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Abstract. This text is extended Equadiff 9 plenary lecture. Sections
1-4 contain a survey of published results which concern triangular and
quadrilateral finite elements. Sections 1 and 2 are devoted to interpola-
tion problems. These two sections contain also results of other authors.
The analysis of both the effect of numerical integration and approxi-
mation of a boundary is restricted to triangular elements with linear
polynomials and to quadrilateral elements with four-node isoparametric
functions. The corresponding results in the case of smooth solutions are
introduced in Section 3, where the rate of convergence O(h) is proved;
the case of nonsmooth solutions is studied in Section 5. This section is
restricted to triangular elements. In Sections 3 and 5 the domain consid-
ered has a form of a narrow ring with a great diameter. In this case the
elements cannot be arbitrarily narrow. In Section 4 a composite domain
indicated in Fig. 5 is approximated by triangular elements and applica-
tions of the finite element method in magnetostatical problems are in-
troduced. In this case the triangular elements can be arbitrarily narrow.
Section 6 is an Appendix where a special form of a discrete Friedrichs’
inequality, suitable for semiregular elements, is proved. Sections 5 and 6,
which complete the survey introduced in Sections 1-4, have not yet been
published and were written specially for Equadiff 9.

The notation of derivatives and Sobolev spaces is identical with the no-
tation used in [9].

As to the notion of semiregular elements, semiregular triangles can have
one angle arbitrarily small. Triangles with two arbitrarily small angles
are irregular. A semiregular quadrilateral K can be arbitrarily narrow
and it satisfies the condition

|costi| <o<1l (i=1,...,4),

where 91, ...,94 are the angles of K.
AMS Subject Classification. 65N30

Keywords. Finite element method, elliptic problems, semiregular ele-
ments, maximum angle condition, effect of numerical integration, approx-
imation of the boundary, magnetostatical problems, discrete Friedrichs’
inequality
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1 Triangular and quadrilateral elements of the Lagrange
type
First interpolation estimates which can be used in the finite element theory were

derived by Synge in the year 1957 (see [14, pp.209-213]). His a little improved
result can be formulated in the following theorem:

Theorem 1.1. Let u be a function continuous on a closed triangle T with
bounded second partial derivatives in its interior T,

0%u

6xi6xj

< M,

and let p(x1,22) be a linear polynomial satisfying
p(P) =u(P) (1=1,2,3)

with Py, Py, P3 the vertices of T. Then it holds on T

2Msh

ou 8p -

‘6—9@_8—% S st VY (1.1)
lu—p| < 2Mph? (1.2)
e cos(/2) .

Result (1.2) was obtained by means of (1.1). Another independent consid-
eration (where we first estimate the difference ¢ = u — p on P> P5; and then on
P, P’ with P’ € P,P; an arbitrary point) gives us

1
ju—pl < M0 (13)

This result implies a question whether estimate (1.1) cannot be improved, as far
as the geometry is concerned. An example showing that the answer is negative
was presented in [15]. Here is its simplified version: Let us consider a set of
triangles with vertices

Pl(_h/27 O)a PQ(h'/Za 0)7 Pg(O,yo),

where h is fixed and yo (0 < yo < v/3h/2) is variable, and a function u(x;,zy) =
x2. Tts first degree interpolant has the form

p(z1,22) = h—2<1 - ﬁ) .

4 Yo
Hence
ou Op| |op| K2 h _h
‘8—;52_8—962 =30 _%_Ecota—gtan(’yﬂ), (1.4)
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where o and 7 are the minimum and maximum angles of T, respectively. If
Yo — 0 then  — 0, v — 7 and

ou_ o

8—562 6x2

Zlamal knew both estimate (1.1) and result (1.4) when he started to work
on his paper “On the finite element method” (see [21]). Nevertheless, instead of
the maximum angle condition

yr<vo<m VT €T, Vhe (O,ho) (1.5)

where 7, denotes a triangulation of a given (polygonal) domain, he introduced
the minimum angle condition

9 > >0 VT €Ty, Vhe (0, hg) (1.6)

where Y7 is the minimum angle of T. Reading Zlamal’s papers one sees that
the finite element theory is relatively easy under condition (1.6). Also other
mathematicians started to use condition (1.6) and when it was used in Ciarlet’s
1978-book [3] it has become a standard finite element condition.

However, there are situations where the minimum angle condition (1.6) is
too restrictive because it forbids to use triangles with one small angle. Such
triangles are permitted according to the maximum angle condition. Thus it is
quite natural to try to generalize the standard finite element theory to the case
of condition (1.5).

We start with the interpolation theorems and first we remind Jamet’s result
[5].

For a better understanding we introduce from [5] only a special situation
which is for applications quite sufficient. Let £(X,Y") denote the set of all linear
bounded operators from a normed space X into a normed space Y. Let

I € L(WEP(T), WhP(T)),

where k is a positive integer and p € [1,00], be an operator satisfying the fol-
lowing hypotheses:
(H.1) We have
Hu=u Yué€ Py,

where P, ,, denotes the set of all polynomials in n variables of degree not greater
than k.
(H.2) There exists a unit vector £ such that

ou B O(ITu)
8_§(P)_0 VPeT = o€

(P)=0 VPeT.

(We restrict ourselves to this special type of (H.2) because we are interested only
in estimates of type (1.7).)
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Theorem 1.2. Let T be a closed triangle with the interior T and vertices Py,
P, P3 and let ar, Br and yr be the angles at Py, P> and Ps, respectively.
Let the vertices be denoted in such a way that ar < Oy < ~vr. Let s1 and s
be the unit vectors parallel to the sides PsPs and P3Py, respectively. Let II €
L(WHEP(T), WLP(T)) be an operator satisfying hypotheses (H.1) and (H.2) for
€ =51 and & = so. Let u € WFHLP(T). Then we have for m =0 and m = 1

h/jcjrlfm
lu— | pr < CWWMH@% (1.7)
where hp = dist (Py, Py) and C is a constant not depending on u and T.
Proof. The assertion is a special case of [5, Theorem 2.2]. ]

In [5] Theorem 1.2 is applied on compatible triangular finite elements of the
Lagrange type for arbitrary k. (For k = 1, p = co estimates (1.7) are identical
with Synge’s result.) This means that the operator II is defined by the relations

(ITu)(P) =u(P,) (i=1,...,N, N:=(n+1)(n+2)/2),

where Py,..., Py are the nodal points which are situated on T as the first
N integers in the Pascal triangle (see Fig. 1 where the black circles denote
prescribed function values).

However, in the case k = 1 estimates (1.7) hold only for p € (2,00]. The
important case p = 2 is treated in [2] for & > 1. A further generalization in the
case k = 1 is given in [0]. The interpolation result proved in [6] can be formulated
as follows.

Theorem 1.3. Let T be the same triangle as in Theorem 1.2 and let p € (1,00).
Let u € W2P(T) and let Inu be the linear function satisfying (Inu)(P;) = u(P;)
(1=1,2,3). Then we have

2—m
|u — Ipulmpr < C (sinTWM?’p’T (m=0,1), (1.8)
where C' is a constant independent of u and T .

Theorem 1.3 will be useful in our further considerations.

Now we introduce interpolation results in the case of semiregular (i.e., nar-
row) convex four-node quadrilateral isoparametric finite elements. In [1] such
elements are called anisotropic. However, in [1] the error of the interpolation is
estimated on rectangular elements; quadrilaterals are not considered.

The symbol K will denote the closed square in the (£, 7)-plane with vertices

M;(1,0), Ma(1,1), M3(0,1), My(0,0). The functions 3@ : (&, 1) — R with

1.9
FEm) =1 =8&n, g (En) =01-&A—n) 9
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Fig. 1. Triangular finite elements of the Lagrange type.

are called bilinear basis functions; they have the property
P (M) = 6.

Let K be a closed convex quadrilateral in the (z,y)-plane. Let two sides of
K be much greater than the remaining two ones. Let us consider first the case
that these two longer sides are parallel. (Such quadrilaterals are important, for
example, in modelling a gap between rotor and stator in an electrical machine.)
Let ax be the smallest angle of K and let us denote by M; the vertex of K at
the angle ax. (If K has two or four angles which can be denoted by aj then,
of course, we have two or four choices.) One short side and one long side of K
meet at M;. The second end-point of the long one will be denoted by My and
the second end-point of the short one by M,. The numbering of the vertices of
K is thus either anticlockwise, or clockwise.

In applications the local numbering of the vertices of K obeys a different rule
which is usually anticlockwise; let N1, ..., N, denote the vertices of K according
to this different rule, let (for simplicity) the numbering of M, ..., My be also
anticlockwise and let

My = Nji1, Ma = Njy2, Mg= Nj3, My=Nj,

where Nji; = Nji-4 if j+1 > 5. As N; corresponds by definition to ]\Z the
isoparametric transformation of Ky onto K has the form

z=zk(£,n) ZwW“ (& m),
(1.10)
y=yr(&n) = Zyisﬁ(j”)(f,n),

i=1

where z;,y; are the coordinates of M; (i = 1,...,4) and where the indices
j+1 (0 <j <3 fixed, i = 1,...,4) are considered modulo 4. (In the case
when the numbering of Mj, ..., My is clockwise the corresponding isoparametric
transformation of Ky onto K has again the form of (1.10).) As K is convex,
transformation (1.10) maps K¢ one-to-one onto K.
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Let
§=<Ex(x,y), n=nx(z,y) (1.11)
denote the inverse transformation to transformation (1.10). We set
oW (@,y) =0V (Ex (2, y),yx(z,y)) (i=1,....4). (1.12)

If u € C(K), then we define the isoparametric interpolation of u on K by

4
(Qu)(z,y) = Zu M)Vt (). (1.13)
i=1

Theorem 1.4. Let K be a narrow quadrilateral with parallel long sides which
satisfy the assumption

1
dist (Ml,M4) < Edist (Ml,MQ). (114)
Let u € H*(K). Then we have
CQEK 9
— < —_— 1.1
o= Quloe < (€1 2 Vil (1.15)
Cy h
lu — Qul1,k < (C3 + ) 2 Julo (1.16)
sinag / sin Bk

where Qu is defined in (1.13), e g=dist (M1, My) < hg=dist (M1, M), ax < Bk,
ax and Bg being the angles at My and Ms, respectively, and the constants Cq,
Cy, Cs, Cy satisfy

Ch = 55.019093, Cy = 21.658241, C3 = 12.801823, C, = 19.47235264.
For the proof see [22].

Remark 1.5. Using the more standard approach with the bilinear isoparametric
mapping of Ky onto K we obtain (by means of the sharp form of the Bramble-
Hilbert lemma) the estimate ||u — Quljo. x < Ch%|u|2,x Which does not depend
on the geometry of K. However, this approach completely fails in estimating
|u — Qu|1,x where we loose all powers of h.

Remark 1.6. It can be shown by an example that the dependence of the estimate
of |u — Qul; x on sin~! ax is essential (see [23]). The dependence on sin~' g
in both (1.15) and (1.16) is a cosmetic defect which is a consequence of the
approach used in [22].

