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Abstract. This text is extended Equadiff 9 plenary lecture. Sections
1–4 contain a survey of published results which concern triangular and
quadrilateral finite elements. Sections 1 and 2 are devoted to interpola-
tion problems. These two sections contain also results of other authors.
The analysis of both the effect of numerical integration and approxi-
mation of a boundary is restricted to triangular elements with linear
polynomials and to quadrilateral elements with four-node isoparametric
functions. The corresponding results in the case of smooth solutions are
introduced in Section 3, where the rate of convergence O(h) is proved;
the case of nonsmooth solutions is studied in Section 5. This section is
restricted to triangular elements. In Sections 3 and 5 the domain consid-
ered has a form of a narrow ring with a great diameter. In this case the
elements cannot be arbitrarily narrow. In Section 4 a composite domain
indicated in Fig. 5 is approximated by triangular elements and applica-
tions of the finite element method in magnetostatical problems are in-
troduced. In this case the triangular elements can be arbitrarily narrow.
Section 6 is an Appendix where a special form of a discrete Friedrichs’
inequality, suitable for semiregular elements, is proved. Sections 5 and 6,
which complete the survey introduced in Sections 1–4, have not yet been
published and were written specially for Equadiff 9.
The notation of derivatives and Sobolev spaces is identical with the no-
tation used in [9].
As to the notion of semiregular elements, semiregular triangles can have
one angle arbitrarily small. Triangles with two arbitrarily small angles
are irregular. A semiregular quadrilateral K can be arbitrarily narrow
and it satisfies the condition

| cos ϑi| ≤ σ < 1 (i = 1, . . . , 4),

where ϑ1, . . . , ϑ4 are the angles of K.

AMS Subject Classification. 65N30

Keywords. Finite element method, elliptic problems, semiregular ele-
ments, maximum angle condition, effect of numerical integration, approx-
imation of the boundary, magnetostatical problems, discrete Friedrichs’
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1 Triangular and quadrilateral elements of the Lagrange
type

First interpolation estimates which can be used in the finite element theory were
derived by Synge in the year 1957 (see [14, pp. 209–213]). His a little improved
result can be formulated in the following theorem:

Theorem 1.1. Let u be a function continuous on a closed triangle T with
bounded second partial derivatives in its interior T ,∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣ ≤M2,

and let p(x1, x2) be a linear polynomial satisfying

p(Pi) = u(Pi) (i = 1, 2, 3)

with P1, P2, P3 the vertices of T . Then it holds on T∣∣∣∣ ∂u∂xi − ∂p

∂xi

∣∣∣∣ ≤ 2M2h

cos(γ/2)
(i = 1, 2) (1.1.zen)

|u− p| ≤ 2M2h
2

cos(γ/2)
(1.2.zen)

Result (1.2.zen) was obtained by means of (1.1.zen). Another independent consid-
eration (where we first estimate the difference g = u − p on P2P3 and then on
P1P

′ with P ′ ∈ P2P3 an arbitrary point) gives us

|u− p| ≤ 1
2
M2h

2. (1.3.zen)

This result implies a question whether estimate (1.1.zen) cannot be improved, as far
as the geometry is concerned. An example showing that the answer is negative
was presented in [15]. Here is its simplified version: Let us consider a set of
triangles with vertices

P1(−h/2, 0), P2(h/2, 0), P3(0, y0),

where h is fixed and y0 (0 < y0 <
√

3h/2) is variable, and a function u(x1, x2) =
x2

1. Its first degree interpolant has the form

p(x1, x2) =
h2

4

(
1− x2

y0

)
.

Hence ∣∣∣∣ ∂u∂x2
− ∂p

∂x2

∣∣∣∣ =
∣∣∣∣ ∂p∂x2

∣∣∣∣ =
h2

4y0
=
h

2
cotα =

h

2
tan(γ/2), (1.4.zen)
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where α and γ are the minimum and maximum angles of T , respectively. If
y0 → 0 then α→ 0, γ → π and∣∣∣∣ ∂u∂x2

− ∂p

∂x2

∣∣∣∣→∞.
Zlámal knew both estimate (1.1.zen) and result (1.4.zen) when he started to work

on his paper “On the finite element method” (see [24]). Nevertheless, instead of
the maximum angle condition

γT ≤ γ0 < π ∀T ∈ Th, ∀h ∈ (0, h0) (1.5.zen)

where Th denotes a triangulation of a given (polygonal) domain, he introduced
the minimum angle condition

ϑT ≥ ϑ0 > 0 ∀T ∈ Th, ∀h ∈ (0, h0) (1.6.zen)

where ϑT is the minimum angle of T . Reading Zlámal’s papers one sees that
the finite element theory is relatively easy under condition (1.6.zen). Also other
mathematicians started to use condition (1.6.zen) and when it was used in Ciarlet’s
1978-book [3] it has become a standard finite element condition.

However, there are situations where the minimum angle condition (1.6.zen) is
too restrictive because it forbids to use triangles with one small angle. Such
triangles are permitted according to the maximum angle condition. Thus it is
quite natural to try to generalize the standard finite element theory to the case
of condition (1.5.zen).

We start with the interpolation theorems and first we remind Jamet’s result
[5].

For a better understanding we introduce from [5] only a special situation
which is for applications quite sufficient. Let L(X,Y ) denote the set of all linear
bounded operators from a normed space X into a normed space Y . Let

Π ∈ L(W k,p(T ),W 1,p(T )),

where k is a positive integer and p ∈ [1,∞], be an operator satisfying the fol-
lowing hypotheses:

(H.1) We have
Πu = u ∀u ∈ Pk,2 ,

where Pk,n denotes the set of all polynomials in n variables of degree not greater
than k.

(H.2) There exists a unit vector ξ such that

∂u

∂ξ
(P ) = 0 ∀P ∈ T ⇒ ∂(Πu)

∂ξ
(P ) = 0 ∀P ∈ T.

(We restrict ourselves to this special type of (H.2) because we are interested only
in estimates of type (1.7.zen).)
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Theorem 1.2. Let T be a closed triangle with the interior T and vertices P1,
P2, P3 and let αT , βT and γT be the angles at P1, P2 and P3, respectively.
Let the vertices be denoted in such a way that αT ≤ βT ≤ γT . Let s1 and s2

be the unit vectors parallel to the sides P3P2 and P3P1, respectively. Let Π ∈
L(W k,p(T ),W 1,p(T )) be an operator satisfying hypotheses (H.1) and (H.2) for
ξ = s1 and ξ = s2. Let u ∈ W k+1,p(T ). Then we have for m = 0 and m = 1

|u−Πu|m,p,T ≤ C
hk+1−m
T

(cos(γT /2))m
|u|k+1,p,T , (1.7.zen)

where hT = dist (P1, P2) and C is a constant not depending on u and T.

Proof. The assertion is a special case of [5, Theorem 2.2]. ut

In [5] Theorem 1.2 is applied on compatible triangular finite elements of the
Lagrange type for arbitrary k. (For k = 1, p = ∞ estimates (1.7.zen) are identical
with Synge’s result.) This means that the operator Π is defined by the relations

(Πu)(Pi) = u(Pi) (i = 1, . . . , N, N := (n+ 1)(n+ 2)/2),

where P1, . . . , PN are the nodal points which are situated on T as the first
N integers in the Pascal triangle (see Fig. 1 where the black circles denote
prescribed function values).

However, in the case k = 1 estimates (1.7.zen) hold only for p ∈ (2,∞]. The
important case p = 2 is treated in [2] for k ≥ 1. A further generalization in the
case k = 1 is given in [6]. The interpolation result proved in [6] can be formulated
as follows.

Theorem 1.3. Let T be the same triangle as in Theorem 1.2 and let p ∈ (1,∞).
Let u ∈ W 2,p(T ) and let Ihu be the linear function satisfying (Ihu)(Pi) = u(Pi)
(i = 1, 2, 3). Then we have

|u− Ihu|m,p,T ≤ C
h2−m
T

(sin γT )m
|u|2,p,T (m = 0, 1), (1.8.zen)

where C is a constant independent of u and T .

Theorem 1.3 will be useful in our further considerations.

Now we introduce interpolation results in the case of semiregular (i.e., nar-
row) convex four-node quadrilateral isoparametric finite elements. In [1] such
elements are called anisotropic. However, in [1] the error of the interpolation is
estimated on rectangular elements; quadrilaterals are not considered.

The symbol K0 will denote the closed square in the (ξ, η)-plane with vertices
M̂1(1, 0), M̂2(1, 1), M̂3(0, 1), M̂4(0, 0). The functions ϕ̂(i) : (ξ, η)→ R1 with

ϕ̂(1)(ξ, η) = ξ(1 − η), ϕ̂(2)(ξ, η) = ξη,

ϕ̂(3)(ξ, η) = (1 − ξ)η, ϕ̂(4)(ξ, η) = (1− ξ)(1 − η)
(1.9.zen)
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n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

Fig. 1. Triangular finite elements of the Lagrange type.

are called bilinear basis functions; they have the property

ϕ̂(i)(M̂j) = δij .

Let K be a closed convex quadrilateral in the (x, y)-plane. Let two sides of
K be much greater than the remaining two ones. Let us consider first the case
that these two longer sides are parallel. (Such quadrilaterals are important, for
example, in modelling a gap between rotor and stator in an electrical machine.)
Let αK be the smallest angle of K and let us denote by M1 the vertex of K at
the angle αK . (If K has two or four angles which can be denoted by αK then,
of course, we have two or four choices.) One short side and one long side of K
meet at M1. The second end-point of the long one will be denoted by M2 and
the second end-point of the short one by M4. The numbering of the vertices of
K is thus either anticlockwise, or clockwise.

In applications the local numbering of the vertices of K obeys a different rule
which is usually anticlockwise; let N1, . . . , N4 denote the vertices of K according
to this different rule, let (for simplicity) the numbering of M1, . . . ,M4 be also
anticlockwise and let

M1 = Nj+1, M2 = Nj+2, M3 = Nj+3, M4 = Nj ,

where Nj+i ≡ Nj+i−4 if j + i ≥ 5. As Ni corresponds by definition to M̂i the
isoparametric transformation of K0 onto K has the form

x = xK(ξ, η) :=
4∑
i=1

xiϕ̂
(j+i)(ξ, η),

y = yK(ξ, η) :=
4∑
i=1

yiϕ̂
(j+i)(ξ, η),

(1.10.zen)

where xi, yi are the coordinates of Mi (i = 1, . . . , 4) and where the indices
j + i (0 ≤ j ≤ 3 fixed, i = 1, . . . , 4) are considered modulo 4. (In the case
when the numbering of M1, . . . ,M4 is clockwise the corresponding isoparametric
transformation of K0 onto K has again the form of (1.10.zen).) As K is convex,
transformation (1.10.zen) maps K0 one-to-one onto K.
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Let

ξ = ξK(x, y), η = ηK(x, y) (1.11.zen)

denote the inverse transformation to transformation (1.10.zen). We set

ϕ(i)(x, y) := ϕ̂(i)(ξK(x, y), yK(x, y)) (i = 1, . . . , 4). (1.12.zen)

If u ∈ C(K), then we define the isoparametric interpolation of u on K by

(Qu)(x, y) =
4∑
i=1

u(Mi)ϕ(j+i)(x, y). (1.13.zen)

Theorem 1.4. Let K be a narrow quadrilateral with parallel long sides which
satisfy the assumption

dist (M1,M4) ≤ 1
12

dist (M1,M2). (1.14.zen)

Let u ∈ H2(K). Then we have

‖u−Qu‖0,K ≤
(
C1 +

C2εK
hK sinβK

)
h2
K |u|2,K , (1.15.zen)

|u−Qu|1,K ≤
(
C3 +

C4

sinαK

)
hK

sinβK
|u|2,K , (1.16.zen)

where Qu is defined in (1.13.zen), εK=dist (M1,M4)<hK=dist (M1,M2), αK≤ βK ,
αK and βK being the angles at M1 and M2, respectively, and the constants C1,
C2, C3, C4 satisfy

C1 = 55.019093, C2 = 21.658241, C3 = 12.801823, C4 = 19.47235264.

For the proof see [22].

Remark 1.5. Using the more standard approach with the bilinear isoparametric
mapping of K0 onto K we obtain (by means of the sharp form of the Bramble-
Hilbert lemma) the estimate ‖u−Qu‖0,K ≤ Ch2

K |u|2,K which does not depend
on the geometry of K. However, this approach completely fails in estimating
|u−Qu|1,K where we loose all powers of hK .

Remark 1.6. It can be shown by an example that the dependence of the estimate
of |u − Qu|1,K on sin−1 αK is essential (see [23]). The dependence on sin−1 βK
in both (1.15.zen) and (1.16.zen) is a cosmetic defect which is a consequence of the
approach used in [22].

Remark 1.7. If we change assumption (1.14.zen) to

dist (M1,M4) ≤ 1
2n

dist (M1,M2), n ≥ 6,

then the numerical constants in Theorem 1.4 will be smaller. (In more detail see
[22].)
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Theorem 1.4 can be generalized to the case that the long sides are not parallel.
We again assume that K is a convex quadrilateral. Moreover, we assume that
the long sides do not have any common vertex.

Our considerations are based on the following simple fact: Let K be an arbi-
trary convex quadrilateral. Then there exists a parallelogram D which has three
vertices common with K and is such that K ⊂ D.

Let us denote these three vertices by M1, M2, M3 in such a way that M1M2

and M2M3 are sides of K with the property

dist (M2,M3) < dist (M1,M2). (1.17.zen)

We shall denote

hK := dist (M1,M2), aK := dist (M2,M3). (1.18.zen)

Of course it may happen that hK is not the length of the greatest side of K
and that the numbering of M1, M2, M3, M4 is not anticlockwise.

We shall assume that

aK ≤
1

2n
hK , εK ≤

1
2n
hK , (1.19.zen)

1
2
≤ dist (M4, p)

dist (M3, p)
≤ 1, (1.20.zen)

where n ≥ 6 is a given integer, εK := dist (M1,M4) and p denotes the straight-
line passing through M1 and M2.

In applications we usually have

π

4
≤ αK ≤

3π
4
,

π

4
≤ βK ≤

3π
4
.

The interpolation theorem has in this more general case the following form
(see [22]).

