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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE
MATHEMATICA XVII — 1967

EXTENSION OF THE AVERAGING METHOD
TO STOCHASTIC EQUATIONS

1. Vrxo¢, Praha

This lecture was devoted to Ito’s stochastic équations. These equations
are usually written in the integral form

t t
(1) a(t, w) = xo(w) + I a(z, 3(r, ©)) dr + | B(z, 2(z, )) du(z, o)

or in the equivalent dlﬂ'erentlal form

(1) dx(t, w) = a(t, z(t, w)) d¢t + B(¢, 2(t, w)) dw(t )

The expressions w(t, w) and z(¢, w) are random processes, i.e. there is given
a triplet (2, &, P) where Q is a space, Z is a o-field of subsets of 2 and P is
a probability measure which is defined on . All random processes or random
values are % -measurable functions of the parameter w. Let R, denote the
n-dimensional Euclidean space. First the conditions are given under which
the existence theorem holds:

1) Let w(t, w) be a vector random process with stochastically independent
increments and F(¢) a continuous function such that

E ||lw(ty, ) — w(ty, o)||2 = F(t;) — F(¢y), E(w(ty, o) — w(ty, w)) =0
where £ means the expzctation.

2) There are given a vector function a(t, ) and ¢ matrix function B(¢, z)
where z is also an n-dimensional vector. a(t, ), B(¢, x) are continuous in hoth
arguments and Lipschitz continuous in x:

lla(t, ) — alt, y)I| = K ||z — yll, [|1B(t, ) — B(t, y)ll = K ||z — yl|.

3) There is given a random value xy(w) which is stochastically independent
of all increments of w(f, w) and E||z,(w)||? < o0.

Under these assumptions we can find the solution of (1) in the space
Ry X Q of random processes z(¢, w) with the norm VE sup |l2(7, w)]]2.

It is possible to prove this statement by means of the method of successwe
approximations, which converge in this space.
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Now we can already pass to the average theory. Let us assume that the
ss w,(t, ») and the function F(t) depend on a ,,small”’ parameter ¢ for
¢ € <0, 8> and that the following assumptions are fulfilled:

1) wk(t, w) = w,(t, ) — wy(t, w) is a process with stochasically independent
increments again and lim FE ||w}(f,, w) — w¥(t;, »)||2 = 0 uniformly on every
compact set of £,, £, "

5) Z) S Ft), F)< FH) or

5') Folt) = Flt), Folt) =F )
where F (t), F,(t), F ¥(t) are the smallest o-fields corresponding to w(t, w),
w,(t, w), wk(, o).

6) a(t, x, ) depends on & for ¢ € <0, §) such that K in 2) is independent of

t

¢, there exists a continuous function y(t) such that [ [|a(t, 0, ¢)|| dt < y(t,) —
L

— w(tl) and a function ¢(e) > 0, ¢(¢) - 0 for ¢ - 0 such that

I f (a(z, @, &) — a(z, z, 0) drll < ¢le) (1 +|lal))  for hSt <6+ 1.

7) B(t x, €) depends on ¢ for ¢ € {0, 6). The constant K in 2) is independent
of ¢,

ly
,f 1B(t, 0, )||2 AF(t) = w(tz) — w(ty)

I\

and
iy
; ||B(t, x, &) — B(, , 0)]|2 dF(t) < ¢(e) (1 + |[2]|?)

for t; £ t, £ t, + 1, the functions g(¢), y(t) being the same as in 6).

8) 2{(w) depends on ¢ for e (0, 6> such that x{)(w) is stochastically
independent of all increments of the processes w,(f, ) and wy(t, w). The initial
value z{?(w) is stochastically independent of all increments of all the pro-
cesses w,(t, w) and E|jz{)(w) — z{?(w)||2 - O for & - 0.