Remark 1.7. If we change assumption (1.14) to
1
dist (Ml,M4) S 2—d1st (Ml,MQ), n Z 6,
n

then the numerical constants in Theorem 1.4 will be smaller. (In more detail see

[22].)
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Theorem 1.4 can be generalized to the case that the long sides are not parallel.
We again assume that K is a convex quadrilateral. Moreover, we assume that
the long sides do not have any common vertex.

Our considerations are based on the following simple fact: Let K be an arbi-
trary convex quadrilateral. Then there exists a parallelogram D which has three
vertices common with K and is such that K C D.

Let us denote these three vertices by My, Ms, M3 in such a way that MM,
and My Msj are sides of K with the property

dist (MQ,Mg) < dist (Ml,MQ). (117)
We shall denote
hK ;= dist (Ml,Mg), A = dist (MQ,Mg). (118)

Of course it may happen that hg is not the length of the greatest side of K
and that the numbering of M;, My, M3, My is not anticlockwise.
We shall assume that

1 1
< — < — 1.1
arg < 2nhK, ex < 2nhK7 (1.19)

1 dist (My,p)
=SB g 1.2
2= dist My, p) = & (1.20)

where n > 6 is a given integer, e := dist (M7, My) and p denotes the straight-
line passing through M; and My.
In applications we usually have

3

smom 3
47 4

<ag < et
S K S 1

71'
- < Bx <
1 <Pk <

The interpolation theorem has in this more general case the following form

(see [22]).

Theorem 1.8. Let K be a quadrilateral satisfying assumptions (1.17)—(1.20)
and let w € H*(K). Then we have

~ Cs(n)/Zra
lu = Qullox < (Cun) + —2EWERIK Yo (1.21)
hi+/sin B sin ai
Ca(n)\Ex hic
Vag sin B sinag ) sin Bx

where @ is an interpolation operator of type (1.13), ax = dist (Ma, M3) and
ex = dist (My, My) satisfy (1.19), ax and Bk are the angles at My and Mo,
respectively, and the positive constants 5’1(n), ég(n), 53(71) and 64(71) are de-
creasing when n is increasing, n being the integer which appears in (1.19).

lu — Qu|i,x < <63(n) + |ul2, ks (1.22)
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2 Triangular elements of the Hermite type
Let us define ITu € Ps 5, where u € C*(T) and T is the same as in Theorem 1.2,
by the relations

(DITu)(P) = D°u(P) |a| <1 (i=1,2,3),

O(ITu) _ Ou (2.1)
SQ) = @)

where ()7 is the mid-point of the side P Ps.

Theorem 2.1. The polynomial ITu is uniquely determined by relations (2.1).
We have

I € LW3P(T), WhP(T)), p € [1, )]
and the operator II satisfies hypotheses (H.1) and (H.2) for £ = s1 and & = sa.
Hence estimates (1.7) hold for k=3, p € [1,00] and m =0, 1:

h47m

e

(cos(yr/2))™

Proof. The unique determination will be proved in Remark 2.10. The property
IT € L(W3P(T), WLP(T)) follows for p > 1 from the Sobolev imbedding theorem
and for p = 1 from the fact that W2 (T) ¢ C(T). Hypothesis (H.1) is obvious
and hypothesis (H.2) is proved in [19)]. O

lu — Hulmpr < C

Remark 2.2. The tenth parameter (0(ITu)/0s2)(Q1) has no influence on the
global smoothness of a global finite element function defined in a given triangu-
lation; thus it can be different in two adjacent triangles with a common shortest
side.

Now we introduce a triangular finite element of the Hermite type which
does not satisfy Jamet’s hypothesis (H.2); nevertheless, it satisfies estimates not
depending on the minimum angle of 7.

Theorem 2.3. Let T be the same triangle as in Theorem 1.2 and let a =
dist (P2, P3), b = dist (P, P3), ¢ = hy = dist (P, P2). Let ¢ € CYT) and
let

IDp(P)| < My V|a|=4, VPeT, (2.2)

Oy B
L@o=0 ey

where Q1 1s the mid-point of the side P2Ps and ng the unit normal to PyPs.
Then we have for all P €T

D%(Pj) =0 Vo] <1(j =1,2,3),

o) < gg (144 (%)) wet (2.0
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Proof. Theorem 2.3 is proved in [19]. Nevertheless, we reproduce this proof be-
cause it is surprisingly short. We restrict our considerations to the case

|Dip(P)| < M, V|i|=4, VPeT. (2.6)

In the case (2.2) we can use the trick with an inscribed triangle T' C T in the
same way as in [24]. The proof is based on the following four lemmas.

Lemma 2.4. Let s1, so be two noncollinear directions making an angle w. Let

g—:(P) =k; (j =1,2), P being a point of the (x1,x2)-plane. Then

(j=12).

k k
B_SD(P) < | 1|+| 2|
Oz, | sinw|

Further, let s1 and so be two directions orthogonal to one another. If|‘3—;€(P)| <k
(1 = 1,2) then we have for an arbitrary direction s

S| < il +

Lemma 2.5. Let g(0) =71, g(I) = n2, ¢'(0) = k1, g'(1) = ko and [¢g¥ (s)| < K4
in (0,1). Then for s € [0,1]

41 K,
lg(s)| < max|[n;| + 2—7(Ik1| + |kal) + 6. 2414 (2.7)

3 K
l9'(8)] < = (Im | + |n2l) + max|ky] + —1° (2.8)

21 24

Further, if g(0) = g(1) = ¢'(0) = ¢’(1) = 0 then
1

lg" ()] < §K4l2. (2.9)

Lemma 2.6. Let g(0) =1, g(1/2) = n2, g(1) = n3 and [¢® (s)| < K3 in (0,1).
Then for s € [0,]

5 V3

l9(s)] < - max ;] + 6—3K313, (2.10)
8 1

lg'(s)] < 7 max |n;| + 11{312. (2.11)

Lemma 2.7. Let g(0) = 01, g(1) = n2, ¢'(1) = k1 and |9 (s)| < K3 in (0,1).
Then for s € [0,]

l 2
lg(s)] < max ] + J[k1| + 23 Kal®. (2.12)
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Lemmas 2.4-2.7 are taken from [24] with a modification in (2.7) and im-
provements in (2.8) and (2.12).

We have by Lemma 2.5 (with g = ¢|p, p,) and assumptions (2.3) and (2.6)

1
)(SD|P2P3) = 16-2 4—]\4404 - %lea s (213)
Oy 1 1 3
— — -4 Mya” = - M 2.14
‘(6@ P2P3> — 24 w0’ 6 (2.14)

where 9/0a denotes the derivative in the direction of P Ps. Similarly, Lemma
2.6 with g = d¢/0ng|p,p, yields
P2P3>

dp
on,

Using estimates (2.14), (2.15) and Lemma 2.4 we find for an arbitrary direction s

9
0s
Let P € T, P # P; and let B be the point of the segment P, P; which lies on the
straight line determined by P; and P. Setting [ = dist (B, P;) and considering

the function g = ¢ | p,p We obtain by means of Lemma 2.5 and (2.3), (2.6),
(2.13), (2.16)

M Myd® (2.15)

43
— M 2.16
P2P3)’ 63 4a ( )

41 43 1
lo(P)| < % Mya* + 5 g Maa 5+ 16—24 4MyI*, (2.17)
0 3 at 43

Estimate (2.17) implies (2.4). Estimate (2.18) will be used in deriving (2.5).
Relation (2.9) from Lemma 2.5 with ¢ = ¢|p,p, and relation (2.11) from
Lemma 2.6 with g = d¢/0n|p, p, together with assumption (2.3) yield

P
Oa?

0%y
dadn,

(B) <20, |2 B)] < b

Hence, according to the second part of Lemma 2.4 where we set 1 = dp/0a,

i

< 2, )
o (B)’ < 3Mya (2.19)

Using Lemma 2.7 with ¢ = 9¢/0a|p, p and taking into account relations (2.3),
(2.14), (2.19) we find

) 1 3 8
a—i(P)‘ 6M4a + M4a21+81Ml3 (2.20)

Inequalities (2.18) and (2.20) together with Lemma 2.4 imply (2.5). O
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Now we introduce some consequences of Theorem 2.3.

Theorem 2.8. A polynomial p € P35 is uniquely determined by its ten values

Jp

D*p(P;) ol <1, (j=1,2,3); 3

Q1) (2.21)

where the meaning of the symbols P;, Q1 and n, is the same as in Theorem 2.3.
Proof. 1t is sufficient to prove the uniqueness. Let us assume that the values
(2.21) are equal to zero. Setting ¢(x1,x2) = p(x1,22) in Theorem 2.3 we have
My = 0 and estimate (2.4) implies p(z1,22) = 0. O
Theorem 2.9. Let u € CY(T) and let

|D%u(P)| < My V]a|=4, VPeT.

Let p € P35 satisfies the relations

Dp(Pj) = D*u(Fy), ol <1 (j=1,2,3),

Op _ Ou (2.22)
o, (@) = a—na(Ql)'
Then the function
(1, 22) = u(x1, 2) — p(a1, 72) (2.23)

satisfies relations (2.4) and (2.5).

Proof. Tt follows from the assumptions of Theorem 2.9 that function (2.23) sat-
isfies all conditions of Theorem 2.3. O

Remark 2.10. We return to the first part of the proof or Theorem 2.1: If the
right-hand sides of (2.1) are equal to zero, then also (0I7u/0n,)(Q1) = 0 and
(ITu)(z,y) = 0, according to Theorem 2.8. O

It follows from Theorem 2.9 that triangular finite elements with polynomials
p € P35 uniquely determined by parameters (2.21) can be used in triangulations
satisfying the maximum angle condition: Estimate (2.5) requires the next-to-
smallest angles of all triangles to be bounded away from zero. This requirement
(we call it the second angle condition) is equivalent with the maximum angle
condition.

Some triangular finite elements of the Hermite type are sketched in Fig. 2.
The black circle denotes the function value, the arrows and double arrows denote
the first and second normal derivatives, respectively, and the circled integers k
denote the values D*p(P;), |a| < k, where P; is the centre of the circle.
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AGAY I

Fig. 2. Triangular finite elements of the Hermite type.

Remark 2.11. The method of the proof of Theorem 2.3 does not work success-
fully in the case of the classical Hermite triangular finite element of third degree
where the last condition (2.3) is substituted by ¢(FPy) = 0, Py being the center
of gravity of T, because we obtain only

|(0%¢/0adng|p,p,)| < KMyl®/a (1 = dist (P1Q1))

and [/a — oo with a — 0.

The hypothesis (H.2) is not also satisfied. This can be proved by the following
example: Let u(x,y) = y* and let the triangle T have the vertices P;(0,0),
P»(1,0), P3(0,1). Then the polynomial of third degree satisfying the first nine
conditions (2.22) and condition p(Py) = u(Py), where Py is the center of gravity
of T, has the form

4 3 3
pz,y) =3 (wy — Zyz -2’y —ay® + Ey?’)-

We see that du/Ox = 0 while dp/0x # 0 in T. Thus hypothesis (H.2) is not
satisfied and we cannot apply Jamet’s theory on this finite element.

