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Introduction

Our goal is to develop a sufficiently accurate and robust method for the numerical
solution of nonlinear conservation laws, nonlinear convection-diffusion problems
and compressible flow. In principle, all numerical methods for the solution of partial
differential equations can be applied to the mentioned problems. The most popular
are now the finite element (FE) and finite volume (FV) methods. The finite volume
schemes are suitable for the discretization of conservation laws, whereas the FE
methods are mainly used for diffusion problems. In order to employ advantages of
both these techniques, combined FV - FE methods for the solution of convection-
diffusion problems and compressible viscous flow were developed. For analysis and
applications, see, e.g., [1], [10], [11], [12], [13], [14]. These methods give good results
in many cases of technically relevant problems in complex domains. However, their
drawback is the necessity to construct two mutually associated meshes, which is
rather complicated particularly in 3D ([15]).

A generalization of both the FV and FE methods is the discontinuous Galerkin
finite element (DG FE) method. It uses only one mesh and allows higher order of
accuracy. (For a survey about DG FE methods, see, [3] or [4].) However, in regions,
where the solution has discontinuities or steep gradients, the so-called spurious
oscillations appear in the numerical solution obtained by the DG FE method. In
this paper we describe two methods how to avoid this undesirable phenomenon.
The first possibility uses a FV approximation of the convective terms applied in
the framework of the DG FE method via averaging. This method requires only
one mesh, but its order of accuracy is one. The second method is based on a
new type of limiting of the order of accuracy in the vicinity of discontinuities or
steep gradients. In contrast to [3], where the author introduces a slope limiter
quite in analogy with the FV MUSCL type schemes, we propose a different new
method based on a suitable identification of a discontinuity and the decrease of the
order of the method to one in a narrow neighbourhood of the discontinuity. This
numerical technique is applied to the solution of inviscid compressible high-speed
flow described by the Euler equations.

1 DG FE method for a nonstationary nonlinear
convection-diffusion problem

1.1 Continuous problem

Let Ω ⊂ IR2 be a bounded polygonal domain and T > 0. We set QT = Ω × (0, T )
and by ∂Ω denote the boundary of Ω. We consider the following model initial-
boundary value problem: Find u : QT → IR such that

∂u

∂t
+

2∑
s=1

∂fs(u)
∂xs

= ε∆u+ g in QT , (1.1)

u|∂Ω×(0,T ) = uD, (1.2)

u(x, 0) = u0(x), x ∈ Ω. (1.3)



On Discontinuous Galerkin Methods 67

We suppose that fs ∈ C1(IR) and the data are sufficiently regular so that we can
assume the existence of a strong solution u satisfying (1.1)–(1.3) pointwise:

u ∈ L2(0, T ;H2(Ω)), ∂u/∂t ∈ L2(0, T ;H1(Ω)). (1.4)

We use the standard notation for function spaces:
Hk(Ω)= Sobolev space,
L2(0, T ;X) = Bochner space of square integrable functions on (0, T ) with values
in a Banach space X ,
C1(0, T ;X) = space of continuously differentiable mappings in (0, T ) with values
in X .

1.2 Discretization

Let Th (h > 0) denote a partition of the closure Ω of the domain Ω into a finite
number of closed convex polygons K with mutually disjoint interiors. We call Th
a triangulation of Ω, but do not require the usual conforming properties from the
finite element method. We usually choose K ∈ Th as triangles or quadrilaterals
but we can allow even more general convex elements.

We set hK = diam(K), h = maxK∈Th
hK . All elements of Th will be numbered

so that Th = {Ki}i∈I , where I ⊂ Z+ = {1, 2, . . .} is a suitable index set. If two
elements Ki, Kj ∈ Th contain a nonempty open face which is a part of a straight
line, we call them neighbours. In this case we set Γij = ∂Ki ∩ ∂Kj and assume
that the whole set Γij is a part of a straight line. For i ∈ I we set s(i) = {j ∈
I;Kj is a neighbour of Ki}.

