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BOUNDARY VALUE PROBLEMS 
IN WEIGHTED SPACES 
A. KUFNER 
Mathematical Institute, Czechoslovak Academy of Sciences 
115 67 Prague 1, Czechoslovakia 

1. Introduction 

Let us consider a linear differential operator of order 2k of the 

form 

(Lu) (x) = £ (-1)lalDa(a _(x)D3u(x)) , x (E fl , (1.1) 

M>|3Uk a3 

together with the associated bilinear form 

a(u,v) E fa (x)D3u(x)Dav(x) dx . (1.2) 
Ia|, |3|<k I a3 

Here a n are given (real) functions defined on the domain ^ E IR 

a$ 

The usual procedure for solving a boundary value problem for the 

operator L proceeds in the following fundamental steps: 

(i) Choose an appropriate Banach space V such that the form 

a(u,v) is defined and continuous on V x V and elliptic on V , i.e., 

that there exist constants c. > 0 and cn > 0 such that the following 

conditions are fulfilled: 

|a(u,v)| 4 c1||u||v||v||v for every u, v e V (1.3) 

(continuity of a(u,v) ), and 
o 

a(u,u) >. c | | u| | v for every u e V (1.4) 

(ellipticity of a(u,v) ). 

(ii) Use the Lax-Milgram Lemma in order to obtain assertions about 

the existence and uniqueness of a (weak) solution in the space V . 

If the coefficients a n of the operator L are bounded, i.e., if 
a3 ^ ' 

aag € L°°(Q) for |a(, |S| < k , (1.5) 

and if the operator L is (for simplicity) uniformly elliptic3 i.e., 

if there exists a constant cQ > 0 such that 



| U|/lB|, k
a^ ( X K^^ C° U | 2 

for every 4 e P ( C = {4 , | a | <m k} ) , then the first step mentioned 

above can be realized if we choose for the space V the Sobolev space 
k 2 

W ' (ft) or one of its subspaces selected according to the type of the 

boundary conditions. 

If one or both of the conditions (1.5) and (1.6) are violated, i.e., 

if operators with singular coefficients appear - condition (1.5) is 

not fulfilled - or if the operator becomes degenerate - the quadra

tic form on the left-hand side in (1.6) is only positive semidefinite 
k 2 

then the Sobolev spaces W * (ft) cannot be used in general. In these 
cases, appropriate weighted Sobolev spaces can be constructed which re-

k 2 

place the classical spaces W * (ft) . The weight functions appearing in 

these new spaces are de termined by the coefficients of the operator3 and 

the method of the proof of the corresponding existence and uniqueness 

theorem for weak solutions is the same as in the case of classical So

bolev spaces, the main tool being the Lax-Milgram Lemma. 

On the other hand, there appear boundary value problems in which the 

operator L satisfies conditions (1.5) and (1.6) but the right-hand 

side in the equation Lu = f or the right-hand sides in the boundary 

conditions S.u = g. , i=1,...,k (8. being boundary operators) be

have in such a way that the classical Sobolev spaces cannot be used: 
k 2 * the function f is not an element of the dual space (W ' (ft)) or k 2 some of the functions g. are not traces of functions from W ' (ft) 

on the boundary 6ft of ft . Also in such cases, weighted spaces can be 

sometimes used for obtaining assertions about existence and uniqueness 

of weak solutions. The bilinear form a(u,v) is considered to be defi

ned on a weighted space V or on a product of two weighted spaces 

V, x V- , and it is necessary to show for which such spaces conditions 

(1.3), (1.4) or their certain modifications are fulfilled. 

In what follows, we give a survey of results obtained in these two 

directions of application of weighted Sobolev spaces to the solution of 

boundary value problems. 

1.1. Definition of the weighted space. Let 1 < p < °° and let ft be 
N a domain in HR . For k e IN and for N-dimensional multiindices a 

such that la I < k let a = a (x) be weiqht functions. i.e. measur-
1 i = a a 

able and a.e. in ft positive functions, and let us denote S = 

{a , | ex | 4 k} . The weighted Sobolev space 

Wk,P(ft;S) (1.7) 
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is defined as the set of all functions u = u(x) , x € ft , such that 

| | u | | P = i: [ | D a u ( x ) | P o (x) d x < ~ , ( 1 . 8 ) 
la I 4 k £ 

the derivatives D u being considered in the sense of distributions. 

