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Abstract. Some recent results concerning properties of solutions of the
half-linear second order differential equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (∗)

are presented. A particular attention is devoted to the oscillation theory of
(∗). Related problems are also discussed.
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1 Introduction

In this contribution we deal with the oscillatory properties and related problems
concerning the half-linear second order differential equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (1)
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where r, c are continuous functions and r(t) > 0. In the recent years it was shown
that solutions of (1) behave in many aspects like those of the Sturm-Liouville
equation

(r(t)x′)′ + c(t)x = 0 (2)

which is the special case p = 2 of (1). The aim of this paper is to present some
results of this investigation and also to point out situations where properties of
(1) and (2) (considerably) differ. Note that terminology half-linear equations is
motivated by the fact that the solution space of (1) has just one half of the
properties which characterize linearity, namely homogeneity (but not additivity).

The investigation of qualitative properties of nonlinear second order differential
equations has a long history. Recall here only the papers of Emden [26], Fowler
[27], Thomas [40], and the book of Sansone [39] containing the survey of the results
achieved in the first half of the last century. In the fifties and later decades the
number of papers devoted to nonlinear second order differential equations increased
rapidly, so we mention here only treatments directly associated with (1). Even if
some ideas concerning the properties of solutions of (1) can be already found in
the papers of Bihari [4,5], as pioneers of the qualitative theory of (1) are usually
regarded Elbert and Mirzov with their papers [21,36]. In the following years, in
particular in the nineties, the striking similarity between oscillatory properties of
(1) and (2) was revealed. On the other hand, in some aspects, e.g. the Fredholm-
type alternative for solutions of boundary value problems associated with (1), it
turned out that the situation is completely different in linear and half-linear case
and the absence of the additivity of the solution space of (1) brings completely
new phenomena.

The paper is organized as follows. In the next section we present a brief survey
of basic properties of solutions of (1). Section 3 is devoted to the oscillation theory
of (1) and in the last section we discuss some other problems associated with (1).

2 Basic properties of (1)

Consider a special equation of the form (1)

(Φ(x′))′ + (p− 1)Φ(x) = 0

and denote by S = S(t) its solution given by the initial condition S(0) = 0,
S′(0) = 1. In [21] it is shown that the behaviour of this function is very similar to
that of the classical sine function. In particular, this function is odd, periodic with
the half-period πp := 2π

p sin(π/p) , and satisfies the generalized Pythagorian identity
|S(t)|p + |S′(t)|p = 1.

Using this function, one can introduce the generalized Prüfer transformation
as follows. Let x be a nontrivial solution of (1). There exist differentiable functions
ρ, ϕ such that

x(t) = ρ(t)S(ϕ(t)), rq−1(t)x′(t) = ρ(t)S′(ϕ(t)),
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where q is the conjugate number of p, i.e., 1
p + 1

q = 1, and the functions ρ, ϕ satisfy
a certain first order system with Lipschitzian right-hand-side, which is, in turn,
uniquely solvable. Hence, the same holds for (1): given t0 ∈ R and A,B ∈ R, there
exists a unique solution of (1) satisfying x(t0) = A, x′(t0) = B which is extensible
over the whole interval where r, c are continuous and r(t) > 0.

Other important objects associated with (1) are the p-degree functional

F(y; a, b) :=
∫ b

a

[r(t)|y′|p − c(t)|y|p]dt (3)

(equation (1) is the Euler-Lagrange equation of F considered in the class of func-
tions satisfying the zero boundary condition y(a) = 0 = y(b)) and the generalized
Riccati equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, q =
p

p− 1
, (4)

which is related to (1) by the substitution w = rΦ(x′)
Φ(x) .