Theorem 1.8. Let K be a quadrilateral satisfying assumptions (1.17.zen)–(1.20.zen)
and let u ∈ H2(K). Then we have

‖u−Qu‖0,K ≤
(
Ĉ1(n) +

Ĉ2(n)
√
εKaK

hK
√

sinβK sinαK

)
h2
K |u|2,K , (1.21.zen)

|u−Qu|1,K ≤
(
Ĉ3(n) +

Ĉ4(n)
√
εK√

aK sinβK sinαK

)
hK

sinβK
|u|2,K , (1.22.zen)

where Q is an interpolation operator of type (1.13.zen), aK = dist (M2,M3) and
εK = dist (M1,M4) satisfy (1.19.zen), αK and βK are the angles at M1 and M2,
respectively, and the positive constants Ĉ1(n), Ĉ2(n), Ĉ3(n) and Ĉ4(n) are de-
creasing when n is increasing, n being the integer which appears in (1.19.zen).
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2 Triangular elements of the Hermite type

Let us define Πu ∈ P3,2, where u ∈ C1(T ) and T is the same as in Theorem 1.2,
by the relations

(DαΠu)(Pi) = Dαu(Pi) |α| ≤ 1 (i = 1, 2, 3),
∂(Πu)
∂s2

(Q1) =
∂u

∂s2
(Q1),

(2.1.zen)

where Q1 is the mid-point of the side P2P3.

Theorem 2.1. The polynomial Πu is uniquely determined by relations (2.1.zen).
We have

Π ∈ L(W 3,p(T ),W 1,p(T )), p ∈ [1,∞]

and the operator Π satisfies hypotheses (H.1) and (H.2) for ξ = s1 and ξ = s2.
Hence estimates (1.7.zen) hold for k = 3, p ∈ [1,∞] and m = 0, 1:

|u−Πu|m,p,T ≤ C
h4−m
T

(cos(γT /2))m
|u|4,p,T .

Proof. The unique determination will be proved in Remark 2.10. The property
Π ∈ L(W 3,p(T ),W 1,p(T )) follows for p > 1 from the Sobolev imbedding theorem
and for p = 1 from the fact that W 2,1(T ) ⊂ C(T ). Hypothesis (H.1) is obvious
and hypothesis (H.2) is proved in [19]. ut

Remark 2.2. The tenth parameter (∂(Πu)/∂s2)(Q1) has no influence on the
global smoothness of a global finite element function defined in a given triangu-
lation; thus it can be different in two adjacent triangles with a common shortest
side.

Now we introduce a triangular finite element of the Hermite type which
does not satisfy Jamet’s hypothesis (H.2); nevertheless, it satisfies estimates not
depending on the minimum angle of T .

Theorem 2.3. Let T be the same triangle as in Theorem 1.2 and let a =
dist (P2, P3), b = dist (P1, P3), c ≡ hT = dist (P1, P2). Let ϕ ∈ C1(T ) and
let

|Dαϕ(P )| ≤M4 ∀|α| = 4, ∀P ∈ T , (2.2.zen)

Dαϕ(Pj) = 0 ∀|α| ≤ 1 (j = 1, 2, 3),
∂ϕ

∂na
(Q1) = 0 (2.3.zen)

where Q1 is the mid-point of the side P2P3 and na the unit normal to P2P3.
Then we have for all P ∈ T

|ϕ(P )| ≤ 1
96

(
1 + 4

(a
c

)3
)
M4 c

4 , (2.4.zen)∣∣∣∣ ∂ϕ∂xj (P )
∣∣∣∣ ≤ 4

15

(
1 + 5

(a
c

)2
)

1
sinβT

M4 c
3 (j = 1, 2). (2.5.zen)
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Proof. Theorem 2.3 is proved in [19]. Nevertheless, we reproduce this proof be-
cause it is surprisingly short. We restrict our considerations to the case

|Diϕ(P )| ≤M4 ∀|i| = 4 , ∀P ∈ T . (2.6.zen)

In the case (2.2.zen) we can use the trick with an inscribed triangle T
′ ⊂ T in the

same way as in [24]. The proof is based on the following four lemmas.

Lemma 2.4. Let s1, s2 be two noncollinear directions making an angle ω. Let
∂ϕ
∂sj

(P ) = kj (j = 1, 2), P being a point of the (x1, x2)-plane. Then∣∣∣∣ ∂ϕ∂xj (P )
∣∣∣∣ ≤ |k1|+ |k2|

| sinω| (j = 1, 2) .

Further, let s1 and s2 be two directions orthogonal to one another. If | ∂ψ∂si (P)| ≤ ki
(i = 1, 2) then we have for an arbitrary direction s∣∣∣∣∂ψ∂s (P )

∣∣∣∣ ≤ |k1|+ |k2|.

Lemma 2.5. Let g(0) = η1, g(l) = η2, g′(0) = k1, g′(l) = k2 and |g(4)(s)| ≤ K4

in (0, l). Then for s ∈ [0, l]

|g(s)| ≤ max |ηj |+
4 l
27

(|k1|+ |k2|) +
K4

16 · 24
l4, (2.7.zen)

|g′(s)| ≤ 3
2 l

(|η1|+ |η2|) + max |kj |+
K4

24
l3 (2.8.zen)

Further, if g(0) = g(l) = g′(0) = g′(l) = 0 then

|g′′(s)| ≤ 1
2
K4l

2. (2.9.zen)

Lemma 2.6. Let g(0) = η1, g(l/2) = η2, g(l) = η3 and |g(3)(s)| ≤ K3 in (0, l).
Then for s ∈ [0, l]

|g(s)| ≤ 5
4

max |ηj |+
√

3
63

K3l
3 , (2.10.zen)

|g′(s)| ≤ 8
l

max |ηj |+
1
4
K3l

2. (2.11.zen)

Lemma 2.7. Let g(0) = η1, g(l) = η2, g′(l) = k1 and |g(3)(s)| ≤ K3 in (0, l).
Then for s ∈ [0, l]

|g(s)| ≤ max |ηi|+
l

4
|k1|+

2
81
K3l

3. (2.12.zen)
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Lemmas 2.4–2.7 are taken from [24] with a modification in (2.7.zen) and im-
provements in (2.8.zen) and (2.12.zen).

We have by Lemma 2.5 (with g = ϕ|P2P3) and assumptions (2.3.zen) and (2.6.zen)∣∣∣(ϕP2P3

)∣∣∣ ≤ 1
16 · 24

· 4M4a
4 =

1
96
M4a

4 , (2.13.zen)∣∣∣∣(∂ϕ∂aP2P3

)∣∣∣∣ ≤ 1
24
· 4M4a

3 =
1
6
M4a

3 , (2.14.zen)

where ∂/∂a denotes the derivative in the direction of P2P3. Similarly, Lemma
2.6 with g = ∂ϕ/∂na|P2P3 yields∣∣∣∣( ∂ϕ

∂na


P2P3

)∣∣∣∣ ≤ 4
√

3
63

M4a
3 . (2.15.zen)

Using estimates (2.14.zen), (2.15.zen) and Lemma 2.4 we find for an arbitrary direction s∣∣∣∣(∂ϕ∂s P2P3

)∣∣∣∣ ≤ 43
63
M4a

3 . (2.16.zen)

Let P ∈ T , P 6= P1 and let B be the point of the segment P2P3 which lies on the
straight line determined by P1 and P . Setting l = dist (B,P1) and considering
the function g = ϕ


P1B

we obtain by means of Lemma 2.5 and (2.3.zen), (2.6.zen),
(2.13.zen), (2.16.zen)

|ϕ(P )| ≤ 1
96
M4a

4 +
4 l
27

43
63
M4a

3 +
1

16 · 24
· 4M4l

4, (2.17.zen)∣∣∣∣∂ϕ∂s (P )
∣∣∣∣ ≤ 3

2 · 96
M4

a4

l
+

43
63
M4a

3 +
1
6
M4l

3. (2.18.zen)

Estimate (2.17.zen) implies (2.4.zen). Estimate (2.18.zen) will be used in deriving (2.5.zen).
Relation (2.9.zen) from Lemma 2.5 with g = ϕ|P2P3 and relation (2.11.zen) from

Lemma 2.6 with g = ∂ϕ/∂na|P2P3 together with assumption (2.3.zen) yield∣∣∣∣∂2ϕ

∂a2
(B)
∣∣∣∣ ≤ 2M4a

2,

∣∣∣∣ ∂2ϕ

∂a∂na
(B)
∣∣∣∣ ≤M4a

2.

Hence, according to the second part of Lemma 2.4 where we set ψ = ∂ϕ/∂a,∣∣∣∣ ∂2ϕ

∂a∂s
(B)
∣∣∣∣ ≤ 3M4a

2. (2.19.zen)

Using Lemma 2.7 with g = ∂ϕ/∂a|P1B and taking into account relations (2.3.zen),
(2.14.zen), (2.19.zen) we find∣∣∣∣∂ϕ∂a (P )

∣∣∣∣ ≤ 1
6
M4a

3 +
3
4
M4a

2l +
8
81
M4l

3. (2.20.zen)

Inequalities (2.18.zen) and (2.20.zen) together with Lemma 2.4 imply (2.5.zen). ut
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Now we introduce some consequences of Theorem 2.3.

Theorem 2.8. A polynomial p ∈ P3,2 is uniquely determined by its ten values

Dαp(Pj) |α| ≤ 1, (j = 1, 2, 3);
∂p

∂na
(Q1) , (2.21.zen)

where the meaning of the symbols Pi, Q1 and na is the same as in Theorem 2.3.

Proof. It is sufficient to prove the uniqueness. Let us assume that the values
(2.21.zen) are equal to zero. Setting ϕ(x1, x2) = p(x1, x2) in Theorem 2.3 we have
M4 = 0 and estimate (2.4.zen) implies p(x1, x2) ≡ 0. ut

Theorem 2.9. Let u ∈ C1(T ) and let

|Dαu(P )| ≤M4 ∀|α| = 4, ∀P ∈ T.

Let p ∈ P3,2 satisfies the relations

Dαp(Pj) = Dαu(Pj), |α| ≤ 1 (j = 1, 2, 3),
∂p

∂na
(Q1) =

∂u

∂na
(Q1) .

(2.22.zen)

Then the function

ϕ(x1, x2) ≡ u(x1, x2)− p(x1, x2) (2.23.zen)

satisfies relations (2.4.zen) and (2.5.zen).

Proof. It follows from the assumptions of Theorem 2.9 that function (2.23.zen) sat-
isfies all conditions of Theorem 2.3. ut

Remark 2.10. We return to the first part of the proof or Theorem 2.1: If the
right-hand sides of (2.1.zen) are equal to zero, then also (∂Πu/∂na)(Q1) = 0 and
(Πu)(x, y) ≡ 0, according to Theorem 2.8. ut

It follows from Theorem 2.9 that triangular finite elements with polynomials
p ∈ P3,2 uniquely determined by parameters (2.21.zen) can be used in triangulations
satisfying the maximum angle condition: Estimate (2.5.zen) requires the next-to-
smallest angles of all triangles to be bounded away from zero. This requirement
(we call it the second angle condition) is equivalent with the maximum angle
condition.

Some triangular finite elements of the Hermite type are sketched in Fig. 2.
The black circle denotes the function value, the arrows and double arrows denote
the first and second normal derivatives, respectively, and the circled integers k
denote the values Dαp(Pi), |α| ≤ k, where Pi is the centre of the circle.
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1 1

1

n = 3

2 2

2

n = 5

1 1

1

n = 3

2 2

2

n = 5

Fig. 2. Triangular finite elements of the Hermite type.

Remark 2.11. The method of the proof of Theorem 2.3 does not work success-
fully in the case of the classical Hermite triangular finite element of third degree
where the last condition (2.3.zen) is substituted by ϕ(P0) = 0, P0 being the center
of gravity of T , because we obtain only

|(∂2ϕ/∂a∂na|P2P3)| ≤ KM4l
3/a (l = dist (P1Q1))

and l/a→∞ with a→ 0.
The hypothesis (H.2) is not also satisfied. This can be proved by the following

example: Let u(x, y) = y4 and let the triangle T have the vertices P1(0, 0),
P2(1, 0), P3(0, 1). Then the polynomial of third degree satisfying the first nine
conditions (2.22.zen) and condition p(P0) = u(P0), where P0 is the center of gravity
of T , has the form

p(x, y) =
4
3

(
xy − 3

4
y2 − x2y − xy2 +

3
2
y3

)
.

We see that ∂u/∂x ≡ 0 while ∂p/∂x 6= 0 in T . Thus hypothesis (H.2) is not
satisfied and we cannot apply Jamet’s theory on this finite element.

Remark 2.12. In [2, p. 222] the parameters

Dαp(Pj) |α| ≤ 1 (j = 1, 2, 3);
∫∫

T

∂2p

∂x∂y
dxdy (2.24.zen)

were considered in connection with the maximum angle condition for a cubic
triangular finite element on a right triangle with the sides P1P2 and P2P3 lying
on the axes x and y, respectively. However, parameters (2.24.zen) do not determine
in a general case a polynomial p ∈ P3,2 uniquely. To prove it let us consider a
triangle with vertices Pi(xi, yi) (i = 1, 2, 3) and let T0 be the triangle lying in
the ξ, η-plane with vertices P ∗1 (0, 0), P ∗2 (1, 0), P ∗3 (0, 1). The transformation

x = x(ξ, η) ≡ x1 + x2ξ + x3η, y = y(ξ, η) ≡ y1 + y2ξ + x3η, (2.25.zen)

where

xj = xj − x1, yj = yj − y1 (j = 2, 3), (2.26.zen)
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maps the triangle T 0 one-to-one onto T . Let us set

p∗(ξ, η) = p(x(ξ, η), y(ξ, η)). (2.27.zen)

If all ten parameters (2.24.zen) are equal to zero then

Dαp∗(P ∗j ) = 0 |α| ≤ 1 (j = 1, 2, 3), (2.28.zen)∫∫
T0

{
−x3y3

∂2p∗

∂ξ2
+ (x2y3 + x3y2)

∂2p∗

∂ξ∂η
− x2y2

∂2p∗

∂η2

}
dξdη = 0. (2.29.zen)

Relations (2.28.zen) imply

p∗(ξ, η) = Kξη(1− ξ − η). (2.30.zen)

Inserting (2.30.zen) into (2.29.zen) we obtain

K{2(x2y2 + x3y3)− (x2y3 + x3y2)} = 0. (2.31.zen)

If the difference standing in braces is different from zero then (2.31.zen) implies
K = 0 and parameters (2.24.zen) determine uniquely p ∈ P3,2. However, if

2(x2y2 + x3y3) = x2y3 + x3y2 , (2.32.zen)

then (2.31.zen) is satisfied with K 6= 0 and p(x, y) 6= 0, according to (2.30.zen) and
(2.27.zen).

