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Mathematical Publications 

A NOTE ON SYMMETRIES OF INVARIANT 
SETS WITH COMPACT GROUP ACTIONS 

MICHAEL F I E L D — MARTIN ' GOLUBITSKY — M A T T H E W N I C O L 

ABSTRACT. We investigate the symmetries of the asymptotic dynamics of a 
map equivariant under a compact Lie group T. Let T° denote the connected 
component of the identity in F and let u>f(xo) denote the LJ-limit set of the point 
XQ under the map / . Assume that u)f(xo) contains a point of trivial isotropy 
and is not a relative periodic orbit (these are mild assumptions on the dynam­
ics). M e l b o u r n e [14] shows that under these assumptions and when T0 is 
abelian, then generically (in the C°° topology) the symmetry group of u)f(xo) 
contains T0 . We show under the same assumptions on the dynamics but without 
the assumption that T0 is abelian that it is possible to construct a family of per­
turbations such that for a residual subset of perturbations (in the C° topology) 
the resulting u -limit point set of xo has at least T0 symmetry. Our argument 
does not extend directly to the C 1 topology. 

1. Introduction 

C h o s s a t and G o l u b i t s k y [4] showed numerically that the dynamics 

of equivariant mappings can produce attractors that are symmetric and that 

the symmetry of attractors can change as parameters in the mapping are varied. 

These symmetries of attractors lead to visually striking pictures [10] and to 

the existence of patterns on average in systems of PDEs [5] and in experiments 

[12, 16]. If the attractor has a sufficiently nice ergodic measure (a Sinai-Bowen-

Ruelle measure), then it can be proved [6] that the time-average 

U(x) = lim — / u(x,t)dt, 
T-*oo T J 

where u(x,t) is either a solution to a PDE or a time-series in an experiment, is 

invariant under the symmetries of the attractor A defined by the cj-limit point 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): 58D19, 58F12. 
Key words : symmetry, attractors, chaotic dynamics. 
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set. That is, if o is a symmetry of the system and oA = A, then 

U(ox) = U(x). 

Thus, the time-average can be symmetric even though this symmetry appears at 
no fixed instant of time in the solution; that is, u(ox,t) ^ u(x,i) for all time t. 

The existence of patterns on average motivates the question of which sym­
metry groups can be the symmetry group of an attractor. In [15] it was shown, 
perhaps surprisingly, that for finite groups there are restrictions on the possible 
symmetries. We will be more precise. Let V C 0(n) be a finite group and let 
E c f be a subgroup. We say that E is admissible (as a subgroup of F acting 
on iRn ) if there exists a F equivariant mapping / : Wl —* Wl with an attractor 
A having symmetry E. The symmetry group of a set A is 

E(/i) = {o e F: aA = A}. (1.1) 

The results in [15] show that restrictions to admissibility are governed by 
reflections across hyperplanes in F. More precisely, suppose that N C F is a 
subgroup. Let 

/?(E) = {r G r - N: dim Fix (r) = n - 1} , 

that is, /2(E) consists of reflections across hyperplanes that are in F but not 
in N . Now form the union of hyperplanes 

L(E)= | J Fix(r). 
re.i?.(E) 

It is clear that symmetries in IV leave L(E) invariant (since 7V ix ( r ) = 
Fix(7~1T7) and 7 _ J T7 is a reflection across a hyperplane when r is). Hence 
these symmetries permute the connected components in the complement of 
L(E) . ' 

We state the result of [15]. If E C F is admissible, then there exists a normal 
subgroup N C E satisfying 

(a) E/iV is cyclic, and 

(b) jV fixes a connected component of IRn — L(E) . 

It follows easily, for example, that hexagonally equivariant mappings (D6 sym­
metry) cannot have attractors with precisely triangular (D$) symmetry. Previ­
ously, K i n g and S t e w a r t [13] showed that cyclic subgroups are admissible 
for planar mappings with dihedral symmetry. More recently, A s h w i n and 
M e 1 b o u r n e [1] have shown that these conditions are both necessary and 
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sufficient by explicitly constructing appropriate mappings and attractors when 
(a) and (b) are satisfied. 

The results just mentioned apply to the class of all continuous T -equivariant 
mappings. It is easy to show that the admissible subgroups for diffeomorphisms 
and flows are more restrictive than the admissible subgroups for the class of all 
maps. (For example, attractors for planar diffeomorphisms with Dm (m > 3) 
symmetry cannot be Dm symmetric, but the pictures in [10] and the results in 
[1] show that such attractors are easily found for noninvertible mappings.) The 
classification of admissibility for diffeomorphisms and flows for subgroups of a 
finite group T have been carried out in [11]. 