Further, let 

w£'P(ft;S) (1.9) 

be the closure (if it is meaningful) of the set C„(ft) with respect to 

the norm (1.8). 

1.2. Theorem. Let us suppose that 

-1/(p-1) G L1 ( j f Q r I . < k ^ (1.10) 
a loc ' ' = 

Then the linear set w ,P(ft;S) is a B a n a a h space with .respect 

to the norm ll'llv c defined by (1.8 ). - If3 moreover_, 

a E L 1 (ft) for | a | < k , (1.11) 
a loc ' ' = 

then the linear set WV'p (ft ; S) is a B a n a c h space with re spect 

to the same norm. 

1.3. Remark. Conditions (1.10), (1.11) are rather restrictive. In the 

paper A. KUFNER, B. OPIC [2] it is shown how to modify the definition 

of the weighted spaces if (1.10) and/or (1.11) are not fulfilled. 

The most frequent type of weight functions a are the so called power 

type weights 

o (x) = [dist(x,M)J£ 

with M C ft and e = e(a) real numbers. If M is a subset of the 

boundary dft of Q , then conditions (1.10) and (1.11) are obviously 

satisfied. 

2. Operators with singular or degenerating coefficients 

Let us consider the operator L from (1.1) and let us suppose that 

its coefficients fulfil the following conditions: 

a > 0 a.e. in ft ; a , a"1 e L1 (ft) , I a I < k ; (2.1) aa aa aa loc i i =. 

t h e r e e x i s t c o n s t a n t s c . > 0 , c n > 0 such t h a t 
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l a u f J ( x ) I -• C W a a u ( x ) a B 3 ( x ) a * e ' l n Q ( 2 - 2 ) 

f o r | u ! , | 0 | ; k , a ? B ; 

2 
'^' a o ( x H r^o > c n :' a < X K a . e . i n ;<• ( 2 . 3 ) 

| a | , (31.<k a 3 a ^ * ° | u | < k a a 

f o r a l l c G IRM . 

k 2 Conditions (2.1) indicate that the weighted spaces W » (Q;S) and 
k 2 W ' (S2; S) with o = a , |a| < k , i.e. with 
(J a a a ' ' =-----= ' 

S = {a = a (x) , lal < kl (2.4) 
1 aa a a ' ' -= J 

are Banach spaces. From the following theorem we see that these weighted 

spaces are just the right tool for solving boundary value problems. 

2.1. Theorem. Let the operator L fro'm (1.1) fulfil conditions (2.1) 

- (2.3). Let S be given by (2.4); let f e (W^'2(ft;S))* and u e 

k 2 . . 

W ' (i2;S) . Then there exists one and only one weak solution u £ 

W ' (S2; S) of the Dirich let problem for the equation Lu - f , i. e. 3 

such a func t ion u s tha t 
u - uQ e w£'

2(n) (2.5) 
a n d 

k 2 a(u,v) = < f,v > for every v e W ' (fi) . (2.6) 

Moreover, there is a constant c > 0 such that 

l|u|| k ) 2 j S < c(||f|U + M u 0 | | k t 2 f S J - (2.7) 

Idea of the p r o o f : Condition (2.2) implies the continuity of the 
k 2 bilinear form a(u,v) from (1.2) on V x V with V = W ' (Q;S) and 

conditions (2.3) imply its ellipticity while (2.1) guarantees that the 
k 2 space V and its subspace W ' (fi;S) are well defined. A standard 

application of the Lax-Milgram Lemma then yields the existence and uni-
k 2 queness of a weak solution u € W ' (ft;S) as well as the estimate 

(2.7) which expresses the continuous dependence of the solution on 

the data of the boundary value problem. 

