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ACTA FACULTATIS RERUM NATURALIUM UNIVERSITATIS COMENIANAE 

MATHEMATICA XVII - 19G7 

INVARIANT MANIFOLDS FOR FLOWS 

J. KURZWEIL, Praha 

The purpose of this paper is to present a geometric approach to the theory 
of invariant manifolds of differential systems. Let the concept of an invariant 
manifold of a differential system be illustrated by the following simple and 
rather typical example (which is frequently met in applications to electrical 
systems). 
(1) x = Ax, <p = 0, 
(2) x = Ax + fx{x, <p, t), <p = f2{x, <p, t). 

Here x, fx are n-vectors, A is an n X n-matrix, <p is a coordinate vector on 
an m-dimensional torus 0. Assume that the real parts of the characteristic 
numbers of A are different from zero. The subset of En X 0 X Ev which 
consists of all points (0, <p,}), <p e0,t e Ev is obviously invariant with respect 
to (1), i.e. if x(t) = 0, then x{t) ==. 0 for a solution {x, <p) of (1). If fv f2 are 
sufficiently small, then a similar situation holds for (2), more precisely there 
exists a map p from 0 x Ex to En such that if x = p{<p, t), then there exists 
a solution {x, <p) of (2) defined on Ev x{t) = x, <p(t) = 5 and x{t) = p{<p{t), t) 
for t e Ev The map p is unique and the set P of all {x, <?>, 1), x = p{jp91) is the 
invariant manifold of (2). The behaviour of the solutions of (2) near P is 
similar to the behaviour of solutions of (1) near the plane x = 0. 

Usually it is assumed that the perturbation fi, i = 1, 2 is small in that 
sensa that it fulfils one of the following conditions 

(I) /i(0, cp, t) = 0, \\fi{xv <p, t) -fi{x2, <p, Oil S L \\xx - x2\\, i^l,2 

L being small (which is usually fulfilled in the way that fi contains higher 
powers in x only), 

(II) fi{x, <p, t, e) = egt{x, <p, t), i = I, 2, 

gi fulfilling some boundedness conditions, e being a parameter, which is a t 
our disposal and which may be chosen sufficiently small, 
(HI) fi{x, <p, t, e) = ht{x, <p, tie), i=\,2, 
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ht(x, <p, T) being periodic or almost periodic in r, the average of h% with respect 
to T being zero and e being again the small parameter. 

Or it may be assumed that /« is a sum of three terms, each of which fulfils 
one of conditions (I), (II), (III). Theorems of the above type were proved 
for a large number of various situations, for example the matrix A need not 
be constant, there may appear a small parameter e on the right hand side 
of some rows of (2) or on the left hand sides of some rows (i.e. at derivatives 
of some components of x or (p) and recently similar theorems were proved for 
equations with time-lags or for functional differential equations. 

The unifying theory may be obtained by a geometric approach. The basic 
concept is the one of a flow, which is more general then the concept of a dy-
uamical system. I t differs from the concept of a dynamical system in the 
following way: the solution y(t,y,}) which passes through # in the moment 
} need not exist on the whole real axis but on some interval <?, t{), t± > ? 
and uniqueness of solutions is required with t increasing only. The values 
of the solutions y are from a metric space or from a Banach space. By a flow 
Y we shall mean a set of functions fulfilling some axioms and in special cases 
Y may be the set of all solutions of a differential equation or of a functional 
differential equation. The elements y of a flow Y will be called solutions. 

The conditions which guarrantee the existence and uniqueness of an in­
variant manifold for a flow, cannot be stated in detail here. They may be 
described roughly as follows: the space Y, where the solutions y of the flow 
Y take their values from, may be represented as a product of two spaces X 
and 0 and the x- and ^-components of the solutions y satisfy some inequalities. 

General Theorem: / / the above conditions are satisfied, then there exists 
a uniq^te map p from & X Ex to X s^tch that if x = p(y, ?), then there exists 
a solution y — (x, (p) from theflo^v, ^vhich is defined on the ^vhole real axis x(t) = 
= x, (p(t) = qr and x(t) = p((p(t), t) for t e Ev Again the set P of all (.?, (p, t), 
x = p(fp, t) is an invariant subset of the flo^v Y and it is possible to describe the 
behaviour of solutions from Y near P. 