Let us describe these situations. It cannot be simultaneously x2 = x3 = 0
(and similarly y2 = y3 = 0). Let x2 6= 0. If y2 = 0 then (2.32.zen) gives x3 = x2/2
with arbitrary y3 6= 0. Conversely, if x3 = x2/2 then (2.32.zen) implies y2 = 0. In
other cases

y3 =
(2x2 − x3)y2

x2 − 2x3
(y2 6= 0, x2 6= 2x3).

The situation x3 6= 0 can be treated similarly with the same results. ut

Now we mention briefly some higher-degree polynomials. We shall modify
the family of triangular finite elements introduced by Koukal in [7] and [8].

Theorem 2.13. Let u ∈ Ck(T ) (k ≥ 1). A polynomial p ∈ P2k+1,2 is uniquely
determined by conditions

Dαp(Pj) = Dαu(Pj), |α| ≤ k (j = 1, 2, 3), (2.33.zen)
∂rp

∂nra
(Q(r)

j ) =
∂ru

∂nra
(Q(r)

j ) (j = 1, . . . , r; r = 1, . . . , k) , (2.34.zen)

where the symbol ∂/∂na has the meaning as in Theorem 2.3 and Q
(r)
1 , . . . , Q

(r)
r

(1 ≤ r ≤ k) are the points dividing the side P2P3 into r + 1 parts of the same
length.
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Theorem 2.14. Let u ∈ Ck(T ) (k ≥ 1). A polynomial Πu ∈ P2k+1,2 is uniquely
determined by the conditions

Dα(Πu)(Pj) = Dαu(Pj), |α| ≤ 1 (j = 1, 2, 3), (2.35.zen)
∂r(Πu)
∂sr2

(Q(r)
j ) =

∂ru

∂sr2
(Q(r)

j ) (j = 1, . . . , r; r = 1, . . . , k) , (2.36.zen)

where ∂/∂s2 denotes the derivative in the direction of the side P3P1.

For k = 1 the assertions of both theorems are contained in Theorems 2.1 and
2.8. In the case k ≥ 2 the proof is a modification of the proof of [18, Theorem
17.1].

Generalizing a little the preceding considerations we can prove:

Theorem 2.15. Let u ∈ W 2k+2,p(T ), where k ≥ 1 and p ∈ [1,∞], and let the
operator Π be defined by (2.35.zen), (2.36.zen). Then we have for m = 0, 1

|u−Πu|m,p,T ≤ C
h2k+1
T

cos(γT /2)
|u|2k+2,p,T . (2.37.zen)

Remark 2.16. A generalization of Theorem 2.3 to the case of interpolation poly-
nomials introduced in Theorem 2.13 is possible. Instead of special Lemmas 2.5–
2.7 we can use [16, Theorem 2]. We obtain the estimates

|ϕ(P )| ≤ CM2k+2c
2k+2,

∣∣∣∣ ∂ϕ∂xj (P )
∣∣∣∣ ≤ C

sinβ
M2k+2c

2k+1,

where P ∈ T and j = 1, 2.

Remark 2.17. The construction of finite elements introduced in Theorem 2.13
implies the following conjecture: It is impossible to construct a triangular finite
C1-element which satisfies the maximum angle condition.

3 Variational crimes and semiregular finite elements in
the case of smooth solutions

3.A Formulation of the problem

We shall consider the boundary value problem

−
2∑
i=1

∂

∂xi

(
ki(x)

∂u

∂xi

)
= f(x), x ∈ Ω, (3.1.zen)

u = 0 on Γ1, (3.2.zen)
2∑
i=1

ki
∂u

∂xi
ni(Ω) = q on Γ2, (3.3.zen)
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where Ω is a two-dimensional bounded domain with the boundary ∂Ω = Γ1∪Γ2,
Γ1 and Γ2 being the circles with radii R1 and R2 = R1 + %, respectively. We
assume that the circles Γ1, Γ2 have the same center S0 and that

R1 � %. (3.4.zen)

The symbols ni(G) (i = 1, 2) denote the components of the unit outward normal
to ∂G.

Fig. 3.

A weak solution of problem (3.1.zen)–(3.3.zen) is a solution of the following vari-
ational problem (which can be obtained from (3.1.zen)–(3.3.zen) by means of Green’s
theorem in a standard way).

Problem 3.1. Let Ω be a bounded domain with a Lipschitz continuous bound-
ary ∂Ω = Γ1 ∪ Γ2. Let

V = {v ∈ H1(Ω) : v = 0 on Γ1}, (3.5.zen)

a(w, v) =
2∑
i=1

∫∫
Ω

ki(x)
∂w

∂xi

∂v

∂xi
dx1dx2, (3.6.zen)

L(v) = LΩ(v) + LΓ (v) =
∫∫

Ω

vf dx1dx2 +
∫
Γ2

vq ds , (3.7.zen)

where

ki ∈W 1,∞(Ω), f ∈W 1,∞(Ω),

q = Q

Γ2
, Q ∈ C2(U),

(3.8.zen)

ki(x) ≥ µ0 > 0, (3.9.zen)
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U being a neighbourhood of Γ2 (i.e., a domain containing Γ2). Find u ∈ V such
that

a(u, v) = L(v) ∀v ∈ V. (3.10.zen)

Assumptions (3.8.zen)–(3.9.zen) guarantee that the symmetric bilinear form (3.6.zen) is
bounded and strongly coercive and that the linear form (3.7.zen) is continuous. (Of
course, this also holds when f ∈ L2(Ω) and q ∈ L2(Γ2). We assume (3.8.zen) because
of numerical integration.)

Lemma 3.2. Let a solution u ∈ V of Problem 3.1 satisfy u ∈ H2(Ω). Then
relation (3.1.zen) holds almost everywhere in Ω and relation (3.3.zen) holds almost ev-
erywhere on Γ2.

The proof is omitted. Also the following lemma is well-known:

Lemma 3.3. If (3.9.zen) holds then Problem 3.1 has a unique solution.

We shall solve Problem 3.1 approximately by the finite element method. To this
end let us approximate Γ2 by a regular polygon Γ2h with vertices Q1, . . . , Qn
such that every segment QiQi+1 has no common point with Γ1. Let the vertices
P1, . . . , Pn of the polygon Γ1h approximating Γ1 be obtained in the following
way: Pi is the intersection of the segment S0Qi with Γ1. The symbol Ωh will
denote the polygonal domain with the boundary ∂Ωh = Γ1h ∪ Γ2h.

We divide each segment PiQi by the points Ai1, A
i
2, . . . , A

i
m−1 into m parts

of the same length in such a way that we have formally Ai0 = Pi, Aim = Qi. The
points Aij are the vertices of quadrilaterals into which the domain Ωh is divided.
Such a division of Ωh will be denoted DKh . If we divide each quadrilateral of DKh
into two triangles we obtain a division DTh (see Fig. 4). We shall also consider
an auxiliary division DAh which will be constructed from DKh by dividing each
quadrilateral Aim−1A

i+1
m−1QiQi+1 into two triangles.

We admit to use narrow quadrilaterals and narrow triangles. This means that
we shall have

%

m
� h (3.11.zen)

in our considerations, where h is the length of the greatest segment in the division
of Ωh.

We shall assume that ki ∈ W 1,∞(Ω̃), f ∈ W 1,∞(Ω̃), where Ω̃ is such that
Ωh ⊂ Ω̃ for sufficiently small h. When we consider the functions ki and f in Ωh
we shall use symbols k̃i and f̃ . In the opposite case the original symbols ki and
f will be used.

The discrete problem is now formulated in an almost standard way. (The
expression “almost” concerns the approximation of the term LΓ (v) which needs
some space.) Let Dh denote one of the three divisions DKh , DTh , DAh . We define
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Fig. 4.

spaces

Xh = {v ∈ C(Ωh) : v

K

= a four-node isoparametric function ∀K ∈ Dh,
v

T

= a linear polynomial ∀T ∈ Dh}
(3.12.zen)

and

Vh = {v ∈ Xh : v = 0 on Γ1h}. (3.13.zen)

We set for all v, w ∈ H1(Ωh)

ãh(v, w) =
2∑
i=1

∫∫
Ωh

k̃i
∂v

∂xi

∂w

∂xi
dx1dx2 (3.14.zen)

and

L̃Ωh (v) =
∫∫

Ωh

vf̃ dx1dx2 ∀v ∈ Xh. (3.15.zen)

To define L̃Γh (v) is more complicated. Therefore, we omit it and refer only to
[21].
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The symbols ah(v, w), LΩh (v) and LΓh (v), where v, w ∈ Xh, will denote the
approximations of ãh(v, w), L̃Ωh (v) and L̃Γh (v), respectively, when using numerical
integration. For example, in the case of DTh we have for all v, w ∈ Xh

ah(v, w) =
∑
T∈DT

h

2∑
i=1

NT∑
j=1

2ωT0,j k̃i(xT,j)
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

mes2T,

where xT,j are the integration points on a triangle T and ωT0,j the corresponding
coefficients of the given integration formulas (prescribed on the reference triangle
T 0).

Now we can define the approximate problem:

Problem 3.4. Find uh ∈ Vh such that

ah(uh, v) = Lh(v) ∀v ∈ Vh. (3.16.zen)

3.B An abstract error estimate

Definition 3.5. Let u ∈ H2(Ω). We define Qhu ∈ Xh by

Qhu

K∈Dh

= QKu = the four-node isoparametric interpolant of u,

Qhu

T∈Dh

= ITu = the linear interpolant of u,

where Dh is one of the divisions DKh , DTh , DAh .

Lemma 3.6. Let Γ0 be the circle with a center S0 and radius R0 = R1−%. Let Ω̃
be a bounded domain such that ∂Ω̃ = Γ0 ∪Γ2. There exists a linear and bounded
extension operator E : Hk(Ω) → Hk(Ω̃) such that the constant C appearing in
the inequality

‖E(v)‖k,Ω̃ ≤ C‖v‖k,Ω ∀v ∈ Hk(Ω)

does not depend on R1/% and v. The operator E is also a linear and bounded
extension operator from Hk−i(Ω) into Hk−i(Ω̃) (1 ≤ i ≤ k).

Lemma 3.6 follows from the considerations introduced in [13, pp. 20–22].

Theorem 3.7. Let u ∈ H2(Ω), ũ := E(u) and let the condition

‖v‖21,Ωh ≤ Cah(v, v) ∀v ∈ Vh, ∀h ∈ (0, h0) (3.17.zen)

be satisfied, where the constant C does not depend on v and h and where h0 is
sufficiently small. Then Problem 3.4 has a unique solution uh ∈ Vh and there
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exists a positive constant C0 independent of u ∈ H2(Ω) and w ∈ Vh such that

C−1
0 ‖ũ− uh‖1,Ωh ≤ ‖Qhu− ũ‖1,Ωh + sup

w∈Vh
w 6=0

|ah(Qhu,w)− ãh(Qhu,w)|
‖w‖1,Ωh

+

+ sup
w∈Vh
w 6=0

|L̃Ωh (w) − LΩh (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|L̃Γh (w) − LΓh (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|ãh(ũ, w)− L̃h(w)|
‖w‖1,Ωh

.

(3.18.zen)

Theorem 3.7 is proved in [21]. Our first aim is to prove that condition (3.17.zen)
is satisfied. This will be done in subsection 3.D, where we also give estimates of
the second, third and fourth terms appearing on the right-hand side of (3.18.zen).
These terms express the error of numerical integration.

The estimate of the first term, which expresses the interpolation error, is
introduced in subsection 3.C. This estimate follows from the known interpolation
theorems. The fifth term, which expresses the error due to the approximation of
the boundary, will be estimated in subsection 3.E.

3.C The interpolation error

The estimate of the first term appearing on the right-hand side of (3.18.zen) follows
from Theorems 1.3 and 1.4:

Theorem 3.8. We have

‖Qhu− ũ‖1,Ωh ≤ Ch‖u‖2,Ω,

where the constant C is independent of h, u and the division Dh.

3.D The effect of numerical integration

The effect of numerical integration must be analyzed more carefully than in the
case of regular elements. In the case of triangles the result is that the numerical
integration does not depend on the geometry of triangles and that the degrees of
precision of quadrature formulas sufficient for the rate of convergence O(h) are
the same as in the regular case (except for the integration along the boundary
Γ2h – see Theorem 3.18). The proofs of the assertions presented in this subsection
can be found in [21].

First we mention the analysis of the numerical integration on quadrilaterals.
Let K be a quadrilateral whose greatest side lies on the axis x1 and let it have
the vertices

P1(h, 0), P2(0, 0), P3(δ cosβ, δ sinβ), P4(h− ε cosα, ε sinα)

where ε = dist (P1, P4), δ = dist (P2, P3) and α and β are the angles at P1 and
P2, respectively. As each quadrilateral belonging to Dh has parallel long sides
we have

b :=
%

m
= ε sinα = δ sinβ.
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Let K0 be the reference square lying in the coordinate system ξ1, ξ2 and having
the vertices P ∗1 (1, 0), P ∗2 (0, 0), P ∗3 (0, 1), P ∗4 (1, 1). If we denote

ε3 = δ cosβ, ε4 = ε cosα, ε∗ = ε3 + ε4,

then the one-to-one mapping of K0 onto K has the form

x1 = hξ1 + ε3ξ2 − ε∗ξ1ξ2, x2 = bξ2. (3.19.zen)

If the side P1P2 makes an angle ϕ with the axis x1 and the vertex P2 has
coordinates x10, x20 then (3.19.zen) is substituted by the mapping

x1 = xK1 (ξ1, ξ2) ≡ x10 + (hξ1 + ε3ξ2 − ε∗ξ1ξ2) cosϕ− bξ2 sinϕ,

x2 = xK2 (ξ1, ξ2) ≡ x20 + (hξ1 + ε3ξ2 − ε∗ξ1ξ2) sinϕ+ bξ2 cosϕ.
(3.20.zen)

Both transformations (3.19.zen) and (3.20.zen) have the same Jacobian

JK = (h− ε∗ξ2)b.

It should be noted that for n� 1 we have

εi ≈
1

2n
(2π(R1 +∆+

%

m
)−2π(R1 +∆)) =

π%

nm
(i = 3, 4; 0 ≤ ∆ ≤ %(1−1/m)).

Further

h ≈ 2πR1

n
.