2.2. Remarks. (i) In the sequel, we shall give two examples of boun

dary value problems which go beyond the frame of conditions (2.1) -

(2.3), but for which again existence and uniqueness of a weak solution 

can be proved. These examples indicate that conditions (2.1) - (2.3) can 

be substantially weakened and that the adequate weighted space can be 

constructed in a much more sophisticated way. A detailed description of 



the (rather complicated) construction of these spaces can be found in 

A. KUFNER B. OPIC [l] , [3], 

(ii) Although Theorem 2.1 is a simplified version of an applica

tion of weighted Sobo lev spaces to the solution of boundary value prob

lems, some of its conditions can be weakened: E. g. condition (2.3) fol

lows from (2.2) if the constant c in (2.2) is sufficiently small, i. 
e- i f c-| < V(M - 1) where M is the number of multiindices ex such 

that |a| < k . 

(iii) The restriction to the Dirichlet problem in Theorem 2.1 is 

not substantial, either; other boundary value problems can be handled 

in the same manner. 

2.3. Example. Let us consider the differential operator of order two, 

i.e. k = 1 : 

(Lu)(x) = - I ^-(a.(x) §£-) + an(x)u 
i=1 I l 

where a. > 0 for i = 1,...,N but aQ < 0 , aQ = - AbQ with bQ > 

0 , A > 0. We suppose that a. , aT € L-, (ft) for i = 0,1,..., N . 
' -= ^^ 1 I loc 

Here, one of the conditions in (2.1) is not fulfilled, but if we take 

S = {bQ,a ,...,aN} , then W1,2(ft;S) and W Q , 2 ( ^ ; S ) are the adequate 

spaces which can be used for d e r i v i n g existence and uniqueness theorems 

provided the following inequality holds' for all u e C (ft) : 
? N r i A i2 

u(x)|zb_(x) d x < c E f£- ai (x) d x (2-8) 
u i=1 J l d x i l 1 

ft ft 

with a constant c independent of u , and provided the constant \ in 

a„ = - Ab is sufficiently small, namely \ < 1/c . 

2.4. Example. Let us consider the plane domain ft = (0,°°) x (0,°°) (i.e. 

N = 2 ) and the fourth order operator 

^2 61 6 0 _2 
(Lu) (x) = _ % y (x.1 x / * " ) -

3x.3x«^ i 2 9X.3X ! 

d_(
 Y1 Y2 3u ^ a , 31 32 3u ̂  

8x1 l
x1 X2 ax^ ' 3x2^

X1 X2 dx^ ' 

Here we have two possibilities: 

(i) We can p r o v e existence and uniqueness of a weak solution of the 
E 2 

Dirichlet problem in the anisotrop%c space W ' (ft;S) normed by 
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||u|l
2
 = ||u|

2
 x* 

6 л~2 Л . , - 2 c | liл
 , 2 ү. ү 

1 
x

2
 dx + — x, x

2
 dx 

(2.9) 

I
2 (

-
;
1 ß2 , , fl c)2u | 2 61 62 

i-. Í -"-i -̂> dx + : x1 x~ dx 
10x„| 1 2 J|JX- >XyI 1 2 

provided A ^ 1 , 6 -/ 1 (these last conditions are caused by the 

fact that, the ellipticity constant. c„ equals 

1 6 ( ^ - 1)"2(*S2 - 1 )
2 + 1 ) . 

(ii)a We can prove existence and uniqueness in another anisotropic 
E, 2 '^ 

space W (i-2;S) normed by the expression obtained by omitting the se
cond and third integrals in (2.9) provided >1 = 6 , y? = 5 - 2 , 

(S - A- " 2 , ft - A . 

2.5. Remarks. (i) Example 2.4 shows that the structure of the opera

tors as well as of the weighted spaces can be more general than that 

mentioned in formula (1.1) and in Definition 1.1; in particular, ani-

i-o t ropii? operators and spaces can be treated by our method. 

(ii) In Example 2.3, the estimate (2.8) played an important role. 

Estimates of such a type, which can be viewed as continuous imbeddings 
1 2 2 2 

of W ' (̂ ;S) into the weighted L -space L (fi;b ) , are very useful 
tools both in the theory and in applications of weighted Sobolev spaces. 