Functional (3) and equation (4) are related by the half-linear version of Picone’s
identity

F(y; a, b) = w(t)|y||ba + p
∫ b

a

r1−q(t)P (rq−1(t)y′, w(t)Φ(y)) dt,

where

P (u, v) :=
|u|p
p

− uv +
|v|q
q

≥ 0

for all u, v ∈ R with the equality if and only if v = Φ(u), and w is a solution of (4)
defined in the whole interval [a, b]. This identity is the main tool in the proof of
the next statement which summarizes the basic oscillatory properties of (1). This
statement is usually referred as the Roundabout Theorem.

Proposition 1. The following statements are equivalent:

(i) Equation (1) is disconjugate on an interval I = [a, b], i.e., any nontrivial
solution of (1) has at most one zero in I.

(ii) There exists a solution of (1) having no zero in [a, b].
(iii) There exists a solution w of the generalized Riccati equation (4) which is

defined on the whole interval [a, b].
(iv) The p-degree functional F(y; a, b) is positive for every 0 !≡ y ∈W 1,p

0 (a, b).

Observe that Proposition 1 implies that Sturm separation and comparison
theorems extend verbatim to (1). Indeed, the separation theorem is essentially
the equivalence (i) ⇐⇒ (ii), while the comparison theorem is hidden in the
equivalence (i) ⇐⇒ (iv). In particular, similarly as in the linear case, equation
(1) can be classified as oscillatory or nonoscillatory according to whether any
nontrivial solution has or has not infinitely many zeros tending to ∞.
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Finally, let us mention at least two differences in the basic properties of solu-
tions (1) (in addition to the already mentioned absence of the additivity of the
solution space). If x1, x2 is a pair of linearly independent solutions of (1), we have
no analogue of the Wronskian-type identity r(x′1x2 − x1x

′
2) = const which holds

for (2), see [22]. We have also no half-linear analogue of the linear transformation
identity with x = h(t)y

h(t)[(r(t)x′)′ + c(t)x] = (r(t)h2(t)y′)′ + h(t)[(r(t)h′(t))′ + c(y)h(t)]y (5)

which is the starting point of the transformation theory of (2), see [6].

3 Oscillation theory

The equivalences given in the Roundabout Theorem (Proposition 1) suggest two
main methods of the oscillation theory of (1). The basic ideas and results based
on them are briefly explained in this section.

3.1 Variational method

This method is based on the equivalence (i) ⇐⇒ (iv) in Proposition 1. According
to this equivalence, to prove that (1) is oscillatory, it suffices to construct (for any
T ∈ R) a nontrivial function y ∈W 1,p

0 (T,∞) such that

F(y;T,∞) :=
∫ ∞

T

[r(t)|y′|p − c(t)|y|p] dt ≤ 0. (6)

On the other hand, for nonoscillation of (1) we need to show the existence of T ∈ R

such that F(y;T,∞) > 0 for every 0 !≡ y ∈W 1,p
0 (T,∞).

In oscillation criteria, a typical construction of a function y for which (6) holds
reads as follows. Let T be arbitrary, T < t0 < t1 < t2 < t3, and let

y(t) =


0, t ∈ [T, t0],
f(t), t ∈ [t0, t1],
1, t ∈ [t1, t2],
g(t), t ∈ [t2, t3],
0, t ∈ [t3,∞),

(7)

where f, g are solutions of the one-term equation

(r(t)Φ(x′))′ = 0 (8)

satisfying f(t0) = 0, f(t1) = 1, g(t2) = 1, g(t3) = 0, i.e.

f(t)=
(∫ t

t0

r1−q(s) ds
)(∫ t1

t0

r1−q(s) ds
)−1

,

g(t)=
(∫ t3

t

r1−q(s) ds
)(∫ t3

t2

r1−q(s) ds
)−1

.
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By a direct computation, using the second mean value theorem of integral calculus
applied to the integrals ∫ t1t0 r|f |p,

∫ t3
t2
r|g|p (see e.g. [14]) we have

F(y;T,∞) =
(∫ t1

t0

r1−q(s) ds
)1−p

+
(∫ t3

t2

r1−q(s) ds
)1−p

+
∫ s2

s1

c(t) dt, (9)

where s1 ∈ (t0, t1), s2 ∈ (t2, t3). Using this computation we can now easily prove
the following oscillation criteria.