The boundary ∂Ω is formed by a finite number of faces of elements Ki adja-
cent to ∂Ω. We denote all these boundary faces by Sj , where j ∈ Ib ⊂ Z− =
{−1,−2, . . .} and set γ(i) = {j ∈ Ib;Sj is a face of Ki}, Γij = Sj for Ki ∈
Th such that Sj ⊂ ∂Ki, j ∈ Ib. For Ki not containing any boundary face Sj we set
γ(i) = ∅. Obviously, s(i)∩γ(i) = ∅ for all i ∈ I. Now, if we write S(i) = s(i)∪γ(i),
we have

∂Ki =
⋃

j∈S(i)

Γij , ∂Ki ∩ ∂Ω =
⋃

j∈γ(i)

Γij . (1.5)

Furthermore, we use the following notation: nij = ((nij)1, (nij)2) = unit outer
normal to ∂Ki on the face Γij , |Γij |=length of Γij . By |K| we denote the two-
dimensional Lebesgue measure of K ∈ Th.

Over the triangulation Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}. (1.6)

and for v ∈ H1(Ω, Th) introduce the following notation: v|Γij = the trace of v|Ki

on Γij , v|Γji = the trace of v|Kjon Γji = Γij , 〈v〉Γij = 1
2

(
v|Γij + v|Γji

)
, [v]Γij =

v|Γij − v|Γji . Obviously, 〈v〉Γij = 〈v〉Γji , but [v]Γij = −[v]Γji and [v]Γij nij =
[v]Γjinji.
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The approximate solution of problem (1.1)–(1.3) is sought in the space of dis-
continuous piecewise polynomial functions

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (1.7)

where Pp(K) denotes the space of all polynomials on K of degree ≤ p.
In order to derive the discrete problem, we multiply equation (1.1) by any

v ∈ Sh, integrate over K ∈ Th, apply Green’s theorem and sum over all K ∈ Th.
Moreover, we use the relations [u]|Γij = 0, 〈∇u〉Γij = ∇u|Γij = ∇u|Γji , and add to
the identity thus obtained some terms which mutually cancel.

The flux
∫
Γij
fs(u)ns v dS is approximated with the aid of the numerical flux

H = H(α, β,n):∫
Γij

d∑
s=1

fs(u)ns v|Γij dS ≈
∫
Γij

H
(
u|Γij , u|Γji ,nij

)
v|Γij dS. (1.8)

and the approximate convective form is defined as

b̃h(uh, vh) =
∑
i∈I

∑
j∈S(i)

∫
Γij

H
(
uh|Γij , uh|Γji ,nij

)
vh|Γij dS (1.9)

−
∑
i∈I

∫
Ki

2∑
s=1

fs(uh)
∂vh
∂xs

dx, uh, vh ∈ Sh.

If Γij ⊂ ∂Ω, we use the Dirichlet boundary condition (1.2) in order to specify
uh|Γji .

Now, for uh, vh ∈ Sh we set

ah(uh, vh) = ε
∑
i∈I

∫
Ki

∇uh · ∇vh dx (1.10)

−ε
∑
i∈I

∑
j∈s(i)
j<i

∫
Γij

〈∇uh〉 · nij [vh] dS

+ε
∑
i∈I

∑
j∈s(i)
j<i

∫
Γij

〈∇vh〉 · nij [uh] dS

−ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

∇uh · nij vh dS

+ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

∇vh · nij uh dS

(diffusion terms),

Jσ
h (uh, vh) =

∑
i∈I

∑
j∈s(i)

∫
Γij

σ[uh] [vh] dS +
∑
i∈I

∑
j∈γ(i)

∫
Γij

σ uh vh dS (1.11)



On Discontinuous Galerkin Methods 69

(stabilization jump terms),

Dh(vh) (t) =
∫
Ω

g(t) vh dx+ ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

∇vh · nijuD(t) dS (1.12)

+ε
∑
i∈I

∑
j∈γ(i)

∫
Γij

σ uD(t) vh dS,

(α, β) =
∫
Ω

αβ dx, (1.13)