2.6. Nonlinear operators. Let us consider the nonlinear operator 

E 
|a | <k 

(Lu) (x) = £ (-D | a | D a а (x;ő, u (x) ) , x Є fl , (2.10) 
a к 

where $,u - {D^u, |3| ̂ k } . Using the theory of monotone operators 3 

results concerning existence of weak solutions of boundary value pro-
k D 

blems for the equation Lu = f in the weighted space W
 ,p
(fl;S) with 

1 < p < 00 and S = {a , |a| 4 k} can be derived provided the "coeffi

cients" a (x;£) of the operator L satisfy the following three con

ditions : 

(i) the weighted growth condition 

|a (x;e)| < a V p ( x ) [ g (x) + c E | L | P " 1 »!/P(x)] , <-•-!> 1 a I = a L a ° IS| <k
 6 6 

M 
|a| 4 k , for a.e. x e tt and all £ t= R with given constants c ^ 0 

and functions g e Lg(ft) , q = p/(p - 1) ; 
a 

(ii) the usual monotonicity condition 
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E [a (x;U " a (x;n)][f, - n ] > 0 (2.12) 
. , . u u a - J L - u u J -
Iat j <k 

M for a.e. x £ ii and all 4, n <=• R ; 

(iii) a wcightcd cocvcivity cc>ncIiticn 

JJ a (x;C)ea > c T |Ca|
Paa(x) (2.13) 

I a |_<k | a I <k 

M for a.e. x G. Q and all £ € R with a given constant c > 0 . 

The following assertion is a nonlinear analogue of Theorem 2.1-

2.7. Theorem. Let S = {a , | a | <^ k} be a given family of weigh t 

functions and W (fi;S) the corresponding weighted space with p > 1. 

Let the operator L from (2.10) fulfil conditions (2.11) - (2.13). Let 

f € (W ,P(ft;S))* and u e Wk,P(ft;S) be given. Then there exists at 

least one weak solution u 6 W ,p(^;S) of the Dirichlet problem for 

the equation Lu = f , t.e.. such a function u that 

u - u Q e w£
,P(fi;S) 

and 

.,k.P E a (X;6 VU(X))D V(X) dx = <f,v> for every v E W ' i i .. a x u a <k J 
(fi) 

= ^ n 
If the inequality in (2 .12) is strict^ then the solution u is 

uniquely determined. 

Idea of t h e p r o o f : Le t us c o n s i d e r t h e form 

a (u ,V) = E a j x ; 5 u ( x ) ) D v (x ) dx . 

N i k £ a k 

The operator T , defined by the formula. a(u,v) = <Tu,v> , is, in view 
k D of condition (2.11), a bounded operator from W ,P(^;S) into its dual. 

To find a solution u of the Dirichlet problem means to find a func

tion u € x = W ,P(Q;S) such that a(u + u v) = <f,v> for every 

v e x , i.e., that T(u + u ) = f . If we denote by T the operator 

from X to X* defined by Tu = T(u + u ) , then our problem reduces 

to the solution of the equation Tu = f in X with a given f 6 X* . 

Conditions (2.11) - (2.13) guarantee that the operator T is bounded, 

demicontinuous, monotone and coercive, and so, the existence of at 

least one solution of the Dirichlet problem follows by applying the 

method of monotone operators. Uniqueness follows by contradiction if we 

assume that the inequality in (2.12) is strict. 
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2.8 Example. As a typical example of a nonlinear operator closely con-
k n nected with the weighted Sobolcv space W *l (.2;S) , S = lo = o (x) : 1 a a 

| (x | • k[ , we can consider the operator 

( L u ) ( x ) =- >! ( - 1 ) I c i ' DCX { | D(Xu ( x ) | p ~ 1 s g n D a u ( x ) a ( x ) } . 

\*\<k 

3. Elliptic operators with "bad" right-hand sides 

Let us now suppose that the operator L from (1.1) satisfies con-
k 2 dition (1.4) with a space V(. W ' (ft) ( V is chosen in accordance 

k 2 with the type of the boundary conditions: for instance, V = W ' (ft) 
k 2 for the Dirichlet problem and V = W ' (ft) for the Neumann problem). 

