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REALIZATION OF THE DYNAMICS OF 
ODE'S IN SCALAR PARABOLIC PDE'S 

P E T E R P O L Á Č I K 

ABSTRACT . We consider scalar parabolic P D E ' s ut = Au + /(x, u, \/u) on 
a bounded, at least two-dimensional domain. We are interested in ODE's that 
are realizable in P D E ' s of this form. We say of an ODE that it is realizable 
if its dynamics is equivalent to the dynamics on an invariant manifold of some 
P D E in t h e considered class. The main results state that all linear ODE's (in 
any dimension) are realizable, and any (nonlinear) O D E has an arbitrarily small 
realizable perturbat ion . We also state analogous results for periodically forced 
equations of the form ut = Au -f g(t, x, u). 

Introduction 

Consider a semilinear parabolic problem of the form 

ut = Au + f(t,x,u,\/u), x G ft, (1) 

u\dn = 0, (2) 

where 0 is a smooth bounded domain in M.N and / is of class C1 in all variables. 
We always assume that / is periodic in t, or even independent of t. Problem 
(1), (2) then defines a local dynamical system with discrete or continuous time, 
depending on whether (1) is time-periodic or autonomous (see [Hel]). The state 
space of this system is an appropriate Banach space of functions on fi satisfying 
(2). Varying the nonlinearity in the equation and the domain 0 , we thus obtain 
a class of dynamical systems, let us call it T>. 

Due to the relevance of (1), (2) in applied sciences and perhaps also due 
to the relatively simple form of the equation, the systems of class V are fre­
quently subject to investigation in research articles (see, e.g., the monographs 
[Hel, Ha, Ba-V, Te] and references therein). In spite of that, not many general 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): 35K57, 35B40. 
K e y w o r d s : scalar parabolic equations, realization of vector fields, invariant tori, chaos. 

179 



PETER POLA&K 

results are available on behavior of bounded trajectories of the dynamical system 
generated by (1), (2) if TV = dim £1 is greater than 1. On the other hand, the one-
dimensional problems are very well understood. For example, there is a universal 
description (i.e., description valid for all C1 nonlinearities) of the asymptotic 
behavior of bounded trajectories, namely convergence to a fixed point (see [Br-
P-S], or [Ze, Ma] for the autonomous case). Other results establishing a special 
structure of the systems in V if TV = 1 can be found in [An, He2, C-C-H, C-P]. 

The presence of general dynamical results, such as a description of behavior of 
all trajectories, in a class of dynamical system is, of course, highly desirable. They 
help very much in the study of any particular model in this class. Unfortunately, 
higher dimensional problems (1), (2) turn out to be very different from the one-
dimensional problems. No universal description of the behavior of trajectories 
exists for TV > 2. In this case class V is just too big. There seems to be no 
restriction on what kind of dynamics we can find, for example, when we look at 
finite-dimensional invariant manifolds of (1), (2). 

In order to justify these statements, we present below results on the realiza­
tion of ODE's in (1), (2). One of these results says that, given any ODE, one 
can find an arbitrarily small perturbation which has a realization in (1), (2). 
By the latter we mean that the perturbed ODE generates a dynamical system 
which is the same, in the sense of C1 equivalence, as the dynamical system on 
an invariant manifold of some problem (1), (2). Using these results we easily 
show that chaos (shift dynamics) can be found in some problem (1), (2). 

Another result stated below implies that (1), (2) do not generate low dimen­
sional dynamics in general, not even in the limit set of a single trajectory. In fact 
the dimension of the o;-limit set of a trajectory can be arbitrarily large even if 
the dimension of f2 is required to be fixed (equal to 2, for example). 

The possibility of complicated dynamics of (1), (2), that is established by 
our realization results, has to be taken into acount when a model of the form 
(1), (2) is analyzed. In applications, however, one often neglects exceptional 
phenomena and is interested in what happens typically (generically). It can be 
shown that a typical bounded solution of (1), (2) converges to a periodic orbit 
(of period possibly higher than the period of the equation). Thus trajectories 
with complicated behavior are always confined to relatively "small" sets in the 
state space (see [P-Tl, P-T2]). 

