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ACTA FACULTATIS RERUM NATURALIUM UNIVERS1TATIS COMENIANAE 

MATHEMATICA XVII - 1967 

VECTORS OF GEVREY CLASSES AND APPLICATIONS 

J. L. LIONS, Paris 

Introduction. 

In several problems in partial differential equations one is led to study the 
space of functions u defined in a domain Q of Rn with smooth boundary r 
and which satisfy conditions of the following type (we take, here the simplest 
possible case): 

(1) (f\Wu\2 dxY1* < cL^Mk V k, 

(2) A% = 0 on r V h 

where c and L are suitable constants (which depend on u) and Mk is a given 
sequence — For example, if 
(3) Mk = (2k)l 

then (1) (2) imply that u is analytic in Q = Q \j r (assuming r to be real-
analytic). A much more general result of this type will be reported in Section 
4 below. 

Once one is led to study classes of functions satisfying conditions of type 
(1) (2), it is natural to put this question in a more general framework and to 
replace in (1) (2) A by an unbounded operator A in a Banach space E, condition 
(2) being then replaced by 

(2) u e domain of A, Au e domain of A, and so on, and condition (1) being 
replaced by 

(1) \\AH\\<cL^Mk y-k, 
(where || || denotes the norm in ). 

In Sections 1,2 we give some (simple) remarks on the spaces defined by 

<*> Expo3itery lecture. All details and other results are contained in the book [4] by 
E. Magenes and the A. . 
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(1) (2) (the so — called "vectors of Gevrey class" when {Mk} is a Gevrey 
sequence) when (—A) is the infinitesimal generator of a semi-group. [This 
contains (1) (2) by taking E = L2(Q), A = —A, the domain of A consisting 
of those functions u which are zero on r]. 

The plan is as follows: 

1. Domains D(Aco; Mk). 
2. A criterion of non triviality. 
3. The semi group on D(Ato; Mk). 
4. The case when A is an elliptic operator, 
o. Transposition. 
(5. Cauchy problem. 
7. Some examples. 

Bibliograpky 

1. D o m a i n s D(A*>; Mk). 

Let E be a reflexive Banach space, norm || ]|; let A be an unbounded 
operator given in E; wre assume (for semi-group theory we refer to [2], [10]): 
(1.1) (—A) is the infinitesimal generator of a continuous semi-group 0(t) 
in E. Let D(A) be the domain of A. We set 

D(A«>) = {u | A*u e D(A) V k}; 

it is well known [2], [10] tha t D(Aco) is dense in E. 
Let now {Mk} be a given sequence of positive numbers. 
We define 

{ D(Aco; Mk) = {u | u eD(A*>); there exist constants c and L (de­
pending on u) such that \\Aku\\ <cLkMk Y h}. 

E x a m p l e 1.1. 
If Mk = (k\)*, a > 1, the coresponding D(A™; Mk) space is called: the space 

of vectors of Gevrey class a. 

E x a m p l e 1.2. 
If Mk — £!, the coresponding D(A'X>; Mk) is the space of analytic vectors. 

(See [8]) 

R e m a r k 1.1 

Definition 1.2 is purely algebraic. There is a "natura l" locally convex 
topology on D(A«>; Mk): firstly, fix L in (1.2) (but not C) and call DL(AX; Mk) 
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the coresponding space; provided with the norm sup Tkl[f - \\Aku\\, it is 

a Banach space; then D(A°°; Mk) = inductive limit of DLn(A*>; Mk), Ln-> 
-> +00. For details see [4], 

R e m a r k 1.2. 
Hypothesis (1.1) is perfectly useless in Definition (1.2). But it will be useful 

in the proofs below. 
The "natural questions" are now: 

(i) when is D(A«>; Mk) =£ {0} ? 
(ii) what is the "abstract" interest of D(A™; Mk)? 
(Hi) how can one characterice, in "concrete" situations, the spaces D(Aco; 

Mk) in "concrete" terms? 
Partial answers to these questions are respectively given in Sections 2, 3, 4 

below — some applications being given in Sections 5, 6, 7. 

2. A c r i t e r i o n of n o n t r i v i a l i t y . 

Theorem 2.1. Let {Mk} be a non quasi-analytic sequence^ [1] [7]. Then 
D(A«>; Mk) is dense in E. 

Proof . 1) If {Mk} is non quasi-analytic, one can find a sequence Qn of 
functions with the following properties [7] [9] 

{ Qn e DMJC, Qn(t) = 0 if t < 0 or if t > en, en -> 0 if n -> oo, 

Qn>0, f on(t) dt=l. 
o 

2) Define next G(gn) e L(E;E) by 
oo 

(2.2) G(on) e = f G(t) e . Qn(t) dt, e e E 
o 

One checks easily tha t G(on) e e D(Aco) and that 
(2.3) A*Q(Qn) e = G(Q^) e Y k. 
Thanks to the fact tha t on e DMk it follows tha t G(Qn) e e D(ACC; Mk). 