Let several features of the General Theorem be emphasized, 
(i) If the flow Y fulfils the conditions from the General Theorem, then every 
flow Z, which is sufficiently close to Y, fulfils conditions of the same type and 
therefore there exists an invariant subset of Z. The fact tha t flows Y and Z are 
close is described by two numbers C > 0, T > 0, J being small and T being large 
and it is required tha t the following inequalities hold 

(3) \\y(t, u, i) - z(t, u, i)\\ <, C for i ^ t ^ i + T, 

(4) \\y(t, u, i) - y(t, v, i) - z(t, u, i) + z(t, v, i)\\ ^ C II* — *ll 
for i ^ t £ i + T. 
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Assume that flows Y and Z are the sets of all solutions of 

(5) $=f(y,t), 
(6) z = g(z, t), 

the space Y where the solutions y and z take their values from being a Banach 
space. 

Theorem CDP (Continuous Dependence on a Parameter): If f and g fidfil 
some bo^mdedness conditions, then flows Y and Z are close in the above sense if 

t-^A 

II / lf(y> a) —• 9(y> a)] dcr is s^lfficiently small for all y, t and 0 < A ^ ' l . 
t 

Theorem CDP may be applied in the special case tha t 

(7) y = h(y, tie), 
(8) z = h0(z), 

1 t + T , 
h0(z) = lim — f h(z, G) dcr the limit being uniform with respect to z and t. 

r->oo T t 

This way the averaging principle is includ?d into the above theory with6lit 
any transformation of coordinates. 
(ii) The theory of invariant manifolds (or subsets) may be developed for 
metric spaces. I t is clear tha t the norm of the difference of y and z in (3) 
is to be replaced by the distance; (4) in the case of metric spaces is formulated 
in a more complicated way. Usually the invariant subset is a product of 
a torus with an Euclidian space, but in the above theory the invariant subset 
may be a general complete metric space 0. The theory simplifies considerably, 
if 0 has the following property: 
(A) if W is a continuous map from 0 to 0, if W"1 exists and fulfils a Lipschitz 
condition, then W(0) = 0. I t is very easy to prove that every finite-dimensional 
manifold has the property (A) and there exist spaces having property (A), 
which are not manifolds. 

(iii) There are no periodicity or almostperiodicity conditions in General 
Theorem. If it happens tha t the flow Y is periodic [i.e. i f / is periodic in t 
in the case tha t Y is the set of solutions of (5)], it is verified easily tha t the 
invariant subset remains an invariant subset, if it is shifted in the time by 
the period of the flow; as the invariant manifold is unique, it is necessarily 
periodic. In a similar wray almostperiodicity may be treated. 

(iv) General Theorem may be applied if the behaviour of solutions near the 
ipvariant subset is like the behaviour of solutions of a differential system 
near a saddle point; the case tha t the invariant subset is exponentially stable 
is the most simple one. 
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(v) Systems with discrete time — i.e. transformations — are included in 
General Theorem. 
(vi) General Theorem may be applied in case of singular perturbations. 

As one of the applications of the above theory the following result may be 
mentioned: I t is well known tha t solutions of differential equations with 
time lags or of functional differential equations cannot be prolonged with t 
decreasing in general. I t may be deduced from the above theory that the 
solutions of a functionally perturbed ordinary differential equation, which 
are defined on El9 fill up an (n + l)-dimensional manifold, if the unperturbed 
equation is a (nonlinear) ordinary differential equation in En or in an n-
dimensional mayiifold the right hand side of which fulfils some boundedness 
conditions. The reason is in the very simple structure of the flow which 
corresponds to the unperturbed equation considered as a functional equation: 

, the ^-component of any solution from this flow tends to z3ro extremely rapilly. 
Of course the necessary boundedness conditions are not fulfilled by equation 
oc(t) = Ax(t) + eBx(t —- 1) — it is well known that there exist solutions 
xj = eW,j = 1, 2, 3, . . . — but the above result always applies, if a functional 
perturbation term is added to the right hand side of <p = g(<p), <p being a co­
ordinate vector on a compact-manifold (and some smoothness conditions 
being fulfilled). 

Finally let somo results on the Van der Pol Perturbation of a Vibrating 
String be described. Consider the problem 
(9) u%\ — uXx = eh(u) ut, 0 <£ £ <£ 1, u(t, 0) = u(t, 1) = 0, 
h having similar properties as 1 — u2. This problem may be transformed 
to an ordinary differential equation in a function space of the type (7). There 
are no time-independent solutions of the averaged equation (8), which are 
continuous (in the space variable), but there exists an infinity of discontinuous 
ones. Some of them are exponentially stable, other ones are unstable so that 
the picture rendered by the averaged equation is rather complicated. For the 
unparturbed equation it may be proved that there exist smooth solutions, 
tending with t -> oo to periodic ones, which are discontinuous. Thus it is 
shown that there exist discontinuous periodic solutions of (9) and that 
discontinuous solutions appear in a natural way, if (9) is examined. 
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