Now ewerything is prepared to formulate the

Theorem 1. Let the stochastic equations
t 't
(2) z(t, w) = 2(@) + [ a(z, 2,(z, ®), &) dv + [ B(z, 2,(z, 0), &) dw,(z, w)
0 0
be given and assumptions 1) to 8) be fulfilled, then to every L > 0 and n >0
there is ey > 0 such that

E sup |[lz(r,0) — (v, 0)|[2sn  for 05 &= e,
+{0,L)

This result is very similar to a result of Gicamax I. I. [1] which was un-
known to me for a long time, since his work was not available. But Gichman’s
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result was derived under different assumptions about the processes w(t, w)
pu the statement itself is also slightly different. :
If we put B(t, ) = 0 or w(t, w) = const. in (1) then we obtain an ordinary
differential equation and Theorem 1 is then the well-known theorem where
the right-hand side of (2) fulfils condition 6). The stochastic part of (2) that
is B(t, z, €) must fulfil condition 7) and that is stronger than a condition
analogous to 6). The following example shows that the condition on B
analogous to 6) would not be sufficient. Let x be a scalar and w(t, w) the scalar
Wiener proces i.e. the almost everywhere continuous process with stochastically
independent increments for which F(t) = ¢. We shall consider the equation

¢
z,(t, ) = [ sin % dw(r, w). By the well known theorem it holds E|z(t, w)|2
0
t t
e o T t e . 2 . t . . T
= anﬂ—; dr = - s and 151_1)101 Elz(t, w)|2 = - while Gf sin — dr
— 0 for ¢ > 0.

The number ¢, in Theorem 1 depends on L. However, if we add some
stability properties of solution of unperturbed equation i.e. of equation (2)
for ¢ = 0 and if we omit the least upper bound in statement of Theorem 1
we can choose ¢, independent of L. We shall use the concept of stability in
average.

Definition 1. The solution x(t,w)of (1') is stable in average,if there is a function
o(n) > 0 such that E||z(ty, ) — x(ty, w)||2 < o(n) implies E||z(t, ») — z(t, w)||2 <
< n for all t = ¢,

Definition 2. The solution z(t, w) of (1') is asymptotically stable in average
if it is stable in average and if there exist a number A > 0 and a function T'(o, n)
defined for o0 < A, n<<A such that E||x(ty, w) — x(ty, w)||2 < o implies
E|jz(t, ) — z(t, w)||2 < n for all t = t, + T(0, n).

Definition 3. We say that the process w(t, w) 18 homogeneous if all distributi;ns
Fipin to4n(4) = P(w(ty + b) — w(ty + k) € A) are independent of h (A is an
arbitrary n-dimensional Borel set).

Theorem 2. Let the conditions 1) to 8) be fulfilled, let the convergence
E||wk(t,, w) — wi(ty, w)]|2 = 0 in 4) hold uniformly with respect to all t, t,,
“let p(t) (cf. 6) and 7)) be estimated by a continuous functions y*(t): y(t;) —
— y(t) S p*(, — t;). Let the processes w(t, w) be homogeneous and let the
equation

(2 dz(t, 0) = a(t, z(t, ®), &) di + B(t, (¢, o), &) dw,(t, »)
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for e = 0 have a constant solution xy(t, ) = x4(w) for t = t, which is asymptotical-
ly stable in average, then to every n > O there are ¢y > 0, o > 0 such that
sup Bzt 0) — 2ot )2 <y for 05 ¢ < &
{ty,0)
where z.(t, w) is an arbitrary solution of (2') with the initial condition
E|lz,(t, ©) — z4(0)]|? < o.
We can formulate sufficient conditions for the stability and the asymptotic
stability in average by means of Lyapunov functions.
Let the function F(f) from 1) be absolutely continuous, then there are
absolutely continuous functions Fy(t) such that

El(wi(ty, ©) — wilty, ®)) (wylty, @) — wylty, w))] = Fiylts) — Fy(ty)
where wj(t, w) is an ¢-compenent of the vector process w(t, w). Denote by
f(t) and fy(¢) derivatives of F(t) and Fy(t), respectively.

Theorem 3. Let assumptions 1) to 3) be fulfilled where F(t) is absolutely
continuous and let equation (1') have the solution x(f, w) = 0. If there exists
a quadratic form V(t, x) = Z cy(t) xix; which fulfils the conditions that the
ci(t) have continuous second derivatives and that there are constants d, > 0,
d, > 0 such that

dil|z|[* £ V(t, 2) £ dyllx]|?,

. av |, X ev ~
(3) W, x) = T } Fr ai(t, x) + é cij(t) Bix(t, ) Bu(t, x) fu(t) < 0
sad O
i3k

Jor almost all t 2 0, then the solution x(t, 0) = 0 is stable in average.

Theorem 4. Let the assumptions from Theorem 3 be fulfilled with (3) replaced
by W(t, x) £ —d,||x||? for almost all t, d; > 0, then x(t, w) = 0 is asymptotically
stable in average.

