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ANALYTICAL AND COMPUTATIONAL 
PROBLEMS IN HIGHER SPECIAL 
FUNCTIONS 
F.ARSCOTT Section I) 
Department of Applied, Mathematics, I hi i i >OTs ity of Ma n itoba 
Winnipeg, Manitoba, RST2N2 Canada 

1. What are "higher special functions"? 

I use the term "higher special functins" to describe a certain 

collection of special functions which are distinguished from the more 

familiar functions in two ways: 

(a) The differential equations which they satisfy ar more 

complicated than the more familiar hypergeometric equation, 

in that they contain more than three regular singularities: 

in a word, these functions are not of "hypergeometric type" 

and the methods by which we can study hypergeometric-type 

functions - solution in series, expression of solutions as 

definite or contour integrals, etc., are no longer available, 

or at least have to be modified. 

(b) They arise from separation of variables in the Laplace or 

Helmholtz equation in more complicated coordinate systems 

than the familiar certesian, cylindrical or sphercial 

coordinates, which lead to Legendre and Bessel functions. 

An important feature of these more complicated coordinate 

systems is that when we carry out the process of separation 

of variables, the two separation parameters generally occur 

in all three of the separated equations, so that the determi­

nation of eigenvalues of these parameters becomes a "multi­

parameter problem" instead of the standard Sturm-Liouville 

type A Ref . 2l 

As a result of these differences, analytical problems, in constructing 

expressions for solutions and investigating their properties, are 

greater by at least an order of magnitude than the corresponding 

problems for, say, Bessel functions. The computational problems are 

also far greater: for instance, the ellipsoidal wave equation has been 

known in mathematical literature since at least 1925, but it was only 

in 198 3 that the first general method for numerical computation of 

ellipsoidal wave functions was published. 

I shall describe briefly two typical problems, each of which arises 

from the interest of physicists and engeneers in practical problem 
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which can be expressed in terms of these functions. 

2. The construction of ellipsoidal wave functions 

The ellipsoidal wave equation arises when the Helmholtz equation 

is separated in ellipsoidal coordinates, so that its solution is 

needed for problems involving, say, diffraction by an ellipsoidal 

surface, or diffraction through an elliptic hole, or propagation of 

sound waves from an elliptic loudspeaker. In an algebraic form, the 

equation is 

A(t)y"(t) + ^A'(t)y'Ct) + (X + yt + Yt
2)y(t) = 0, (1) 

where A(t) = t(t - l)(t - c),c € (0,°°) , y is fixed, while X and y are 

separation constants which we are free to choose. In fact, we must 

choose them so that the solution y(t) may be an entire function of t: 

in other words, it must be finite at all of the three finite singu­

larities 0,l,c. 

It can be proved that such a solution must be either an even 

function or an odcl function of t: to be definite, let us consider 

only the even solution. We express the formal solution as a series 

00 2r 
y = l art^

r (2) 

r = 0 

and when we substitute this in the differential equation we obtain, 

as usual, a recurrence relation between the coefficients, namely: 

XaQ + ^cal = 0 , (3) 

yaQ+ (X - (1 + c ) ) a + 3ca2 = 0 , (4) 

Ya r + (y + ( r + l ) ( r + | ^ a
r + 1

+ (X - ( 1 + c ) ( r + 2 ) 2 } a r + 2 + 

+ c ( r + | ) ( r + 3 ) a r + 3 = 0 , r > 0 . 

( 5 ) 

We observe that the general relation involves four successive 

coefficients, which is in strong contrast to the usual situation for 

hypergeometric-type functions, where the recurrence relation is only 

two-term, or even for Mathieu functions, which have a three-term 

relation. Thus, we are seeking to solve a second-order differential 

equation by means of a third-order difference equation. 

Standard difference equation theory shows that, asymprotically 

as r — °°, 

r+A ~ 1 r̂- A (S 1 ̂  ^v ZX - (< 1) _ ---, c 2 
r 
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but in order to ensure that y(t) is an entire function we must have 

r r 

The equation (5) may then be regarded as a linear third-order 

difference equation with (3), (H)r as initial conditions and (6) as 

an end condition. 