Remark 2.12. In [2, p. 222] the parameters

D%p(P;) lal <1 (j=1,2,3); / dzxdy (2.24)
T

were considered in connection with the maximum angle condition for a cubic
triangular finite element on a right triangle with the sides P, P> and P, P3 lying
on the axes x and y, respectively. However, parameters (2.24) do not determine
in a general case a polynomial p € P2 uniquely. To prove it let us consider a
triangle with vertices P;(x;,y;) (¢ = 1,2,3) and let Ty be the triangle lying in
the &, n-plane with vertices P;*(0,0), Py (1,0), P5(0,1). The transformation

r=x(,n) =x1 + T2 +T3n, y=y(&n) =y + 78+ Tan, (2.25)
where

Tj=T;—T1, Y;=Y;—WN (J=2,3), (2.26)
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maps the triangle Ty one-to-one onto T'. Let us set

p*(&m) = p(x(&n),y(&mn)) (2.27)

If all ten parameters (2.24) are equal to zero then
Dp*(P;) =0 |of<1 (j=1,2,3), (2.28)
/I {20, 50 + @, + 2 58 -7, S0 Yaean = 0. 229
Relations (2.28) imply
pr(&n) = Kén(l =& —n). (2.30)
Inserting (2.30) into (2.29) we obtain
K{2(T27y + T373) — (T2Ts + T375)} = 0. (2.31)

If the difference standing in braces is different from zero then (2.31) implies
K =0 and parameters (2.24) determine uniquely p € P3 5. However, if

2(T2Y + T3Y3) = T2¥3 + T3Ya , (2.32)

then (2.31) is satisfied with K # 0 and p(z,y) # 0, according to (2.30) and
(2.27).

Let us describe these situations. It cannot be simultaneously Zo = T3 = 0
(and similarly g, = 75 = 0). Let T # 0. If 5, = 0 then (2.32) gives Ts = Ta/2
with arbitrary 75 # 0. Conversely, if T3 = T2/2 then (2.32) implies 7, = 0. In
other cases

_ (2T —T3)y, o
= 0 2 .
= (T2 # 0, T2 # 2T3)
The situation T3 # 0 can be treated similarly with the same results. a

Now we mention briefly some higher-degree polynomials. We shall modify
the family of triangular finite elements introduced by Koukal in [7] and [3].

Theorem 2.13. Let u € C*(T) (k > 1). A polynomial p € Pajy12 is uniquely
determined by conditions

Dp(P;) = D*u(P)), |a| <k (j=1,2,3), (2.33)
P, )y O () .
a—’n,g(QJ ):a—nZ(QJ ) (]:1,,7",’]":1,,]€), (234)
where the symbol 8/0n, has the meaning as in Theorem 2.3 and QY), R £T>

(1 < r < k) are the points dividing the side P,Ps into r + 1 parts of the same
length.
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Theorem 2.14. Letu € C*(T) (k > 1). A polynomial ITu € Pajy1 2 is uniquely
determined by the conditions

Da(nu’)(Pj) = Dau(Pj)a la| <1 (j=1,2,3), (2.35)

O (Hu) )y O"w Sy L
T Q! )_as;@i ) GG=1,....r; r=1,....k), (2.36)

where 0/0sy denotes the derivative in the direction of the side P3P;.

For k = 1 the assertions of both theorems are contained in Theorems 2.1 and
2.8. In the case k > 2 the proof is a modification of the proof of [18, Theorem
17.1].

Generalizing a little the preceding considerations we can prove:

Theorem 2.15. Let u € W2*+22(T), where k > 1 and p € [1,0], and let the
operator II be defined by (2.35), (2.36). Then we have for m =0, 1

2k+1
T

—_— . 2.37
COS("}/T/2) |u|2k+2,P,T ( )

|u = Hulmpr < C

Remark 2.16. A generalization of Theorem 2.3 to the case of interpolation poly-
nomials introduced in Theorem 2.13 is possible. Instead of special Lemmas 2.5—

2.7 we can use [16, Theorem 2|. We obtain the estimates
dp C
P)| £ C Mapy2c® ™2, | Z2(P)| < Moj a1
lp(P)] < 2k+2C ) &rj( )| < sin 3 2k+2C )

where P € T and j = 1, 2.

Remark 2.17. The construction of finite elements introduced in Theorem 2.13
implies the following conjecture: It is impossible to construct a triangular finite
C'-element which satisfies the mazimum angle condition.

3 Variational crimes and semiregular finite elements in
the case of smooth solutions

3.A Formulation of the problem

We shall consider the boundary value problem

2

0 0
S gHwgs) =1, 2o (31)
i=1 v v
u=0 onl7, (3.2)
2 ou
Zki%"i(ﬁ)zq on Iy, (3.3)

i=1
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where {2 is a two-dimensional bounded domain with the boundary 92 = 1 UI%,
I and I being the circles with radii Ry and Ry = R; + o, respectively. We
assume that the circles Iy, I have the same center Sy and that

Ry > p. (3.4)

The symbols n;(G) (i = 1,2) denote the components of the unit outward normal

to 0G.

Fig. 3.

A weak solution of problem (3.1)—(3.3) is a solution of the following vari-
ational problem (which can be obtained from (3.1)—(3.3) by means of Green’s
theorem in a standard way).

Problem 3.1. Let {2 be a bounded domain with a Lipschitz continuous bound-
ary 0f2 =171 U 5. Let

V:{UEHl(Q)'vzo on I}, (3.5)

ow O
a(w,v) E // 3;}1 vl dridao, (3.6)
L(v) = LQ( —|—LF // vfdxldx2+/ vgds, (3.7)
I

where
ki e Whe(02), feWwh™(1),
4=Ql ., QeC*{),
kl(x) > o > 0, (39)
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U being a neighbourhood of I'; (i.e., a domain containing I%). Find u € V such
that

a(u,v) = L(v) YveV. (3.10)

Assumptions (3.8)—(3.9) guarantee that the symmetric bilinear form (3.6) is
bounded and strongly coercive and that the linear form (3.7) is continuous. (Of
course, this also holds when f € Lo(£2) and ¢ € Lay(I%). We assume (3.8) because
of numerical integration.)

Lemma 3.2. Let a solution u € V of Problem 3.1 satisfy u € H?($2). Then
relation (3.1) holds almost everywhere in 2 and relation (3.3) holds almost ev-
erywhere on Is.

The proof is omitted. Also the following lemma is well-known:
Lemma 3.3. If (3.9) holds then Problem 3.1 has a unique solution.

We shall solve Problem 3.1 approximately by the finite element method. To this
end let us approximate I3 by a regular polygon I, with vertices @1,...,Qn
such that every segment @;Q;+1 has no common point with I73. Let the vertices
Py, ..., P, of the polygon I1; approximating I7 be obtained in the following
way: P; is the intersection of the segment SyQ; with I7. The symbol 2, will
denote the polygonal domain with the boundary 92, = Iy U Ip,.

We divide each segment P;Q; by the points A%, A}, ... A% | into m parts
of the same length in such a way that we have formally A} = P;, A% = Q;. The
points Aé- are the vertices of quadrilaterals into which the domain (2, is divided.
Such a division of §2;, will be denoted D If we divide each quadrilateral of DX
into two triangles we obtain a division DI (see Fig. 4). We shall also consider
an auxiliary division D;' which will be constructed from DX by dividing each
quadrilateral Aﬁn_lAi:_llQiQiH into two triangles.

We admit to use narrow quadrilaterals and narrow triangles. This means that
we shall have

2 <n (3.11)

m

in our considerations, where h is the length of the greatest segment in the division
of Qh.

We shall assume that k; € Wh(R), f € Wh(2), where £ is such that
2, C Q for sufficiently small h. When we consider the functions k; and f in {2
we shall use symbols k; and f. In the opposite case the original symbols k; and
f will be used.

The discrete problem is now formulated in an almost standard way. (The
expression “almost” concerns the approximation of the term L’ (v) which needs
some space.) Let Dj, denote one of the three divisions D,{f, D,q;, Dﬁ. We define
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Fig. 4.

spaces
X}LZ{UEC(ﬁh):’U‘K

v o = alinear polynomial VT € Dy}

and

Vi={ve Xp:v=0o0n I}

We set for all v,w € H(£2;,)

ov 0
(v, w) Z// 8::1' —wldxldxg

and

:// vfdxldxg Yv € Xp,.
Qh
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= a four-node isoparametric function VK € Dy,

(3.12)

(3.13)

(3.14)

(3.15)

To define L! (v) is more complicated. Therefore, we omit it and refer only to

[21].



218 Alexander ZeniSek

The symbols ap,(v,w), Li?(v) and L (v), where v,w € X, will denote the
approximations of @y (v, w), Li?(v) and L{ (v), respectively, when using numerical
integration. For example, in the case of D,j; we have for all v,w € X},

2 Nr

ah(v,w) = Z ZZ2WT0,j%i(xT,j) 88—;}1

TepyT i=1 j=1

ow
— | mesyT),
T 8331

T

where 7 ; are the integration points on a triangle 7" and wr, ; the corresponding
coefficients of the given integration formulas (prescribed on the reference triangle
To).

Now we can define the approximate problem:

Problem 3.4. Find uj, € V}, such that

ap(up,v) = Lp(v) Yv € V. (3.16)

3.B An abstract error estimate
Definition 3.5. Let u € H?(£2). We define Q,u € X, by

Qru |FeDh = @k u = the four-node isoparametric interpolant of u,

Qru |T€Dh = Ipu = the linear interpolant of w,
where D, is one of the divisions DF, DT, D;?.
Lemma 3.6. Let Iy be the circle with a center So and radius Ry = R1—p. Let 0
be a bounded domain such that 02 = Iy UIy. There exists a linear and bounded

extension operator E : H*(£2) — H*(2) such that the constant C appearing in
the inequality

IE@)]y5 < Cllvlke Yoe H(2)

does not depend on Ry/p and v. The operator E is also a linear and bounded
extension operator from H*~(02) into H*=1(02) (1 <i < k).

Lemma 3.6 follows from the considerations introduced in [13, pp. 20-22].
Theorem 3.7. Let u € H?(2), @ := E(u) and let the condition
0]} o, < Can(v,v) Yo € Vi, Vhe (0, ho) (3.17)

be satisfied, where the constant C' does not depend on v and h and where hqy is
sufficiently small. Then Problem 3.4 has a unique solution up € Vi and there
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exists a positive constant Cy independent of u € H?(2) and w € Vj, such that

|a‘h (Qhuv U)) —ap (Qhu’ w)l

Co @ = unlh,e, < [Qnu—ll1,0, + sup

weVy ||w||179h

w#0

b TE@ =R B w) ~ L @) | () = Du(w)
weVp ”w' 1,02p weEVp, ||w||17~Qh weVy ”w' 1,02p
w#0 w#0 w#0
(3.18)

Theorem 3.7 is proved in [21]. Our first aim is to prove that condition (3.17)

is satisfied. This will be done in subsection 3.D, where we also give estimates of
the second, third and fourth terms appearing on the right-hand side of (3.18).
These terms express the error of numerical integration.

The estimate of the first term, which expresses the interpolation error, is
introduced in subsection 3.C. This estimate follows from the known interpolation
theorems. The fifth term, which expresses the error due to the approximation of
the boundary, will be estimated in subsection 3.E.