The last two relations imply in this case

εi = σib, σi ≤ Ch (i = 3, 4). (3.21.zen)

Let us denote

(1) := 2, (2) := 1, κij = (−1)i+j . (3.22.zen)

Then we can write (omitting the subscript K at J)

∂ξi
∂xj

= κij
1
J

∂x(j)

∂ξ(i)
(i, j = 1, 2) (3.23.zen)

and the theorem on transformation of an integral yields

EK

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)
= EK0

( 2∑
i,r,s=1

k̃∗i χirs
∂v∗

∂ξr

∂w∗

∂ξs

)
(3.24.zen)
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where

EK(F ) :=
∫∫

K

F (x1, x2) dx1dx2 −
NK∑
j=1

ωK0,jF (xK,j)|JK(ξ1j , ξ2j)|, (3.25.zen)

F ∗(ξ1, ξ2) := F (x1(ξ1, ξ2), x2(ξ1, ξ2)),

EK0(F ) :=
∫∫

K0

F ∗(ξ1, ξ2)dξ1dξ2 −
NK∑
j=1

ωK0,jF
∗(ξ1j , ξ2j), (3.26.zen)

χirs = κirκis
1
J

∂x(i)

∂ξ(r)

∂x(i)

∂ξ(s)

with [ξ1j , ξ2j ] the integration points on K0.

Theorem 3.9. Let
EK0(p) = 0 ∀p ∈ P2,

where Pk denotes the set of polynomials in two variables of degree not greater
than k. Then we have∣∣∣∣∣EK

(
2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)∣∣∣∣∣ ≤ Chmax
i=1,2

‖k̃i‖1,∞,K |v|1,K |w|1,K ∀v, w ∈ Xh.

As the Jacobian J of both transformations (3.19.zen) and (3.20.zen) is the same the
proof in both cases is very similar.

Remark 3.10. In the cases when relation (3.21.zen) is not satisfied (however, the
long sides are parallel) the assertion of Theorem 3.9 can be proved provided

EK0(p) = 0 ∀p ∈ P4.

Remark 3.11. The case of a quadrilateral K with parallel long sides is a special
case of quadrilaterals K satisfying the condition

|ε sinα− δ sinβ| ≤ Cbh. (3.27.zen)

It can be proved that the results of Theorem 3.9 and Remark 3.10 can be ex-
tended to the case (3.27.zen).

The effect of numerical integration in the case of narrow triangles must be
analyzed more carefully than in the case of regular triangles. Let T be an arbi-
trary triangle lying in the plane x1, x2 and let T 0 be the reference triangle with
vertices (0, 0), (1, 0), (0, 1) lying in the plane ξ1, ξ2. Let

x1 = x1(ξ1, ξ2), x2 = x2(ξ1, ξ2) (3.28.zen)

be the linear transformation which maps T 0 one-to-one onto T (for its form see,
for example, (2.25.zen), (2.26.zen)) and let ξ1 = ξ1(x1, x2), ξ2 = ξ2(x1, x2) be its inverse.
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Lemma 3.12. Let v ∈ C1(T ) and let

v∗(ξ1, ξ2) = v(x1(ξ1, ξ2), x2(ξ1, ξ2)).

Then we have ∥∥∥∥∥
2∑
r=1

∂v∗

∂ξr

∂ξr
∂xi

∥∥∥∥∥
0,T0

≤ C|J |−1/2|v|1,T ,

where J is the Jacobian of (3.28.zen).

The error functionals ET and ET0 on a triangle T and the reference triangle
T 0, respectively, are defined in a similar way as EK and EK0 (see (3.25.zen) and
(3.26.zen)), their expression is only simpler. Using Lemma 3.12 we can prove the
following theorem.

Theorem 3.13. Let T be an arbitrary triangle (not necessarily satisfying the
maximum angle condition). Let

ET0(p) = 0 ∀p ∈ P0.

Then we have∣∣∣∣ET( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)∣∣∣∣ ≤ Chmax
i=1,2

|k̃i|1,∞,T |v|1,T |w|1,T ∀v, w ∈ Xh.

For v, w ∈ Vh we have

ah(v, w) = ãh(v, w) − {ãh(v, w) − ah(v, w)},

ãh(v, w) − ah(v, w) =
∑
K∈Dh

EK

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)
+
∑
T∈Dh

ET

( 2∑
i=1

k̃i
∂v

∂xi

∂w

∂xi

)
.

Using these relations we obtain from Theorems 3.9 and 3.13 (details are
similar as in the proof of [18, Theorem 11.8]; we use in addition the discrete
Friedrichs’ inequality of the type [18, (29.1)] (for its proof see Appendix) which
together with (3.9.zen) implies ‖v‖21,Ωh ≤ Cãh(v, v) ∀v ∈ Vh):

Corollary 3.14. If the forms ah(v, w), where v, w ∈ Xh, are computed from
ãh(v, w) by means of quadrature formulas required in Theorems 3.9 and 3.13,
then condition (3.17.zen) is satisfied.

Theorem 3.15. Let

EK0(p) = 0 ∀p ∈ P2, ET0(p) = 0 ∀p ∈ P0.

Then we have for u ∈ H2(Ω)

sup
w∈Vh
w 6=0

|ah(Qhu,w)− ãh(Qhu,w)|
‖w‖1,Ωh

≤ Chmax
i=1,2

‖k̃i‖1,∞,Ω̃‖u‖2,Ω , (3.29.zen)

where the constant C does not depend on u, k̃i, and h.
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Proof. Relation (3.29.zen) follows from Theorems 3.9, 3.13 and 1.3, 1.4. Details are
the same as in the proof of [18, Theorem 11.12]. ut

Theorem 3.16. Let

EK0(p) = 0 ∀p ∈ P2 (or ∀p ∈ Q1),
ET0(p) = 0 ∀p ∈ P0 ,

where Q1 is the set of all bilinear polynomials. Then we have

sup
w∈Vh
w 6=0

|L̃Ωh (w) − LΩh (w)|
‖w‖1,Ωh

≤ Ch‖f̃‖1,∞,Ω̃
√

mes2Ω,

where the constant C does not depend on f̃ and h.

In order to estimate the effect of numerical integration along Γ2 we introduce
the following error functionals:

Er(F ) :=
∫ lr

0

F (ξr)dξr −
Nr∑
j=1

lrβr,jF (sr,j),

E0(F ∗) :=
∫ 1

0

F ∗(t)dt−
Nr∑
j=1

βr,jF
∗(tj),

where sr,j are integration points on [0, lr], βr,j the corresponding coefficients of
the given integration formula and

F ∗(t) := F (lrt), t ∈ I ≡ [0, 1].

Hence
Er(F ) = lrE0(F ∗).

When considering the line integrals we need also the trace inequalities which
are introduced in the following lemma.

Lemma 3.17. We have

‖v‖0,∂Ω ≤
C
√
%
‖v‖1,Ω ∀v ∈ H1(Ω), (3.30.zen)

‖v‖0,∂Ωh ≤
C
√
%
‖v‖1,Ωh ∀v ∈ H1(Ωh), (3.31.zen)

where the constant C does not depend on v, h and %.

The proofs of (3.30.zen) and (3.31.zen) are similar to [12, pp. 15–16]).
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Theorem 3.18. Let
E0(p) = 0 ∀p ∈ P2.

Then we have

sup
w∈Vh
w 6=0

|L̃Γh (w) − LΓh (w)|
‖w‖1,Ωh

≤ C
√
%
h2M2(q)

√
mes1Γ2,

where the constant C does not depend on q, % and h and where M2(q) depends
on the first and second derivatives of the function Q at the points of Γ2 (as to
the relation between q and Q see (3.8.zen)).

3.E The error of the approximation of the boundary

The estimate of the last term in (3.18.zen) will be divided into several lemmas.

Notation 3.19. We denote

τh = Ωh −Ω, ωh = Ω −Ωh. (3.32.zen)

Further, let w ∈ Xh. The symbol w is called the natural extension of w and
denotes the function w : Ωh ∪Ω → R1 such that w = w on Ωh and

w

T id−T = p


T id−T ,

where p ∈ P1 satisfies p

T

= w

T

. (T id ⊂ Ω is the curved triangle which is
approximated by T .)

Lemma 3.20. Let u ∈ H2(Ω). Then we have for w ∈ Vh

|ãh(ũ, w)− L̃h(w)| ≤ |LΓ (w)− L̃Γh (w)|+

+
∣∣∣∣∫∫

ωh

2∑
i=1

∂

∂xi

(
ki
∂u

∂xi

)
w dx1dx2

∣∣∣∣+

+
∣∣∣∣∫∫

ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣+

+
∣∣∣∣∫∫

τh

( 2∑
i=1

∂

∂xi

(
k̃i
∂ũ

∂xi

)
+ f̃

)
w dx1dx2

∣∣∣∣. (3.33.zen)

Proof. Using the definitions of ãh(ũ, w), L̃h(w) and Green’s theorem we obtain

ãh(ũ, w)− L̃h(w) =
∫∫

Ωh

2∑
i=1

k̃i
∂ũ

∂xi

∂w

∂xi
dx1dx2 −

− L̃Ωh (w)− L̃Γh (w) =
∫
Γ2h

2∑
i=1

k̃i
∂ũ

∂xi
ni(Ωh)w ds−

−
∫∫

Ωh

( 2∑
i=1

∂

∂xi

(
k̃i
∂ũ

∂xi

)
+ f̃

)
w dx1dx2 − L̃Γh (w).
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To the right-hand side let us add zero in the form

−
∫
Γ2

2∑
i=1

ki
∂u

∂xi
ni(Ω)w ds+ LΓ (w) = 0.

If we denote ∆ = T id − T and use Lemma 3.2 then we can write

ãh(ũ, w)− L̃h(w) = −
∑
∆⊂ωh

∫
∂∆

2∑
i=1

ki
∂u

∂xi
ni(∆)w ds−

−
∫∫

τh

( 2∑
i=1

∂

∂xi

(
k̃i
∂ũ

∂xi

)
+ f̃

)
w dx1dx2 + LΓ (w)− L̃Γh (w).

Transforming the first term on the right-hand side by means of Green’s theorem
we obtain (3.33.zen). ut

The third term on the right-hand side is most disagreeable. It is estimated
in the following lemma:

Lemma 3.21. Let u ∈ H2(Ω) and k̃i ∈W 1,∞(Ω) (i = 1, 2). Then∣∣∣∣∫∫
ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ ≤ Ch2

√
m

%
max
i=1,2

‖ki‖1,∞,Ω‖u‖2,Ω‖w‖1,Ωh . (3.34.zen)

If in addition

u ∈ H2(Ω) ∩W 1,∞(Ω), (3.35.zen)

then∣∣∣∣∫∫
ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ ≤ Ch2

√
m

%
max
i=1,2

‖ki‖1,∞,Ω‖u‖1,∞,Ω‖w‖1,Ωh .

(3.36.zen)

Proof. We have∣∣∣∣∫∫
ωh

2∑
i=1

ki
∂u

∂xi

∂w

∂xi
dx1dx2

∣∣∣∣ ≤ max
i=1,2

‖ki‖1,∞,Ω|u|1,ωh |w|1,ωh . (3.37.zen)

Assumption (3.35.zen) gives

|u|1,ωh ≤ Ch|u|1,∞,Ω. (3.38.zen)

Let us denote ∆ = T id − T . Then

|w|21,ωh =
∑
∆⊂ωh

mes2∆|(∇w

T

)|2 ≤ C
∑
∆⊂ωh

h3
T |(∇w


T

)|2 =

= C
m

%

∑
∆⊂ωh

h3
T

%

m
|(∇w


T

)|2 ≤ Cm
%
h2

∑
∆⊂ωh

|w|21,T ≤ C
m

%
h2|w|21,Ωh
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because
%

m
hT |(∇w


T

)|2 ≤ C|w|21,T .

Hence

|w|1,ωh ≤ Ch
√
m

%
|w|1,Ωh . (3.39.zen)

Combining (3.37.zen)–(3.39.zen) we obtain (3.36.zen). For the proof of (3.34.zen) see [21]. ut

Estimate (3.36.zen) cannot be improved. Thus, if we want to obtain the rate of
convergence O(h) we must assume that

C1h
2 ≤ %

m
(C1 > 0). (3.40.zen)

Assumption (3.40.zen) is also necessary in estimating the first term on the right-
hand side of (3.33.zen) if we want to obtain in it the rate of convergence O(h) (see
[21]).

3.F The final result

All preceding results yield the following theorem:

Theorem 3.22. Let us consider a division DTh (or DAh ). Let u ∈ H2(Ω), f̃ ∈
W 1,∞(Ω̃), k̃i ∈ W 1,∞(Ω̃) (i = 1, 2). Let assumptions (3.8.zen)3,4, (3.9.zen), (3.40.zen) and
assumptions concerning the degrees of precision of the quadrature formulas (see
Theorems 3.9, 3.13, 3.15, 3.16 and 3.18) be satisfied. Then

‖ũ− uh‖1,Ωh ≤
C
√
%
h , (3.41.zen)

where the constant C does not depend on u, %, m, h and the division DTh (or
DAh ).

If in addition u ∈ W 1,∞(Ω) (see (3.35.zen)) then

‖ũ− uh‖1,Ωh ≤ Ch , (3.42.zen)

where again the constant C does not depend on u, %, m, h and the division DTh
(or DAh ).

Theorem 3.23. If we use divisions DKh for the definition of the spaces Xh then
the assertions of Theorem 3.22 remain without changes.

For the proof see [21, pp. 390–392].

Now we mention results in the case of the boundary value problem of equation
(3.1.zen) with boundary conditions opposite to conditions (3.2.zen) and (3.3.zen):

u = 0 on Γ2, (3.43.zen)
2∑
i=1

ki
∂u

∂xi
ni(Ω) = q on Γ1. (3.44.zen)
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In this case Problem 3.4 and all results up to relation (3.32.zen) inclusive remain
without changes, except for Lemma 3.2, where (3.3.zen) is replaced by (3.44.zen), and
except for the definition of DAh : we divide into two triangles each quadrilateral
PiPi+1A

i
1A

i+1
1 . Doing some additional considerations (see [21, pp. 393–397]) we

obtain the following theorems:

Theorem 3.24. Let the assumptions of Theorem 3.22 be satisfied except for the
additional assumption u ∈W 1,∞(Ω) which is substituted by ũ ∈W 1,∞(Ω̃). Then
estimates (3.41.zen) and (3.42.zen) are again valid.