Theorem 2. Suppose that
∫∞

r1−q(t) dt = ∞. Then each of the following condi-
tions is sufficient for oscillation of (1):

(i) (Leighton-Wintner criterion [36]).

lim
b→∞

∫ b

c(t) = ∞. (10)

(ii) (Nehari-type criterion [14]). The integral
∫∞

c(t) dt is convergent and

lim inf
t→∞

(∫ t

r1−q(s) ds
)p−1 (∫ ∞

t

c(s) ds
)
> 1. (11)

Proof. A short computation and (9) show that each of conditions (i), (ii) implies
that the points ti, i = 0, . . . , 3, can be chosen in such a way that F(y;T,∞) < 0.

Concerning the nonoscillation criteria proved via the variational method, their
proofs are usually based on the Wirtinger-type inequality∫ ∞

T

|M ′(t)||y|p dt ≤ pp
∫ ∞

T

Mp(t)
|M ′(t)|p−1

|y′|p dt (12)

where M is a differentiable function such that M ′(t) != 0 on [T,∞), which holds
for every 0 !≡ y ∈W 1,p

0 (T,∞), see e.g. [12]. Using (12) we can prove the following
statement.

Theorem 3. Suppose that
∫∞

r1−q(t) dt = ∞ and

lim sup
t→∞

(∫ t

r1−q(s) ds
)p−1 (∫ ∞

t

c+(s) ds
)
<

1
p

(
p− 1
p

)p−1

, (13)

where c+(t) = max{0, c(t)}. Then (1) is nonoscillatory.

Proof. Setting M(t) :=
(∫ t

r1−q(s) ds
)1−p

and using (13) one can show that

F(y;T,∞) < 0.

The previous two statements are typical examples of the application of the
variational method in the oscillation theory of half-linear equations.
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3.2 Riccati technique

In this subsection we briefly sketch how the equivalence (i) ⇐⇒ (iii) can be used
to derive (non)oscillation criteria. We illustrate the application of this method in
the criteria which are similar to those presented in the previous subsection.

We start with the improvement of the statement given in Theorem 2 (ii).

Theorem 4. Suppose that
∫∞

r1−q(t) dt = ∞, the integral
∫∞

c(t) dt is conver-

gent and lim inf in (11) is > 1
p

(
p−1
p

)p−1

. Then (1) is oscillatory.

Proof. By contradiction, suppose that (1) is nonoscillatory. Then solutions of the
associated Riccati equation (4) satisfy the integral equation

w(t) =
∫ ∞

t

c(t) dt+ (p− 1)
∫ ∞

t

r1−q(s)|w|q ds,

see [34]. Multiplying this equation by
(∫ t

r1−q(s) ds
)p−1

, using (13) and supposing

that lim supt→∞

(∫ t
r1−q(s) ds

)p−1

w(t) =: µ <∞ (in case when µ = ∞, to get a

contradiction is even easier than in our case µ <∞) we find an ε > 0 such that µ
satisfies the inequality

µ >
1
p

(
p− 1
p

)p−1

+ ε+ |µ|q.

However, since |t|q − t+ 1
p

(
p−1
p

)p−1

≥ 0 for t ∈ R, we have the required contra-

diction.

Nonoscillation criteria based on the Riccati technique are usually proved using
a slightly different method than just the equivalence mentioned in Proposition 1.
We look for a solution of the inequality

v′ + c(t) + (p− 1)r1−q(t)|v|q ≤ 0 (14)

instead of (4), since it essentially means that a certain Sturmian majorant of (1)
is nonoscillatory and hence (1) is nonoscillatory as well.