3.C The interpolation error

The estimate of the first term appearing on the right-hand side of (3.18) follows
from Theorems 1.3 and 1.4:

Theorem 3.8. We have
|@nu — ll1,0, < Chllul|2,q,

where the constant C' is independent of h, u and the division Dy,.

3.D The effect of numerical integration

The effect of numerical integration must be analyzed more carefully than in the
case of regular elements. In the case of triangles the result is that the numerical
integration does not depend on the geometry of triangles and that the degrees of
precision of quadrature formulas sufficient for the rate of convergence O(h) are
the same as in the regular case (except for the integration along the boundary
I'yj, — see Theorem 3.18). The proofs of the assertions presented in this subsection
can be found in [21].

First we mention the analysis of the numerical integration on quadrilaterals.
Let K be a quadrilateral whose greatest side lies on the axis ; and let it have
the vertices

Py (h,0), P2(0,0), Ps(dcosf3,0sinf3), Py(h —ecosa,esina)

where ¢ = dist (Py, Py), 6 = dist (P2, P3) and « and 3 are the angles at P; and
Ps, respectively. As each quadrilateral belonging to Dj, has parallel long sides

we have 0
b:= = =¢esina=Jsing.
m
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Let K be the reference square lying in the coordinate system &;, & and having
the vertices P;*(1,0), P5(0,0), P;(0,1), Py (1,1). If we denote

eg=0cosfB, €4 =ccosa, € =¢e3+¢ey4,
then the one-to-one mapping of K¢ onto K has the form
x1 = h& + €38 — 6*6152, T2 = b&s. (319)

If the side P, P> makes an angle ¢ with the axis 27 and the vertex P, has
coordinates x19, oo then (3.19) is substituted by the mapping

x1 = 25 (&1, &) = w10 + (hé1 + e3éa — £7E162) cos p — béa sin g,

X . ] (3.20)
Ty = Xy (51,52) = X9 + (hfl +e3éy —¢€ 6152) sin @ + b cos .
Both transformations (3.19) and (3.20) have the same Jacobian
Jr = (h —"&2)b.
It should be noted that for n > 1 we have
com (R4 A+ L) 2R+ A)) = 72 (1=3,4; 0 < A< o(1—1/m))
T~ m 1 m 1 - nm — 9 = >0 .
Further
h ~ 27TR1.
n
The last two relations imply in this case
E; = Uib, ag; S Ch (l = 3,4) (321)
Let us denote
(1):=2, (2):=1, &y =(=1)". (3.22)
Then we can write (omitting the subscript K at J)
0¢; 10z
S gt Z9 (1) (3.23)

8xj o Hijj 85(1)

and the theorem on transformation of an integral yields

v Ow . * Qw
Ex (Zk 7, 6:@) = EK0< Z k; XW@& a&) (3.24)

1,r,s=1
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where

Ng
F):= //K F(xy,2)dadzy — ;wKo,jF(xK,j)UK(fuafzj)|a (3.25)
F*(1,62) = F(xl(fl,&) x2(&1,€2)),
Eio(F) = / F(61,6) dad@—zwm,j (15, 67), (3.26)

1 833(1 833(1
Xirs = RirKis
J 9y 0€(s)

with [£15, ;5] the integration points on Kj.

Theorem 3.9. Let
EKo(p) =0 Vp (S PQ,

where Py, denotes the set of polynomials in two variables of degree not greater
than k. Then we have

ov Ow
EK (Zk axi l)

As the Jacobian J of both transformations (3.19) and (3.20) is the same the
proof in both cases is very similar.

< Chmax Eill1,00, 5|01, K015 V0, w € X,

Remark 3.10. In the cases when relation (3.21) is not satisfied (however, the
long sides are parallel) the assertion of Theorem 3.9 can be proved provided

EKO(p) =0 VpePy.

Remark 3.11. The case of a quadrilateral K with parallel long sides is a special
case of quadrilaterals K satisfying the condition

le sina — dsin 3| < Cbh. (3.27)

It can be proved that the results of Theorem 3.9 and Remark 3.10 can be ex-
tended to the case (3.27).

The effect of numerical integration in the case of narrow triangles must be
analyzed more carefully than in the case of regular triangles. Let T be an arbi-
trary triangle lying in the plane x;, x5 and let Ty be the reference triangle with
vertices (0,0), (1,0), (0,1) lying in the plane &;, &. Let

vy =21(£1,82), w2 =x2(£1,&2) (3.28)

be the linear transformation which maps Ty one-to-one onto T (for its form see,
for example, (2.25), (2.26)) and let & = & (z1, 22), &2 = & (21, x2) be its inverse.



222 Alexander ZeniSek

Lemma 3.12. Let v e CY(T) and let
0" (€1, &2) = v(@1 (81, 2), w2(61, &2))-

Then we have

< Ol oz,

where J is the Jacobian of (3.28).

The error functionals Er and Er, on a triangle T and the reference triangle
Ty, respectively, are defined in a similar way as Ex and Eg, (see (3.25) and
(3.26)), their expression is only simpler. Using Lemma 3.12 we can prove the
following theorem.

Theorem 3.13. Let T be an arbitrary triangle (not necessarily satisfying the
mazximum angle condition). Let

ETO(p) =0 VpeP.

Then we have

ov 0 ~
’ET <Zk ({9;}@ 8—:’:)‘ < Chgi}; |ki|17oo,T|'U|17T|w|17T Yo, w € Xp,.

For v,w € V}, we have
ap(v,w) = ap(v,w) — {an(v,w) — ap(v,w)},

N dv 9 dv 9
an(v,w) = ap(v,w) = Y EK(Z’“ 6;8710) +_Z ET<Zk 85@ 5;01)

KEeDy, T€eDy,

Using these relations we obtain from Theorems 3.9 and 3.13 (details are
similar as in the proof of [18, Theorem 11.8]; we use in addition the discrete
Friedrichs’ inequality of the type [18, (29.1)] (for its proof see Appendix) which
together with (3.9) implies ||v||? 0, < Cap(v,v) Vv € Vp):

Corollary 3.14. If the forms ap(v,w), where v,w € X}, are computed from
ap(v,w) by means of quadrature formulas required in Theorems 3.9 and 3.13,
then condition (3.17) is satisfied.

Theorem 3.15. Let
Ek,(p) =0 ¥pe Ps, Er,(p) =0 ¥pePo.
Then we have for u € H?({2)

lan(Qnu,w) — an(Qpu, w)|
sup
weVy, w1,

w#0

< Chmax eill o 5 llll2.52 (3.29)

where the constant C' does not depend on u, E, and h.
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Proof. Relation (3.29) follows from Theorems 3.9, 3.13 and 1.3, 1.4. Details are
the same as in the proof of [18, Theorem 11.12]. O

Theorem 3.16. Let

Ek,(p) =0 VYpe Py (orVpe Qi),
ETo(p) =0 VpePy,

where Q1 is the set of all bilinear polynomials. Then we have

L2 (w) — LY (w ~
sup | h( ) h( )| SCh/Hf”l’oo’ﬁ /meSQQ,

wEV) wl1,0,
w#0

where the constant C' does not depend on f and h.

In order to estimate the effect of numerical integration along I'; we introduce
the following error functionals:

I N,
BoF) = [P = 3 1B Fsy)
j=1

1 N
Fo(F*) = / Fr@)dt =S By P (L),
0 =
where s, ; are integration points on [0,1,], 5, ; the corresponding coefficients of
the given integration formula and
F*(t) := F(l,t), telI=]0,1].

Hence
E.(F)=1.Ey(F").

When considering the line integrals we need also the trace inequalities which
are introduced in the following lemma.

Lemma 3.17. We have

C

v]l0.00 < ﬁnvnm Vo € H' (), (3.30)
C

lv]lo,00, < ﬁllvllmh Vv € H (1), (3.31)

where the constant C' does not depend on v, h and p.

The proofs of (3.30) and (3.31) are similar to [12, pp. 15-16]).
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Theorem 3.18. Let
Eo(p) =0 Vp € Ps.

Then we have

ED(w) — Lf
sup |Lj, (w) A < ghQMg(q)\/KME,
weli [wll1,2, v

where the constant C does not depend on q, 0 and h and where My(q) depends
on the first and second derivatives of the function Q at the points of I'y (as to
the relation between q and Q) see (3.8)).

3.E The error of the approximation of the boundary
The estimate of the last term in (3.18) will be divided into several lemmas.
Notation 3.19. We denote

Th=On— 02, wp=02-0, (3.32)

Further, let w € Xp. The symbol W is called the natural extension of w and
denotes the function w : £2; U 2 — R! such that w = w on 2, and

| a7 =Plpu_p

where p € Py satisfies p| = w |+ . (T' C 2 is the curved triangle which is
approximated by 7.)

Lemma 3.20. Let u € H%(£2). Then we have for w € Vj,

2
9 ou '\ _
+ ’//wh ; 8xi<kia—xi)wdx1dx2 +
‘// Zk ou 0w +— dzidwza| +
Wh j—1 8:@ i

9 (~ou\ =
" ‘//Th (; 3xl<kla—xi) +f)“’dx1dx2 )

Proof. Using the definitions of @ (@, w), Ly (w) and Green’s theorem we obtain

ap(u,w // 8u Ow —dzdxy —
2n =1 81‘1 Ti

— LY (w) Zk O ni(2p)wds —

Iop 1

//o (i_ ag@( gu) +f)‘”dx1dx2 - L (w).

(3.33)
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To the right-hand side let us add zero in the form
/Zk Ou (@) ds + LT () = 0.
T2 =1
If we denote A =T'9 — T and use Lemma 3.2 then we can write

ap(u,w) — Z/ Zk 8u Awds —

Ath

//( 5;61( aau)+f>wclxldw2+L (@) — LL (w).

Transforming the first term on the right-hand side by means of Green’s theorem
we obtain (3.33). O

The third term on the right-hand side is most disagreeable. It is estimated
in the following lemma:

Lemma 3.21. Let u € H2(2) and k; € Wb (2) (i =1,2). Then

’// Zk Ou ‘9“’ o, drnda
Wh i=1

If in addition

< oY *r ma i1l o]0, (330

u € H*(2) nWh (), (3.35)

then

I 3w

< Chz,/ > maXH/f 11,00, 2[|1l1,00,2/|W[1, 52, -

(3.36)
Proof. We have
Ou 8
‘// Z P oz, drrdrz| < max won D10, - (3.37)
Wh =1 -
Assumption (3.35) gives
ul1,w, < Chlul1,0,0- (3.38)

Let us denote A = T4 — T, Then
|@|iwh Z mesy A|(Vw | ) WP<c Z R3|( Vw|T -
ACUJh ACwp,

m m
=0 3 W (Ve )P < OTR ST fulty < il g,

Ath ACwp
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because 0
2 y)(Vwo| )P < Cluof} .
Hence
m
[wiw, < Chy /E|w|1,(zh. (3.39)
Combining (3.37)—(3.39) we obtain (3.36). For the proof of (3.34) see [21]. O

Estimate (3.36) cannot be improved. Thus, if we want to obtain the rate of
convergence O(h) we must assume that

Cyh2 < % (Cy > 0). (3.40)

Assumption (3.40) is also necessary in estimating the first term on the right-
hand side of (3.33) if we want to obtain in it the rate of convergence O(h) (see

[21])-

3.F The final result
All preceding results yield the following theorem:

Theorem 3.22. Let us consider a division DL (or Di}). Let u € H*(12), fe
WL (), k; € Wh(82) (i = 1,2). Let assumptions (3.8)3,4, (3.9), (3.40) and
assumptions concerning the degrees of precision of the quadrature formulas (see
Theorems 3.9, 3.13, 3.15, 3.16 and 3.18) be satisfied. Then

~ C
llw — uh||1,rzh < ﬁh7 (3.41)
where the constant C does not depend on u, o, m, h and the division D,? (or
D).
If in addition uw € W1>°(£2) (see (3.35)) then

i —unl1,0, <Ch, (3.42)

where again the constant C does not depend on u, o, m, h and the division D{
(or DIY).

