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MIXED FINITE ELEMENT IN 3D IN H(div) 
AND H(curl) 
J. C NEDELEC 
Ecole Poly technique, Centre de Mathematiques Appliquees 
91128 Palaiseau, France 

I. INTRODUCTION. 

Frayes De Venbeke first introduces the mixed finite element. Then P.A. Raviart 

and J.M. Thomas does some mathematics on these element in 2D and others do also : 

F. Brezzi V. Babuska ... 

In 1980 we introduce a family of some mixed finite element in 3D and we use them for 

solving Navier Stokes equations. 

In 1984 F- Brezzi, J. Douglass and L.D. Marini introduce in 2D a new family of mixed 

finite element conforming in H(div). That paper was the starting point for building 

new families of finite element in 3D. 

II. FINITE ELEMENT IN H(div). 

Notations. 

K is a tetrahedron 

3K its boundary 

n the normal 

f a face which area is d y 

f . r 
a is an edge which lenght is ds 

•'a 

curl u = V^ u u = (u , u , u~) 

H(curl) = {u e L2(Q))3 ; curl u G (L2(ft))3 } 

div V« u 

H(div) = {u € (L2(ft))3 ; div u e L2(fi) } 

Spaces of p o l y n o m i a l s . 

homogeneous of degree k 

P = polynomials of degree less or equal to k 

3 ~ • » 

\ ' (IW + Pk-1 - ' " 1 ~2 

Sk = {p Є (P^) ; (r.p) s 0 } 

^k "
 ( P

k-l
) 3 Ф S

k 

3 
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dim S = k(k + 2) 

A- n - (k - 3 ) ( k 1 !) k 

dim v, —^ 
k 2 

,. 0 _ (k _ 3)(k + 2) k 
dim K. 

k 2 

We are now able to introduce the finite element conforming in H(div). 

Definition. We define the finite element by 

1) K is a tetrahedron 
3 

2) P = (P ) is a space of polynomials 
3) The set of degrees of freedom which are 

( 3 . 0 | (p • n)q dy ; V q € P^f) ; 

f 

(3 .2) j (p . q) dx ; V q G Rfc_ , . 

K 

we have the 

Theorem. 

The above finite element is unisolventand conforming in H(div) . The associate in­

terpolation operator II is such that 

div Tip = II* div p ; V p e H(div) , 
* 2 

where II is the L projection on P, . . 
k-1 

When k = 1, the corresponding element has no interior moments and 12 degrees of free­

dom. Its divergence is constant. 

Proposition.For a tetrahedron "regular enough" which diameter is k, we have 

11 P " "P "(L-(K))3 * C h k +' Mp"(Hk+l(K))3 i 

II D(p - nP) l l a 2 ( K ) ) 3 < c h k llpll(Hk+l(K))3 • 

We are not going to prove this t h e o r e m . But we can recall that a finite element 

is said to be conforming in a functional space if the interpolate of an element of 

this space belong to this space. 

In our case, the conformity in H(div) is equivalent to the continuity of the 

normal composent at each interface. This property is clearly true for our finite ele­

ment since the unknowns on the face are 

J (p . n) q dy ; V q G Pk(f) 

and p.n is also P, (f). 
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I I I . FINITE ELEMENT IN H(curl). 

A finite element is conforming in H(curl) if the tangential components are con­

tinue at the interface of the mesh. 

We introduce the corresponding finite element. 

Definition. 

1) K is a tetrahedron 

2) P = (P.) is the space of polynomials 

3) The degrees of freedom are the following moments 

3.1) I (p . T) q ds ; V q € P^a) 
•̂a 

3.2) (p . q) dy ; V q G v (f) and tangent to the face f 

3 .3) | (p . q) dx ; V q e V^_2 . 

We have the 

Theorem. 

The above finite element is unisolvent and conforming in H ( c u r l ) . Moreover if 

II is the corresponding interpolation operator and II the interpolation operator as­

sociate to the H(div) finite element introduce previously for degree k-1 we have 

c u r l lip = IT c u r l p 

IV . APPLICATION TO THE EQUATION OF STOKES. 

The Stokes'equation is usually written in the (u,p) variable in a bounded domain 
3 

Q of R as 

- V Au + grad p = f , in ft 

div u = 0 in ft 

ul r = 0 

We introduce the vector potential <J> as 

- A<J> = curl u , in ft 

div (J> = 0 , in ft 

<(> A n | r = 0 

Then the Stokes equation can be written in the (4>,w) variables where 

a) = curl u 

We introduce 

H(div°) = { v Є ( L 2 ( f t ) ) 3 ; d iv v Є 0 , v . n | г = 0 } 

H = { ф e H ( c u r l ) ; d iv ф = 0 ; ф A n L = 0 } 
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I'hen a variational formulation of the Stokes equation is 

v (curl w.curl ij/)dx = (f .curl ip)dx ; V ^ G H 

k hi 
(w.Il)dx - (curl $.curl n)dx = 0 ; V II G H(curl) 

hi hi 

Let C be a mesh covering Q . 

We can introduce some finite element spaces 

Wv = { UK G H(curl) ; w. , G (P. ) 3 ; V K G C } 
h h hi k k 

W° = { u>, G W, ; w /s n I r = 0 } h h h h ' I 

V, = { v, e H(div) ; v, , G (p ) 3 ; V K G C } 
h h h| k-1 h 

u = v n H(div°) 
h h 

The approximate problem become then 

v (curl w , . v , )dx = (f .v, )dx ; V v G n ; \Q h h J^ h h h 

(w._.n, )dx - (u.curl IT) dx = 0 ; V II G W, 
hi h h k h h h h 

We can also use a vector potential (j), . 

This goes like that 

e h - { eh e B ' ( f l ) ; e h | e p k + , ; v K e C h > 
K 

e° - eh n H > 

We have the 

Theorem. 

If the transgulation is regular,for every v G U,there exist a unique 

ik G W, such t h a t r h h f 

c u r l ik = v, 
h h 

v | 0 % • * r a d e h ) d x • ° < v 9h e eh 

and we have also 
rh H(curl) h (Lz(ft))-3 

This theorem can be use to transfer the above approximate problem in one in (\jj,w) and 

also to find a local basis in the space U, • 
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