Further, let S = {o , |a| < k} be a family of weight functions 

and let us denote by 1/S the family J1/a , |a( _< k} . The functions 

1/a are weight functions as well and consequently, we can consider 

the pair of weighted Sobolev spaces 

H1 = W^^ftjS) and H-, = Wk'2(ft;1/S) . (3.1) 

Rewriting the bilinear form a(u,v) from (1.2) in the form 

a(u,v) = >! (a Q(x)D
3u(x)7a (x) D a v ( x ) J T-T dx (3.2) 

i , , Q, ., ) a 3 a o (x) 
I a I , I 3 | ̂ k ^ a 

we conclude immediately from Holder's inequality that a(u,v) is a 

continuous bilinear form on H. x H? . 

This last property replaces the continuity condition (1.3). If we 

now replace the ellipticity condition (1.4) by the pair of conditions 

sup |a(u u )| > c ||u || , i, j =1,2 , i + j , (3.3) 
KI.H <i J J j 

i 

we say in this case that a(u,v) is (H..H^) -e l l ip t ic - we can 

again derive assertions about existence and uniqueness of weak solutions 

of the equation Lu = f in H1 (or its subspaces selected according 

to the type of the boundary conditions), f e H~ . The main tool is a 

modified version of the Lax-Milcram Lemma due to J. NECAS [1] , [2 l , who 

also proposed the method roughly described above. 

3.1. Problem. For what weight functions a , I a I <> k, the conditions 

.— a -
(3.3) are satisfied? More preciselv: For what weight functions o does 
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the ellipticity condition (1.4) with V a subspace of the classical 

Sobolev space w ' (ft) imply the weighted (H ,H„)-ellipticity? 

3.2. Power type weights. Let us consider weight functions of the form 

a (x) = [dist(x,M)Je for all |a| <_ k (3.4) 

where M is an m-dimensional manifold, M C dft , and e is a real 
k 2 number. The corresponding weighted space W ' (ft;S) will be denoted by 

Wk'2 (ft; (dist)e) , so that we have Wk'2(ft; (dist)~e) for Wk,2(ft;1/S) . 

In the case of the Dirichlet problem the solution of Problem 3.1 

is given by the following statement. 

3.3. Theorem. There exists an interval J containing 0 such that 

for e € J the (H1,H„)-ellipticity conditions (3.3) are satisfied with 

H1 = W
k'2(ft;(dist)e) , H2 = W

k»2(ft;(dist)'e) . 

The p r o o f is based on the imbedding 

W^fft; (dist)C) C. L2(ft; (dist) £"2) (3.5) 

which holds for e ^ 2 + m - N (m= dim M) . Using the ellipticity con

dition (1.4) and repeatedly the imbedding (3.5) (also for higher deriva

tives and for both e and -e ) we obtain the lower estimates (3.3) 

with constants c . which depend on the coefficients of the operator L 

(i.e. on the L -norm of a R , on the ellipticity constant c ), on 

geometrical properties of ft (especially on m = dim M and on the 

smoothness of M ) and on the norm of the imbedding operator from (3.5) 

(i.e. mainly on the value of the parameter e ). The interval J is 

determined by the requirement of the positivity of the constants c. . 

A detailed derivation can be found in A. KUFNER [1] who extended to ar

bitrary M C 9ft the ideas developed by J. NECAS [1] for the case M = 

8ft . 