Theorem 3.23. If we use divisions DX for the definition of the spaces Xy, then
the assertions of Theorem 3.22 remain without changes.

For the proof see [21, pp. 390-392].

Now we mention results in the case of the boundary value problem of equation
(3.1) with boundary conditions opposite to conditions (3.2) and (3.3):

u=0 on Iy, (3.43)
. Ou
Zkla—xlnl(ﬂ) =gq onl7. (3.44)

=1
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In this case Problem 3.4 and all results up to relation (3.32) inclusive remain
without changes, except for Lemma 3.2, where (3.3) is replaced by (3.44), and
except for the definition of D;?: we divide into two triangles each quadrilateral
P;P;,1 AL ATl Doing some additional considerations (see [21, pp. 393-397]) we
obtain the following theorems:

Theorem 3.24. Let the assumptions of Theorem 3.22 be satisfied except for the
additional assumption u € W12 (02) which is substituted by u € W1°(£2). Then
estimates (3.41) and (3.42) are again valid.

Theorem 3.25. If we use divisions DX for the definition of the spaces Xy, then
the assertions of Theorem 3.24 remain without changes.

Remark 3.26. Modifying considerations of [12, Chapter 4] we can prove the
following regularity results: Let j > 1. If k; € CI~b1(Q), f € Wi (),
q € CI~LY(I) (r =1 or 2) then u € H¥+1(£2). This means that the assumption
guaranteeing (3.42) can be satisfied.

4 Composite domains in magnetostatical problems

In this section we restrict ourselves for a greater simplicity to triangular elements.
We shall study the situation indicated in Fig. 5, where the circle consists of three
subdomains, the middle one being very narrow. We shall see that in such a case
requirement (3.40) can be omitted.

Problem 4.1. Let {2 be a simply connected domain with a Lipschitz continuous
boundary 942 such that

— —=R —A —5§

n=0"un'un
where R, S and A stand for rotor, stator and air, respectively, and 2%, 2° and
24 are domains with Lipschitz continuous boundaries. Let

V={veH(2):v=0 onl}, (4.1)
8w av
a(w,v) Vw
Z// ( »
v=uyyin 24 V:l/ol/R in 2%, vV =1y S in 29,

L(v) = LQ( + L (v // vfdxldx2+/ vgds, (4.3)

where f € Ly(£2), ¢ € La(I3). Find u € H(£2) such that

u—z€eV, (4.4)
a(u,v) = L(v) YveV, (4.5)

where z € W1P(£2) (p > 2) satisfies trz = @ on I'y. (We note that as usual
002 = F1UF2,F1QF2—@ m681F1>0) O
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Fig. 5.

Problem 4.1 corresponds to a two-dimensional magnetostatical problem; its con-
nection with Maxwell’s equations is explained, for example, in [20] — here we
only note that v = u(z,y) has the physical meaning of the z-component of the
magnetic potential vector A = (0,0, u), the positive function v = v(s) is the
magnetic reluctivity, f = f(x,y) is the z-component of the external current den-
—

sity vector J. = (0,0, f) and @ and ¢ are functions appearing on the right-hand
sides of the Dirichlet and Neumann boundary conditions, respectively.

We have v € C°°([0, 00)). Using the expression for v which is introduced,
e.g., in [10], [11], we can prove (similarly as in [18, Example 33.3]) that there
exist positive constants M, 83 (M = R, S) such that

gM < %(sﬂ () < BY Vsel[0,00), M=R,S. (4.6)
Property (4.6) has an important consequence: if we integrate (4.6) in [0, ¢]
(t > 0) then we obtain
BM <M (1) < B Vi e (0,00)
This result and the continuity of v give

ﬂ{‘/[ < V;,V[(Sz) < ﬁé” Vs € [0, 00). (4.7)
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Making use of (4.6), (4.7) we can prove that Problem 4.1 has a unique solution
u € H'(£2) (see [20, Lemma 2 and Theorem 3]).

In order to obtain a discrete solution of Problem 4.1 by the finite element
method we triangulate the closed domain {2 in such a way that the triangulation
Ty, of 2 is a union of triangulations ’Z;LR, ’Z;LS and ThA of ﬁR, ﬁs and ﬁA, respec-
tively. On the contrary to the standard theories we assume that the minimum
angle condition

IM = min 97 >9g >0 Vh € (0,ho), (4.8)
TeTM
where 97 is the magnitude of the minimum angle of T, is satisfied only for
M = R, S. As the domain 24 is very narrow the triangulations ThA are supposed
to satisfy the mazimum angle condition

yr <y <m VYT €T, Yhe(0h), (4.9)
where 7 is the magnitude of the maximum angle of T

Assumption 4.2. In order to simplify our considerations we shall assume that
25, N4 and NF are such that 92° = 0K, U 0K,, 024 = 0K, U 0K3 and
0Nt = 0K, where 0K, OK» and 0K3 are circles with the same center Sy and
radii R;, Re and Rs, respectively, which satisfy the relations

Ri >Ry >R3>0, R3=Rs—p0, Ri—Ry>p, R3>op

where g > 0 is fixed (see Fig. 5). O
The discrete problem is formulated in a standard way. We define the spaces
Xn={veC(4):v|, = alinear polynomial VT € 7}, (4.10)
Vi={veX,:v=0o0n I} (4.11)

and the set
Wy ={veX,:v(P)=u(P) VYP,€o,NI}, (4.12)

where 2}, is the union of the closed triangles T' € Tj,, I'1p, is the part of 942y
approximating I'; and oy, is the set of all nodes of 7j,. Further we set

ov 0
ap(v,w) = Z Z// M(|1vv]?) ;:5::) dzidzy Yo,w € HY (12),),

M=R,A,S i=1

(4.13)

which gives

ow
7 9%i|p

mess T +

0
Z ZZI/QI/ |VU|T 8;

M= RSTGTMZ 1

+ Z ZVO 5;

TETA =1

mesy T Yo,w € Xy, (4.14)

8—9@
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Finally, we set
Lu(v) = Li’(v) + LE (v) Vv € X, (4.15)

where Lj?(v) and L (v) are the approximations of the forms

LY (v) = //Q vf dzidzs, LE(v) :/F gnrvds (4.16)

by means of quadrature formulas of first degree of precision. (Details and the
definition of the function g, are introduced in [1], [18] and [21].) Using (4.10)-
(4.15) we define:

Problem 4.3. Find u; € W), such that
ap(up,v) = Lp(v) Yv € V. (4.17)

It can be proved similarly as in [1], [17] or [18] that every discrete problem
has a unique solution uy. The main result of this section is the following theorem.

Theorem 4.4. Let the solution u € H'(£2) of Problem 4.1 satisfy
uy € H2(QM) (M =R, S, A), (4.18)

where up = u | ou- Let fe Whoo(02) and q € CY(Ty). Then we have for all
h e (O,ho)

lun —ull1,0, <Ch, (4.19)
where u € H'($2) is the solution of Problem 4.1, || - ||1,0, is the norm in the
space H'(§2,) and C is a constant independent of h := max hr and o.

TeT,

Assumption (4.18) is guaranteed if I = () and @ is sufficiently smooth.

The proof of Theorem 4.4 is based on the following abstract error estimate
which can be proved in the same way as [4, Theorem 3.3.1] or [18, Theorem
38.5]:

|an(u, w) = Ln(w)]

}, (4.20)

U — Up||1,0 SC{ inf ||lu— v, + sup
Ju =il < O g = vlhe, + sup
w#0

1,25,

where the constant C' does not depend on h and . The two terms on the right-
hand side of (4.20) will be estimated in Theorems 4.8 and 4.13.

The following lemma is a reformulation of Lemma 3.6:
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Lemma 4.5. Let 0Ky be the circle with the center So and radius Ry = Rz — 29,
where g is the same as in Assumption 4.2. Let 25, 24 be bounded domains such
that 0025 = 0K, UKy, 0024 = 0K, U O0Ky. There exist linear and bounded ez-
tension operators Eyy : H2(02M) — H?(02M) (M = S, A) such that the constant
Cyr appearing in the inequality

1Bx ()l g0 < Curllvllo,on Vo € H* (M)

does not depend on Ra/o and v.

Remark 4.6. As Lemma 4.5 is used in the proof of Theorem 4.8 the polygonal
domains .Q,if‘ must be situated between the circles 9Ky and 0K4. We derive now
the expression for the minimum number of vertices of such a polygonal domain
in the case o/Ry < 1071

Let A; be an arbitrary point of the circle 0K5 and let ¢ be one of the two
tangents to the circle 0K3 which pass through the point A;. Let B =t N 0Ks,
Ag = {tNOK3} —{A1}. If o/ Ry < 107! then we can neglect the terms depending
on 0% and find

dy = dist (A1, B) = (20Ry — 0°)Y/2,  dy = dist (A, As) = 2d;.

Let us approximate K9 by a regular polygon with vertices P, ..., P, where
21 Ro TR
= = = 1.
wem= [0+ [ S +

Let the vertices Q1, . .., @, of the polygon K% approximating K3 be obtained
in the following way: ; is the intersection of the segment Sy P; with 0K.

For example, if p = 1mm and Ry = 50 mm then no = 16. This is a surpris-
ingly small number. Of course, it is better to use the relation

In the case o = 1 mm, Ry = 50 mm we have ny = 32.

If we divide every quadrilateral P;P;11Q;Q;+1 into two triangles we obtain a
triangulation which satisfies (from a practical point of view) the maximum angle
condition only: For n = n; the minimum angle is less than 6 degrees and for
n = ng less than 3 degrees. O

Lemma 4.7. If the solution u € H(£2) of Problem 4.1 satisfies assumption
(4.18) then

NM(u) = uM(|VuM|2)%‘TV e H{(2M) (M =R,S,A). (4.21)

3
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Consequently,

2
Z 0 <VM(|VUM|2)8UM> +fuw=0 ae in M (M=RSA), (422

Py Ox; ox;
2 ou
q= ;ﬁ(msﬁ) 9y, "i(2%) ae on Iy, (4.23)

where far = flom and the symbols n;(G) (i = 1,2) denote the components of
the unit outward normal to 0G. Finally,

M&uM 6uA

v, —— =

on

oK, on

a.e.on 0K; (M =R,S), (4.24)

OK;

where j =2 for M = S and j = 3 for M = R and 9/0n is the normal derivative
(the orientation of n can be chosen arbitrarily).