Here σ is a weight function such that σ|Γij = 1/|Γij|. An approximate solution is
defined as a function uh satisfying the conditions

a) uh ∈ C1([0, T ], Sh), (1.14)

b)

(
∂uh(t)
∂t

, vh

)
+ b̃h(uh(t), vh) + ah(uh(t), vh) + εJσ

h (uh(t), vh) = Dh(vh)(t),

∀ vh ∈ Sh ∀ t ∈ (0, T ),
c) uh(0) = u0

h,

where u0
h is an Sh-approximation of u0 (e. g., L2-projection). If ε = 0, it is necessary

to use boundary conditions suitable for hyperbolic equations. (See Section 5.)
We have carried out the semidiscretization in space (called the method of lines)

leading to a system of ordinary differential equations. In practical computations,
the full discretization is carried out. We can use, e. g., the explicit Euler or Runge-
Kutta schemes. Semiimplicit or fully implicit time discretization leads to large
nonlinear algebraic systems which must be solved iteratively. Moreover, the in-
tegrals are evaluated with the aid of quadrature formulae. Let us note that the
form ah is a variant of the DG FE approximation of the diffusion terms proposed
in [18].

We assume that the numerical flux has the following properties:

1) H(α, β,n) is defined on IR2 ×B1, where B1 = {n ∈ IR2; |n| = 1}, is (locally)
Lipschitz-continuous,

2) H(α, β,n) is consistent:

H(α, α,n) =
2∑

s=1

fs(α)ns, α ∈ IR, n = (n1, n2) ∈ B1, (1.15)

3) H(α, β,n) is conservative:

H(α, β,n) = −H(β, α,−n), α, β ∈ IR, n ∈ B1. (1.16)

The described process yields a higher order scheme using only one (in general
unstructured) mesh. Its disadvantage are spurious oscillations in approximate so-
lutions which appear in areas with steep gradients in the case of small diffusion
terms (or discontinuities if ε = 0). We shall discuss two methods how to avoid this
problem.
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2 Finite volume discontinuous Galerkin method

The first method for avoiding spurious oscillations in the DG FE solution is based
on a modification of the convective form with the aid of the FV approach and
element averaging. Therefore, we speak of the finite volume discontinuous Galerkin
method (FV DG).

In (1.7) we put p = 1, i. e., we use piecewise linear elements, and introduce
a modification bh of the form b̃h defined in the following way. By π0 we denote
the L2-projection of functions v ∈ L2(Ω) on the space S0,−1

h (Ω, Th) of piecewise
constant functions: π0v|K =

∫
K v dx/|K| for K ∈ Th. Then, instead of b̃h we use

in (1.14), b) the approximate convective form

bh(uh, vh) =
∑
i∈I

π0vh|Ki (2.1)

×
{ ∑

j∈s(i)
H
(
π0uh|Ki , π0uh|Kj ,nij

)
|Γij |+

∑
j∈γ(i)

H (π0uh|Ki , π0uh|Ki ,nij) |Γij |
}
.

In this case, the boundary values are realized in the form bh by extrapolation.
In order to derive error estimates, we consider the following assumptions:
Let us consider a system {Th}h∈(0,h0), h0 > 0, of partitions of the domain Ω

(Th = {Ki}i∈Ih
, Ih ⊂ Z+, but for simplicity we write again I instead of Ih) and

assume that it has the following properties:

(A1) There exists a constant C1 > 0 such that

hK/ρK ≤ C1 ∀K ∈ Th, ∀h ∈ (0, h0). (2.2)

(We say that the system {Th}h∈(0,h0) is shape regular.)
(A2) There exists a constant C2 such that

cardS(i) ≤ C2 ∀Ki ∈ Th, ∀h ∈ (0, h0). (2.3)

(The number of neighbours Kj of Ki is uniformly bounded.)
(A3) There exists a constant C3 > 0 such that

hKi ≤ C3|Γij |, i ∈ I, j ∈ S(i), h ∈ (0, h0). (2.4)

(The length of faces between neighbouring elements does not degenerate.)
(A4) The numerical flux H is Lipschitz-continuous.