Rather less is known concerning admissibility for continuous compact Lie 
groups; yet this is also an important issue for patterns on average in applications. 
For example in [12] G o 11 u b et al. have performed the Faraday experiment in a 
circular container obtaining a beautiful target pattern in the time-average. In [16] 
a rotating convection experiment was also performed in a circular container 
and the results were less conclusive. In the time-average, a circularly symmetric 
target pattern appeared near the boundary of the cylinder; but the time-average 
(experimentally performed over a finite time period, of course) was disordered 
near the center of the disk. Finally, turbulent Taylor vortices (a turbulent state 
with much fine scale structure but having the apparent symmetry of Taylor 
vortices) occurs in a system which is usually idealized to have 0(2) x SO(2) 
symmetry (by assuming periodic boundary conditions in the axial direction). 

There are several results concerning attractors in systems with compact sym­
metry groups. F i e l d [9] has shown that when an attractor is a relative periodic 
orbit (that is, when the corresponding trajectory of the induced map on orbit 
space is periodic) the symmetry of the attractor must be a maximal abelian 
subgroup of T and have the form T m x Z p . Moreover, the dynamics on the 
attractor must be quasi-periodic Recently, M e l b o u r n e [14] has shown that 
when the attractor is sufficiently chaotic (that is, when the attractor contains 
periodic orbits consisting of points with trivial isotropy) and when T°, the con­
nected component of the identity in T, is abelian, then a family of perturbations 
can be constructed such that for a residual set of parameters (indeed a measure 
one or prevalent subset of parameters) the associated attractors have symme­
try groups containing T 0 . Moreover, Melbourne's methods should work in the 
category of smooth maps and in the category of diffeomorphisms. 

In this note we generalize Melbourne's method to prove a similar result when 
r ° is nonabelian. We also construct a family of perturbations that yields attrac­
tors with at least T0 symmetry for a residual set of parameters and we need 
only assume that the attractor contains a point of trivial isotropy. However, our 
method will work only in the category of continuous mappings and will not yield 
measure one or prevalence type results. Nevertheless, this result does support the 
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idea that generally chaotic attractors consisting (mostly) of asymmetric points 
will have symmetry groups containing T°. 

2. Symmetries of a;-limit sets 

Throughout this section, we shall assume that F C 0(n) is a (nonfinite) 
compact Lie group acting on R n . Note that if X C Rn is closed, then the 
symmetry group ^(X) is a closed Lie subgroup of T. 

Let / : Rn —> Rn be a continuous T-equivariant mapping. Let R n /V denote 
the orbit space of T and let n: Rn —» R n / r denote the orbit projection. Let 
/ : R n / r —> R n / r denote the map induced by / on the orbit space. 

Given XQ G R n , we let Uf(xo) denote the o;-limit point set for / with ini­
tial point xo- Note that u)f(n(xo)) — 7r(uf(xo)). Since / is T-equivariant, 
ujf^xo) = "yujf(xo) for all 7 G T and hence uif (TT(XO)) = 7r(ujf(jxo)) • Our 
interest lies in perturbing / so as to maximize the size of the symmetry group 
E(u;/(xo)) without changing the projection 7r((jf(xo)) . In particular, we show 
that under appropriate conditions on / and xo, it is generically true that 

Our first task is to describe the class of perturbations of / we shall use. We 
require that these perturbations induce the map / on the orbit space. Indeed, 
our perturbations of / will be compositions of / with maps which cover the 
identity map on the orbit space. For our present purposes, it suffices to work 
with a rather simple class of perturbations of this type. We discuss the general 
problem of characterizing maps covering the identity map on orbit space in 
Section (3). 

Let T act on T° by inner automorphism. That is, we define 

for all g G T0 and 7 G T. Let X denote the space of T-equivariant maps 
77: Rn —> r ° . Observe that r) is T-equivariant if 

7/(7^)7 = 77/(x) (2.1) 

for all 7 G T and x G Rn . We note that X is a group. In particular, the constant 
map e: Rn —> T° defined by mapping points to the identity element e G T is 
continuous and T-equivariant. Moreover, if 77, v: Rn —> T° are continuous 
T-equivariant maps then so is the product vrj defined by 

(vrj)(x) = v(x)r)(x) 
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for all x eRn. 