Theorem 3.25. If we use divisions DKh for the definition of the spaces Xh then
the assertions of Theorem 3.24 remain without changes.

Remark 3.26. Modifying considerations of [12, Chapter 4] we can prove the
following regularity results: Let j ≥ 1. If ki ∈ Cj−1,1(Ω), f ∈ W j−1

2 (Ω),
q ∈ Cj−1,1(Γr) (r = 1 or 2) then u ∈ Hj+1(Ω). This means that the assumption
guaranteeing (3.42.zen) can be satisfied.

4 Composite domains in magnetostatical problems

In this section we restrict ourselves for a greater simplicity to triangular elements.
We shall study the situation indicated in Fig. 5, where the circle consists of three
subdomains, the middle one being very narrow. We shall see that in such a case
requirement (3.40.zen) can be omitted.

Problem 4.1. Let Ω be a simply connected domain with a Lipschitz continuous
boundary ∂Ω such that

Ω = Ω
R ∪ΩA ∪ΩS

where R, S and A stand for rotor, stator and air, respectively, and ΩR, ΩS and
ΩA are domains with Lipschitz continuous boundaries. Let

V = {v ∈ H1(Ω) : v = 0 on Γ1}, (4.1.zen)

a(w, v) =
2∑
i=1

∫∫
Ω

ν(|∇w|2)
∂w

∂xi

∂v

∂xi
dx1dx2,

ν ≡ ν0 in ΩA, ν ≡ ν0ν
R
r in ΩR, ν ≡ ν0ν

S
r in ΩS ,

 (4.2.zen)

L(v) = LΩ(v) + LΓ (v) =
∫∫

Ω

vf dx1dx2 +
∫
Γ2

vq ds , (4.3.zen)

where f ∈ L2(Ω), q ∈ L2(Γ2). Find u ∈ H1(Ω) such that

u− z ∈ V, (4.4.zen)
a(u, v) = L(v) ∀v ∈ V, (4.5.zen)

where z ∈ W 1,p(Ω) (p > 2) satisfies tr z = u on Γ1. (We note that as usual
∂Ω = Γ 1 ∪ Γ 2, Γ1 ∩ Γ2 = ∅, mes1Γ1 > 0.) ut
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Fig. 5.

Problem 4.1 corresponds to a two-dimensional magnetostatical problem; its con-
nection with Maxwell’s equations is explained, for example, in [20] — here we
only note that u = u(x, y) has the physical meaning of the z-component of the
magnetic potential vector −→A = (0, 0, u), the positive function ν = ν(s) is the
magnetic reluctivity, f = f(x, y) is the z-component of the external current den-
sity vector −→Je = (0, 0, f) and u and q are functions appearing on the right-hand
sides of the Dirichlet and Neumann boundary conditions, respectively.

We have νMr ∈ C∞([0,∞)). Using the expression for νMr , which is introduced,
e.g., in [10], [11], we can prove (similarly as in [18, Example 33.3]) that there
exist positive constants βM1 , βM2 (M = R,S) such that

βM1 ≤
d
ds

(sνMr (s2)) ≤ βM2 ∀s ∈ [0,∞), M = R, S. (4.6.zen)

Property (4.6.zen) has an important consequence: if we integrate (4.6.zen) in [0, t]
(t > 0) then we obtain

βM1 ≤ νMr (t2) ≤ βM2 ∀t ∈ (0,∞).

This result and the continuity of νMr give

βM1 ≤ νMr (s2) ≤ βM2 ∀s ∈ [0,∞). (4.7.zen)
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Making use of (4.6.zen), (4.7.zen) we can prove that Problem 4.1 has a unique solution
u ∈ H1(Ω) (see [20, Lemma 2 and Theorem 3]).

In order to obtain a discrete solution of Problem 4.1 by the finite element
method we triangulate the closed domain Ω in such a way that the triangulation
Th of Ω is a union of triangulations T Rh , T Sh and T Ah of Ω

R
, Ω

S
and Ω

A
, respec-

tively. On the contrary to the standard theories we assume that the minimum
angle condition

ϑMh := min
T∈TMh

ϑT ≥ ϑ0 > 0 ∀h ∈ (0, h0), (4.8.zen)

where ϑT is the magnitude of the minimum angle of T , is satisfied only for
M = R, S. As the domain ΩA is very narrow the triangulations T Ah are supposed
to satisfy the maximum angle condition

γT ≤ γ0 < π ∀T ∈ T Ah , ∀h ∈ (0, h0), (4.9.zen)

where γT is the magnitude of the maximum angle of T .

Assumption 4.2. In order to simplify our considerations we shall assume that
ΩS , ΩA and ΩR are such that ∂ΩS = ∂K1 ∪ ∂K2, ∂ΩA = ∂K2 ∪ ∂K3 and
∂ΩR = ∂K3, where ∂K1, ∂K2 and ∂K3 are circles with the same center S0 and
radii R1, R2 and R3, respectively, which satisfy the relations

R1 > R2 > R3 > 0, R3 = R2 − %, R1 −R2 � %, R3 � %

where % > 0 is fixed (see Fig. 5). ut
The discrete problem is formulated in a standard way. We define the spaces

Xh = {v ∈ C(Ωh) : v

T

= a linear polynomial ∀T ∈ Th}, (4.10.zen)

Vh = {v ∈ Xh : v = 0 on Γ 1h} (4.11.zen)

and the set

Wh = {v ∈ Xh : v(Pi) = u(Pi) ∀Pi ∈ σh ∩ Γ 1} , (4.12.zen)

where Ωh is the union of the closed triangles T ∈ Th, Γ 1h is the part of ∂Ωh
approximating Γ 1 and σh is the set of all nodes of Th. Further we set

ah(v, w) =
∑

M=R,A,S

2∑
i=1

∫∫
ΩMh

νM (|∇v|2)
∂v

∂xi

∂w

∂xi
dx1dx2 ∀v, w ∈ H1(Ωh),

(4.13.zen)

which gives

ah(v, w) =
∑

M=R,S

∑
T∈TMh

2∑
i=1

ν0ν
M
r (|∇(v


T

)|2)
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

mes2T +

+
∑
T∈T Ah

2∑
i=1

ν0
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

mes2T ∀v, w ∈ Xh. (4.14.zen)
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Finally, we set

Lh(v) = LΩh (v) + LΓh (v) ∀v ∈ Xh , (4.15.zen)

where LΩh (v) and LΓh (v) are the approximations of the forms

L̃Ωh (v) =
∫∫

Ωh

vf dx1dx2 , L̃Γh (v) =
∫
Γ2h

qhv ds (4.16.zen)

by means of quadrature formulas of first degree of precision. (Details and the
definition of the function qh are introduced in [4], [18] and [21].) Using (4.10.zen)–
(4.15.zen) we define:

Problem 4.3. Find uh ∈ Wh such that

ah(uh, v) = Lh(v) ∀v ∈ Vh. (4.17.zen)

It can be proved similarly as in [4], [17] or [18] that every discrete problem
has a unique solution uh. The main result of this section is the following theorem.

Theorem 4.4. Let the solution u ∈ H1(Ω) of Problem 4.1 satisfy

uM ∈ H2(ΩM ) (M = R, S, A), (4.18.zen)

where uM := u

ΩM

. Let f ∈ W 1,∞(Ω) and q ∈ C1(Γ 2). Then we have for all
h ∈ (0, h0)

‖uh − u‖1,Ωh ≤ C h , (4.19.zen)

where u ∈ H1(Ω) is the solution of Problem 4.1, ‖ · ‖1,Ωh is the norm in the
space H1(Ωh) and C is a constant independent of h := max

T∈Th
hT and %.

Assumption (4.18.zen) is guaranteed if Γ2 = ∅ and u is sufficiently smooth.

The proof of Theorem 4.4 is based on the following abstract error estimate
which can be proved in the same way as [4, Theorem 3.3.1] or [18, Theorem
38.5]:

‖u− uh‖1,Ωh ≤ C
{

inf
v∈Wh

‖u− v‖1,Ωh + sup
w∈Vh
w 6=0

|ah(u,w)− Lh(w)|
‖w‖1,Ωh

}
, (4.20.zen)

where the constant C does not depend on h and %. The two terms on the right-
hand side of (4.20.zen) will be estimated in Theorems 4.8 and 4.13.

The following lemma is a reformulation of Lemma 3.6:
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Lemma 4.5. Let ∂K4 be the circle with the center S0 and radius R4 = R2−2%,
where % is the same as in Assumption 4.2. Let Ω̃S , Ω̃A be bounded domains such
that ∂Ω̃S = ∂K1 ∪ ∂K4, ∂Ω̃A = ∂K2 ∪ ∂K4. There exist linear and bounded ex-
tension operators EM : H2(ΩM )→ H2(Ω̃M ) (M = S, A) such that the constant
CM appearing in the inequality

‖EM (v)‖2,Ω̃M ≤ CM‖v‖2,ΩM ∀v ∈ H2(ΩM )

does not depend on R2/% and v.

Remark 4.6. As Lemma 4.5 is used in the proof of Theorem 4.8 the polygonal
domains ΩAh must be situated between the circles ∂K2 and ∂K4. We derive now
the expression for the minimum number of vertices of such a polygonal domain
in the case %/R2 < 10−1.

Let A1 be an arbitrary point of the circle ∂K2 and let t be one of the two
tangents to the circle ∂K3 which pass through the point A1. Let B = t ∩ ∂K3,
A2 = {t∩∂K2}−{A1}. If %/R2 < 10−1 then we can neglect the terms depending
on %3 and find

d1 = dist (A1, B) = (2%R2 − %2)1/2, d2 = dist (A1, A2) = 2d1.

Let us approximate ∂K2 by a regular polygon with vertices P1, . . . , Pn where

n = n2 =
[

2πR2

d2

]
+ 1 =

[
πR2

(2%R2 − %2)1/2

]
+ 1.

Let the vertices Q1, . . . , Qn of the polygon ∂Kh
3 approximating ∂K3 be obtained

in the following way: Qi is the intersection of the segment S0Pi with ∂K3.
For example, if % = 1 mm and R2 = 50 mm then n2 = 16. This is a surpris-

ingly small number. Of course, it is better to use the relation

n = n1 =
[

2πR2

d1

]
+ 1.

In the case % = 1 mm, R2 = 50 mm we have n1 = 32.
If we divide every quadrilateral PiPi+1QiQi+1 into two triangles we obtain a

triangulation which satisfies (from a practical point of view) the maximum angle
condition only: For n = n1 the minimum angle is less than 6 degrees and for
n = n2 less than 3 degrees. ut

Lemma 4.7. If the solution u ∈ H1(Ω) of Problem 4.1 satisfies assumption
(4.18.zen) then

NM
i (u) := νM (|∇uM |2)

∂uM
∂xi

∈ H1(ΩM ) (M = R,S,A). (4.21.zen)
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Consequently,

2∑
i=1

∂

∂xi

(
νM (|∇uM |2)

∂uM
∂xi

)
+ fM = 0 a.e. in ΩM (M = R,S,A), (4.22.zen)

q =
2∑
i=1

νS(|∇uS |2)
∂uS
∂xi

ni(ΩS) a.e. on Γ2, (4.23.zen)

where fM = f |ΩM and the symbols ni(G) (i = 1, 2) denote the components of
the unit outward normal to ∂G. Finally,

νMr
∂uM
∂n

∣∣∣∣
∂Kj

=
∂uA
∂n

∣∣∣∣
∂Kj

a.e. on ∂Kj (M = R,S), (4.24.zen)

where j = 2 for M = S and j = 3 for M = R and ∂/∂n is the normal derivative
(the orientation of n can be chosen arbitrarily).

Theorem 4.8. Under the assumptions of Theorem 4.4 we have

inf
v∈Wh

‖u− v‖1,Ωh ≤ C h
{ ∑
M=R,S

(1 + sup |νMr |)‖uM‖2,ΩM + ‖uA‖2,ΩA
}
, (4.25.zen)

where the constant C does not depend on both h and %.

For the proofs of Lemma 4.7 and Theorem 4.8 see [20, Lemma 12 and The-
orem 13].

Notation 4.9. a) We denote

ωMh := ΩM −ΩM

h , τMh := ΩMh −Ω
M
.

b) The natural extension wM of wM := w

ΩMh

from Ω
M

h onto Ω
M

h ∪Ω
M

is

the function wM : Ω
M

h ∪Ω
M → R1 satisfying wM = wM on Ω

M

h and

wM

T id = p


T id on T id ⊃ T,

where p is the polynomial of first degree satisfying p

T

= w

T

and T id is
the ideal curved triangle associated with T (it is also called the exact curved
triangle). (For more detail see [18] or [4].)

c) The natural extension w of w ∈ Xh is the function w : Ω → R1 such that
w = w on Ωh and w = wS on ωSh .

Lemma 4.10. We have

‖v‖0,τMh ≤ C(h‖v‖0,∂Ki+1 + h2|v|1,τMh ) ∀v ∈ H1(τMh ) (M = S, A),

where i = 1 and i = 2 for M = S and M = A, respectively, and where the
constant C does not depend on both h and %.
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Lemma 4.10 follows from the proof of [18, Lemma 28.3].

Lemma 4.11. We have for all w ∈ Xh

‖wM‖0,εMh ≤ C h‖w‖1,Ωh (ε = τ, ω; M = R,S), (4.26.zen)

|wM |1,εMh ≤ C h
1/2|w|1,Ωh (ε = τ, ω; M = R,S). (4.27.zen)

Proof. As T Rh , T Sh satisfy the minimum angle condition estimates (4.26.zen), (4.27.zen)
follow from [4, Lemma 3.3.12].

Lemma 4.12. We have for all w ∈ Xh

|LΩh (w) − L̃Ωh (w)| ≤ C h‖f‖1,∞,Ω‖w‖1,Ωh , (4.28.zen)

|LΓh (w)− L̃Γh (w)| ≤ C h(mes1Γ2)1/2|q|1,∞,Γ2‖w‖1,Ωh , (4.29.zen)

|L̃Γh (w)− LΓ (w)| ≤ C h3/2‖q‖0,Γ2‖w‖1,Ωh . (4.30.zen)

For the proof of (4.28.zen), (4.29.zen) and (4.30.zen) see, for example, [3, Theorem 4.5.1],
[18, Lemma 30.1] and [4, Lemma 3.3.13], respectively.