Under the above assumptions, the following auxiliary results can be established.

Lemma 2.1 (Multiplicative trace inequality). There exists a constant C4 > 0
independent of h, K such that

‖v‖2
L2(∂K) ≤ C4

(
‖v‖L2(K) |v|H1(K) + h−1

K ‖v‖2
L2(K)

)
, (2.5)

K ∈ Th, v ∈ H1(K), h ∈ (0, h0).
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Lemma 2.2. The following estimates hold:

‖π0v‖L2(K) ≤ ‖v‖L2(K), K ∈ Th, v ∈ L2(K), (2.6)

‖π0v‖L2(Ω) ≤ ‖v‖L2(Ω), v ∈ L2(Ω), (2.7)

‖v − π0v‖L2(K) ≤
hK
π
|v|H1(K), K ∈ Th, v ∈ H1(K), (2.8)

‖v − π0v‖L2(∂K) ≤ C5 h
1/2
K |v|H1(K), K ∈ Th, v ∈ H1(K), (2.9)

with a constant C5 > 0 independent of h ∈ (0, h0) and K, v.
There exist a constant C6 > 0 independent of h ∈ (0, h0) and v and a mapping

Π : H2(Ω, Th) → Sh such that

‖Πv − v‖L2(K) ≤ C6hK |v|H1(K), v ∈ H1(K), (2.10)

‖Πv − v‖L2(K) ≤ C6h
2
K |v|H2(K), v ∈ H2(K),

|Πv − v|H1(K) ≤ C6hK |v|H2(K), v ∈ H2(K),
K ∈ Th, h ∈ (0, h0),

‖Πv − v‖L2(Ω) ≤ C6h|v|H1(Ω,Th), v ∈ H1(Ω, Th), (2.11)

‖Πv − v‖L2(Ω) ≤ C6h
2|v|H2(Ω,Th), v ∈ H2(Ω, Th),

|Πv − v|H1(Ω,Th) ≤ C6h|v|H2(Ω,Th), v ∈ H2(Ω, Th).

Now we shall be concerned with properties of the form bh.

Lemma 2.3. The form bh is Lipschitz continuous: There exists a constant C7 > 0
such that

|bh(uh, vh)− bh(u, vh)| ≤ (2.12)

≤ C7

(
Jσ
h (vh, vh)1/2 + |vh|H1(Ω,Th)

)
‖u− uh‖L2(Ω),

uh ∈ Sh, u ∈ L2(Ω), vh ∈ Sh, h ∈ (0, h0).

Moreover, bh is consistent: There exists a constant C8 > 0 such that

|bh(u, vh)− b(u, vh)| ≤ (2.13)

≤ C8 h|u|H1(Ω)

(
Jσ
h (vh, vh)1/2 + |vh|H1(Ω,Th)

(
Φ(‖u‖L∞(Ω)) + 1

))
,

u ∈ H1(Ω) ∩ L∞(Ω), vh ∈ Sh, h ∈ (0, h0),

where we define, for M ≥ 0,

Φ(M) = max
ξ∈[−M,M ]
s=1,...,d

|f ′s(ξ)| (2.14)

and

b(u, vh) =
∫
Ω

2∑
s=1

∂fs(u)
∂xs

vh dx (2.15)

is a weak form of the convective terms from the continuous problem.
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Let us assume that the exact solution satisfies conditions (1.4). Then it satisfies
the relation(

∂u

∂t
, vh

)
+ ah(u, vh) + εJσ

h (u, vh) + b(u, vh) = D(vh) ∀vh ∈ Sh. (2.16)

We set

M = ‖u‖L∞(QT ). (2.17)

and

ξ = uh −Πu, η = Πu− u. (2.18)

Then

uh − u = ξ + η, ξ(t) ∈ Sh, η(t) ∈ H2(Ω, Th), t ∈ [0, T ]. (2.19)

From the numerical scheme (1.14), where we write bh instead of b̃h, and identity
(2.16), it is possible to derive the relation(

∂ξ

∂t
, ξ

)
+ ah(ξ, ξ) + εJσ

h (ξ, ξ) (2.20)

= b(u, ξ)− bh(uh, ξ)−
(
∂η

∂t
, ξ

)
− ah(η, ξ)− εJσ

h (η, ξ).