Let T be a compact T-invariant neighborhood of ujf(xo). We say that a 
map 77 e X has support in T when 77 = e off T. Let X(T) denote the subspace 
of X consisting of mappings supported in T. Note that X(T) is a subgroup of 
X. Give X the usual C°-topology. 

LEMMA 2 . 1 . The space X(T) is a Baire space. 

P r o o f . The space X(T) is a closed subset of X and, in the C°--topology, 
the space X is a complete metric space. Hence X(T) is a complete metric space 
and a Baire space. D 

Given an equivariant mapping 77 £ X(T), we think of fv(x) = rj(x)f(x) as a 
perturbation of / . Note that (2.1) implies that fv is T-equivariant and that the 
maps / and fv induce the same mapping on space of T orbits. That is, / = fv, 
for all 77 G X(T). In particular, ^(^fv(x0)) = n(u>f(x0)) . The differences in the 
dynamics of / and fv are related to how points are moved along group orbits. 

Our main result states that for a residual subset of 77 G X(T), the perturba­
tions fv have o;-limit sets that are at least r°-invariant. 

THEOREM 2.2. Let f be T-equivariant and let .r0ERn. Assume that 

(a) fm(x0) is of trivial isotropy for all m > 0, and 

(b) Uf(x0) is not a relative periodic orbit. 

Then there is a residual set T C X(T) such that if rj e T, then T° C 
s ( ^ / - , ( ^ o ) ) . 

R e m a r k s 2.3. (1) Assumption (a) is satisfied if u>f(x0) contains a point of 
trivial isotropy. On the other hand, if fm(x0) is of trivial isotropy for all m > 0, 
it need not follow that Uf(x0) contains any points of trivial isotropy. Of course, 
if / is invertible then all points of the sequence fm(x0) will have trivial isotropy 
provided only that the initial point x0 has trivial isotropy. 

(2) We may interpret the theorem in two ways. First of all, think of x0 as a 
4generic' point and note that in most applications x0

 w--- have trivial isotropy. 
Assume that / is invertible. The conclusion of the theorem implies that, on 
average, we expect to see at least T° symmetry. In this situation, it will be 
the case that in our proof of Theorem 2.2, we typically do not perturb the 
dynamics on u)f(x0) but rather perturb the sequence fm(x0). On the other 
hand, suppose that x0 £ Uf(x0). The theorem now makes an assertion about 
how we can modify the dynamics of / on ujf(x0) to achieve symmetry T 0 . 

(3) Suppose that / is smooth. We do not claim in our theorem to have found 
a residual set of smooth perturbations of / that yield symmetry T 0 . Indeed, we 
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are unable to show that we can obtain symmetry T0 using C°-small smooth 
perturbations. Under the assumption that T0 is abelian, M e l b o u r n e [14] 
has proved a similar result for smooth mappings which uses perturbations 77 that 
are constant (and not compactly supported). Under rather restrictive conditions 
on dynamics and maps, A s h w i n , S t e w a r t and C h o s s a t [2] obtain 
perturbation results that apply when T0 is not abelian. 

2.1 Technical preliminaries. 

We collect together a number of elementary results and definitions that we 
need for the proof of Theorem 2.2. 

LEMMA 2.4. Let r be in T°, let V be a neighborhood of e, and let U be a 
neighborhood of r . Then there exists 7 G V such that j q G U for infinitely 
many integers q > 0. 

P r o o f . Let T C F° be a maximal torus which contains r [3]. Choose a 
topological generator 7 G V for T. Clearly, j q G U for infinitely many values 
of q. D 

Given x0 and / as in the statement of Theorem 2.2, define 

Wf(x0)= (J 7U/(*o). 

LEMMA 2.5. Suppose x0 G Rn, r) G X(T) and u)f(x0) is not a relative periodic 
orbit. Then 

(<*) Wfv(*o)cWf(x0), 

((3) If x G Wf(x0), then there exist y G u)^ and <j G T0 such that ay = x, 
and 

( 7 ) Uf^ is not a relative periodic orbit. 

P r o o f . For all m > 0, fm(x0) and /™(#o) lie on the same r°-orbi t . 