The following question is of interest in the averaging theory. Under what
conditions the stability of the unperturbed equation (i.e. equation (2') for
¢ = 0) implies the stability of (2’) for small ¢ > 0 and under what conditions
the existence of a periodic solution of the unperturbed equation implies the
existence of such solution of (2’) for small ¢ > 0. Considering this problem
we compare equation (2') with the deterministic equation

(4) dy = a(t, y, 0) dt
with random initial values. Conditions 4) to 8) must be now reformulated:
4*) The processes w,(t, w) are now defined only for ¢ € (0, §), they are

processes with stochastically independent increments and there is a continuous
function F(¢) (independent of &) such that
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Ellw(ty, 0) — wy(ty, o)||2 £ F(ty) — F(t), E(we(ty, ») — w,(ty, ®)) = 0.
Assumptions 5) and 5’) are not necessary.

6*) a(t, x, ¢) is defined for e {0, 6) and fulfils condition 2) where the
constant K is independent of ¢ and

t
of (a(z, y(z), &) — a(z, y(r),0))dr -0 for ¢ >0

uniformly with respect to constant vectors y and ¢€ < 0 L > for every L>0,
where y(t) are solutions of (4') with the initial conditions y(0) = y.

7*) B(t, z, ¢) is defined for ¢ € (0, 8) and fulfils condition 2) where the constant
K is independent of ¢ and

t

of [1B(z, y(z), €)||* dF () > O for e >0

uniformly with respect to constant vectors y and t€ < 0, L > for every L>0,
where y(t) have the same meaning as in 6*).

8) The partial derivatives %, % exist and they are LipscHITz continuous
in z.
The asymptotic stability in average will be replaced by exponential stability

in average, too.

Definition 4. The solutions of (1') are unmiformly exponentially stable in
average, if they are stable in average and there exist positive constants K > 0
and 0 < f3 <1 such that
E||lxW(t, w) — zO(t, w)||2 £ BE||xM(ty, w) — z3)(t), w)||2 fortzt,+ K
for all the solutions of (1').

Definition 5. A process z(t, ) is periodic with period T, if

P(z(t,, w) € Ay, 2(ty, w) € Ay, .. ., 2(ts, w) € Ag) =
= P(2(t; + kT, w) € Ay, 2(ty + kT, w) € A, ..., 2(ts + kT, w) € 4;)
for all n-dimensional Borel sets Ay, all t; < t, < ...t and for all integers k.

Theorem b. Let the assumptions 4*), 6*) to 8*) be fulfilled, let a(t, , ¢),
B(t, z, €) be periodic functions in t with the period T and let w(t + h, w) —
— w,(t, w) be periodic processes with the same period T'. If the solutions of equation
(4') are uniformly exponentially stable in average, then there is an ¢y > 0 such
that the solutions of (2') are uniformly exponentially stable in average for 0 <
< & £ g and there exist periodic solutions x¥(t, w) of (2') for 0 < & £ &, and
a deterministic periodic solution y*(t) of (4') and

lim sg%) E||z¥(t, w) — y*(t)|[2= 0

s->0 ¢

holds.
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This Theorem has an interesting consequence for parabolic differential
equations. If a(¢, 2, ¢), B(t, z, €) fulfil the assumptions of Theorem 5 and if
we add some assumptions which are used in the theory of parabolic equations
(e.g. BTB is positive definite for all positive ¢, BT is the transpose matrix,
that B are HOLDER continuous in ¢ and there are day 0By 8By which

3.’121’ 31:1 > Oxy 3:!,‘1
are continuous and bounded), then for small ¢ > 0 the parabolic equation

1N 0*(2. Bult, @, &) Bu(t: @, eJu) —Z Hault, z,¢) u)

ot 2 Ly -, Ox; 0x; ox;
.7

has periodic solutions with the initial values ofy(x) where « is an arbitrary
real number and [ fy(x) dx = 1, f; = 0. These solutions are relatively asymp-
totically stable in the sense that

i

Hy

lim ... lfn(u(t, z; fy) — ault, z; f,)) de =10

{00 2,

uniformly with respect to 4,, ..., A, 4y, ..., un where u(t, z; f;) is the
solution of the parabolic equation with the initial condition (0, z; f;) = f;,
if [|fi(x)] dz < o and [f(x) dz = « holds.
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