3) Let now e be arbitrarely given in E; by (2.1) G(on) e -> e in E, and by 
2)? G(Qn) e e D(Aa>; Mk), hence the result follows. 

R e m a r k 2.1. I t can happen tha t D(Am; Mk) is dense in E even with 
Mk = 1 V k example: assume tha t A has a complete set in E of eigenvectors 
ton then Aa)n = ?.ncon hence ||.4*a>n|| < ||cow|! /*, i.e. belongs to D(Aco; 1). 

<2> This means: let Dyjk be the space of C*> scalar functions rp on R with compact support 
and satisfying | . . . | <\^\t)] <cLkMk >^k then DMk ¥= {0}. 
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But in can happsn that D(Aco; Mk) = {0} if Mk is quasi — analytic; 

example: E = Lv(Q, oo), A=-~9 D(A) = {/1 /, - ^ e Z>(0, oo)f /(0) = o j . 

3. The semi-group on D(A°°;Mk). 

Theorem 3.1. The necessary and sufficient condition for ueE to be in 
D(Aco; Mk) is that the function 
(3.1) G(.)u = "t->G(t)u" 
is of class Mk with values in E, i.e.: 

for every finite T there exist constants Ct and Lx (depending on T and 
u) such that 

d* 
(3.2) 

^ 0(0 «|| < C^Mu \t fc, te [0, T]. 

R e m a r k 3 . 1 . This property justifies the terminology introduced in Examples 
1.1 and 1.2. 

Proof of Theorem 3.1. 
1) (3.2) implies (1.2) (with C = Cv L = Lx). Obvious, take t = 0 in (3.2) 

and use d ^f ) • u | 0 = (-1)*A%. 

Ak 
2) (1.2) implies (3.2). Obvious too. I n d e e d - ^ - G(t) u = (—\fG(t) Aku 

hence, for t e [0, T] 

d*G(t) 
U < sup \\G(t)\\ UH;B> \\A*u\\, 

ře [o, T] at* 
hence 3.2 follows. 

It follows easily from Theorem 3.1 that (see [4] for details). 

Theorem 3.2. For every t, G(t) is a continuous linear mapping from D(ACC; 
Mk) into itself; the semi group G(t) in D(Aco; Mk) is C*° (and of infinitesinal 
generator — A). 

One can also show [4] that if for a suitable constant d 
(3.3) Mk+j ^ dWMkMj yk,j 
then for every u e D(Aco; Mk) the function * -> G(t) u is of class Mk in t :> 0 
with values in D(A°°; Mk) (i.e., for every finite T, there exists a bounded 

1 d* set B in D(Aco; Mk) and a constant L such that -r--j- G(t) ueB V k, 

t e [0, T]). 
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4. The case when A is an elliptic operator . 

Let us recall first a classical definition: a complex-valued function tp defined 
on a compact set of R*> is said of Gevrey order )S > 1 (resp. real analytic) if 
for suitable constants c and L one has 

\DPcp(x)\ ^ CLPI+- • • +P*(PI\ p2\ ... pn\y (resp. /S = 1) 

V P = {Pi> • •., Pn}> V x 6 compact set of definition of q>. 

Let i 3 b e a bounded open set of JRW, of boundary JT; we assume 

{ r is a (n —• 1) dimensional variety, of Gevrey order /? (resp. real 
analytic) 

Let A be a differential operator in Q; we assume that 

(4.2) A is an elliptic operator of order 2m (and properly elliptic if w = 2) 
and that 

(4.3) the coefficients of A are of Gevrey order /? (resp. real analytic) in Q. 

We are going to characterize D(Aco; Mk), taking 
(4.4) E = L2(Q). 

(4.5) D(A) = {u\ueH2™(Q) C\ H™(Q)} (that is: DPU e L2(Q) V P, \p\ ^ 
< 2m, DPU = 0 on r V, \p\ <>m — 1), 

and when we choose 
(4.6) Mk = [(2km)\y. 

One can prove (see [5], [6], [4]): 

Theorem 4.1. We assume the hypotheses (4.1), (4.2), (4.3) to hold choosing 
D(A) and Mk by (4.5) (4.6) one has 

{ D(ACX); Mjc) ----- functions of Gevrey order /? in Q (resp. real analytic) 
which satisfy the boundary conditions C(Aku e H%(Q) V &"• 

Remark 4.1. Under the hypothesis (4.2), —A is the infinitesimal generator 
of a semi-group in E and even of an analytical semi-group. [2], [10]. 