This is solved by means of an iterative technique: having fixed 

c and y, we choose a moderate value N, take estimated initial values 

of XQ and yQ, set OL = 1, a _ = a„ _ = 0, and compute back by 

equation (6) to obtain a0,a1,a2- We then use ( 3) and (U) to obtain new 

a',y'. From these, and the initially chosen *0/MQ we obtain a second 

estimate for X,y, and repeat the process. Either a two-dimensional 

Newton method, or a secant method, is suitable for this step. Details 

are in [11. 

This process is satisfactory and has been used to construct the 

X ( Y ) , y(Y) eigenvalue curves, but it suffers from a major defect, 

namely, the process only converges if we start with a very good 

approximation to the true eigenvalue-pair X,y. The only methods at 

present known, are to work along a pair of curves starting either 

with Y = 0 or with a large value of y, using the asymptotic expres­

sions for X(Y)» y(Y) which fortunately are known. 

A major problem in this field of work is to devise a process 

which will enable us to estimate eigenvalue-pairs for a given Y: 

the variational methods which are convenient in the case of one-

parameter problems, cannot, unfortunately, be used here. 

3. The recessive solution of Mathieu's equation 

In the course of investigating a problem in linear elasticity, 

namely that of an infinite strip punch indenting a half space, it was 

found necessary to make computations with the recessive solution of 

the modified Mathieu equation. This problem is as follows. 

We have the equation 

y"(t) = Q(t)y(t), Q(t) = X + 2h2 cosh 2t, X + 2h2 > 0 

It can easily be shown that this equation has a unique solution, 

normalized by the condition y(0) = 1, and such that y( t) •+ 0 as t - °°: 

every other solution in such that |y(t)| - °° as t - °°. The problem is 

to compute the value of y'(0). 

Because of the rapid increase of the function Q(t), a forward 

shooting method is likely to be unstable, so a backwards method was 
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employed. We make first the transformation 

v(t) = y(t)/y'(t) 

leading to the first-order equation 

v'(t) = 1 - Q(t)v2(t). 

We take a moderate value tQ, set v(tQ) = 0 and integrate numerically 

back to t = 0, giving v(0), and hence y'(0). 

The literature of numerical analysis seems to indicate that 

problems of this kind have not received as much attention as one 

would expect, in view of the large category of equations of the form 

y"(t) = Q(t)y(t) 

which have recessive solutions of this kind. As a check on the method 

used, it was tested on the well-known Airy equation, for which Q(t) = 

= t, and the solution y(t) is a multiple of the Airy function Ai(t). 

The value of Ai(0)/A'(0) is known to be -3 [ r (—) ] /2it, numerically 

-1.371721165. Using the method indicated above, with tQ = 20, and 

employing a fourth-order Runge-Kutta process with step size 0.1, a 

small HP 97 calculator was sufficient to give the numerical value 

-1.371721143. 

This example shows that, even in the relatively well-studied area 

of Mathieu functions, the demands of practicality require us to tackle 

analytical or numerical problems of surprising difficulty and of a 

surprisingly fundamental analytical nature. The value of y'(0) to give 

the unique recessive solution to be no general method of finding it 

without laborious construction of at least one solution. 

In the same area, the behaviour of the recessive solution y(t) 
2 

with respect to the parameters X,h is very important: one would like 

to have a "comparison" theory for such recessive non-Oscillatory 

solutions, comparable to the deep theory we already have for oscilla­

tory equations. 

R e f e r e n c e s 

I ll F.M. Arscott, P.J. Taylor, R.V.M. Zah%r, Matkcmatic* OjJ 
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[21 "The land bzyond B&66&1: a 4>uK\)2.y o^ kigkin. special function*", 
F.M. Arscott, Springer Lecture JN[ptes Series, No. 819. 
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