It follows easily that Wfv(x0) C Wf(x0), proving (a). Statement (f3) is an 

immediate consequence of ( a ) . Finally, ( 7 ) follows since / , fv induce the same 

map / on orbit space and u)f(x0) is a relative periodic orbit if and only if 

ir(yjf(x0)) is a periodic orbit of / . • 

Finally, we give a precise description of the C° metric structure on X(T), 
based on [8, §3]. We begin by showing that there is a metric on V that is both 
left and right invariant. To see this, observe that 

(r,l)'9 = T57~ 1 , 
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where (r, 7) G T x T, g G T, defines an action of T x T on T. (Note that this 
action restricted to the diagonal subgroup is just the action of T on T0 by inner 
automorphism. This point will be used in subsequent discussion.) As a result 
we may choose a T x T-invariant Riemannian metric on T; let dp denote the 
corresponding distance function on T. It follows from the T x IMnvariance of 
dr that for all 7, x, y G T we have 

dv(ix, 73/) = dT(x, y) = drOns 2/7) • (2.2) 

The explicit C° metric on X(T) that we use is defined by 

dx(v,n) = supdr(v(x),n(x)), 
xeT 

for 77,/i G X(T). It follows from (2.2) that 

dx(vv,v) = dx(v,e), (2.3) 

for v,r)eX(T). 

2.2 Proof of Theorem 2.2. 

We start by defining the set T C X(T). Let { X J } ^ be a countable dense 
subset of Wf(xo) and let B^,(xi) denote the punctured disk neighborhood 
of radius 1/ra about Xi. In particular, this neighborhood does not include Xi. 
Define 

TiiTn = {77 € X(T) I /jJ(xo G Bl/m(xi) for some positive integer j} 

and set 

- * = ! " . * . « 
г,m 

Since x^ ^ B^,m(xi), it follows that if 77 G .T7 then ^ ( x o ) = Wf(xo). We 
shall show that each T^m is an open dense subset of X(T). It then follows from 
Lemma 2.1 that T is residual. Since Ti^m is obviously open, we need only prove 
density. 

P r o o f o f d e n s i t y . Let 77 G X(T) and e > 0 be given. Fix Xi and m. 
It follows from (2.3) that it suffices to construct v G X(T) such that 7̂7 G ^i,m 
and dx(l/, e) < e. 

Let V be the open e-disk centered at the identity in T 0 . It follows from 
(2.2) that V is invariant under inner automorphisms of T. We will perturb fn 
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to fvri = vfrj, where v G X(T) is smooth and v(Rn) C V. Since v takes values 
in V , it will follow that dx(v,e) < £-

Since Xi G W/(xo), it follows from Lemma 2.5 (/3), that there exists z G 
Uf such that Tz = Xi for some T G T 0 . Take U to be a sufficiently small 
neighborhood of r so that 6z G -B1/2m(xi) whenever 6 e U. Now choose 5 to 
be a slice at z and let <S = TS. 

It follows from Lemma 2.4, that there exists 7 G V such that 7q £ U for 
some integer g > 0. Hence 7 9 z G -81/2^1(^1) • Since z G u;/^, there is an integer 
IV such that 

dx(f»(xo),z)<± 

and 

card({x0 , fr,(x0), • • •, ff^M} H <S) > g. 

Let M be the smallest such integer IV. It follows from the definition of M 
that at least q of the iterates f^(xo) lie in <S. Suppose 

{xo,fr,(x0),...J?-\x0)}nS={ft(x0),f?(x0),...,fi,*(xo)}, 

where p > q. Let Zk = frffeo). Since we are assuming that all points fn(xo) 
have trivial isotropy, it follows that Zk has trivial isotropy. It follows from 
Lemma 2.5 ( 7 ) that the orbit of XQ is not a relative periodic orbit and so 
the Zk are all lie on different T-orbits. Next, take (closed) slices Sk C <S about 
each point Zk for k = 1 , . . . , p . Since the points Zk all lie on different T-orbits, 
we can assume that the T-orbits of the slices Sk are mutually disjoint. Since Zk 
has trivial isotropy, each slice Sk consists of points with trivial isotropy. 

Define 

1̂  e , q < k <p. 