Theorem 5. Suppose that
∫∞

r1−q(t) dt = ∞ and
∫∞

c(t) dt converges. If

lim supt→∞

(∫ t
r1−q(s) ds

)p−1 (∫∞
t
c(s) ds

)
< 1

p

(
p−1
p

)p−1

, (15)

lim inft→∞
(∫ t

r1−q(s) ds
)p−1 (∫∞

t c(s) ds
)
> − 2p−1

p

(
p−1
p

)p−1

, (16)

then (1) is nonoscillatory.
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Proof. Let v(t) = β
(∫ t

r1−q(s) ds
)1−p

, β := 1
p

(
p−1
p

)p−1

. Using (15) and (16) it

is not difficult to verify that this function really satisfies (14), see [14].

All criteria presented by Theorems 2-5 contain the assumption
∫∞

r1−q = ∞.
A slight modification of the proofs of these statements enables us to find their
counterparts in case

∫∞
r1−q <∞, see [14].

3.3 Perturbation principle and principal solution

In the previous criteria, equation (1) has been regarded as a perturbation of the
(nonoscillatory) one-term differential equation (8). It was shown that if the “per-
turbation” function c in (1) is “sufficiently positive” (“not too positive”) then (1)
becomes oscillatory (remains nonoscillatory). The exact quantitative characteriza-
tion of these vague concepts is just given in Theorems 2-5.

From this point of view, it is a natural idea to consider (1) not as a perturbation
of the one-term equation (8), but as a perturbation of the the general two-term
nonoscillatory equation

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0, (17)

where c̃ is a continuous function, and to formulate (non)oscillation criteria for (1)
in terms of the difference c − c̃. Note that this idea applied to linear equation
(2) does not produce essentially new criteria - due to the transformation identity
(5). Indeed, this identity applied to (2) written in the form (rx′)′ + cx = (rx′)′ +
c̃x + (c − c̃)x = 0 and with the transformation function h which a solution of
(rx′)′ + c̃x = 0 gives

h(t)[(r(t)x′)′ + c̃(t)x+ (c(t) − c̃(t))x] = (r(t)h2(t)y′)′ + h2(t)[c(t)− c̃(t)]y,

so the resulting equation is again an equation of the form (2). One can then
investigate it as the perturbation of the one-term equation (r(t)h2(t)y′)′ = 0 and
to transfer the obtained results “back” to the original equation (2).

Concerning the half-linear equation (1), as mentioned in Section 2, we have
no half-linear version of (5), so the idea to investigate (1) as a perturbation of
two-terms equation (17) brings really qualitatively new criteria. This approach
was (implicitly) used for the first time by Elbert [23], where it is proved that (1)
with r ≡ 1 is oscillatory provided

lim
b→∞

∫ b (
c(t)− γ

tp

)
tp−1 dt = ∞, γ =

(
p− 1
p

)p

. (18)

In this setting equation (1) with r ≡ 1 is viewed as a perturbation of the generalized
Euler equation with the critical constant

(Φ(x′))′ +
γ

tp
Φ(x) = 0, (19)
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whose one solution x(t) = t
p−1

p can be computed explicitly and other solutions

behave asymptotically as t
p−1

p lg
2
p t, see [24].

A natural question is why just the power tp−1 appears by the difference c(t)−
γ̃t−p in (18). In the linear case p = 2 the answer is that h = t1/2 is the so called
principal solution of the Euler equation x′′ + 1

4t2 x = 0 (principal solutions of (2)
and (1) are discussed in more details later in this section). More precisely, the
transformation x = t1/2y transforms (2) with r ≡ 1 into the equation (ty′)′ +(
c− 1

4t2

)
ty = 0.

The concept of the principal solution of (1) was introduced by Mirzov [37]
and in [13,25] it was shown that this solution has many of the properties of the
principal solution of (2). Using this concept (1) we can now prove the following
generalization of the Elbert criterion (18), see [14,17].

Theorem 6. Suppose that (17) is nonoscillatory and h is its (positive) principal
solution. If

lim
b→∞

∫ b

(c(t)− c̃(t)) hp(t) dt = ∞ (20)

then (1) is oscillatory.

