerkin method we find UeShcz W\(Q) + fh + fh 

such that 
a(U, v) = (g, v) for all veSh

0, (2.6) 

where fh means f at the boundary nodes, i = 1, 2. 

Theorem. The Galerkin approximation U is the best approximation from Sh to u 
in the energy norm induced by the inner product a(u, v). That is, 

a(u — U, u — U) ̂  a(u — u, u — u) for all u e Sh. (2.7) 
Now 

U(x, y) = i Afiix, y)+i M%u) C,(x, y), 
; = i i = i 
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and the equations used to calculate the A{ are 
m n 

X Aia(Bh Bk) = (g, Bk) - £ M)(u)a(Cj9 Bk), k = 1, 2, ..., m. (2.8) 
i = i j=i 

The normal equations for the best approximation U are obtained from (2.8) with the 
substitution 

a(U, Bk) = (g, Bk), k= 1,2,..., m 
resulting from (2.6). 

Let u be an interpolant from S'' to u. Since from (2.7) 

|| u - U||^(n) ^ | | " ~ fi||#i(n), (2.9) 

an upper bound on the interpolation remainder yields an upper bound on the Galerkin 
remainder. This is the relationship between remainder theory and finite element 
analysis. 

Error bounds of the form 

\\u-u \\wlm ^ Kh'~l II " \\w[m, I = 2, !(2.10) 

follow from the Bramble —Hilbert Lemma (see e.g. [7]). Numerical values for the 
constants K have been found for certain interpolants u and regions Q in [1] —[5]. 

3. BOUNDARY S I N G U L A R I T I E S 

The Galerkin error bound following from (2.9) and (2.10) involves a norm on the 
function u and certain of its derivatives. For the bounds to be meaningful and to imply 
convergence with decreasing mesh size of the Galerkin solution to the solution of 
(2.4), it is necessary for the norm of the function and derivatives to be finite. If d£l 
is sufficiently smooth, this condition is satisfied. However, if dQ contains a re-entrant 
corner with internal angle cp = arc/p, a/P > 1, then u $ W\(£l). Suppose there is such 
a corner at a point 0 on d£l2 and f2(x, y) = 0 on d£l2. Then in terms of local polar 
co-ordinates (r, 9) with origin at 0 and zero angle along one of the arms of the 
corner, the asymptotic form of u may be written as 

u(r, 9) = S a ^ r , 9), (3.1) 

see Lehman [11]. An interesting case is that for which cp = In, and (3.1) then becomes 

u(r, 9) = a0 + axr
1/2 cos 9/2 + a2r cos 9 + a3r

3/2 cos 39/2 + .... (3.2) 

From (3.1) it is clear that dujdr is unbounded at r = 0, that ue W2(Q) but 
u ^ Wl(£l), and so the error bound (2.10) is not applicable. The problem thus contains 
a boundary singularity at 0. 

Following [3] and [5] we outline a method whereby some of the dominant part 
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of the singularity in u is subtracted off in a neighbourhood N(rJ c Q of 0, where 
for some fixed rx and 0 < r0 < rx, 

N(rx) = {(r, 9) : 0 = r ^ rx, 0 = 9 = cp}. 

We form the functions 
((p£(r,9), 0 ^ r ^ r o , 

w£(r,») = ]g£(r)A£(») r o ^ r g r , , (3.3) 
(0 r! < r, 

i = 1, 2, ..., N, where N is discussed below and the (pt are as in (3A). The g£(r) are 
Hermite polynomials of degree 1 chosen so that each function w£(r, 9) is in W\(£l), 
i.e. g[r) is linear in [r0, rx]. The h£(9) are appropriate functions so that the wt all 
satisfy the homogeneous boundary conditions on the arms of the corner. Using (3.3) 
we form the function 

w = u - £ CiWi(r, 9), (3.4) 
i = l 

and choose N so that w would be in Wl(Q) if the ct were known exactly. It is the 
function w that is approximated throughout Q by the finite element solution U, and 
clearly if the c£ are known, making we Wl(Q), the error bound (2A0) would then 
apply. 