P 
Smoothly extend v to a map v: (J «Sfc —> V" C T° which is equal to the identity 

fc=i 
element e G T on a neighborhood of the boundary of each slice Sk. Next extend 
v to <S by 

for all 7 G F and x E S. Since all points in the sets Sk have trivial isotropy, 
this extension is well-defined and T-equivariant. Since V is invariant under all 
inner automorphisms, v(x) G V for all x G <S. Note that v has support in <S 
and can be extended smoothly off <S by v(x) = e. 
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t / To complete the proof we show that f**(x0) e B\/m{Xi) and hence that 

wq € -^i,m. By construction, for 1 < j < M, 

K4(*o)) = { 7 ' 7, 3 Є{ j i , . . . , j q }, 

2 f-{Jь--чІ í}-

Thus 

We have 

f%{X0) = V{x0)v{fr,{x0)) . . . »{f!f-\x0))fM{x0) 

= 7%M(*o). 

d{^fíí{x0),xi) < d{1*fM{x0),1«z)+d{1*z,xi) 

1 
< d{ff{x0),z) + — 

2m 

s - , 
m 

since d( /^ (x 0 ) ,z ) < ^ . Hence, ^qf^{x0) G B1/m(xi). If necessary, we may 
perturb v slightly to ensure that 7g/-ff(-C0) ^ Xi and so obtain Jqf?f(xo) G 
s iV(^)- n 

3. Perturbing along group orbits 

We continue to assume that T C 0(n) is a (nonfinite) compact Lie group act­
ing on Rn . Suppose that / , / ' : lRn —> Rn are T-equivariant homeomorphisms. 
Then / , / ' induce the same map on the orbit space ]Rn/T if and only if / ' o / _ 1 

covers the identity map on the orbit space. We let IT denote the set of all con­
tinuous equivariant maps which cover the identity map on the orbit space and 
note that IT is a group. Let T be a compact T-invariant subset of Rn and 
let IT(T) denote the subgroup of IT consisting of homeomorphisms which are 
equal to the identity map outside of T. 

In Theorem 2.2, we used a restricted class of elements in IT to study per­
turbations of / . More specifically, given 77 G X, we define the map fj G IT 
by fj(x) = rf(x)x for all x G W1. (Observe that fj is a homeomorphism with 
fj~x(x) = ^(x)-1^.) Also note that fv = fjof g J r ( T ) when 77 G X(T). 
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It is natural to ask the extent to which elements 77 G X represent general 
elements of XY • Questions of this type are discussed in some detail in [7, 8] and 
we only give a brief indication of some of the results and problems. 

Suppose that 77 G X. Since 77 takes values in T°, it follows that 77 is ho-
motopic to the constant map e and 77 is isotopic to the identity map of Rn 

(through elements of J r ) - Of course, elements of XY need not be isotopic to 
the identity; indeed, the isotopy question is quite subtle for general T-manifolds 
(see [7]). In any case, from the point of view of perturbation theory, it seems 
natural to restrict attention to those elements of XY which are isotopic to the 
identity. 

Let T be a compact T-invariant domain in Rn and suppose that all T orbits 
in T have finite isotropy. (More generally, we can ask that all T-orbits have the 
same dimension.) It follows from [8, §3] that if cp G XY(T) is isotopic to the 
identity then <p = fj for some 77 G X(T). Similar results hold if we work within 
the smooth category. 

Matters become significantly more complicated when the dimension of 
T-orbits in T varies. For example, it is shown in [7] that if T = SU(2) acts in 
the standard way on C2 = R4 and T is a disk neighborhood of the origin then 
X(T) forms a small subset of the identity component of XY(T) . In particular, if 
A: R4 —• R4 is linear and T-equivariant and we write A(x) = rj(x)x, x G R4, 
then 77: R4 —* T will generally not be continuous at x = 0. 

When we want to allow for variation in the dimension of T-orbits, it is 
appropriate to attempt to represent elements of XY as time-one maps of vector 
fields which are tangent to T-orbits. Let Jf? denote the subspace of smooth 
(that is, C°°) diffeomorphisms in XY . Let V°° denotes the space of all smooth 
T-equivariant vector fields on Rn which are everywhere tangent to T-orbits. Let 
V°°(T) denote the subspace of V°° consisting of vector fields supported in T. 
We have a natural map exp: V°°(T) - • If(T) defined by mapping X G V°°(T) 
to the time-one map of the flow of X. Obviously, all maps in the image of exp 
are isotopic to the identity map. It is natural to conjecture that exp(V°°(T)) 
is equal to the identity component of J f ? (T) . However, as far as we are aware, 
this conjecture has not yet been resolved though it is known to hold for many 
representations. We refer the reader to Schwarz [17, §4] for a discussion in the 
context of compact T-manifolds. 
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