In the sequel, we estimate the individual terms on the right-hand side of (2.20)
and get the following results:

Lemma 2.4. It holds: (
∂ξ

∂t
, ξ

)
=

d
dt
‖ξ‖2

L2(Ω), (2.21)

∣∣∣∣(∂η∂t , ξ
)∣∣∣∣ ≤ ∥∥∥∥∂η∂t

∥∥∥∥
L2(Ω)

‖ξ‖L2(Ω), (2.22)

Jσ
h (η, ξ) ≤ (Jσ

h (η, η))1/2 (Jσ
h (ξ, ξ))1/2, (2.23)

‖η‖L2(Ω) ≤ C9h|u|H1(Ω), (2.24)

‖η‖L2(Ω) ≤ C9h
2|u|H2(Ω),

|η|H1(Ω,Th) ≤ C9h|u|H2(Ω),∥∥∥∥∂η∂t
∥∥∥∥
L2(Ω)

≤ C9h

∣∣∣∣∂u∂t
∣∣∣∣
H1(Ω)

, h ∈ (0, h0),

where C9 > 0 is a constant independent of u and h.
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Lemma 2.5. We have

|b(u, ξ)− bh(uh, ξ)|≤C10

(
Jσ
h (ξ, ξ)1/2 + |ξ|H1(Ω,Th)

)
(2.25)

×
(
‖ξ‖L2(Ω) + h2|u|H2(Ω) + h|u|H1(Ω)

)
, h ∈ (0, h0),

where C10 > 0 is a constant dependent on M = ‖u‖L∞(QT ) but independent of h
and ξ. Moreover, there exists a constant C11 > 0 independent of u, h, ξ, ε such
that

|ah(η, ξ)| ≤ C11εh|u|H2(Ω)

(
Jσ
h (ξ, ξ)1/2 + |ξ|H1(Ω,Th)

)
, h ∈ (0, h0). (2.26)

The last step in the proof of error estimates is the application of Gronwall’s
lemma. This yields the main result.

Theorem 2.6. Let assumptions (1.15), (1.16) and (A1)–(A4) be satisfied. Let u
be the exact strong solution of problem (1.1)–(1.3) satisfying (1.4) and let uh be
the approximate solution defined by the FV DG modification of scheme (1.14),
described in Section 2. Then the error eh = uh − u satisfies the estimate

sup
t∈[0,T ]

‖eh(t)‖2 + ε
∫ T

0

(
|eh(ϑ)|2H1(Ω,Th) + Jσ

h (eh(ϑ), eh(ϑ))
)

dϑ (2.27)

≤ C h2, h ∈ (0, h0),

with a constant C > 0 independent of h.

All proofs are rather technical. They will appear in a separate paper [6].
As we see from (2.27), the FV DG method is of the first order. This was also

confirmed by numerical experiments described in [6]. Unfortunately, the constantC
from the above estimate depends on ε→ 0 in a very pessimistic way: C ≈ exp(c/ε)
(c is a constant independent of h and ε). This is caused by the application of
Gronwall’s lemma. A uniform estimate for ε→ 0 remains open.

The same results can be obtained for a three-dimensional problem and a prob-
lem in Ω × (0, T ) with Ω = (−1, 1)d (d = 2, 3) and periodic boundary conditions.

3 Second-order DG FE method with order limiting

This section is concerned with a numerical technique avoiding disadvantages of
both schemes discussed above: spurious oscillations in solutions obtained by the
pure DG FE method (1.14) and a low order (=first order) of the FV DG scheme
from Section 2.

