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Abstract. The main feature of the equations describing the motion of
the viscous compressible flows, i.e. the Navier-Stokes equations, is the
combination of dominating convective parts with the diffusive effects.
These equations will be numerically solved by the combined finite vol-
ume — finite element method via operator inviscid-viscous splitting. The
main idea of the method is to discretize nonlinear convective terms with
the aid of the finite volume scheme, whereas the diffusion terms are dis-
cretized by piecewise linear conforming triangular finite elements. The
nonlinear convective terms can also be solved by the method of char-
acteristics. Numerical solution obtained by latter method is truly mul-
tidimensional and independent of the mesh character. We will present
results of numerical experiments for some well-known test problems.
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1 Formulation of the problem

We consider gas flow in a space-time cylinder QT = Ω × (0, T ), where Ω ⊂ R2

is a bounded domain representing the region occupied by the fluid and T > 0.
By Ω and ∂Ω we denote the closure and boundary of Ω, respectively.

The complete system of viscous compressible flow consisting of the continuity
equation, Navier-Stokes equations and energy equation can be written in the
form

∂w

∂t
+

2∑
i=1

∂fi(w)
∂xi

=
2∑

i=1

∂Ri(w,∇w)
∂xi

in QT . (1.luk)

This is the final form of the paper.
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Here

w = (w1, w2, w3, w4)T = (ρ, ρv1, ρv2, e)T, (2.luk)
w = w(x, t), x ∈ Ω, t ∈ (0, T ),
fi(w) = (ρvi, ρviv1 + δi1p, ρviv2 + δi2p, (e + p) vi)T,

Ri(w,∇w) = (0, τi1, τi2, τi1v1 + τi2v2 + k∂θ/∂xi)T,

τij = λdiv v δij + µ

(
∂vi

∂xj
+

∂vj

∂xi

)
, i, j = 1, 2.

From thermodynamics we have

p = (γ − 1) (e− ρ|v|2/2), e = ρ(cvθ + |v|2/2). (3.luk)

We use the standard notation: t — time, x1, x2 — Cartesian coordinates in R2,
ρ — density, v = (v1, v2) — velocity vector with components vi in the directions
xi, i = 1, 2, p — pressure, θ — absolute temperature, e — total energy, τij —
components of the viscous part of the stress tensor, δij — Kronecker delta, γ > 1
— Poisson adiabatic constant, cv — specific heat at constant volume, k — heat
conductivity, λ, µ — viscosity coefficients. We assume that cv, k, µ are positive
constants and λ = − 2

3µ. We neglect outer volume force. The functions fi are
called inviscid (Euler) fluxes and are defined in the set D = {(w1, . . . , w4) ∈
R4; w1 > 0}. The viscous terms Ri are obviously defined in D × R8. (Due to
physical reasons it is also suitable to require p > 0.)

System (1.1), (1.3) is equipped with the initial conditions

w(x, 0) = w0(x), x ∈ Ω (4.luk)

(which means that at time t = 0 we prescribe, e. g., ρ, v1, v2 and θ) and boundary
conditions: The boundary ∂Ω is divided into several disjoint parts. By ΓI , ΓO

and ΓW we denote inlet, outlet and impermeable walls, respectively, and assume
that

(i) ρ = ρ∗, vi = v∗i , i = 1, 2, θ = θ∗ on ΓI , (5.luk)

(ii) vi = 0, i = 1, 2,
∂θ

∂n
= 0 on ΓW ,

(iii)
2∑

i=1

τijni = 0, j = 1, 2,
∂θ

∂n
= 0 on ΓO.

Here ∂/∂n denotes the derivative in the direction of unit outer normal n =
(n1, n2) to ∂Ω; w0, ρ∗, v∗i and θ∗ are given functions.

Let us note that nothing is known about the existence and uniqueness of the
solution of problem (1.1), (1.3)–(1.5). Some solvability results for system (1.1) &
(1.3) were obtained either for small data or on a very small time interval under
simple Dirichlet boundary conditions (for reference, see e. g., [3, Par. 8.10]).

We do not take care of the lack of theoretical results and deal with the numeri-
cal solution of the above problem. Since the viscosity µ and heat conductivity
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k are small, we treat the diffusion terms on the right hand side of (1.1) as a
perturbation of the inviscid Euler system and conclude that a good method for
the solution of viscous flow should be based on a sufficiently robust scheme for
inviscid flow simulation. Therefore, we will split the complete system (1.1) into
inviscid and viscous part:

∂w

∂t
+

2∑
i=1

∂fi(w)
∂xi

= 0, (6.luk)

∂w

∂t
=

2∑
i=1

∂Ri(w,∇w)
∂xi

(7.luk)

and discretize them separately. First we will pay attention to the inviscid flow
problem.