Proof. The proof is similar to that of Theorem 2. We modify the test function (7)
as follows. We let y = h for t ∈ [t1, t2]. Then f, g are solution of (17) (instead of
(8)) satisfying f(t1) = h(t1), g(t2) = h(t2). Using (20) and properties of principal
solutions of (1) one can show that the points ti, i = 0, . . . , 3, can be chosen in such
a way that F(y;T,∞) < 0, see [17].

Observe that in case c̃ ≡ 0 Theorem 6 reduces to Theorem 2(i). Indeed, if∫∞
r1−q = ∞ then h ≡ 1 is the principal solution of the one term equation (8)

and (20) is the same as (10). Note also that Theorems 3-5 can be extended along
the line treated in this subsection as well, we refer to [12,17] for more details.

We finish this part with some remarks and open problems concerning the princi-
pal solution of (1). In the linear case the principal solution x̃ of (2) is (equivalently)
defined as a solution for which

lim
t→∞

x̃(t)
x(t)

= 0 ⇐⇒
∫ ∞ dt

r(t)x̃2(t)
= ∞, (21)

where x is any solution of (2) linearly independent of x̃. Since both these char-
acterizations are based on the linearity of the solutions space of (2), they do not
extend (directly) to (1). Mirzov [37] in his construction of the principal solution of
(1) used the fact that if this equation is nonoscillatory, then among all solutions
of the associated Riccati equation (4) there exists the minimal one w̃, in the sense
that any other solution w of this equation satisfies w(t) > w̃(t) eventually. The
principal solution of (1) is then defined by

x̃(t) = C exp
{∫ t

r1−q(s)Φ−1(w̃(s)) ds
}
,
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Φ−1 being the inverse function of Φ, i.e. the solution x̃ which is determined by
w̃ = rΦ(x̃′)

Φ(x̃) . In the linear case this construction is equivalent to (21), see [28].
In [16] we have tried to find an integral characterization of the principal solution

of (1) in such a way that in the linear case it reduces to the second expression in
(21). The main results of [16] are summarized in the next statement.

Theorem 7. Suppose that equation (1) is nonoscillatory and x̃ is its solution such
that x̃′(t) != 0 for large t.

(i) Let p ∈ (1, 2). If ∫ ∞ dt

r(t)x2(t)|x′(t)|p−2
= ∞, (22)

then x̃ is the principal solution.
(ii) Let p > 2. If x̃ is the principal solution then (22) holds.
(iii) Suppose that

∫∞
r1−q(t) dt = ∞, the function γ(t) :=

∫∞
t
c(s) ds exists and

γ(t) ≥ 0, but γ(t) !≡ 0 eventually. Then x̃(t) is the principal solution if and
only if (22) holds.

This theorem shows that the equivalent integral characterization of the prin-
cipal solution of (1) is known only in some particular cases. The subject of the
present investigation is whether (22) is really a good characterization. Another
intensively studied problem is the limit characterization of the principal solution
of (1), i.e. the extension of the first relation of (21) to solutions of (1). For some
results of this effort see [8,15,19].

4 Related topics

In this section we very briefly present some selected results related to the oscillation
theory of (1).

4.1 Asymptotics of nonoscillatory solutions

In this subsection we suppose that the function c in (1) is positive or negative for
large t, in the former case we suppose in addition that (1) is nonoscillatory. Since
the solution space of (1) is homogeneous, we can restrict our attention to positive
solutions. These solutions can be divided into two main classes according to their
behaviour for large t

M
+ = {x : x′(t) > 0}, M

− = {x : x′(t) < 0}

and each class M
+,M− is the union of two subclasses

M
+ = M

+
∞ ∪M

+
B , M

+
∞ = {x : x(t) →∞}, M

+
B = {x : x(t) → L <∞},

M
− = M

−
B ∪M

−
0 , M

−
B = {x : x(t) → L > 0}, M

−
0 = {x : x(t) → 0}.
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The investigation of the classification of nonoscillatory solutions of linear equations
(2) along this line was initiated in [35]. Afterward, several papers extending the
results of this paper have appeared, see e.g. in [7,9] and the references given therein.
An important role is played by the integrals

J1 = lim
T→∞

∫ T

r1−q(t)Φ−1

(∫ t

c(s) ds
)
dt,

J2 = lim
T→∞

∫ T

r1−q(t)Φ−1

(∫ T

t

c(s) ds

)
dt

and using these intgrals the following results have been established in [7].