Theorem 4.8. Under the assumptions of Theorem 4.4 we have
inf |Ju—vll1,0, < Ch{ D (4 sup ) unrllz,0m + |UA||2,_QA}7 (4.25)
veWp
M=R,S
where the constant C' does not depend on both h and p.

For the proofs of Lemma 4.7 and Theorem 4.8 see [20, Lemma 12 and The-
orem 13].

Notation 4.9. a) We denote

—M =M
wM=0M 07 M=0" -0,

. —M —M =M
b) The natural extension wys of wys := w | oM from {2, onto 2, U is
h
. —M =M . M
the function wyy : 2, U — R! satisfying Wy = wys on 2, and
WM | Tia =P | pia Ol T4 > T,

where p is the polynomial of first degree satisfying p|T = w | o and T4 is
the ideal curved triangle associated with T (it is also called the exact curved
triangle). (For more detail see [18] or [4].)

¢) The natural extension w of w € X, is the function w : 2 — R! such that

w=won 2, and W = wWg onw,‘?.

Lemma 4.10. We have
[vllo,rp0 < Clhllvlloor;es + B2 o]y ;20) Vo€ HY (') (M =S, A),

where i = 1 and i = 2 for M = S and M = A, respectively, and where the
constant C does not depend on both h and o.
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Lemma 4.10 follows from the proof of [18, Lemma 28.3].

Lemma 4.11. We have for all w € Xp

[Wallo,en < Chllwlr,0, (6=7w; M=R,S), (4.26)
W]y e < CHYPwli g, (e =7w; M=R,S). (4.27)

Proof. As T,F, T,% satisfy the minimum angle condition estimates (4.26), (4.27)
follow from [1, Lemma 3.3.12].

Lemma 4.12. We have for all w € Xp

L7 (w) = Li (w)] < Ol flloo,2llw]1,0, (4.28)
|Li, (w) = Ly, (w)] < C h(mesi I2)"?q|1,00,r, w1, (4.29)
L1 (w) = L"(@)] < C 12|l qllo,ru |l (4.30)

For the proof of (4.28), (4.29) and (4.30) see, for example, [3, Theorem 4.5.1],
[18, Lemma 30.1] and [4, Lemma 3.3.13], respectively.

Theorem 4.13. Under the assumptions of Theorem 4.4 we have for all w € V},

lan(u, w) — Ly(w)] < Ch{| fll1,00,2 + (mes1 12)2|ql|1,00, +

+ (L +sup v usllzoo + D luarlaon +
M=A,R

2
+ D IONF (W) /0w s}l
i=1

1,0,, (4.31)
where N7 (u) is defined in (4.21).
Proof. Instead of S, A and R we shall write 1, 2 and 3, respectively. We have
Jan (u, w) = Li(w)| < lan(u,w) = Ly(w)| + |Ln(w) = Ly(w), (4.32)
where
Li(w) = L (w) + L (w). (4.33)

After a longer computation we obtain (see [20, pp. 413-415])

2
an(u,w) = Ly(w) = Dy + Y _(DY? — DY) — D3 — Dy, (4.34)
j=1
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where

D, = L' (@) - Lj (w),

(kj) 9\ Oujqp1 Ow
Dy Z// (IVujii]?) Bo Do dzday,

= w0 9 1 2 3u1
_Z//l(z)waxi (V (|Vua] )8$1> dzidxs,

Ouy 0w
D4‘Z// e
wp,

where w} (2) denotes the part of w} which is adjacent to I%.

The estimate of |Dy] is given in (4.30). The term Dék’] ) is of the same type
as the term appearing in Lemma 3.21. However, the presence of the domains
N7 =23 2% = 2! enable us to avoid requirement (3.40). It follows from (4.7)
that

k.j
|D§ J)| < K|uj+1|1v"';{|w|1»7;{' (4.35)

As ujq1 € H*(£F1) we have by Lemma 4.10

2
8u» 1
. < J+
|uJ+1|1,T;7L = C;:l: (h H Gy

The trace theorem yields

Ouji

h2

0,0K;11

1 Tj). (4.36)

< Cllus|2,08- (4.37)

H 8’U,3
0,0K3

8xi

Owing to the fact that u € C(£2) we have

u1 | oK, — U2 | oKy
This relation implies that
8u1 6u2
ot ot
where 0/0t is the tangential derivative. Combining this result with (4.24) (where
j = 2) and using the trace theorem on 2% we derive

a.e. on 0Ks,

H ZZ? < C(1+ sup [v}]) || [|2.01- (4.38)
t110,0K5
Estimates (4.35)—(4.38) give
2 3
S (DY |+ (D)) < r{ (14 sup v} Dllunllz.on + D il 01 Fwly, o,
j=1 j=2

(4.39)
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Relation (4.21), the Schwarz inequality and Lemma 4.11 imply

8 1 2 6u1
a—xi<1/ (V| )8—331)

Finally, as 7! satisfies the minimum angle condition and u; € H?(2) (see
(4.18)) we have by (4.7), (4.27), Lemma 4.10 (which holds also for w} with 9K
instead of 0K;41) and the trace inequality

2

Do =y

=1

Dol @
0,02

|Da| < Klurly 3 [@h o < ChY2uslla, 00wl e, (4.41)

P

Relations (4.34), (4.30), (4.39)—(4.41) give the bound of the first term on the
right-hand side of (4.32). The estimate of the second term on the right-hand side
of (4.32) follows from Lemma 4.12. Hence we obtain (4.31). O

Theorem 4.4 follows now from (4.20) and Theorems 4.8 and 4.13.

5 General convergence theorem

On the contrary to Section 3 we shall assume u € H'(§2) only and we shall prove
the convergence (without any rate of convergence) under a stronger assumption
than (3.40):

C1h?7% < = < Cyh?79, (5.1)

where

0<d<1 (5.2)

is a given number which can be arbitrarily small and Cy[m*~°], Cy[m'~?] are
positive constants. The abstract error estimate has in the case u € H(£2) the
form:

Theorem 5.1. Let condition (3.17) be satisfied. Then Problem 3.4 has a unique
solution up, € Vi, and we have

1)~ . ~ ap(v,w) —ap(v,w
i =l < o (Il =l + sup (2200 O]
h

weVy, ||w||179h
w#0
~0 o ~ o ~
b o [ZE@ = L2@) L) - L) @) - Duw)
wev, lwl[1,2, wevi,  lwlie, wev, l[wll1,2,
w#0 w#0 w#£0

(5.3)

where Cy is a positive constant, w € H(£2) is the solution of Problem 3.1 and

u = E(u) with E : H*(2) — H' () (see Lemma 3.6 where k = 1).
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In what follows we restrict ourselves to the case of triangular elements with
linear polynomials. First we generalize interpolation results for Zlamal’s simplest
ideal triangular finite element (see [25] and also [18]).

Let T € DI be an arbitrary triangle with two vertices lying on 9£2. We shall

denote them by Pg(xgz),xgz)) Pg(xgg),xgg)) in such a way that

dist (Py, P) = 2, (5.4)

P (xgl),xé )) being the vertex lying in §2. Thus the smallest angle o of T,
which tends to zero with h — 0, lies at P5. The angles lying at P; and P, will be
denoted by S and 7p, respectively. Both these angles tend to 7/2 with A — 0.

Setting
72 = o — 2, Ty = a® o, o= o) — ), Gy = — af)

we can write the transformation, which maps the triangle Ty with vertices
R1(0,0), R2(1,0) and R3(0,1) one-to-one onto T, in the form

= x1 (51752) ) 4 Ty + Tsl,
=2 (€1, 62) = 2 + 761 + Tsbo.

We have for the triangles lying along 052

(5.5)

2meSQT = dist (Pl, PQ) dist (PQ, Pg) sin YT -

From here, from (5.1), (5.4) and from the maximum angle condition we easily
obtain

C3h37% < mesyT < Cyh?, (5.6)

hr being the length of the greatest side of T and Cs, Cy positive constants.
Now we remind some results introduced in [18, Section 22]. Let A, and X be
the segment P, P3 and the part of 02 approximated by P, Ps, respectively. Let

1 = pa(&2), w2 =1va(&2), & €[0,1], (5.7)
be a parametric representation of A defined on [0, 1] with the property
pa(0) =217, (1) =2, 0 (0) = 2, ¥a(1) = .
We define the functions @ (&2), ¥(&2) on [0,1] by

Br(&2) = [pa(2) — 20 — T /(1 - &), & €[0,1),

A1) = —A () + T2, (1) = —— (1),
Wy (L) = [n(€2) — 25 — Taua] /(1 — &), & € [0,1),
B(1) = (1) + Tay B0 (1) = ———0 T (1),

j+1
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where Ty = xgg) - x§2), Ugo = xgg) - xéQ). If px, ¥ € CTI(]0,1]) then,
according to [18, Section 22], @y, ¥y € C™([0,1]) and
A(&) = Oh), (&) =005, & el0,1],
(&) = 0(hg), (&) =00, &elo.1],

where j = 1,...,n. The symbol T;\d will denote the curved triangle with two
straight sides P, P>, P; P3 and the curved side .

Theorem 5.2. Let the boundary 052 of the domain 2 be piecewise of class C*+1.
Then for h € (0, hg), where hg is sufficiently small, we have:
a) The transformation

(5.8)

a1 =27 (&1, &) = x§1) + To&1 + T3 + §1Pa(62),
2y = 03 (€1, &) = 28 + ot + Tabo + G0N (&2)

maps one-to-one the reference triangle Ty, which lies in the &, & -plane and
has the wvertices R1(0,0), R2(1,0), R3(0,1), onto the ideal triangle T with
vertices Pi(xgi),xg)) (i=1,2,3 - a local notation) and curved side \, which has
parametric equations (5.7), in such a way that

Ri <—>R (Z: 1,2,3), RlRJ‘ <—>P1Pj (]:2,3), R2R3 — A (510)

(5.9)

and Ty = int Ty < int T;\d = T)i\d.
b) The Jacobian Jx(&1,&2) of transformation (5.9) is different from zero on

To and it holds for (&1,&) € To:
Csh37% < |Jx(&1,&)| < Ceh37%  (C; = const > 0). (5.11)

c¢) Both mapping (5.9) and its inverse mapping are of class C* and for
(&1,&2) € Ty we have

8x? B 9_s 8%? B .
5o = Oi). Gt =0(hr) (i=1.2) (5.12)
P} o2) (k=12 5.13
3fjafk - ( T) (7').]7 — 4 )7 ( . )

oED _ o€} _ )
L 0?0, 52 =0(h!) (1= 1.2), (5.14)

where

&= (21,22), & =8 (21,22) (5.15)

is the inverse mapping to mapping (5.9).
d) Let S1, Sz be arbitrary points of To and Sy, Sy their images in trans-

formation (5.9). Let € be the distance between §1, Sy and let 1 be the distance
between S1, Sa. Then

Creh27° < < Csehr, (5.16)

where C7, Cy are positive constants independent of € and hp.
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Proof. A) First we prove assertions concerning J(£1,&2). Using the relations
[Z2| = O(h37%), [72] = O(h7%), [Ts| = O(hr), [y5] = O(hr), (5.17)

we obtain from (5.9) and (5.8)

Ia(61,&2) = [T2 + PA(&2)[U5 + E1W5(&2)] —
— [Ts + &19)(£2)][U + Ya(&2)] = 2mesy T + O(hi).