2 Numerical solution of the Euler equations

In what follows we will describe some numerical methods for solving the Euler
equations system (6.luk). The first part of this section will be devoted to the finite
volume methods, in the second part we will briefly describe truly multidimen-
sional methods based on the method of characteristics, the so-called evolution
Galerkin schemes. In the third part we present some numerical experiments for
the Euler equations system.

It is easy to realize that fj ∈ C1
(
D; R4

)
for j = 1, 2. Thus, we can apply the

chain rule to the function fj (w) and obtain a first order quasilinear system of
PDE’s

∂w

∂t
+

2∑
j=1

Aj (w)
∂w

∂xj
= 0, (8.luk)

where Aj (w) = Dfj(w)
Dw are Jacobi matrices of fj (w) , j = 1, 2.

Definition 1. Let us consider general first order system of type (8.luk). The system
is said to be hyperbolic, if for arbitrary vectors w ∈ D and n = (n1, n2) ∈ R2

the matrix

P (w, n) =
2∑

j=1

nj Aj (w)

has four real eigenvalues λi = λi (w, n) , i = 1, . . . , 4, and is diagonizable, i.e.
there exists a nonsingular matrix T = T (w, n) , s.t.

T−1 · P · T = D (w, n) = diag(λ1, λ2, λ3, λ4)

Theorem 2. The system of Euler equations (8.luk) is hyperbolic.
The eigenvalues of the matrix P (w, n) are

λ1 = λ2 = n1v1 + n2v2, λ3 = λ1 + a|n|, λ4 = λ1 − a|n|.

Here a is a local speed of sound, i.e. a =
√

kp
ρ .
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2.1 Finite volume schemes

The above properties of the Euler equations allow us to construct efficient
numerical schemes for the solution of inviscid flow. We will carry out the dis-
cretization of system (6.luk) with the use of the finite volume method (FVM) which
is very popular because of its flexibility and applicability.

Let Th be a triangulation of the domain Ωh which is a polygonal approxima-
tion of the domain Ω . The so-called dual finite volume partition of Ωh will be
denoted by Dh = {Di}i∈J , J is a suitable index set. Moreover, it holds

Ωh =
⋃
i∈J

Di. (9.luk)

The dual finite volumes will be constructed in the following way: Join the
centre of gravity of every triangle T ∈ Th, containing the vertex Pi, with the cen-
tre of every side of T containing Pi. If Pi ∈ ∂Ωh, then we complete the obtained
contour by the straight segments joining Pi with the centres of boundary sides
that contain Pi. In this way we get the boundary ∂Di of the finite volume Di.
(See Figure 1.) Dual finite volume meshes were successfully used in a number of
works. See, e.g., [1], [8].
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Figure 1

If for two different finite volumes Di and Dj their boundaries contain a
common straight segment, we call them neighbours. Then we write

Γij = ∂Di ∩ ∂Dj = Γji. (10.luk)

The index set of all neighbours for the dual volume Di will be denoted by
S(i). Furthermore, we introduce the following notation: |Di| = area of Di, nij =
(n1ij , n2ij) = unit outer normal to ∂Di on Γij , `ij = length of Γij , and consider
a partition 0 = t0 < t1 < . . . of the time interval (0, T ) and set τk = tt+1 − tk
for k = 0, 1, . . . .
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The finite volume method reads

wk+1
i = wk

i −
τk

|Di|
∑

j∈S(i)

g(wk
i , wk

j , nij) `ij , (11.luk)

Di ∈ Dh (i. e., i ∈ J), k = 0, 1, . . . .

To derive (11.luk) we integrate (6.luk) over every set Di×(tk, tk+1), use Green’s the-
orem, the approximation of the exact solution by a piecewise constant function
with values wk

i on Di × {tk} and the approximation of the flux∫
Γij

2∑
r=1

fr(w)nr dS

of the quantity w through the segment Γij in the direction nij with the aid of
the so-called numerical flux g(wk

i , wk
j , nij) calculated from wk

i , wk
j and nij .