One can replace E = L2(Q) by LP(Q), 1 < p < oo, p ^ 2, without changing 
D(A•; Mk). 

R e m a r k 4.2. The same result holds true for other boundary conditions 
than the Dirichlet boundary conditions considered above. — See [4]. 

Remark 4.3. If u satisfies ||-4*M|| <, cLk((2km)\) V & and no boundary 
conditions, then one can conclude that u is real analytic on every compact 
subset of Q; see [3]; this result in contained in Theorem 4.1. 

Remark 4.4. A more general result is proved in [4] when we also consider 
"non-zero boundary conditions". 
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5. Transposi t ion 

Since E is assumed to be a reflexive Banach Space (actually "reflexive" is 
used here for the first time — and in a non essential manner!) all what we 
said in Sections 1, 2, 3 is valid after replacing 

EhyE' -=-dualof_0 
G(t) by G*(t) = adjoint of G(t) 

A by A*, A* being the adjoint of A in the sense of unbounded operators 
in E or the (opposite to the) infinitesimal generator of the adjoint semi-group 
G*(t). 

Consequently: 
(5.1) G*(t) is a semi-group in D(A*<°; Mk)'. 

If we make the hypothesis (see Theorem 1.1): 
(5.2) D(A*™; Mk) is dense in E' 
then we can identify E to a sub-space of the dual D(A*co; Mk)' of D(A**; Mk); 
summing up, we have 
(5.3) D(A">; Mk) c E c D(A*<°; Mk)\ 

Taking the adjoint of (5.1) we obtain: 
(5.4) [G*(t)]* is a semi-group in D(A*C0; Mk)'. 

But one easily checks that (G*(t))* is an extension of G(t), that we can 
still denote by G(t). Therefore: 

{ G(t) is a semi-group in D(A*W; Mk)'9 which is C00 and whose infinite­
simal generators is —A. 

For more details, see [4]. 

Remark 5.1. In the applications, D(A*n; Mk)' is not a space of distributions 
but a space of functionals (analytic functionals of Gervey's functionals). 
Structure theorems for the elements of D(A*(X>; Mk)' are given in [4]. 

6. Cauchy problem. 

If —A is the infinitesimal generator of a semi-group G(t), then the unique 
solution of the Cauchy problem 

(6.1) Au + u' = 0 

tu(t)eD(A), 
(6-2) HO) = n0 

is given by 
(6.3) fi(f) = G(t) «,. 
See [2], [10]. 

(-£)• 
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Thanks to Theorem 3.2 and its "transposed" version (5.5) we obtain: 

Theorem 6.1. We assume that (5.2) holds true — For u0 given in D(Aco; Mk) 
(resp. in D(A*co; Mk)') the Cauchy problem (6.1), (6.2) admits a unique solution, 
given by (6.3), which is C00 from t ^ 0 ->D(A™; Mk) (resp. D(A*W; Mk)'). 
Moreover, in case (3.3) holds true, the solution u(f) is of class Mk. 

R e m a r k 6.1. In case 0(t) is analytic (see Remark 4.1) then, even starting 
with u0eD(A*co; Mk)' (i.e. with an extremely general Cauchy data), one has 

u(t) e D(A"; Mk) V t > 0. 
See [4]. 

7. Some examples. 

We take the two as simple as possible cases. 

7.1. Heat equation. 

Combining results of Sections 4 and 6 we obtain the following result: let 
u0 be given in Q, satisfying 

\u0 is of Gevrey order /? (resp. real analytic) in Q, and Aku0 = 0 on { u0 is o: 
ГVk. 

Then the solution of 

8u 
(7.2) -Au + — =0inQx]0,oo[, 

(7.3) u(x, t) = 0 if x eT, t > 0, 
(7.4) u(x, 0) == u0(x), xeQ 

is of Gevrey order /? in x (resp. real analytic if p = 1) and of Gevrey order 
2/3 in t. 

We have just to take: Mk = [(2fc)!J* in the general theory. 

Moreover in this case Remark 6.1 applies — 

7.2. Wave equation. 

We consider now 

82u 
(7.5) -Au + - ^ r = 0 in 12 x ]0,oo[, 

(7.6) u(x, t) = 0 if x eT, t > 0, 

(u(x, 0) = uw(x), xeQ, 

(7.7) ] du 
ы (ж, 0) =- u01(x), xєQ. 
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íif гe0 

(™) {is of 

Writing (7.5) as a first order system in t one can apply semi-group theory. 
One obtains: 

*01 and uQ, satisfy conditions' analogous to (7.1) for u0, then u(x, t) 
of Gevrey order /? in x and in t. 

See [4] Vol 3 for technical details. 
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