For the case cp = 2TC and the expansion of u as in (3.2), in order that w in (3.4) 
may be in Wl(Q) the minimal sufficient N is 1 and only the function (pt(r, 9) = 
= r1/2 cos 9/2 need be considered. The choice of trial functions affects only the left 
hand side of (2A0), that is || w — U fl^n). 

However, the c£ can unfortunately not be calculated exactly. In practice approxi­
mations are calculated by the method of augmenting with singular functions the trial 
function spaces in the Galerkin procedure. This was first suggested for the Rayleigh — 
Ritz method by Fix [9]. We discretize Q into triangular elements and let the space Sh 

of piecewise linear trial functions be augmented with singular functions. Thus in each 
element the trial functions are of the form 

N 

a + bx + cy + £ c-w^r, 9). 
i = l 

By (3.3) these are the usual trial functions of Sh for elements in CI — N(rt). Extra 
equations are added to the linear system which when solved gives the finite element 
solution, and so only approximations c£ to the c£ in (3.4) are obtained from the same 
numerical calculation as that which gives the values of U at the nodal points. Thus 
although we would like u — ]T c-w£ to be in Wl(Cl), we actually have u — ]T c£w£ e 

i i 

e Wl(Q) - Wl(Sl) and, instead of having 

|| (M - I ctwt) - U ||£1(0) = || w - U \wi ^Kh\w | |^ ( n ) , 
i 

we have on the left hand side || u — (]T c£w£ -V U) ||W^(Q). 
i 
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Hence the error bounds again do not apply since w = u — £ ciwi is in the same 
t 

space as u. However, in a qualitative way by calculating good approximations to the c.-
we are able to subtract off most of the singularity, and hence w is almost in Wl(Q). 
The best approximation theorem of Section 2 applies to an arbitrary finite set of 
linearly independent functions in W\(fl) +f* + f*, and so in particular to the space 
Sh augmented with singular functions. Thus the approximation (U + ]f c^w,) is the 

i 

best approximation to u in the W\ norm from the augmented Sh. 

4. MODEL M I X E D PROBLEM 

A much studied mixed problem (see [13] —[17]) of the type (1.1) —(1.3) which 
contains a boundary singularity is that in which the function u(x, y) satisfies 

- A[u(x, j ) ] = 0, 

in the square — 7r/2 — x, y = n\2 with the slit y = 0,0 g x S n/2, and the boundary 
conditions 

-r—{x, +7T/2) = 0, — 7T/2 < X < 7T/2, 

. JlOOO, 0 + ^ ^ TI/2, 

M ( 7 r M = lo, -7r/2<^<;o-, 

| ^ - ( - 7 r / 2 , y) = 0, -7T/2 = y = TT/2, 

f)u 

~~(x,0±) = 0, 0 < X < T T / 2 . 
Sy . 

This has a re-entrant angle (cp = 27r) at the origin, and the asymptotic form of u 
near the origin is as in (3.2). From the antisymmetry of the problem it suffices to 
consider only the upper region Q, = {(x, y) : | x | = n[29 0 = y — 7r/2}, and to add 
the boundary condition u(x, 0) = 500, — TT/2 ^ X ^ 0 , 

For this problem WAIT and MITCHELL [13] use the Fix approach with rectangular 
elements and bilinear trial functions and augment first with one and then with two 
singular functions from (3.2). We have repeated this approach, but with right 
triangular elements using linear trial functions and augmenting with the second term 
of (3.2). As can be seen from the results of [3] there is a definite improvement in the 
Galerkin solution in the neighbourhood of the singularity through the inclusion 
of the singular term. 

The advantage of using triangular rather than rectangular elements with the 
corresponding trial functions is that the computation is much simpler for comparable 
accuracy. This saving is even more valuable for higher order boundary value problems. 
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