Theorem 8. Suppose that c(t) < 0 for large t, then

(a) J1 = −∞ J2 = −∞ =⇒ M− = M
−
0 != ∅,

(b) J1 = −∞, J2 > −∞ =⇒ M− = M
−
B != ∅,

(c) J1 > −∞, J2 > −∞ =⇒ M
−
B != ∅, M

−
0 != ∅,

(d) J1 = −∞ =⇒ M+ = M+
∞,

(e) J1 > −∞ =⇒ M+ = M
+
B .

4.2 BVP’s associated with (1)

Consider the Dirichlet boundary value problem

(Φ(x′))′ + λΦ(x) + g(t, x) = f(t), x(0) = 0 = x(πp), (23)

where λ is a real-valued parameter, the number πp is defined in Section 2 and
the “nonhalf-linearity” g and the forcing term f satisfy certain additional assump-
tions. The literature dealing with solvability of (23) (not only with the Dirichlet
boundary condition) is very voluminous, see e.g. [10] and the references given
therein. The situation is similar to the linear case in some aspects, but in some
cases one meets completely different phenomena. Here we mention one of them,
the Fredholm-type alternative for solvability of the BVP

(Φ(x′))′ + λΦ(x) = f(t), x(0) = 0 = x(πp). (24)

Note that λ1 = (p− 1) is the principal eigenvalue of the unforced equation (24).
Using the detailed analysis of the geometry of the functional associated with

(24)

Jf (y) =
1
p

∫ πp

0

{|y′|p − λ|y|p} dt−
∫ πp

0

f(t)y dt

whose critical points over W 1,p
0 (0, πp) are solutions of (24), one can prove the

following statements, see [20] and the references given therein.
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Theorem 9. Fredholm’s alternative for p-Laplacian with p != 2.

(i) If λ < 0, the functional Jf has the unique minimum over W 1,p
0 (0, πp), it is

coercive and (24) has the unique solution.
(ii) If 0 < λ < λ1, the functional Jf is still coercive, but there exists f ∈ C[0, πp]

such that Jf has at least two critical points (one of them is the global minimum
over W 1,p

0 (0, πp), the other one is of saddle type).
(iii) If λ = λ1 (and similarly for higher eigenvalues λn = (p− 1)n), the condition∫ πp

0

f(t)S(t) dt = 0,

where S(t) is the generalized sine function given in Section 2, i.e. the solution
of (24) with f ≡ 0, is only sufficient but not necessary for solvability of (24).
More precisely, there exists an open cone C ⊂ C[0, πp] such that (24) has at
least two solutions for every f ∈ C and∫ πp

0

f(t)S(t) dt != 0.

4.3 Half-linear difference equations

In recent years, considerable attention has been paid to the oscillation theory of
various difference equations. In particular, the oscillation theory of the Sturm-
Louville difference equation

∆(rk∆xk) + ckxk+1 = 0, ∆xk = xk+1 − xk,

has been deeply developed, see [1,31]. The discrete counterpart of (1) is the dif-
ference equation

∆(rkΦ(∆xk)) + ckΦ(xk+1) = 0, rk != 0. (25)

The basic oscillatory properties of (25) are established in [38] and the main result
of that paper is the discrete version of the Roundabout Theorem (Proposition 1).

Theorem 10. The following statements are equivalent

(i) Equation (25) is disconjugate on the discrete interval [0, N ], i.e. the solution
x given by the initial condition x0 = 0, x1 != 0 has no generalized zero in
(0, N + 1], i.e.

rkxkxk+1 > 0, k = 1, . . . , N.

