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ON LOWER-SEMICONTINUITY 
OF VARIATIONAL INTEGRALS 

VLADIMÍR SVĚRÁK 

ABSTRACT. We consider questions regarding the relation between Morrey's 
quasiconvexity condition and lower semicontinuity of variational integrals. We 
also show how quasiconvexity naturally comes up in problems concerning stabil­
ity of sets of solutions of certain nonlinear systems under weak convergence. 

I. Lower-semicontinuity and quasiconvexity 

We consider variational integrals 

I(u)= I f(Du(x))dx 

defined for (sufficiently regular) functions u: Q —» R m . Here Q is a bounded 
open subset of R n , Du(x) denotes the gradient matrix of u at x and / is a 
continuous real valued function on the space of all real mxn matrices jjKm*n . 

One of the important questions in the Calculus of Variations is the following: 
for which functions / is the integral I weakly lower-semicontinuous in the fol­
lowing sense: I(u) < liminf I(UJ) for every sequence of functions u,•: Q —> R m 

j—>oo 
satisfying |L>iAj(x)| < c (for some c > 0) and converging (locally) uniformly in 
fi to u: f * - » R m . 

This question has been studied in [Mol] (see also [Mo2]) where the following 
notion was introduced. We say that / is quasiconvex if for any matrix A G 
^rnxn a n ( j a n y s m o o t h function cp: $1 —» R m compactly supported in ft the 
inequality J /(A + Dip) dx> J /(A) dx holds. 

The class of quasicovex functions is independent of fi. (See [Mol], [Mo2].) 
In [Mol] (see also [Mo2]) the following result has been proved: 

THEOREM. (Morrey). / is weakly lower-semicontinuous in the above sense 
if and only if f is quasiconvex. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 35J50. 
K e y w o r d s : lower-semicontinuity, quasiconvexity, weak convergence. 
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We remark that under natural growth assumptions quasiconvexity is also a 
necessary and sufficient condition for the weak sequential lower-semicontinuity 
of J on W 1 , p spaces. See [AF1] for optimal results in this direction. 

The quasiconvexity condition plays also an important role in results regarding 
partial regularity of minimizers of the integral / , see [Ev], [AF2]. 

It is not difficult to verify that for n = 1 or m = 1 quasiconvexity reduces to 
convexity. On the other hand, for n > 2 and m > 2 there always exist nonconvex 
quasiconvex functions. (A typical example in the case m = n is / (X) = det X). 
In fact, it turns out that it may be very difficult to decide whether or not a 
given function is quasiconvex. For specific examples see [AD], [DM], [Svl]. In 
this connection, the following simpler notions have been introduced, see [Bal], 
[Mol], [Mo2]: 

/ is rank-one convex if for each matrix A G JtrnXn and each rank-one matrix 
B £ Jtrnxn the function t —> / ( A + tB) is convex. (For C2-functions rank-one 
convexity is exactly the same as the so-called Legendre-Hadamard condition, see 
[Bal].) 

/ is polyconvex if / (X) = convex function of minors of the matrix X . (For ex­
ample, / : M2x2 —• R is polyconvex if there exists a convex function G: JK2x2x 
R -+ R such that / (X) = G(X, det X) for each X e Jt2x2.) 

It is well-known that rank-one convexity (RC) is a necessary condition for 
quasiconvexity (QC) and that polyconvexity (PC) is a sufficient condition for 
quasiconvexity. In other words, PC=-l>QC=--i>RC. We remark that in principle 
it should be relatively easy to decide whether or not a given function is rank-
one convex or polyconvex (although actual computations can be lengthy and 
tedious). It is therefore of great interest to know whether or not there are further 
relations between the three notions of convexity introduced above. 

It turns out that there are quasiconvex functions which are not polyconvex, 
see [Te], [Se], [Ba2], [AD], [Sv2]. 

For a long time it was a major open problem whether or not RC=>QC. It 
turns out that for n > 2, m > 3 this fails, see [Sv4] where an example is given 
which shows that for n > 2, m > 3 there exists a fourth-order polynomial which 
is rank-one convex but not quasiconvex. The case n > 2, m = 2 remains open. 
We remark that even in the case n = m = 2 the implication RC=l>QC would 
have far-reaching consequences. 

II. Quasiconvexity and Compensated Compactness 

Let K C Jtrnxn be a closed set. We define the following "semi-convex" hulls 
of K. The quasiconvex hull, Kqc, is defined by: 

X ^ Kqc if and only if / (X) > s u p / for some quasiconvex function / . 
K 
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The rank-one convex hull Krc and the polyconvex hull Kpr are defined in a 
similar way by replacing the class of quasiconvex functions in the last definition 
by the class of rank-one convex functions and polyconvex fuctions respectively. 

It turns out that the problem of computing Kqc for a given set K arises in 
many different situations. As an example, let us consider the following problem 
from the theory of Compensated Compactness. (For an exposition of the theory 
of Compensated Compactness see [Ta].) 

Let K C ^ m x n be a closed set and let us consider the following first-order 
system of PDE for functions u: ft --> Rm . 

Du(x)eK. (S) 

We say that the system (S) is strongly stable if for each sequence of uni­
formly Lipschitzian functions Uj: ft —> Rm (that is |Z)UJ(.T)| < c for some 
c > 0) which converges uniformly to a function u: Q —> IKm and satisfies 
lim f dist(DUJ(X),K) dx = 0, the function u solves the system (S), i.e., 

Du(x) G K for a.e. x G fi. 
One of the main problems in the theory of Compensated Compactness is the 

problem of classifying the strongly stable systems. It turns out that this is very 
closely related to the problem of classifying the quasiconvex functions. We have 
the following: 

PROPOSITION. In the notation introduced above, assume that K is compact. 
Then the system (S) is strongly stable if and only if Kqc = K. 

This result is quite simple (and it is an easy exercise to prove it), but it 
seems to be helpful in understanding the nature of the problem of classifying 
the strongly stable systems. 

An obvious consequence of the Proposition and the fact that QC =-> RC is the 
following: a necessary condition for (S) to be strongly stable is that K satisfies 
Krc = K. We remark that although it is believed that this condition is not 
sufficient for the strong stability of (S), no counterexample is known which would 
confirm this. 

Another area where the problem of computing Kqc comes up is the theory 
of microsructures recently developed in [BJ1]. See also [BJ2] and [Sv6]. 

The problem of computing Kqc for a given set K is in general very difficult 
and in many cases seems to be out of reach of the present methods. 

EXAMPLE. Let ra = n = 2 and let A = 0, B = I, C = diag(ci,c2) with 
ci > 1 and 0 < c2 < 1. Let K = {A, B, C} C ^ 2 x 2 . It can be proved that in 
this case Kqc = K, see [Sv3] and [Sv5]. I do not know any simple proof of this 
statement. (It is not difficult to see that in this example we have Kpc ^ K). 

In general it can be proved that for any set K C ^ # m X n consisting of three 
matrixes no two of which are rank-one connected we have Kqc = K. 
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