Theorem 4.13. Under the assumptions of Theorem 4.4 we have for all w ∈ Vh

|ah(u,w)− Lh(w)| ≤ C h{‖f‖1,∞,Ω + (mes1Γ2)1/2‖q‖1,∞,Γ2 +

+ (1 + sup |νSr |)‖uS‖2,ΩS +
∑

M=A,R

‖uM‖2,ΩM +

+
2∑
i=1

∥∥∂NS
i (u)/∂xi

∥∥
0,ΩS
}‖w‖1,Ωh , (4.31.zen)

where NS
i (u) is defined in (4.21.zen).

Proof. Instead of S, A and R we shall write 1, 2 and 3, respectively. We have

|ah(u,w)− Lh(w)| ≤ |ah(u,w)− L̃h(w)| + |L̃h(w)− Lh(w)|, (4.32.zen)

where

L̃h(w) = L̃Ωh (w) + L̃Γh (w). (4.33.zen)

After a longer computation we obtain (see [20, pp. 413–415])

ah(u,w)− L̃h(w) = D1 +
2∑
j=1

(D(j,j)
2 −D(j+1,j)

2 )−D3 −D4 , (4.34.zen)



234 Alexander Žeńı̌sek

where

D1 = LΓ (w)− L̃Γh (w),

D
(k,j)
2 =

2∑
i=1

∫∫
τ jh

νk(|∇uj+1|2)
∂uj+1

∂xi

∂w

∂xi
dx1dx2,

D3 =
2∑
i=1

∫∫
ω1
h(2)

w
∂

∂xi

(
ν1(|∇u1|2)

∂u1

∂xi

)
dx1dx2,

D4 =
2∑
i=1

∫∫
ω1
h(2)

ν1(|∇u1|2)
∂u1

∂xi

∂w

∂xi
dx1dx2,

where ω1
h(2) denotes the part of ω1

h which is adjacent to Γ2.
The estimate of |D1| is given in (4.30.zen). The term D

(k,j)
2 is of the same type

as the term appearing in Lemma 3.21. However, the presence of the domains
ΩR ≡ Ω3, ΩS ≡ Ω1 enable us to avoid requirement (3.40.zen). It follows from (4.7.zen)
that

|D(k,j)
2 | ≤ K|uj+1|1,τ jh |w|1,τ jh . (4.35.zen)

As uj+1 ∈ H2(Ωj+1) we have by Lemma 4.10

|uj+1|1,τ jh ≤ C
2∑
i=1

(
h

∥∥∥∥∂uj+1

∂xi

∥∥∥∥
0,∂Kj+1

+ h2

∣∣∣∣∂uj+1

∂xi

∣∣∣∣
1,τ jh

)
. (4.36.zen)

The trace theorem yields ∥∥∥∥∂u3

∂xi

∥∥∥∥
0,∂K3

≤ C‖u3‖2,Ω3 . (4.37.zen)

Owing to the fact that u ∈ C(Ω) we have

u1


∂K2

= u2


∂K2

.

This relation implies that

∂u1

∂t
=
∂u2

∂t
a.e. on ∂K2,

where ∂/∂t is the tangential derivative. Combining this result with (4.24.zen) (where
j = 2) and using the trace theorem on Ω1 we derive∥∥∥∥∂u2

∂xi

∥∥∥∥
0,∂K2

≤ C(1 + sup |ν1
r |)‖u1‖2,Ω1 . (4.38.zen)

Estimates (4.35.zen)–(4.38.zen) give

2∑
j=1

(|D(j,j)
2 |+ |D(j+1,j)

2 |) ≤ Ch
{

(1 + sup |ν1
r |)‖u1‖2,Ω1 +

3∑
j=2

‖uj‖2,Ωj
}
|w|1,Ωh .

(4.39.zen)
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Relation (4.21.zen), the Schwarz inequality and Lemma 4.11 imply

|D3| ≤ C h
( 2∑
i=1

∥∥∥∥ ∂

∂xi

(
ν1(|∇u1|2)

∂u1

∂xi

)∥∥∥∥
0,Ω1

)
‖w‖1,Ωh . (4.40.zen)

Finally, as T 1
h satisfies the minimum angle condition and u1 ∈ H2(Ω1) (see

(4.18.zen)) we have by (4.7.zen), (4.27.zen), Lemma 4.10 (which holds also for ω1
h with ∂K1

instead of ∂Ki+1) and the trace inequality

|D4| ≤ K|u1|1,ω1
h
|w|1,ω1

h
≤ C h3/2‖u1‖2,Ω1‖w‖1,Ωh . (4.41.zen)

Relations (4.34.zen), (4.30.zen), (4.39.zen)–(4.41.zen) give the bound of the first term on the
right-hand side of (4.32.zen). The estimate of the second term on the right-hand side
of (4.32.zen) follows from Lemma 4.12. Hence we obtain (4.31.zen). ut

Theorem 4.4 follows now from (4.20.zen) and Theorems 4.8 and 4.13.

5 General convergence theorem

On the contrary to Section 3 we shall assume u ∈ H1(Ω) only and we shall prove
the convergence (without any rate of convergence) under a stronger assumption
than (3.40.zen):

C1h
2−δ ≤ %

m
≤ C2h

2−δ , (5.1.zen)

where

0 < δ < 1 (5.2.zen)

is a given number which can be arbitrarily small and C1[m1−δ], C2[m1−δ] are
positive constants. The abstract error estimate has in the case u ∈ H1(Ω) the
form:

Theorem 5.1. Let condition (3.17.zen) be satisfied. Then Problem 3.4 has a unique
solution uh ∈ Vh and we have

C−1
0 ‖ũ− uh‖1,Ωh ≤ inf

v∈Vh

(
‖v − ũ‖1,Ωh + sup

w∈Vh
w 6=0

|ah(v, w)− ãh(v, w)|
‖w‖1,Ωh

)
+

+ sup
w∈Vh
w 6=0

|L̃Ωh (w)− LΩh (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|L̃Γh (w) − LΓh (w)|
‖w‖1,Ωh

+ sup
w∈Vh
w 6=0

|ãh(ũ, w) − L̃h(w)|
‖w‖1,Ωh

,

(5.3.zen)

where C0 is a positive constant, u ∈ H1(Ω) is the solution of Problem 3.1 and
ũ = E(u) with E : H1(Ω)→ H1(Ω̃) (see Lemma 3.6 where k = 1).
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In what follows we restrict ourselves to the case of triangular elements with
linear polynomials. First we generalize interpolation results for Zlámal’s simplest
ideal triangular finite element (see [25] and also [18]).

Let T ∈ DTh be an arbitrary triangle with two vertices lying on ∂Ω. We shall
denote them by P2(x(2)

1 , x
(2)
2 ), P3(x(3)

1 , x
(3)
2 ) in such a way that

dist (P1, P2) =
%

m
, (5.4.zen)

P1(x(1)
1 , x

(1)
2 ) being the vertex lying in Ω. Thus the smallest angle αT of T ,

which tends to zero with h→ 0, lies at P3. The angles lying at P1 and P2 will be
denoted by βT and γT , respectively. Both these angles tend to π/2 with h→ 0.

Setting

x2 = x
(2)
1 − x

(1)
1 , x3 = x

(3)
1 − x

(1)
1 , y2 = x

(2)
2 − x

(1)
2 , y3 = x

(3)
2 − x

(1)
2

we can write the transformation, which maps the triangle T 0 with vertices
R1(0, 0), R2(1, 0) and R3(0, 1) one-to-one onto T , in the form

x1 = x
(0)
1 (ξ1, ξ2) ≡ x(1)

1 + x2ξ1 + x3ξ2,

x2 = x
(0)
2 (ξ1, ξ2) ≡ x(1)

2 + y2ξ1 + y3ξ2.
(5.5.zen)

We have for the triangles lying along ∂Ω

2mes2T = dist (P1, P2) dist (P2, P3) sin γT .

From here, from (5.1.zen), (5.4.zen) and from the maximum angle condition we easily
obtain

C3h
3−δ
T ≤ mes2T ≤ C4h

3−δ
T , (5.6.zen)

hT being the length of the greatest side of T and C3, C4 positive constants.
Now we remind some results introduced in [18, Section 22]. Let λh and λ be

the segment P2P3 and the part of ∂Ω approximated by P2P3, respectively. Let

x1 = ϕλ(ξ2), x2 = ψλ(ξ2), ξ2 ∈ [0, 1], (5.7.zen)

be a parametric representation of λ defined on [0, 1] with the property

ϕλ(0) = x
(2)
1 , ϕλ(1) = x

(3)
1 , ψλ(0) = x

(2)
2 , ψλ(1) = x

(3)
2 .

We define the functions Φλ(ξ2), Ψ(ξ2) on [0, 1] by

Φλ(ξ2) = [ϕλ(ξ2)− x(2)
1 − x32ξ2]/(1− ξ2), ξ2 ∈ [0, 1),

Φλ(1) = −ϕ′λ(1) + x32, Φ
(j)
λ (1) = − 1

j + 1
ϕ

(j+1)
λ (1),

Ψλ(ξ2) = [ψλ(ξ2)− x(2)
2 − y32ξ2]/(1− ξ2), ξ2 ∈ [0, 1),

Ψλ(1) = −ψ′λ(1) + y32, Ψ
(j)
λ (1) = − 1

j + 1
ψ

(j+1)
λ (1),
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where x32 = x
(3)
1 − x

(2)
1 , y32 = x

(3)
2 − x

(2)
2 . If ϕλ, ψλ ∈ C(n+1)([0, 1]) then,

according to [18, Section 22], Φλ, Ψλ ∈ Cn([0, 1]) and

Φλ(ξ2) = O(h2
T ), Φ

(j)
λ (ξ2) = O(hj+1

T ), ξ2 ∈ [0, 1],

Ψλ(ξ2) = O(h2
T ), Ψ

(j)
λ (ξ2) = O(hj+1

T ), ξ2 ∈ [0, 1],
(5.8.zen)

where j = 1, . . . , n. The symbol T id
λ will denote the curved triangle with two

straight sides P1P2, P1P3 and the curved side λ.

Theorem 5.2. Let the boundary ∂Ω of the domain Ω be piecewise of class Ck+1.
Then for h ∈ (0, h0), where h0 is sufficiently small, we have:

a) The transformation

x1 = xλ1 (ξ1, ξ2) ≡ x(1)
1 + x2ξ1 + x3ξ2 + ξ1Φλ(ξ2),

x2 = xλ2 (ξ1, ξ2) ≡ x(1)
2 + y2ξ1 + y3ξ2 + ξ1Ψλ(ξ2)

(5.9.zen)

maps one-to-one the reference triangle T 0, which lies in the ξ1, ξ2-plane and
has the vertices R1(0, 0), R2(1, 0), R3(0, 1), onto the ideal triangle T id

λ with
vertices Pi(x

(i)
1 , x

(i)
2 ) (i = 1, 2, 3 - a local notation) and curved side λ, which has

parametric equations (5.7.zen), in such a way that

Ri ↔ Pi (i = 1, 2, 3), R1Rj ↔ P1Pj (j = 2, 3), R2R3 ↔ λ (5.10.zen)

and T0 ≡ intT 0 ↔ intT id
λ ≡ T id

λ .
b) The Jacobian Jλ(ξ1, ξ2) of transformation (5.9.zen) is different from zero on

T 0 and it holds for (ξ1, ξ2) ∈ T 0:

C5h
3−δ
T ≤ |Jλ(ξ1, ξ2)| ≤ C6h

3−δ
T (Ci = const > 0). (5.11.zen)

c) Both mapping (5.9.zen) and its inverse mapping are of class Ck and for
(ξ1, ξ2) ∈ T 0 we have

∂xλi
∂ξ1

= O(h2−δ
T ),

∂xλi
∂ξ2

= O(hT ) (i = 1, 2), (5.12.zen)

∂2xλi
∂ξj∂ξk

= O(h2
T ) (i, j, k = 1, 2), (5.13.zen)

∂ξλ1
∂xi

= O(h−2+δ
T ),

∂ξλ2
∂xi

= O(h−1
T ) (i = 1, 2), (5.14.zen)

where

ξ1 = ξλ1 (x1, x2), ξ2 = ξλ2 (x1, x2) (5.15.zen)

is the inverse mapping to mapping (5.9.zen).
d) Let S̃1, S̃2 be arbitrary points of T 0 and S1, S2 their images in trans-

formation (5.9.zen). Let ε be the distance between S̃1, S̃2 and let η be the distance
between S1, S2. Then

C7εh
2−δ
T ≤ η ≤ C8εhT , (5.16.zen)

where C7, C8 are positive constants independent of ε and hT .
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Proof. A) First we prove assertions concerning J(ξ1, ξ2). Using the relations

|x2| = O(h2−δ
T ), |y2| = O(h2−δ

T ), |x3| = O(hT ), |y3| = O(hT ), (5.17.zen)

we obtain from (5.9.zen) and (5.8.zen)

Jλ(ξ1, ξ2) = [x2 + Φλ(ξ2)][y3 + ξ1Ψ
′
λ(ξ2)]−

− [x3 + ξ1Φ
′
λ(ξ2)][y2 + Ψλ(ξ2)] = 2mes2T +O(h3

T ).

This result together with (5.6.zen) imply both Jλ(ξ1, ξ2) 6= 0 on T 0 and estimates
(5.11.zen).

B) The proof of inequalities (5.16.zen) follows the same lines as part (c) of the
proof of [18, Theorem 22.4]. Instead of [18, Lemma 22.2] we use the fact that at
least one of the estimates

|α1x2 + α2x3| ≥ Ch2−δ
T , |α1y2 + α2x3| ≥ Ch2−δ

T (5.18.zen)

holds, where α1, α2 are real numbers satisfying

α2
1 + α2

2 = 1. (5.19.zen)

If α1 = 0 or α2 = 0 then assertion (5.18.zen) is evident. Let α1 6= 0, α2 6= 0.
First we consider the case

signα1 = signα2. (5.20.zen)

Then the expression

V1 =
1

|α1 + α2|
[(α1x2 + α2x3)2 + (α1y2 + α2y3)2]1/2

is the length of the segment P1P23, where

P23 =
(
(|α1|x(2)

1 + |α2|x(3)
1 )/|α1 + α2|, (|α1|x(2)

2 + |α2|x(3)
2 )/|α1 + α2|

)
is a point of the segment P2P3. If βT ≤ π/2 then V1 > P1P2. As P1P2 ≥ Ch2−δ

T ,
according to (5.1.zen), assertion (5.18.zen) follows because by (5.19.zen) and (5.20.zen) we have
|α1 + α2| > 1.