(ii) There exists a solution x of (25) having no generalized zero in [0, N + 1].
(iii) There exists a solution w = {wk}N+1

k=0 of the Riccati-type equation

∆wk + ck +
(

1− rk
Φ(Φ−1(rk) + Φ−1(wk))

)
wk = 0, w =

rΦ(∆x)
Φ(x)

such that rk + wk > 0, k = 1, . . . , N .
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(iv) We have

Fd(y; 0, N) =
N∑

k=0

{rk|∆yk|p − ck|yk+1|p} > 0

for every nontrivial y = {yk}N+1
k=0 satisfying y0 = 0 = yN+1.

4.4 Scalar methods for p-Laplacian

Several physical phenomena can be described by the partial differential equation
with the so-called p-Laplacian

div
(
||∇u||p−2∇u

)
+ c(x)Φ(u) = 0, x = (x1, . . . , xn) ∈ R

n, (26)

see e.g. [11]. It can be shown that the p-degree functional

F(u;Ω) =
∫
Ω

{||∇u||p − c(x)|u|p} dx,

the Riccati type equation

div w + c(x) + (p− 1)||w||q = 0, w =
∇u
u

(27)

and Picone’s-type identity

F(y;Ω) =
∫
∂Ω

w|y|p dS + p
∫
Ω

P (∇y, Φ(y)w) dx,

P (u, v) =
||u||p
p

− 〈u, v〉+
||v||q
q

≥ 0,

where w is a solution of (27) defined in the whole domain Ω, can be used to
establish Roundabout Theorem, Sturmian theory and to a certain extent also the
oscillation theory similarly as for ordinary differential equation (1) and for partial
differential equations with the “normal” Laplacian, see [2,3,18,29].

References

1. R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Appli-
cations, Second Edition, M. Dekker, New York-Basel, 2000.

2. W. Allegretto, Y.X. Huang, A Picone’s identity for the p-Laplacian and appli-
cations, Nonlin. Anal. 32 (1998), 819-830.

3. W. Allegretto, Y.X. Huang, Principal eigenvalues and Sturm comparison via
Picone’s identity, J. Differ. Equations 156 (1999), 427-438.

4. I. Bihari, On the second order half-linear differential equation, Studia Sci. Math.
Hungar. 3 (1968), 411-437.

5. I. Bihari, An oscillation theorem concerning the half-linear differential equation of
the second order. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 275-279.



Half-linear differential equations 49

6. O. Bor̊uvka, Lineare Differentialtransformationen 2. Ordnung, Deutscher Verlag
der Wissenschaften, Berlin 1961.

7. M. Cecchi, Z. Došlá, M. Marini, On nonoscillatory solutions of differential equa-
tions with p-Laplacian, Advances Math. Sci. Appl. 11 (2001), 419-436.

8. M. Cecchi, Z. Došlá, M. Marini, Minimal sets for quasilinear differential equa-
tions, submitted.

9. M. Cecchi, M. Marini, G. Villari, Integral criteria for a classification of solutions
of linear differential equations, J. Differ. Equations 99 (1992)

10. M. Cuesta, D. de Figuiredo, J.-P. Gossez, The beginning of the Fučík spectrum
for the p-Laplacian, J. Differ. Equations 159 (1999), 212-238.

11. J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol I.
Elliptic Equations, Pitman, London 1985.

12. O. Došlý, Oscillation criteria for half-linear second order differential equations,
Hiroshima J. Math. 28 (1998), 507-521.

13. O. Došlý, A remark on conjugacy of half-linear second order differential equations,
Math. Slovaca 50 (2000), 67-79.

14. O. Došlý, Methods of oscillation theory of half-linear second order differential equa-
tions, Czech Math. J. 50 (125) (2000), 657-671.