3.4. The size of J . Theorem 3.3 states the existence of an interval 

J ; consequently, the existence and uniqueness of a weak solution of 
k 2 e the Dirichlet problem for the equation Lu = f in W * (ft;(dist) ) is 

guaranteed provided e € J . For applications it is necessary to know 

the exact size of the interval J of admissible powers e in the 

weight function (3.4). It depends on L , ft and M , but the estimates 

derived in the proof of Theorem 3.3 are very rough, and therefore, it 

is necessary to evaluate the interval J in every particular case se-
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parately. For example, for the operator L = - A it can be shown that 

Theorem 3.3 holds for |e| < 1 so that we have J = (-1,1) but in 

the case of M = {x } with xQ dft (i.e., the case of the weight 

function |x - x | ) where ft is a plane domain with the outer cone 

property at the point x (the cone being characterized by the angle 

GO ) we have a better estimate |e| < 2TT/(2TT - a)) .In this connection, 

let us mention the recent result of J. VOLDKICH [l] who has shown that 

for any given t: f 0 , | c | arbitrary small, a second order elliptic 

differential operator L can be constructed (depending on e ) such 

that the Dirichlet problem for L has no solution in the space 

W1,2(ft;(dist)e) . 

In the case of other than power type weights, certain results con

cerning weight functions of the type 

o (x) = s (dist(x,M)) , 

s = s(t) a positive function on (0,°°) , have been derived by B. OPIC. 

These results as well as other examples concerning the Dirichlet problem 

can be found in the book A. KUFNER [l] . 

3.5. Other boundary value problems. For non-Dirichlet problems, Problem 

3.1 has been investigated only for power type weights, and results si

milar to Theorem 3.3 have been established. The fundamental difference 

as compared to the Dirichlet problem consists in the fact that serious 

restrictive conditions appear. E. g., in the case of the Neumann problem, 

where one has to work with the space w ' (ft;S) instead of Wv* (ft;S) , 

the following analogue of Theorem 3.3 holds. 

3.6. Theorem. Let for ft C (RN and M C 9ft with m = dim M the follo

wing condition hold: 

N - m > 2k + 1 . (3.6) 

Then there exists an interval J containing 0 such that for e £ J 

the (H-»H«) - e l l ip t i c i t y conditions (3.3) are satisfied with H1 = 
k 2 £ k 2 -e 

W * (ft; (dist) ) , Hp = W ' (ft; (dist) ) (and consequently, existence 

and uniqueness of a weak solution u 6 H.. of the Neumann problem for 

an elliptic equation of order 2k is guaranteed). 

The p r o o f uses the same ideas as the proof of Theorem 3.3, but it 

is based on the imbedding 

W1,2(ft; (dist)£) Q L2 (ft; (dist)6""2) 

which, in contrary to the imbedding (3.5), holds only for e > 2 + m -
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N . This difference leads to the unpleasant restriction (3.6). 

3.7. Remark. For second order equations, i.e. for k = 1, condition 

(3.6) has the form 

N - m > 3 

and excludes many important and interesting special cases of M as 

points (vertices - m - o ) or lines (edges - m = 1 ) on the boun

daries of domains ft of dimension N = 2 or N = 3, respectively. 

Nonetheless, for some special domains (cubes) and special operators 

( - A ), J. VOLDKICH derived results analogous to Theorem 3.3, even 

in the case if (3.6) is violated. For details see A. KUFNER, J. VOLDKICH 

DJ. 

3.8. Another approach. The method described above is a little more 

complicated than the usual method mentioned in Introduction: It needs 

a pair of Banach spaces and two "ellipticity" conditions (3.3) instead 

of one simpler condition (1.4) and involves the Lax-Milgram-Necas Lemma 

mentioned in the beginning of this section. In the paper of A. KUFNER, 

J. RAKOSNfK [ij, another method is proposed which uses only one (weigh

ted) space and requires the classical version of the Lax-Milgram Lemma. 

Let us describe the method for the Dirichlet problem. We introduce 

a new bilinear form b by the formula 

b(u,v) = a(u,ov) (3.7) 

where o is a (sufficiently smooth) weight function, and consider the 

weighted space W ' (ft;S) with the family S = {o (x) = o(x) for all 
k 2a 

la I <. k} as well as the corresponding space W ' (ft;S) . For a given 
k 2 * k 2 

functional f € (W ' (Q;S)) and a given function u € W ' (ft;S) , we 
k 2 

say that the function u G W ' (ft;S) is a o-weak solution of the Di
richlet problem for the operator L if 

U " uo e wo , 2(^; s) 
and 

b(u,v) = < f,v > for every v 6 W * (ft;S) 

k 2 
(provided b(u,v) is meaningful for u, v £ W ' (ft;S) ). 