If βT > π/2 then βT = ωT where ωT is the maximum angle of T . We have
V1 ≥ d where d is the distance of the vertex P1 from the segment P2P3. As αT
is small the angle made by P1P2 and the segment of the length d is less than
ωT /2. Hence d > P1P2 cos(ωT /2) and assertion (5.18.zen) follows, according to the
maximum angle condition.

Now let

signα1 = −signα2 (5.21.zen)
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and let the point P ∗ be such that P1 = 1
2 (P3 + P ∗). This gives P ∗ = (x∗1, x

∗
2) =

2P1 − P3 = (2x(1)
1 − x

(3)
1 , 2x(1)

2 − x
(3)
2 ) and

V2 =
1

|α1|+ |α2|
[(|α1|x2 − |α2|x3)2 + (|α1|y2 − |α2|y3)2]1/2

is the length of the segment P1P
∗
23, where

P ∗23 =
(
(|α1|x(2)

1 + |α2|x∗1)/(|α1|+ |α2|), (|α1|x(2)
2 + |α2|x∗2)/(|α1|+ |α2|)

)
is a point of the segment P2P

∗. Let T ∗ be the triangle with vertices P1, P2, P ∗. In
T ∗ the angle at P1 is equal to π−βT . If π−βT ≤ π/2, then V2 ≥ P1P2 ≥ Ch2−δ

T .
If π − βT > π/2 then π − βT = ωT + αT , where ωT = γT . We have V2 ≥ d∗

with d∗ the distance of the vertex P1 from the segment P2P
∗. As the angle α∗T

at P ∗ is small, we have d∗ > P1P2 cos(ωT /2+αT/2) and assertion (5.18.zen) follows,
according to the maximum angle condition, because αT is small and βT is not
small.

C) Setting ξ2 = 0 in (5.9.zen) we obtain a parametric representation of P1P2:

x1 = x
(1)
1 + x2ξ1, x2 = x

(1)
2 + y2ξ1, ξ1 ∈ [0, 1].

Setting ξ1 = 0 in (5.9.zen) we obtain a parametric representation of P1P3:

x1 = x
(1)
1 + x3ξ2, x2 = x

(1)
2 + y3ξ2, ξ2 ∈ [0, 1].

Thus segments P1P2 and P1P3 are images of segments R1R2 and R1R3, respec-
tively, in transformation (5.9.zen).

Relations ξ1 = 1 − t, ξ2 = t (t ∈ [0, 1]) form a parametric representation of
the segment R2R3. In this case we obtain from (5.9.zen) and the definitions of the
functions Φλ, Ψλ:

x1 = xλ1 (1− t, t) = ϕ(t), x2 = xλ2 (1− t, t) = ψ(t), t ∈ [0, 1].

This means that the arc λ is the image of the segment R2R3 in transformation
(5.9.zen).

Consequently, the Jordan curve ∂T id
λ is the image of the Jordan curve ∂T0

in transformation (5.9.zen).
Owing to inequalities (5.16.zen) mapping (5.9.zen) is injective. As (5.9.zen) is also con-

tinuous on T 0 it is a homeomorphism. A homeomorphism maps the interior of
the Jordan curve onto the interior of its image.

If f is a homeomorphism then f is bijective and f−1 is continuous. Thus
relations (5.10.zen) and intT 0 ↔ intT id

λ hold and mapping (5.15.zen) is continuous.
D) Owing to [18, Lemma 22.1] mapping (5.9.zen) is of class Ck. The validity of

relations (5.12.zen), (5.13.zen) follows immediately from (5.9.zen), (5.8.zen) and (5.17.zen).
It remains to prove the assertions concerning the inverse mapping (5.15.zen). In

part C we proved that ξλi (x1, x2) are continuous on T id
λ .

Using (3.22.zen), (3.23.zen) together with (5.11.zen) and (5.12.zen) we obtain (5.14.zen) and the
continuity of the first derivatives. The continuity of higher derivatives can be
proved similarly as in [18, p. 184]. ut
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Theorem 5.3. Let the boundary ∂Ω be piecewise of class C3. Let the polynomial
w∗(ξ1, ξ2) of degree not greater than one be uniquely determined by the conditions

w∗(Ri) = gi (i = 1, 2, 3).

Then the function w̃ : T id
λ → R1 defined by the relations

w̃(x1, x2) := w∗(ξλ1 (x1, x2), ξλ2 (x1, x2)), (x1, x2) ∈ T id
λ ,

where ξλi (x1, x2) are the functions from (5.15.zen), has the following properties:
a) it satisfies the relation

w∗(ξ1, ξ2) = w̃(xλ1 (ξ1, ξ2), xλ2 (ξ1, ξ2)), (ξ1, ξ2) ∈ T 0

and is uniquely determined by the conditions

w̃(Pi) = gi (i = 1, 2, 3); (5.22.zen)

b) w̃ ∈ C2(T id
λ );

c) the function values on both straight sides P1Pj are polynomials in one
variable of degree not greater than one uniquely determined by the parameters
g1 and gj prescribed at P1 and Pj, respectively;

d) if both parameters g2, g3 prescribed at P2, P3 ∈ λ are equal to zero then
w̃(x1, x2) = 0 for all (x1, x2) ∈ λ.

The proof is the same as the proof of [18, Theorem 23.1].

Definition 5.4. The function w̃ : T id
λ → R1 from Theorem 5.3 is called the ideal

triangular finite C0-element of the type (L, 1) (where L stands for Lagrange)
belonging to T id

λ and is uniquely determined by conditions (5.22.zen). The set of all
such finite elements is briefly denoted by (T id

λ , L, 1).

Theorem 5.5. Let the boundary ∂Ω be piecewise of class C3. Let u ∈ H2(T id
λ ),

where the curved side λ of T id
λ is not approximated by the shortest side of T , and

let uI ∈ (T id
λ , L, 1) be the ideal triangular finite C0-element uniquely determined

by the conditions

uI(Pj) = u(Pj) (j = 1, 2, 3). (5.23.zen)

Then

‖uI − u‖0,T id
λ
≤ Ch2‖u‖0,T id

λ
, |uI − u|1,T id

λ
≤ ChδT ‖u‖2,T id

λ
, (5.24.zen)

where C is a constant independent of hT , T id
λ and u.

Proof. We have, according to the theorem on transformation of an integral and
Theorem 5.2,

‖u− uI‖20,T id
λ
≤ Ch3−δ

T ‖u∗ − u∗I‖20,T0
. (5.25.zen)
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Considering in the same way as in the proof of [18, Theorem 10.5] we obtain (cf.
[18, (10.12)])

‖u∗ − u∗I‖20,T0
≤ |u∗|22,T0

. (5.26.zen)

Using again Theorem 5.2 and the theorem on transformation of an integral we
find that ∣∣∣∣∂u∗∂ξi

∣∣∣∣2
1,T0

≤ C

h3−δ
T

h4
T ‖u‖22,T id

λ
(i = 1, 2). (5.27.zen)

Combining (5.25.zen)–(5.27.zen) we obtain (5.24.zen)1.
Further,

|uI − u|21,T id
λ

=
∫∫

T id
λ

{(
∂

∂x1
(uI − u)

)2

+
(

∂

∂x2
(uI − u)

)2}
dx1dx2 ≤

≤ Ch3−δ
T

(
h−4+2δ
T

∥∥∥∥ ∂

∂ξ1
(u∗I − u∗)

∥∥∥∥2

0,T0

+ h−2
T

∥∥∥∥ ∂

∂ξ2
(u∗I − u∗)

∥∥∥∥2

0,T0

)
. (5.28.zen)

Similarly as in [6]∥∥∥∥ ∂

∂ξi
(u∗I − u∗)

∥∥∥∥2

0,T0

≤ C
∣∣∣∣∂u∗∂ξi

∣∣∣∣2
1,T0

(i = 1, 2). (5.29.zen)

Combining (5.28.zen), (5.29.zen) and (5.27.zen) we obtain (5.24.zen)2. ut

Remark 5.6. In the case of the minimum angle condition we have δ = 1 and
Theorem 5.5 is identical with [18, Theorem 25.3] where n = 1.

Remark 5.7. If the curved side λ of T id
λ is approximated by the shortest side of

T then hδT , which appears on the right-hand side of (5.24.zen)2, is substituted by hT .

Definition 5.8. a) Let T id
h be the ideal triangulation of Ω corresponding to the

triangulation DTh . (We obtain T id
h by replacing the triangles T ∈ DTh lying along

∂Ω by corresponding ideal triangles.) The symbol Mh denotes the set of ideal
triangles T id

λ ∈ T id
h lying along the part of ∂Ω where the homogeneous Dirichlet

condition is prescribed.
b) The function ŵ ∈ H1(Ω) is said to be associated with a given function

w ∈ Xh if:
(i) ŵ ∈ C(Ω);

(ii) ŵ(Pi) = w(Pi) at all nodal points Pi of DTh ;
(iii) ŵ is linear on each triangle T ∈ DTh ∩ T id

h and on each ideal triangle
T id
λ /∈Mh;

(iv) if T id
λ ∈Mh, then

ŵ

T id
λ

= w̃

T id
λ

,

where w̃ is defined in Definition 5.4.

Now we are prepared to estimate the fifth term appearing on the right-hand
side of (5.3.zen) in the case when u ∈ H1(Ω) only.
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Lemma 5.9. For all w ∈ Vh and U ∈ H1(Ω̃) satisfying U = u in Ω we have

|L̃h(w) − ãh(U,w)| ≤ |L̃Γh (w) − LΓ (w)|+

+
∑

T id
λ ∈Mh

∣∣∣∣∫∫
T id
λ

{
(w − ŵ)f +

2∑
i=1

ki
∂u

∂xi

∂(ŵ − w)
∂xi

}
dx1dx2

∣∣∣∣+

+
∣∣∣∣∫∫

τh

{
−

2∑
i=1

k̃i
∂U

∂xi

∂w

∂xi
+ wf̃

}
dx1dx2

∣∣∣∣+

+
∣∣∣∣∫∫

ωh

{ 2∑
i=1

ki
∂u

∂xi

∂w

∂xi
− wf

}
dx1dx2

∣∣∣∣. (5.30.zen)

Proof. We have

L̃h(w) = (L̃Ωh (w) − LΩ(ŵ)) + (L̃Γh (w)− LΓ (ŵ)) + L(ŵ),

where ŵ ∈ V is associated with w ∈ Vh in the sense of Definition 5.8. It holds
a(u, ŵ) = L(ŵ). Hence

−ãh(U,w) = (a(u, ŵ)− ãh(U,w)) − L(ŵ).

The rest of the proof is straightforward (see, for example, the proof of [18,
Theorem 38.9]). ut

Theorem 5.10. We have

|L̃h(w) − ãh(ũ, w)| ≤ Chδ/2‖w‖1,Ωh ∀w ∈ Vh , (5.31.zen)

where the constant C does not depend on h and w and where the extension ũ of
u has the same meaning as in Theorem 5.1.

Proof. A) Let us denote the terms appearing on the right-hand side of (5.30.zen) by
D1,. . . ,D4. By [21, Lemmas 29, 37] and assumption (5.1.zen) we have

D1 ≤ Ch‖q‖0,Γ1‖w‖1,Ωh . (5.32.zen)

Now we estimate D2. Let Bh be the union of triangles of DTh lying along the part
Γj of ∂Ω on which the homogeneous Dirichlet boundary condition is prescribed.
Using this notation we have in the case j = 1, according to the Cauchy inequality,

D2 ≤
(
‖f‖0,Bh−τh + max

i=1,2
‖k̃i‖0,∞,Ω̃|u|1,Bh−τh

)( ∑
T id
λ ∈Mh

‖ŵ − w‖21,T id
λ

)1/2

(5.33.zen)

and in the case j = 2

D2 ≤
(
‖f‖0,Bh∪ωh + max

i=1,2
‖k̃i‖0,∞,Ω̃|u|1,Bh∪ωh

)( ∑
T id
λ ∈Mh

‖ŵ − w‖21,T id
λ

)1/2

.

(5.34.zen)
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The function ŵ

T id
λ

, where T id
λ ∈Mh, interpolates the function w


T id
λ

on T id
λ .

Thus Theorem 5.5 and the linearity of w

T id
λ

give

‖ŵ − w‖1,T id
λ
≤ ChδT ‖w‖2,T id

λ
= ChδT ‖w‖1,T id

λ
.

Hence in the case j = 2 (i.e., in the case u = 0 on Γ2)∑
T id
λ
∈Mh

‖ŵ − w‖21,T id
λ
≤ Ch2δ

∑
T id
λ
∈Mh

‖w‖21,T id
λ
≤ Ch2δ‖w‖21,Ω ≤

≤ Ch2δ{‖w‖21,Ωh + ‖w‖21,ωh} (5.35.zen)

and in the case j = 1 ∑
T id
λ ∈Mh

‖ŵ − w‖21,T id
λ
≤ Ch2δ‖w‖21,Ωh . (5.36.zen)

If j = 2, then relations [21, (74), (75)] and w = 0 on Γ2h yield

‖w‖1,ωh ≤ Ch
√
m

%
|w|1,Ωh .

Using (5.1.zen) we obtain √
m

%
≤ Chδ/2−1. (5.37.zen)

Hence
‖w‖21,ωh ≤ Ch

δ|w|21,Ωh
and (5.35.zen) implies that also in the case j = 2 estimate (5.36.zen) holds. Thus for
j = 1, 2, according to (5.33.zen), (5.34.zen),

D2 ≤ Chδ‖w‖1,Ωh , (5.38.zen)

where
C ≤ ‖f‖0,Ω + max

i=1,2
‖k̃i‖0,∞,Ω̃|u|1,Ω.