In order to ensure the stability of the scheme (11.luk) the so-called CFL stability
condition has to be fulfilled

τk

|Di|
max

j∈S(j)
max

s=1,...,4
λs(wk, nij) ≤ CFL ∀j ∈ J, (12.luk)

where CFL ∈ (0, 1]. In literature one can find a lot of numerical flux func-
tions, e.g. Steger-Warming, Osher-Solomon, Van-Leer, Vijayasundaram numeri-
cal fluxes. For references, see e.g., [3].

We do not discuss now the question of implementation of the boundary con-
ditions. They have to be prescribed in such a way that the hyperbolic character
of the equations is taking into account. For more details the reader is referred to
[4]. In the approach described about only the piecewise constant approximation
is considered. Nevertheless, also the higher order schemes, using for example
discontinuous piecewise linear approximate functions, can be constructed. The
details can be found, e.g., in [4].

2.2 Evolution Galerkin methods

Although in the recent years the most commonly used methods for hyperbolic
problems are the finite volume methods, it turns out that in special cases this
approach leads to structural deficiencies in the solution (see, e.g., [7], [13]). This
is due to the fact that the finite volume methods are based on a quasi dimensional
splitting using one-dimensional Riemann solvers.

The evolution Galerkin method, first considered by Morton et al. in [2] for
scalar hyperbolic equation, combines the theory of characteristics for hyperbolic
problems with the finite element ideas. The initial function is transported along
the characteristic cone and then projected onto a finite element space.

Let E(t) be the exact evolution operator for our hyperbolic problem (8.luk), i.e.

w(·, tk+1) = E(∆t)w(·, tk), (13.luk)
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then the evolution Galerkin scheme reads:

wk+1 = PhE∆wk, (14.luk)

where E∆ is an approximate evolution operator and Ph is a projection onto a
finite element space. It can be shown that the method is unconditionally stable
and the accuracy can be increased by increasing the order of the approximate
space and the accuracy of the approximate evolution operator. Using different
approximate evolution operators E∆ and projections Ph one obtains a class of
the evolution Galerkin methods.

The approach described can be fully exploited for simple problems, e.g. the
linear hyperbolic system of wave equation (see Lukáčová, Morton and Warnecke
[9], [10], [11]). More details about the application of this method to the Euler
equations can be found in the works of Fey [7] and Ostkamp [13].

2.3 Numerical experiments

(1) Flow through the GAMM channel (10 % circular arc in the channel of width
1 m) for air, i. e. γ = 1.4, and inlet Mach number M := |v|

a = 0.67 was solved
by the Vijayasundaram higher order scheme applied on the dual mesh over a
triangular grid. In Figure 2 the basic grid and dual mesh, respectively, are shown.
Our aim was to obtain a steady state solution with the aid of the time marching
process for tk →∞. After 10000 time iterations the stability of the solution up
to 10−5 was achieved. Figure 3 shows Mach number isolines and entropy isolines.
We can see a sharp shock wave which is resolved very well.

Figure 2: Triangular mesh in the GAMM channel and the dual mesh

Figure 3: Mach number isolines and entropy isolines
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(2) Two-dimensional Sod’s problem. Now we will show a comparison of the
solution obtained by the finite volume method and by the evolution Galerkin
scheme. It will be showed that some symmetry structures are better preserved by
the truly multidimensional evolution Galerkin method than by the finite volume
scheme.

The computational domain is the square [-1,1] × [-1,1]. To ensure the CFL
stability condition, the CFL number is taken 0.8. We choose periodical boundary
conditions and the following initial data

ρ = 1, u = 0, v = 0, p = 1 if |x| ≤ 0.4 (15.luk)
ρ = 0.125, u = 0, v = 0, p = 0.1 otherwise.

In Figure 4 the first picture on the left hand side shows the isolines of pressure
for the solution computed by the evolution Galerkin scheme at time T = 0.2 for
quadrilateral grid with 200 × 200 grid cells. The symmetry of the data can be
observed very well. The resolution of the flow phenomena is the same in all
directions and information is moving in infinitely many directions in a circular
manner. However this is not the case for the finite volume method. In the next
two pictures of Figure 4 the isolines of pressure for the solution computed by
the Osher-Solemn finite volume scheme on the quadrilateral mesh (middle) and
on the dual mesh (right hand side) are plotted.