We first formulate the realization results for autonomous equations (Sec­
tion 2). Then we consider the time-periodic case with a more restricted class of 
nonlinearities / = f(t,x,u) (Section 3). 

Below, fi always stands for a smooth bounded domain in some MN. By 
u(t, •, uo), with UQ in an appropriate Banach space, we denote the solution of 
(1), (2), defined on the maximal time interval, that satisfies the initial condition 
u(0, •) = u0. 
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Autonomous problem 

Fix any IV > 2. Consider the problem 

ut = Au + f(x, u, v u ) , x G f - C K N , (3) 

t*|an = 0, (4) 

where / : Cl x R x RN —» R is of class C 1 . This problem is well-posed on a frac­
tional power space associated with the Laplacian and the boundary condition. 
Specifically, we choose Lp = Lp(ft) with a p > IV as the basic space. Then a 
fractional power space X C W2,p fl WQ 'p of the Lp-realization of the Laplacian 
can be chosen such that X <--» Cx(Ct) (cf. [Hel]). By the theory of [Hel], (3), (4) 
defines a (local) semiflow on X. For any u0 € X, we set 

S(t)u0 = u(tr,uo), 

as long as the latter is defined. Now suppose S(t) admits a finite-dimensional 
locally invariant manifold, that is, there is a submanifold W C X with dim W < 
oo, such that for each u0 E W one has S(t)u0 £ W for t in an interval [0, t0). 
Taking the restriction S(t)\w we obtain a semiflow on W. In constructions of 
invariant manifolds one usually obtains W as a graph over an open set B in a 
finite dimensional subspace of X. In that case the flow on W can be represented 
by an ODE. We are interested in an "inverse problem". What kind of ODE's 
can be obtained as such representations for problems of the form (3), (4). More 
specifically, let B be a unit ball in Rn for some n . Consider an ODE 

V = h(y), yeB, (5) 

where h: B —> Rn is a C1 function. We say that (5) can be realized in (3), (4) if 
there exist a domain ft C RN and / e C1^ x R i V + 1 ,R) such that (3), (4) has 
a locally invariant manifold W and the flow of (3), (4) on W is C1-equivalent 
to the flow of (5). 

Recall that the C1 -equivalence requires that there be a C1-diffeomorphism of 
B onto W which maps trajectories of (5) onto trajectories of S(t)\w> preserving 
the orientation by time. 

We can now formulate our main realization results for the autonomous prob­
lems. 

THEOREM 1. Let N > 2 and n > 1 be arbitrary. Then the set of C1 functions 
h: B —> Rn such that (5) can be realized in (3), (4) contains 

(i) all linear functions, and 
(ii) a dense subset of C1(B,Wl) endowed with the C1 supremum norm. 
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Note that this theorem implies that there are problems (3), (4) containing 
chaos as well as trajectories with high-dimensional cu-limit sets. Indeed, to es­
tablish existence of chaos, we show that an ODE (5), which has a transverse 
homoclinic orbit to a hyperbolic periodic orbit, can be realized in (3), (4). It 
is known that such equations (5) exist and that they "contain" shift dynamics 
(see, e.g., [Wi, Gu-H]). Of course, if such an equation is perturbed slightly in 
the C 1 topology then the new equation will still have a transverse homoclinic 
orbit. Statement (ii) allows us to choose such a small perturbation which can be 
realized in (3), (4). 

To show that (3), (4) can have trajectories with t-j-limit set of any dimension, 
we apply statement (i). Given any ra, we choose a linear equation on R2 m with 
trajectories dense in an m-torus. By (i) it follows that such trajectories can be 
found for some problem (3), (4). We emphasize that we do not need to increase 
IV = dim tQ, when we increase n. In particular, all this can be done with two-
dimensional domains. 

For the proof of Theorem 1 we refer the reader to [Po3]. Actually, in [Po3] only 
functions h satisfying h(0) = 0 are considered. Though this additional condition 
is not necessary for realization results it made the proof of [Po3] shorter, since 
results of the previous paper [Pol] were applicable. 