This result together with (5.6) imply both Jy(&1,&) # 0 on Ty and estimates
(5.11).

B) The proof of inequalities (5.16) follows the same lines as part (c) of the
proof of [18, Theorem 22.4]. Instead of [18, Lemma 22.2] we use the fact that at
least one of the estimates

|Ozlfg + Oégf3| > Chg:is, |Ct1§2 + a253| > Ch%:é (518)
holds, where a1, as are real numbers satisfying
o +a3 =1 (5.19)

If ay = 0 or ag = 0 then assertion (5.18) is evident. Let a1 # 0, aa # 0.
First we consider the case

sign iy = sign as. (5.20)

Then the expression

1

= ooy (@172 + 02" + (T + s73)°]"?

Vi

is the length of the segment P; Py3, where
P = ((Jaa|2{? + |az|z(V)/|on + s, (Jaa |28 + |as|z$) /Jar + asl)

is a point of the segment PoP3. If 7 < w/2 then Vi > P P,. As PP, > ChQT_‘S,
according to (5.1), assertion (5.18) follows because by (5.19) and (5.20) we have
log + ag| > 1.

If Br > 7/2 then 1 = wr where wr is the maximum angle of T. We have
V1 > d where d is the distance of the vertex P; from the segment P, P3. As ar
is small the angle made by PP, and the segment of the length d is less than
wr /2. Hence d > Py P cos(wr/2) and assertion (5.18) follows, according to the
maximum angle condition.

Now let

signa; = —signap (5.21)
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and let the point P* be such that Py = (P + P*). This gives P* = (27,23) =
2P — Py = (2x§1) — x§3), Qx;” — xgg)) and
1

- - 1/2
lor| + |ea

Va [(lo1 [T — |aa|Z3)? + (|ea [T — |azFs)?]

is the length of the segment P; P33, where

* 2 * 2 *
Py = ((laa |2 + |azla}) /(loa | + |az)), (Jaa 257 + |az|z3) /(Jaa | + |az]))

is a point of the segment P, P*. Let T* be the triangle with vertices Py, P>, P*. In
T* the angle at P; is equal to 7 — 8. If 71— OBp < w/2, then Vo > P Py > ChQT"S.

If 7 — Br > w/2 then © — fr = wr + ar, where wp = yp. We have V5 > d*
with d* the distance of the vertex P, from the segment P, P*. As the angle o
at P* is small, we have d* > P, P, cos(wr/2+ ar/2) and assertion (5.18) follows,
according to the maximum angle condition, because ar is small and (7 is not
small.

C) Setting & = 0 in (5.9) we obtain a parametric representation of P Ps:

T = xi” + 3261, X2 = !ﬁgl) + 761, & €[0,1].

Setting & = 0 in (5.9) we obtain a parametric representation of P; Ps:

T1 = 3351) + 7382, T2= %“gl) + 738, & e[0,1].

Thus segments P, P, and P; P; are images of segments Ry Ro and R R3, respec-
tively, in transformation (5.9).

Relations & = 1—t¢, & =t (¢t € [0,1]) form a parametric representation of
the segment Ry Rj3. In this case we obtain from (5.9) and the definitions of the
functions @y, ¥y:

Z1 :xi\(l_t’t):@(t)a $2=x§(1—t,t):¢(t% te [0’1]'

This means that the arc A is the image of the segment Rs R3 in transformation
(5.9).

Consequently, the Jordan curve T4 is the image of the Jordan curve 9Ty
in transformation (5.9).

Owing to inequalities (5.16) mapping (5.9) is injective. As (5.9) is also con-
tinuous on Ty it is a homeomorphism. A homeomorphism maps the interior of
the Jordan curve onto the interior of its image.

If f is a homeomorphism then f is bijective and f~! is continuous. Thus
relations (5.10) and int Ty < int 7'19 hold and mapping (5.15) is continuous.

D) Owing to [18, Lemma 22.1] mapping (5.9) is of class C*. The validity of
relations (5.12), (5.13) follows immediately from (5.9), (5.8) and (5.17).

It remains to prove the assertions concerning the inverse mapping (5.15). In
part C we proved that & (71, 22) are continuous on T'19.

Using (3.22), (3.23) together with (5.11) and (5.12) we obtain (5.14) and the
continuity of the first derivatives. The continuity of higher derivatives can be
proved similarly as in [18, p. 184]. O
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Theorem 5.3. Let the boundary 052 be piecewise of class C3. Let the polynomial
w*(&1,&2) of degree not greater than one be uniquely determined by the conditions

w*(Ri):gi (i:1,2,3).
Then the function w : T — R defined by the relations
W(w1, w3) 1= w (& (w1, 72), &3 (1, 22)),  (z1,22) € TY,

where &MNx1,12) are the functions from (5.15), has the following properties:
a) it satisfies the relation

w* (&1, &) = w(27 (61, &), 25 (&1, &), (&1.&) € To
and is uniquely determined by the conditions
b) w e C*HT1Y);
c) the function values on both straight sides P\ P; are polynomials in one
variable of degree mot greater than one uniquely determined by the parameters
g1 and g; prescribed at Py and P, respectively;

d) if both parameters g, g3 prescribed at Py, P3 € X are equal to zero then
w(x1,22) =0 for all (x1,22) € \.

The proof is the same as the proof of [18, Theorem 23.1].

Definition 5.4. The function w : 714 — R from Theorem 5.3 is called the ideal
triangular finite C%-element of the type (L,1) (where L stands for Lagrange)
belonging to T'i¢ and is uniquely determined by conditions (5.22). The set of all
such finite elements is briefly denoted by (T4, L, 1).

Theorem 5.5. Let the boundary 912 be piecewise of class C3. Let u € H?(Ti4),
where the curved side X of T3 is not approzimated by the shortest side of T, and
let uy € (T;\d, L, 1) be the ideal triangular finite C°-element uniquely determined
by the conditions

ur(Py) =u(P;) (j=1,2,3). (5.23)
Then
lur = ullg s < C2ully guos s = uly rso < CSlullyrae, — (5:24)
where C is a constant independent of hr, T and u.

Proof. We have, according to the theorem on transformation of an integral and
Theorem 5.2,

—0
lu = urllg pa < Chi° lu* = uj|l§ z, - (5.25)
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Considering in the same way as in the proof of [18, Theorem 10.5] we obtain (cf.
[1%, (10.12)])

lu* = will§ zy < [u*l3 7, (5.26)

Using again Theorem 5.2 and the theorem on transformation of an integral we
find that

ou* |? C
< ha|ul|? e (1=1,2). 5.27
5], < et =12 (527
Combining (5.25)—(5.27) we obtain (5.24);.
Further,
d 2 9 2
2
_ = _— _ _— _ <
lur u|1,T;d //T;d{ (axl (ur u)) + <8x2 (ur u)) }dxldxg <
9 2 9 2
< Ch~ 6(h_4+26 uy —u” + h?|| == (u} — u* > 5.28
851( ) I 852( 1—u’) - (5.28)
Similarly as in [0]
9 ? ou* |?
(uj —u™) < C’ (1=1,2). (5.29)
Hafi ! 0,To 9&i 1,To
Combining (5.28), (5.29) and (5.27) we obtain (5.24),. O

Remark 5.6. In the case of the minimum angle condition we have 6 = 1 and
Theorem 5.5 is identical with [18, Theorem 25.3] where n = 1.

Remark 5.7. If the curved side A of T} is approximated by the shortest side of
T then h‘ST, which appears on the right-hand side of (5.24)4, is substituted by h7.

Definition 5.8. a) Let Thid be the ideal triangulation of £2 corresponding to the
triangulation DI . (We obtain 7,4 by replacing the triangles T' € D} lying along
012 by corresponding ideal triangles.) The symbol Mj denotes the set of ideal
triangles 714 € 7,14 lying along the part of 92 where the homogeneous Dirichlet
condition is prescribed.
b) The function @ € H'({2) is said to be associated with a given function
w € Xy if:
(i) w € C(02);
(ii) ( 2) = w(P;) at all nodal points P; of DI
(iii) @ is linear on each triangle T € DI N 7,4 and on each ideal triangle
Tid ¢ Mp;
(iv) if Tid € My, then
w’T;d :w|T;d’
where w is defined in Definition 5.4.

Now we are prepared to estimate the fifth term appearing on the right-hand
side of (5.3) in the case when u € H*(£2) only.
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Lemma 5.9. For all w € V}, and U € HY () satisfying U = u in 2 we have

|Li(w) = an(U,w)| < L] (w) — LT (w)| +

2
. Ou d(w —w)
w5 [ Ao+ Dn it 2D +
TideM;, A i=1
2
+‘// {— Eia—Ua—w+wf}d$1d$2 +
™ —1 831‘1 8331

3

. (5.30)

2. Ou 0w
+ ‘/A{;k%ax —wf}dxldxg
Proof. We have

Ly(w) = (L (w) = L?(@)) + (L}, (w) — L"(@)) + L(@),

where w € V is associated with w € V}, in the sense of Definition 5.8. It holds
a(u,w) = L(w). Hence

—an(U,w) = (alu, @) — an(U,w)) — L(®).

The rest of the proof is straightforward (see, for example, the proof of [18,
Theorem 38.9]). O

Theorem 5.10. We have
|Li(w) — an (@, w)| < CR? w1, Ywe Vi, (5.31)

where the constant C does not depend on h and w and where the extension @ of
u has the same meaning as in Theorem 5.1.

Proof. A) Let us denote the terms appearing on the right-hand side of (5.30) by
Ds,...,Dy. By [21, Lemmas 29, 37] and assumption (5.1) we have

Dy < Chllgllo.ry[[wll1, 2, - (5.32)

Now we estimate Ds. Let By, be the union of triangles of D,q; lying along the part
I'; of 02 on which the homogeneous Dirichlet boundary condition is prescribed.
Using this notation we have in the case j = 1, according to the Cauchy inequality,

1/2
7 2
D, < <|f|07Bh—7'h =+ {I:lélt,)é ||ki||07oo7{~2|u|173h—7h> < Z ”w - w”l,T/‘\d)
T:\dEMh
(5.33)

and in the case j = 2

N 1/2
i+ 05 [l gl ) (30 10 )
’ T;\dEMh

D, < (|f|

(5.34)
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The function @ | Fids where T;\d € My, interpolates the function w ‘ Fia OI T;\d.
A A

Thus Theorem 5.5 and the linearity of @ | 4 give
A
PO 5 || 8 (7=
@ — w”l,T;d < ChT”w”z,T;d = ChTHw”l,T;d-

Hence in the case j = 2 (i.e., in the case u =0 on I%)

> 16Tl g <O S [l < O <
T/i\dEMh T;dEMh

< on{|[@l} o, + @7 ., }

and in the case j =1

~ 0|7
2 19 =l e < O W] g,
Tide M),

If j = 2, then relations [21, (74), (75)] and w = 0 on Iy, yield

m
[W][1,0, < Ch,/;lwll,nh-
[m < Chs/2-1,
0

@2, < Chwli g,

Using (5.1) we obtain

Hence

(5.35)

(5.36)

(5.37)

and (5.35) implies that also in the case j = 2 estimate (5.36) holds. Thus for

j = 1,2, according to (5.33), (5.34),
Dy < Ch(us”LQh )

where B
C < [ fllo,e + max [|killg o slul1,e-

(5.38)

As to the estimate of D3 we start from the expression, which follows from

the third term on the right-hand side of (5.30) with U = a:

Dy < max |[Killg o0 gl@hmlwhm + [ Fflloml[wlon.-

(5.39)

Using (5.37) and considering similarly as in part B of the proof of [21, Lemma

25] we can derive

|w|1,‘rh < Ch5/2|w|179h .