Let us return to scheme (1.14), where we suppose that Th is formed by triangles
and p = 1. We carry out the discretization in time by the forward Euler method.
To this end, we consider a partition 0 = t0 < t1 < t2 < . . . of the time interval
(0, T ) and set τk = tk+1 − tk.
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The fully discrete problem reads: starting from u0
h ∈ Sh, for each k ≥ 0 find

uk+1
h such that

a) uk+1
h ∈ Sh = S1,−1

h (Ω, Th), (3.1)

b) (uk+1
h , vh) = (ukh, vh)− τk ah(ukh, vh)

−τk b̃h(ukh, vh)− τkεJσ
h (ukh, vh) + τk Dh(vh) (tk) ∀ vh ∈ Sh.

In order to avoid spurious oscillations in the numerical solution, discontinuities
and steep gradients of the solution are identified, and in their vicinity, the order
of accuracy of the scheme is suppressed to one. On the basis of detailed numerical
experiments ([7]), the following indicator of discontinuities and steep gradients is
proposed:

g(i) =
∫
∂Ki

[ukh]2 dS
/
(hKi |Ki|3/4), Ki ∈ Th. (3.2)

Now we define an adaptive strategy for an automatic limiting of the order of
accuracy of scheme (3.1):

a) uk+1
h ∈ Sh = S1,−1

h (Ω, Th), (3.3)

b) (uk+1
h , vh) = (ũkh, vh)− τk ah(ukh, vh)

−τk b̃h(ũkh, vh)− τkJσ
h (ukh, vh) + τk Dh(vh) (tk) ∀ vh ∈ Sh,

where ũkh is the modification of ukh defined with the aid of our limiting strategy in
the following way:

a) Set ũkh|Ki := ukh|Ki ∀i ∈ I. (3.4)

b) If g(i) > 1 for some i ∈ I, then set ũkh|Ki := π0 u
k
h|Ki .

This means that in (3.3) the limiting (3.4) of the order of the scheme is applied
on the elements lying on discontinuities (or regions with steep gradients). In other
areas the second order of accuracy is preserved.

Next sections demonstrate the applicability of the developed schemes.

4 Scalar numerical examples

Let us consider the Burgers equation

∂u

∂t
+

2∑
s=1

u
∂u

∂xs
= ε∆u in Ω × (0, T ), (4.1)

where Ω = (−1, 1)2, equipped with the initial condition

u0(x1, x2) = 0.25 + 0.5 sin(π(x1 + x2)), (x1, x2) ∈ Ω, (4.2)
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and periodic boundary conditions. This problem has a unique weak solution con-
verging to a weak entropy solution of the inviscid Burgers equation as ε→ 0+. If
ε = 0, the solution is discontinuous for t ≥ 0.3. For 0 < ε 0 1, the solution has
steep gradients (tending to discontinuities as ε→ 0).

This problem is solved by the numerical scheme (3.1) (adapted to the problem
with periodic conditions). The numerical flux is chosen in the following way:

In Figure 1, the computational mesh used in Ω is plotted. The time step is
chosen as τ = 2.5 · 10−4. Figure 2 shows the graph of the numerical solution
at time t = 0.45 for ε = 0. It is seen here that the solution contains spurious
oscillations near discontinuities. In Figure 3 we see the numerical solution of the
problem with ε = 0.002 obtained by the FV DG method described in Section 2. In
this case the exact solution differs only slightly from the solution of the problem
with ε = 0. We see in Figure 3 that the oscillations are strongly suppressed. The
best results were obtained with the aid of the method (3.3)–(3.4), as is seen from
Figure 4 showing the numerical solution of the problem with ε = 0. In this case,
the discontinuities are resolved very well. They are quite sharp without spurious
oscillations.