As to the estimate of D3 we start from the expression, which follows from
the third term on the right-hand side of (5.30.zen) with U = ũ:

D3 ≤ max
i=1,2

‖k̃i‖0,∞,Ω̃|ũ|1,τh |w|1,τh + ‖f̃‖0,τh‖w‖0,τh . (5.39.zen)

Using (5.37.zen) and considering similarly as in part B of the proof of [21, Lemma
25] we can derive

|w|1,τh ≤ Chδ/2|w|1,Ωh . (5.40.zen)
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Further

‖w‖20,τh ≤ Ch
2
(
‖w‖20,Γ1h

+ Ch2|w|21,τh
)
≤ C h

2

%
‖w‖21,Ωh . (5.41.zen)

The first inequality follows from the proof of [18, Lemma 28.3] and the second
from (3.31.zen) and (5.40.zen). Finally,

‖f̃‖0,τh ≤ ‖f̃‖0,∞,Ω̃
√

mes2τh ≤ Ch‖f̃‖0,∞,Ω̃
√

mes1Γ1. (5.42.zen)

Combining (5.39.zen)–(5.42.zen) we find that

D3 ≤ Chδ/2‖w‖1,Ωh , (5.43.zen)

where the constant C does not depend on h and w. Similarly,

D4 ≤ Chδ/2‖w‖1,Ωh . (5.44.zen)

Relations (5.32.zen), (5.38.zen), (5.43.zen), (5.44.zen) together with Lemma 5.9 yield estimate
(5.31.zen). ut

Now we shall analyze the first term on the right-hand side of (5.3.zen). We start
with the following finite element density theorem.

Lemma 5.11. Let V = {w ∈ H1(Ω) : trw = 0 on Γj}. For every pair ε > 0,
w ∈ V we can find wε ∈ C∞(Ω)∩ V and hε,w > 0 such that for all h ∈ (0, h)ε,w
we have

‖w̃ − Ihwε‖1,Ωh < ε (5.45.zen)

where ṽ ∈ Hk(Ω̃) is the extension of v ∈ Hk(Ω) according to Lemma 3.6 and
Ihv ∈ Xh ≡ {w ∈ C(Ωh) : w


T
∈ (T, L, 1) ∀T ∈ Th} is the interpolant of

v ∈ C(Ω) defined by (Ihv)(Pi) = v(Pi) ∀Pi.

Proof. By [18, Theorem P .92] the set C∞(Ω) ∩ V is dense in V . Hence, there
exists a function wε ∈ C∞(Ω) ∩ V such that

‖w − wε‖1,Ω < ε/(2C1) (5.46.zen)

where C1 is the constant from the inequality

‖ṽ‖1,Ω̃ ≤ C1‖v‖1,Ω ∀v ∈ H1(Ω). (5.47.zen)

We shall consider w̃ in H1(Ω̃) and w̃ε in H2(Ω̃). As the extension w̃ε is equal
to the extension of wε from H1(Ω) (see Lemma 3.6), we have, according to the
linearity of extension operators, w̃ − w̃ε = (w − wε)∼; thus (5.46.zen) and (5.47.zen)
yield

‖w̃ − w̃ε‖1,Ω̃ < ε/2. (5.48.zen)



The Use of Semiregular Finite Elements 245

The triangular inequality gives

‖w̃ − Ihwε‖1,Ωh ≤ ‖w̃ − w̃ε‖1,Ωh + ‖w̃ε − Ihwε‖1,Ωh . (5.49.zen)

Now we estimate the terms on the right-hand side of (5.49.zen). By (5.48.zen) we have

‖w̃ − w̃ε‖1,Ωh < ε/2. (5.50.zen)

As to the second term, we have

Ihwε = Ihw̃ε

because Ω ⊂ Ω̃. This fact, the interpolation theorem for semiregular triangular
linear elements (see Theorem 1.3) and the extension theorem (see Lemma 3.6 )
yield

‖w̃ε − Ihwε‖1,Ωh ≤ Ch‖w̃ε‖2,Ωh ≤ C2Ch‖wε‖2,Ω.

Thus there exists such an hε,w that

‖w̃ε − Ihwε‖1,Ωh < ε/2 ∀h ∈ (0, hε,w). (5.51.zen)

Combining relations (5.49.zen)–(5.51.zen) we obtain (5.45.zen). ut

Theorem 5.12. We have

lim
h→0

{
inf
v∈Vh

‖v − ũ‖1,Ωh
}

= 0. (5.52.zen)

Proof. By Lemma 5.11, for a given ε > 0 we can find uε ∈ C∞(Ω) ∩ V and
hε,u > 0 such that

‖ũ− Ihuε‖1,Ωh < ε ∀h ∈ (0, hε,u).

As Ihuε ∈ Vh we have

inf
v∈Vh

‖v − ũ‖1,Ωh ≤ ‖ũ− Ihuε‖1,Ωh .

Both inequalities imply (5.52.zen). ut

Theorem 5.13. We have for all h ∈ (0, h0)

IS := inf
v∈Vh

sup
w∈Vh
w 6=0

|ah(v, w) − ãh(v, w)|
‖w‖1,Ωh

≤ Ch(1 + ‖u‖1,Ω),

where u ∈ H1(Ω) is the solution of the continuous variational problem and the
constant C does not depend on h and u.
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Proof. Let ε = 1 and let us set

v = Ihuε ∈ Vh , (5.53.zen)

where, according to Lemma 5.11,

‖ũ− Ihuε‖1,Ωh < ε = 1 ∀h ∈ (0, hε,u). (5.54.zen)

Using (5.53.zen) and Theorem 3.13 we find

IS ≤ Ch‖Ihuε‖1,Ωh . (5.55.zen)

Triangular inequality, extension theorem and relation (5.54.zen) imply

‖Ihuε‖1,Ωh ≤ ‖ũ‖1,Ωh + ‖ũ− Ihuε‖1,Ωh ≤ ‖ũ‖1,Ω̃ + 1 ≤ C‖u‖1,Ω + 1.

Combining this result with (5.55.zen) we obtain the assertion of Theorem 5.13. ut

The third and fourth terms appearing on the right-hand side of (5.3.zen) are
estimated in Theorems 3.16 and 3.18, respectively. Thus using the preceding
results we obtain

Theorem 5.14. Let us consider the set of divisions {DTh } (h ∈ (0, h0)) intro-
duced in Section 3. Let assumptions of Problem 3.1 and assumptions concerning
the degrees of precision of quadrature formulas on a triangle and its side (see
Theorems 3.13 and 3.18) be satisfied. If inequalities (5.1.zen) hold then

lim
h→0
‖ũ− uh‖1,Ωh = 0

where uh is the solution of Problem 3.4 belonging to DTh , u ∈ H1(Ω) is the
solution of Problem 3.1 and ũ = E(u) ∈ H1(Ω̃) its extension in the sense of
Lemma 3.6 with k = 1.

6 Appendix: Discrete Friedrichs’ inequality

In [21] the inequality

‖v‖1,Ωh ≤ C|v|1,Ωh ∀v ∈ Vh ∀h < h0 (6.1.zen)

was used without proof. As the proof differs from the proof, which was presented
in [18] in the case of regular finite elements, we introduce the following lemma
which is sufficient for the considerations in [21] and this paper.

Lemma 6.1. Let Ω be a domain considered in Sections 3 and 5 and let (3.40.zen)
be satisfied, i.e. let

C1h
2 ≤ %

m
(C1 > 0).

Then inequality (6.1.zen) holds.
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Proof. a) The case of the Dirichlet boundary condition (3.2.zen). In this case

Vh = {v ∈ Xh : v = 0 on Γ1h}.

Let v be the natural extension of v and let Ω̃ be the bounded domain with
boundary ∂Ω̃ = Γ2 ∪ Γ3 where Γ3 is the circle with the centre S0 and radius
R3 < R1. We set v ≡ 0 in the bounded set Uh with the boundary ∂Uh = Γ3∪Γ1h.
According to the Friedrichs inequality

‖v‖2
0,Ω̃
≤ C|v|2

1,Ω̃
. (6.2.zen)

As Ωh ∈ Ω̃ we have

‖v‖20,Ωh ≤ ‖v‖
2
0,Ω̃

. (6.3.zen)

It remains to prove

|v|2
1,Ω̃
≤ C|v|21,Ωh . (6.4.zen)

We have

|v|2
1,Ω̃

= |v|21,Ωh + |v|21,ωh . (6.5.zen)

First we consider the case of the division DTh . (For the definition of DTh and
other types of divisions see the text following Lemma 3.3.) Let λh ⊂ Γ2h be the
segment QjQj+1 which approximates the arc λ ⊂ Γ2. Similarly as in the proof
of [21, Lemma 33] we can prove that

dist (Q∗j , Γ2) ≤ 1
8
%

m
≡ 1

8
b,

where Q∗j is the mid-point of λh. Thus

mes2Ph ≤
1
4

mes2T,

where Ph is the bounded domain with the boundary ∂Ph = λ ∪ λh and T the
triangle adjacent to Ph. As v is piecewise linear we have

|v|21,Ph ≤
1
4
|v|21,T .

Hence
|v|21,ωh ≤

1
4
|v|21,Ωh .

Inserting this result into (6.5.zen) we obtain estimate (6.4.zen) with C = 5/4. The same
result can be obtained in the case of the division DAh .

In the case of the division DKh we use the result for DAh and estimate [21,
(91)].
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Combining (6.2.zen)–(6.4.zen) we arrive at

‖v‖20,Ωh ≤ C|v|
2
1,Ωh ∀v ∈ Vh.

Hence (6.1.zen) follows.

b) The case of the Dirichlet boundary condition v = 0 on Γ2. In this case

Vh = {v ∈ Xh : v = 0 on Γ2h}

and we define the quasinatural extension v of v ∈ Vh by

v = v on Ωh, v = 0 on ωh. (6.6.zen)

The Friedrichs inequality gives

‖v‖20,Ω ≤ C|v|21,Ω. (6.7.zen)

Relations (6.6.zen) imply

|v|21,Ω ≤ |v|21,Ωh . (6.8.zen)

If we prove

‖v‖20,Ω ≥ C‖v‖20,Ωh (C > 0) , (6.9.zen)

then (6.1.zen) follows from (6.7.zen)–(6.9.zen).
Let us consider the case of DKh . Transformation (3.20.zen) maps one-to-one the

reference square K0 with vertices P ∗1 (1, 0), P ∗2 (0, 0), P ∗3 (0, 1), P ∗4 (1, 1) onto the
quadrilateral K with vertices P1, P2, P3, P4 where P1, P2 lie on Γ1 and P3P4 is
parallel to P1P2. Let S1 ∈ P1P4, S2 ∈ P2P3, let S1S2 be parallel to P1P2 and let

dist (P1P2, S1S2) =
1
8
b.

Then, according to [21, Lemma 33], the arc λ ⊂ Γ1 which is approximated by
λh = P1P2 lies in ∆, where ∆ denotes the quadrilateral with vertices P1, P2, S2,
S1. Let us assume that we proved

‖v‖20,∆ ≤
3
4
‖v‖20,K . (6.10.zen)

Then
‖v‖20,K−Ph ≥ ‖v‖

2
0,K−∆ = ‖v‖20,K − ‖v‖20,∆ =

1
4
‖v‖20,K ,

where Ph is the bounded domain with the boundary ∂Ph = λ ∪ λh. Hence (6.9.zen)
follows with C = 1

4 .
Let us prove (6.10.zen). According to the definition, the function v(x, y) is on

every quadrilateral K such that

ṽ(ξ, η) ≡ v(xK(ξ, η), yK(ξ, η)) =
4∑
i=1

Bipi(ξ, η),
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where
p1 = ξ(1− η), p2 = (ξ − 1)(η − 1), p3 = (1− ξ)η, p4 = ξη

and Bi = v(Pi) (i = 1, . . . , 4). The functions xK(ξ, η), yK(ξ, η) are the right-
hand sides of transformation (3.20.zen).

The quadrilateral ∆ is the image of the rectangle ∆0 with vertices P ∗1 , P ∗2 ,
S∗2 , S∗1 in transformation (3.20.zen), where S∗1 = [1, 1

8 ], S∗2 = [0, 1
8 ]. First we prove∫∫

∆0

[ṽ(ξ, η)]2 dξdη ≤ 1
2

∫∫
K0

[ṽ(ξ, η)]2 dξdη. (6.11.zen)

Let us express the integrals

J1 =
∫∫

K0

[ṽ(ξ, η)]2 dξdη =
∫ 1

0

{∫ 1

0

( 4∑
i=1

Bipi(ξ, η)
)2

dη
}

dξ,

J2 =
∫∫

∆0

[ṽ(ξ, η)]2 dξdη =
∫ 1

0

{∫ 1/8

0

( 4∑
i=1

Bipi(ξ, η)
)2

dη
}

dξ

as the quadratic forms of B1, . . . , B4. Let us denote A = B2, B = B1, C = B4,
D = B3. Then

4608(J1 − 2J2) =

= (174A+ 87B + 117C + 134D)2/174 + (130, 5B + 175, 5C)2/130, 5 +

+ (195, 31035C + 97, 655175D)2/195, 31035 + 146, 48277D2 ,

from which estimate (6.11.zen) follows.
The Jacobian J of transformation (3.20.zen) is of the form

J = (h− ε∗η)b ,

where, according to (3.21.zen) and (3.40.zen), b = O(h2), ε∗ = O(h3). Thus using (6.11.zen)
and the relation∫∫

K0

[ṽ(ξ, η)]2η dξdη = η0

∫∫
K0

[ṽ(ξ, η)]2 dξdη (0 < η0 < 1),

which is a consequence of the mean-value theorem, we obtain

‖v‖20,∆ =
∫∫

∆0

[ṽ(ξ, η)]2(h− ε∗η)b dξdη ≤

≤
∫∫

∆0

[ṽ(ξ, η)]2hb dξdη ≤ 1
2

∫∫
K0

[ṽ(ξ, η)]2hb dξdη ≤

≤ 3
4

{∫∫
K0

[ṽ(ξ, η)]2hb dξdη −
∫∫

K0

[ṽ(ξ, η)]2ε∗η0b dξdη
}

=

=
3
4

∫∫
K0

[ṽ(ξ, η)]2(h− ε∗η)b dξdη =
3
4
‖v‖20,K ,
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which proves (6.10.zen).
In the case of division DTh the proof of (6.9.zen) is similar but simpler: Let T be a

triangle with vertices P1, P2 lying on Γ1 and let Q1 and Q2 be the mid-points of
the sides P1P3 and P2P3, respectively. Let T ∗ denote the triangle with vertices
Q1, Q2, P3. Then

‖v‖20,T−Ph ≥ ‖v‖
2
0,T∗

and it is relatively easy to compute that

‖v‖20,T∗ ≥
1
64
‖v‖20,T .

The last two inequalities imply (6.9.zen) with C = 1/64. ut
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21. A. Žeńı̌sek, Finite element variational crimes in the case of semiregular elements,
Appl. Math., 41 (1996), 367–398

22. A. Žeńı̌sek and M. Vanmaele, The interpolation theorem for narrow quadrilateral
isoparametric finite elements, Numer. Math., 72 (1995), 123–141
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