(5.40)
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Further
2 2 2 2012 h? 2
w5 -, < Ch* (|wl§,ry, +Ch?lwli,,) < C?Hw”LQh' (5.41)

The first inequality follows from the proof of [18, Lemma 28.3] and the second
from (3.31) and (5.40). Finally,

1Flo.m, < 171y oo /0270 < Chllfllg oo gv/mesiTr.  (5.42)
Combining (5.39)—(5.42) we find that
D3 < ChY? w1, 0, (5.43)
where the constant C' does not depend on h and w. Similarly,
Dy < Ch°2 w0, (5.44)

Relations (5.32), (5.38), (5.43), (5.44) together with Lemma 5.9 yield estimate
(5.31). O

Now we shall analyze the first term on the right-hand side of (5.3). We start
with the following finite element density theorem.

Lemma 5.11. Let V = {w € H'(2) : trw = 0 on I';}. For every pair € > 0,
w eV we can find we € C®(2)NV and he ., > 0 such that for all h € (0, h)e
we have

| — Thwell1,0, < ¢ (5.45)

where T € H*(2) is the extension of v € H*(82) according to Lemma 3.6 and
Iw e Xy ={we C(Q) : w|, € (T,L,1) VT € T} is the interpolant of
v € C(£2) defined by (Iv)(P;) = v(P;) VP;.

Proof. By [18, Theorem P.92] the set C'*° (2) NV is dense in V. Hence, there
exists a function w. € C*°(£2) NV such that

lw —well1,0 <e/(2C) (5.46)
where C1 is the constant from the inequality

W”Lﬁ <Cilvlle Yve HY(D). (5.47)

We shall consider w in H'(£2) and w. in H?({2). As the extension w. is equal
to the extension of w. from H'(£2) (see Lemma 3.6), we have, according to the
linearity of extension operators, w — we: = (w — we)™; thus (5.46) and (5.47)
yield

1@ =@l 5 < e/2. (5.48)
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The triangular inequality gives

& — el < 1@ — @, + @ - Iwlig,.  (5.49)
Now we estimate the terms on the right-hand side of (5.49). By (5.48) we have
| — well1,0, <e/2. (5.50)

As to the second term, we have

Ihwe = Inwe

because 2 C £2. This fact, the interpolation theorem for semiregular triangular
linear elements (see Theorem 1.3) and the extension theorem (see Lemma 3.6 )

yield
[we — Ihwe 1,0, < Chllwe|2,0, < CoChllwe|2,q0-

Thus there exists such an hc ,, that
lwe — Tnwel|1,0, <e/2 Yh € (0, hew). (5.51)
Combining relations (5.49)—(5.51) we obtain (5.45). O

Theorem 5.12. We have
}ILIL% {vlen‘ﬁh [lv — u||1,9h} =0. (5.52)

Proof. By Lemma 5.11, for a given € > 0 we can find u. € C*°(£2) NV and
hew > 0 such that

[ = Thuell1,0, <& Vh € (0, heu).
As Ihu, € V}, we have

vien‘ﬁh v —ll1,0, <lu—Ihucl,0,-

Both inequalities imply (5.52). O
Theorem 5.13. We have for all h € (0, hg)

|an (v, w) — an(v, w)|

IS := inf sup

< Ch(1 4+ [lull1,e),
vEVi weV, w10,
w#0

where u € H'(82) is the solution of the continuous variational problem and the
constant C' does not depend on h and wu.
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Proof. Let ¢ =1 and let us set
v=1Ipu. €V, (5.53)
where, according to Lemma 5.11,
|t — Ihuell1,0, <e=1 Vh e (0,heq). (5.54)
Using (5.53) and Theorem 3.13 we find
1S < ChllTyucl.o,- (5.55)
Triangular inequality, extension theorem and relation (5.54) imply
[Tnvellr, e, < [[ullr,@, + 0= Thuellie, < llull; 5 +1 < ClluflLe+1.
Combining this result with (5.55) we obtain the assertion of Theorem 5.13. O

The third and fourth terms appearing on the right-hand side of (5.3) are
estimated in Theorems 3.16 and 3.18, respectively. Thus using the preceding
results we obtain

Theorem 5.14. Let us consider the set of divisions {DL} (h € (0, ho)) intro-
duced in Section 3. Let assumptions of Problem 3.1 and assumptions concerning
the degrees of precision of quadrature formulas on a triangle and its side (see
Theorems 3.13 and 3.18) be satisfied. If inequalities (5.1) hold then

lim [[a —upl1,0, =0

where uy, is the solution of Problem 3.4 belonging to DL, u € H(2) is the

solution of Problem 3.1 and u = E(u) € H'(§2) its extension in the sense of
Lemma 3.6 with k = 1.

6 Appendix: Discrete Friedrichs’ inequality

In [21] the inequality
lolli,0, < Clvh,e, YveV, Vh<hg (6.1)

was used without proof. As the proof differs from the proof, which was presented
in [18] in the case of regular finite elements, we introduce the following lemma
which is sufficient for the considerations in [21] and this paper.

Lemma 6.1. Let {2 be a domain considered in Sections 3 and 5 and let (3.40)

be satisfied, i.e. let
@

Cih* < = (C1 > 0).
m

Then inequality (6.1) holds.
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Proof. a) The case of the Dirichlet boundary condition (3.2). In this case
Vi={veXy: v=0on I}

Let v be the natural extension of v and let 2 be the bounded domain with
boundary 92 = I U I's where I3 is the circle with the centre Sy and radius
R3 < Ry. We set 7 = 0 in the bounded set U, with the boundary U, = [3Ul7Yy,.
According to the Friedrichs inequality

||5||§’§ < CI?I?,@ (6.2)
As (), € 2 we have
vl 0, < 112 5 (6.3)
It remains to prove
B2 5 < Clofi g, (6.4)
We have
9} 5 = Il o, + [O1F - (6.5)

First we consider the case of the division DI. (For the definition of D} and
other types of divisions see the text following Lemma 3.3.) Let A, C s, be the
segment ;@ 41 which approximates the arc A C I;. Similarly as in the proof
of [21, Lemma 33] we can prove that

dist (Q;, FQ) <

b,

3o

1 1
8 8

where Q;*- is the mid-point of A\;. Thus

1
mess P, < ZmeSQT,

where P}, is the bounded domain with the boundary 9P, = AU A, and T the
triangle adjacent to Pp. As v is piecewise linear we have

_ 1
|U|%,7>h < 1|’U|3T'

Hence 1
|v|iwh < Z |U|%,Qh .

Inserting this result into (6.5) we obtain estimate (6.4) with C' = 5/4. The same
result can be obtained in the case of the division Dj..
In the case of the division DF we use the result for D;' and estimate [21,

(O1)]-
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Combining (6.2)—(6.4) we arrive at
05,0, < Clvli o, Vv € Vi
Hence (6.1) follows.
b) The case of the Dirichlet boundary condition v = 0 on . In this case
Vi={veXy: v=0on Iy}
and we define the quasinatural extension T of v € V}, by
v=wvon {2, T=0onuwy. (6.6)

The Friedrichs inequality gives

173, < ClTf - (6.7)
Relations (6.6) imply
i o < vl o, - (6.8)
If we prove
1713, > Cllvllg o, (C>0), (6.9)

then (6.1) follows from (6.7)—(6.9).

Let us consider the case of DX. Transformation (3.20) maps one-to-one the
reference square Ko with vertices P;(1,0), P;(0,0), P;(0,1), P;(1,1) onto the
quadrilateral K with vertices Py, P», P3, Py, where Pi, P lie on Iy and P3P; is
parallel to Py P>. Let S1 € Py Py, So € PoP3, let 5155 be parallel to P; P> and let

1
dist (P1P2, 3132) = gb
Then, according to [21, Lemma 33], the arc A C Iy which is approximated by

An = Py P lies in A, where A denotes the quadrilateral with vertices Py, Ps, Ss,
S1. Let us assume that we proved

3
101152 < Z 11115, (6.10)

Then

1
6.x-a = [vl5.x = 10052 = ZI0IE

||U||3,K7Ph > |lv|

where Py, is the bounded domain with the boundary 0P, = AU A. Hence (6.9)
follows with C' = %.

Let us prove (6.10). According to the definition, the function v(x,y) is on
every quadrilateral K such that

4
5(5777) = U(xK(gvn)ayK(gvn)) = Zszz(fan)a
=1
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where
b1 = 5(1 —77)7 b2 = (5 - 1)(77_ 1)7 b3 = (]- _5)777 b4 = 577

and B; = v(P;) (i = 1,...,4). The functions 2% (¢,7), y*(&,n) are the right-
hand sides of transformation (3.20).

The quadrilateral A is the image of the rectangle Ay with vertices P;, PJ,
S3, St in transformation (3.20), where S7 = [1, ], S3 = [0, £]. First we prove

/] 306, ) dgln < 5 [ /Kg[i(f,n)]Qdﬁdn 6.11)

Let us express the integrals

Ji= //KOW(E,W)]Qden = /01{/01(2 Bipi(&n)>2dn}d£,
n-]. e, iy = / 1{ / US(ggBmx&,n))zdn}de

as the quadratic forms of By, ..., By. Let us denote A = By, B = By, C = By,
D = Bs. Then

4608(J, — 2.J5) =
= (174A 4 87B 4 117C + 134D)? /174 + (130, 5B + 175,5C)? /130, 5 +
+ (195, 31035C + 97,655175D)%/195, 31035 + 146, 48277D? |

from which estimate (6.11) follows.
The Jacobian J of transformation (3.20) is of the form

J=(h—e"n),

where, according to (3.21) and (3.40), b = O(h?), e* = O(h?). Thus using (6.11)
and the relation

[ wenruacan=m [[ wenracn ©<m<.
Ko Ko
which is a consequence of the mean-value theorem, we obtain
Iolf.a = [ &P erapagan <
_ ) 1 _ )
<[], wempmacn< ;[ pempuagan <

: {//K (€ Phbdcan - [ /KO [B(E. )P mab dﬁdn} -

3 ~ 3
=3 /]| e e mpagan = ol

IN
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which proves (6.10).

In the case of division D} the proof of (6.9) is similar but simpler: Let T be a
triangle with vertices P;, P> lying on I'7 and let 1 and Q2 be the mid-points of
the sides P; P3 and P» Ps, respectively. Let T* denote the triangle with vertices

Q1, @2, P;. Then , ,
lvll5,r—p, > 0I5, 7+

and it is relatively easy to compute that

1
ol 2 > ool -
The last two inequalities imply (6.9) with C' = 1/64. O
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