For related results see also [Po2] and [Ryl]. In these two papers realizability 
of (5) for all sufficiently smooth functions functions h: W1 —» W1 (not just for 
a dense set) is shown, but only under the restriction n < N (which is a rather 
severe one if IV = 2) . In [Po2], the result has been proved for the Neumann 
problem. The method, an elementary one, does not apply to Dirichlet boundary 
condition. The method of [Ryl] is very different and it works fqr both these 
types of boundary conditions. 

To conclude the section on autonomous problems, we would like to mention 
the papers [Ha2, Ha3, Ry2, Fa-M] and [Fi-P], where realization results for delay 
differential equations and for nonlocal parabolic equations in one space dimen­
sion, respectively, have been obtained. In fact, some ideas of [Fi-P] have been 
used in [Po3]. 

Periodically forced problem 

Consider the problem 

ut = Au + f(t,x,u), x G f i c R ^ , (6) 

"1.90 = 0 , (7) 

where / : R x f i x R - > R is a C 1 function periodic in t: / ( t + r, •, •) = /(*> •) for 
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some r > 0. Again choose p > N. This time we can take X — W0
lP <—• C(Cl) 

as the state space, i.e., the space where (6), (7) is well posed (see [Hel]). We 
consider the dynamical system on X generated by the period map of (6), (7). 
This is the map F: UQ I—* u(r, •, UQ) , defined for those initial conditions UQ G X 
whose solutions exist up to t = r . Thus by a trajectory of UQ we understand 
the trajectory with respect to F , that is, the sequence FUUQ, n = 0 , 1 , . . . . 
Similarly, the cj-limit set of UQ, U>(UQ) , refers to the limit set of the sequence 
FUUQ , if the latter is defined for all n. 

As for (3), (4), we want to show that (6), (7) can have complicated dynamics. 
Notice that, unlike for (3), (4), if / in (6) is independent of t then no chaos can 
occur. (In fact, the autonomous problem is gradient-like, the standard energy 
functional being the Lyapunov functional.) 

The basic concept in this section is realization of period maps of time-periodic 
ODE's, which is analogous to the notion of realization of autonomous ODE's 
from the previous section. Let h: S1 x B —> Rn be a C1 function. Here B is 
the unit ball in Rn and S1 = R/Z (thus h(t,y) is periodic in t). Consider the 
ODE 

y = h(t,y), yeB. (8) 

The period map H of (8) is defined in a standard way. In particular, its 
domain, D(H), consists of initial conditions of those solutions whose values on 
the whole period interval are contained in B. 

We say that the period map H of (8) can be realized in (6), (7), if there exist 
S l c R ^ and a C1-function / : R x f 2 x R — > R , periodic in the first variable, 
such that the period map F of (6), (7) has the following property: There is 
a CMmbedding <p: B —> <p(B) = W C X such that for all yQ € B one has 
2/o £ D(H) iff -F(<p(j/o)) is defined and contained in VV, and, in addition, if the 
latter holds then F(<£(yn)) = <p{H(yo)). 

Note that in case D(H) = B we can simply say that W is positively invariant 
under F (i.e., F(W) C W) and F/w is C1 conjugate to H. 

THEOREM 2. Let N > 2 and n > 1 be arbitrary. The set of C1 functions 
h: S1 x B —> Rn such that the period map of (8) can be realized in (6), (7) 
contains 

(i) all functions linear in y, 
and 

(ii) a dense subset of C1(S1 x J3,Rn) endowed with the C1 supremum 

norm. 

This theorem, similarly as Theorem 1 in the autonomous case, implies that 
chaos, as well as trajectories dense in an m-torus, m arbitrary, can be found in 
(3), (4). The arguments are quite analogous. 
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We remark that a special case of our result, existence of trajectories dense 
in a circle, has been proved before by D a n c e r [Da]. He has also proved this 
result for periodically forced reaction-diffusion on the circle. Under presence of 
convective terms, these one-dimensional problems have been later studied by 
S a n d s t e d e and F i e d l e r [Sa-F]. They showed realizability of any ODE 
(8) on R2 . 

The proof of Theorem 2 will appear in a forthcoming paper. 
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