Let us further consider a weight function a which satisfies the 

following conditions: There exist a weight an and constants c. , c~ 

such that 

? N r j >2 

u(x) |Z on(x) dx < c. E #£- a(x) dx (3.8) 
U 1=1 J l d x i l 



for every u £ C (ft) and 

|Va(x)|2/a(x) < c2a0(x) a.e. in ft . (3.9) 

Then it can be shown that the form b(u,v) is bounded on 

1 2 1 2 
W ' (S2;S) x W ' (ft;S) . Further, it can be shown that if the constant 
c-Cj is sufficiently small then the form b(u,v) satisfies the ellip-

I Z y 

ticity condition b(u,u) >̂ c'"| |u| L ? > q , so that the existence and 

uniqueness of a a-weak solution follows by a standard application of 

the Lax-Milgram Lemma. 

3.9. Remarks. (i) The last result was derived for k = 1 , i.e. for 

the second order operators only. For k > 1 , we have to consider 

weights o which fulfil conditions (3.8), (3.9) repeatedly (i.e. for 

o there must exist the corresponding oQ , for an the corresponding 

(aQ)n etc. k-times). 

(ii) The pair of conditions (3.8), (3.9) on a can be replaced 

by the single condition 

|Va(x)| <=c2a(x) a.e. in ft (3.10) 

(in the case k = 1 ). For such weights we again deduce that b(u,v) 

is continuous and, moreover, for c9 > 0 sufficiently small also ellip-
1 2 tic, so that existence and uniqueness of a a-weak solution in W ' (ft;S) 

follows in a standard way. 

3.1Q. Examples, (i) For a(x) = [dist(x,M)] , condition (3.9) is sa

tisfied with an(x) = [dist(x,M)]
e and c2 = e and condition (3.8) 

is satisfied with c . - |e - 1| 2 if e f 1 and with c . ~ 

| e + N - m - 2 | " ^ if e ^ m + 2 - N ( m = dim M , N = dim ft ). Con

sequently, we obtain an assertion about the existence and uniqueness of 

a (dist) -weak solution u of the Dirichlet problem in the space 
1 2 e * 

W ' (ft; (dist) ) provided |e| is sufficiently small, i.e. e G J 
* 

where J is an interval containing the origin. Thus, we have obtained 
a result similar to Theorem 3.3, and a comparison of the interval J 

* 
from Theorem 3.3 with the interval J shows that (at least in some 

* -N special cases) J _J J so that our second approach improves the set of 

admissible powers. 

(ii) The weight a(x) = exp(e dist(x,M)) satisfies condition (3.10) 

with the constant c9 = |e| . Weights of such a type are suitable for 

unbounded domains ft and the existence and uniqueness of a a-weak so

lution is guaranteed for |e| small. 
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3.11. Other boundary value problems can be dealt with in the same manner, 

and similar difficulties arise as in the first approach. E. g., if we 
1 2 

consider the Neumann problem in the space W ' (ft;S) with o(x) = 

[dist(x,M)J , we obtain a result about the existence and uniqueness 

for e 6 J which is the same interval as in the case of the Dirichlet 

problem, but under the restrictive condition N - m ^ 3 . Further, one 

can show that for N - m = 1 our method cannot be used while for 
* 

N - m = 2 we find that admissible values are positive c's from J 

On the other hand, the mixed boundary value problem admits existence 

for c e J without restriction on the dimension of M . 

3.12. Remark. Since the form a(u,v) was derived from the operator L 

by using G r e e n ' s formula for the integral JLu v dx , v e C (ft) , the 

ft 
form b(u,v) = a(u,ov) can be derived in the same way from the integ

ral fi-u(ov) dx = JoLu v dx . Consequently, we can treat our o-weak so

ft ft 

lution as the solution of a boundary value problem for the operator 

olu . Since o(x) > 0 a.e. in ft , the difference between a weak and 

a o-weak solution is more or less formal. 
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