15. O. Došlý, Half-linear oscillation theory, Studies Univ. Žilina, Math.-Phys. Ser. 13
(2001), 65-73.

16. O. Došlý, Á. Elbert, Integral characterization of principal solution of half-linear
differential equations, Studia Sci. Math. Hungar. 36 (2000), 455-469.

17. O. Došlý, A. Lomtatidze, Oscillation and nonoscillation criteria for half-linear
second order differential equations, submitted.

18. O. Došlý, R. Mařík, Nonexistence of positive solutions of PDE’s with p-Laplacian,
Acta Math. Hungar. 90 (2001), 89-107,

19. O. Došlý, J. Řezníčková, Regular half-linear second order differential equations,
submitted.

20. P. Drábek, Fredholm alternative for the p-Laplacian: yes or no? Mustonen, Vesa
(ed.) at al, Function spaces, differential operators and nonlinear analysis: Proceedings
of the conference FSDONA-99, Syöte, Finland, June 10-16, 1999, Prague, Mathemat-
ical Institute of the Academy of Sciences of the Czech Republic, 57-64, (2000).

21. Á. Elbert, A half-linear second order differential equation, Colloq. Math. Soc. János
Bolyai 30 (1979), 158-180.

22. Á. Elbert, The Wronskian and the half-linear differential equations, Studia Sci.
Math. Hungar. 15 (1980), 101–105.

23. Á. Elbert, Oscillation and nonoscillation theorems for some non-linear ordinary
differential equations, Lectures Notes in Math. No. 964 (1982), 187-212.

24. Á. Elbert, Asymptotic behaviour of autonomous half-linear differential systems on
the plane, Studia Sci. Math. Hungar. 19 (1984), 447-464.

25. Á. Elbert, T. Kusano, Principal solutions of nonoscillatory half-linear differential
equations, Advances Math. Sci. Appl. 18 (1998), 745-759.

26. R. Emden, Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kos-
mologie und metheorologische Probleme, Leibzig, 1907.

27. R.H. Fowler, The solutions of Emdem’s and similar differential equations, Monthly
Notices Roy. Astronom. Soc. 91 (1930), 63-91.

28. P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-
London-Sydney, 1964.

29. J. Jaroš, T. Kusano, A Picone type identity for half-linear differential equations,
Acta Math. Univ. Comenianea 68 (1999), 137-151.



50 O. Došlý

30. J. Jaroš, T. Kusano, N. Yosida, A Picone-type identity and Sturmian comparison
and oscillation theorems for a class of half-linear partial differential equations of the
second order, Nonlin. Anal. TMA 40 (2000), 381-395.

31. W.G. Kelley, A. Peterson, Difference Equations: An Introduction with Applica-
tions, Acad. Press, San Diego, 1991.

32. T. Kusano, Y. Naito,Oscillation and nonoscillation criteria for second order quasi-
linear differential equations, Acta. Math. Hungar. 76, (1997), 81-99.

33. T. Kusano, Y. Naito, A. Ogata, Strong oscillation and nonoscillation of quasi-
linear differential equations of second order, Diff. Equations Dyn. Syst. 2 (1994),
1-10.

34. H. J. Li, Ch.Ch. Yeh, Oscillations of half-linear second order differential equations,
Hiroshima Math. J. 25 (1995), 585-594.

35. M. Marini, P. Zezza, On the asymptotic behavior of the solutions of second order
linear differential equations, J. Differ. Equations 28 (1978), 1-17.

36. J.D. Mirzov, On some analogs of Sturm’s and Kneser’s theorems for nonlinear
systems, J. Math. Anal. Appl. 53 (1976), 418-425.

37. J.D. Mirzov, Principal and nonprincipal solutions of a nonoscillatory system,
Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117.

38. P. Řehák, Oscillatory properties of second order half–linear difference equations,
Czech. Math. J., 51 (126) (2001), 303–321.

39. G. Sansone, Equazioni diferenziali nel campo reale I,II, Zanichelli, Bologna, 1949.
40. L.H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc. 23
(1927), 542-548.


		webmaster@dml.cz
	2012-10-04T17:33:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