Figure 4: Evolution Galerkin scheme
and the Osher-Solomon FVM on the quadrilateral mesh and the dual mesh

3 Discretization of the complete system of the
Navier-Stokes equations

In this section we will describe the combined finite volume – finite element
method which is used for the discretization of the Navier-Stokes equations (1.1).
Let us note that we now use only the finite volume method in order to discretize
the Euler equations, however also other possibilities are open (cf. Section 2.2
Evolution Galerkin methods).
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First of all we will describe the finite element discretization of the purely vis-
cous system (7.luk) equipped with initial conditions (1.4) and boundary conditions
(1.5). We use conforming piecewise linear finite elements. This means that the
components of the state vector are approximated by functions from the finite
dimensional space

Xh =
{
ϕh ∈ C(Ωh); ϕh|T is linear for each T ∈ Th

}
.

Further, we set Xh = [Xh]4 and

a) V h = {ϕh = (ϕ1, ϕ2, ϕ3, ϕ4) ∈Xh, ϕi = 0 on the part of ∂Ωh approxi-
mating the part of ∂Ω where wi satisfies the Dirichlet condition}

b) W h = {wh ∈Xh; its components satisfy the Dirichlet boundary
conditions following from (1.5)}.

Multiplying (7.luk) considered on time level tk by any ϕh ∈ V h, integrating over
Ωh, using Green’s theorem, taking into account the boundary conditions (1.5)
and approximating the time derivative by a forward finite difference, we obtain
the following explicit scheme for the calculation of an approximate solution wk+1

h

on the (k + 1)-th time level

a) wk+1
h ∈W h, (16.luk)

b)
∫

Ωh

wk+1
h ϕh dx =

∫
Ωh

wk
h ϕh dx−

−τk

∫
Ωh

2∑
s=1

Rs(wk
h, ∇wk

h)
∂ϕh

∂xs
dx ∀ϕh ∈ V h.

The integrals are approximated by a numerical quadrature, called mass lump-
ing, using the vertices of triangles as integration points:∫

T

F dx ≈ 1
3
|T |

3∑
i=1

F (P i
T ) (17.luk)

for F ∈ C(T ) and a triangle T = T (P 1
T , P 2

T , P 3
T ) ∈ Th with vertices P i

T , i =
1, 2, 3. The numerical integration yields

wk+1
i = wk

i −
τk

|Di|

2∑
s=1

∑
T∈Th

|T |Rk
s

∣∣∣
T

∂ϕm
i

∂xs

∣∣∣
T
, (18.luk)

where i ∈ J, k = 0, 1, . . . , m = 1, . . . , 4, and ϕm
i is a basis function from V h

having the only non-zero component on the m-th position; namely ϕi ∈ Xh,
which corresponds to the vertex Pi.

Now we combine the finite volume scheme (11.luk) with the finite element scheme
(18.luk). The resulting finite volume – finite element operator splitting scheme has
the following form:
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w0
i =

1
|Di|

∫
Di

w(x, y, 0),

w
k+1/2
i = wk

i −
τk

|Di|
∑

j∈S(i)

g(wk
i , wk

j , nij) `ij ,

wk+1
i = w

k+1/2
i − τk

|Di|

2∑
s=1

∑
T∈Th

|T |Rk+1/2
s

∣∣∣
T

∂ϕm
i

∂xs

∣∣∣
T
,

i ∈ J, m = 1, . . . , 4, k = 0, 1, . . . .

(19.luk)

The above scheme can be applied only under some stability conditions. In
the case of explicit discretization of the viscous terms we have to consider not
only (12.luk) but also the additional stability condition in the form

3
4

h

ρ

τk

|T | max(µ, k) ≤ CFL, T ∈ Th, (20.luk)

where h is the length of the maximal side in Th and ρ = minT∈Th
ρT , ρT =

radius of the largest circle inscribed into T .
Concerning the theoretical results we are able to prove the convergence and

the error estimates for the combined finite volume – finite element method. These
results are obtained for one scalar nonlinear convection – diffusion equation.
The convergence was proved by Feistauer, Felcman and Lukáčová in [5] and by
Lukáčová in [12]. Using the piecewise constant approximate functions in the finite
volume step and the piecewise linear approximation in the finite element step
it is possible to show that the method is of first order, see Feistauer, Felcman,
Lukáčová and Warnecke [6].

3.1 Computational Results

Viscous flow through the GAMM channel for γ = 1.4, µ = 1.72·10−5 kgm−1 s−1,
λ = −1.15·10−5 kgm−1 s−1, k = 2.4·10−2 kgm s−3 K−1, cv = 721.428 J ·kg·K−1

and the inlet Mach number M = 0.67 was computed by scheme (19.luk). In Figure 5
Mach number isolines are drawn. Here we can see boundary layer at the walls,
shock wave, wake and interaction of the shock with boundary layer.

Figure 5: Mach number isolines of viscous flow
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