In all presented computational results, we can notice an interesting fact that al-
though the discontinuous approximation is used, the interelement jumps are negli-
gible in the regions, where the exact solution is regular. Conspicuous discontinuities
appear in the numerical solution only there, where the solution is discontinuous.
This indicates that the DG FE method is very suitable for the numerical solution
of problem with solutions containing steep gradients or discontinuities.
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Fig. 1. Triangulation used for the numerical solution of problem (4.1)–(4.2)
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Fig. 2. Numerical solution of problem (4.1)–(4.2) computed by DG FE method
plotted at t = 0.45

Fig. 3. Numerical solution of problem (4.1)–(4.2) computed by FV DG method
plotted at t = 0.45
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Fig. 4. Numerical solution of problem (4.1)–(4.2) computed by DG FE method
with limiting, plotted at t = 0.45

5 DG FE method for the Euler equations

The system of the Euler equations describing 2D inviscid flow can be written in
the form

∂f

∂t
+

2∑
s=1

∂fs(f )
∂xs

= 0 in QT = Ω × (0, T ), (5.1)

where Ω ⊂ IR2 is a bounded domain occupied by gas,

f = (w1, . . . , w4)T = (ρ, ρv1, ρv2, e)T (5.2)

is the so-called state vector and

fs(f ) = (f1
s (w), . . . , f4

s (w)) (5.3)

= (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (e+ p) vs)T, s = 1, 2,

are the so-called inviscid (Euler) fluxes. We use the following notation: ρ-density,
p-pressure, e-total energy, v = (v1, v2) - velocity. The state equation implies that

p = (γ − 1) (e− ρ|v|2/2). (5.4)

Here γ > 1 is the Poisson adiabatic constant. The system (5.1)–(5.4) is hyperbolic.
It is equipped with the initial condition

f(x, 0) = f0(x), x ∈ Ω, (5.5)

and boundary conditions

B(f ) = 0 on ∂Ω × (0, T ), (5.6)
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chosen in such a way that problem (5.1)–(5.6) is linearly well-posed. For details,
see, e.g., [8] or [9].

The DG FE discretization in space combined with the forward Euler discretiza-
tion in time can be written in the form (3.1) where (due to zero diffusion) ah = 0,
ε = 0, Dh = 0. In order to avoid spurious oscillations in the numerical solution,
automatic adaptive limiting of order of accuracy is used, which leads to scheme
(3.3)–(3.4):

a) fk+1
h ∈ Sh := S1,−1

h (Ω, Th)4, (5.7)

b) (fk+1
h ,vh) = (f̃

k

h,vh)− τk b̃h(f̃
k

h,vh) ∀vh ∈ Sh

where

a) we set f̃
k

h|Ki := fk
h|Ki ∀i ∈ I, (5.8)

b) if g(i) > 1 for some i ∈ I, then we set f̃
k

h|Ki := π0 fk
h|Ki .

The shock indicator g(i) is computed by (3.2), where instead of ukh, the density ρ
on the k-th time level is used. The form b̃h is defined by (1.9), where H is chosen as
the well-known Osher-Solomon numerical flux (see, [19], [9]). The Osher-Solomon
boundary conditions are also described in [9].
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Fig. 5. The final triangulation obtained by AMA (left) and the corresponding
isolines of Mach number obtained by DG FE method

As en example we present the inviscid flow past the NACA0012 profile with
the far field Mach number M = 0.8, the angle of attack α = 1.25o and γ = 1.4.
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The algorithm (5.7)–(5.8) was used as an iterative time marching process with
“k → ∞”for obtaining the steady state solution. The computational mesh Th
was obtained by the anisotropic mesh adaptation (AMA) (see [5]). The stationary
solution was obtained after 4.3 · 105 time steps (for 7 level of mesh adaptation)
when the achieved residuum was ‖ρk+1−ρk‖L1(Ω)/τk ≤ 10−5. In Figure 5 the mesh
and the Mach number isolines with well resolved sharp shock waves are plotted.

A series of numerical experiments shows that in many cases the DG FE method
does not give good resolution in a neighbourhood of curved parts of boundary
∂Ω, if Ω is approximated by a polygonal domain. In order to get a good quality
solution, it is necessary to use isoparametric finite elements or a suitable numerical
integration. (This will be a subject matter of a forthcoming paper. See also [2] and
[17], where subsonic flow without shock waves is solved.)
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