Josef Diblík

Positive and oscillating solutions of equation $\dot{x}(t) = -c(t)x(t - \tau)$

Persistent URL: http://dml.cz/dmlcz/700343

Terms of use:

© Institute of Mathematics AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
Positive and oscillating solutions of equation
\[\dot{x}(t) = -c(t)x(t - \tau) \]

Josef Diblík *

Department of Mathematics, Faculty of Electrical Engineering and Computer Science, Brno University of Technology (VUT), Technická 8, 616 00 Brno, Czech Republic
Email: diblik@dmat.fee.vutbr.cz

Abstract. Positive and oscillating solutions of delayed equation
\[\dot{x}(t) = -c(t)x(t - \tau) \]
with \(c \in C(I, \mathbb{R}^+) \), \(I = [t_0, \infty) \), \(\mathbb{R}^+ = (0, \infty) \) and \(0 < \tau = \text{const} \) are studied.

MSC 2000. 34K15, 34K25

Keywords. Linear differential equations with delay, positive solution, oscillating solution

Let us consider the equation
\[\dot{x}(t) = -c(t)x(t - \tau) \] (1)
where \(c \in C(I, \mathbb{R}^+) \), \(I = [t_0, \infty) \), \(\mathbb{R}^+ = (0, \infty) \) and \(0 < \tau = \text{const} \).

Define \(\ln_k t = \ln(\ln_{k-1} t), k \geq 1 \) where \(\ln_0 t \equiv t \) for \(t > \exp_k 1 \) where \(\exp_k t \equiv (\exp(\exp_{k-1} t)), k \geq 1, \exp_0 t \equiv t \) and \(\exp_{-1} t \equiv 0 \). (Instead of expressions \(\ln_0 t, \ln_1 t \) is only \(t \) and \(\ln t \) written in the sequel.) Moreover, define so called critical functions for (1)
\[c_k(t) \equiv \frac{1}{e\tau} + \frac{\tau}{8et^2} + \frac{\tau}{8e(t \ln t)^2} + \frac{\tau}{8e(t \ln t \ln_2 t)^2} + \cdots + \frac{\tau}{8e(t \ln t \ln_2 t \ldots \ln_k t)^2} \]
with \(k \geq 0 \).

* Research supported by grant 201/99/0295 of Czech Grant Agency (Prague) and by the Council of Czech Government MSM 2622000 13.

This is the preliminary version of the paper.
Theorem 1. [1]
A) Let us assume that \(c(t) \leq c_k(t)\) for \(t \to \infty\) and an integer \(k \geq 0\). Then there is a positive solution \(x = x(t)\) of Eq. (1). Moreover,
\[x(t) < \nu_k(t) \equiv e^{-t/\tau} \sqrt{t \ln t \ln_2 t \cdots \ln_k t}\]
as \(t \to \infty\).

B) Let us assume that
\[c(t) > c_{k-1}(t) + \frac{\theta \tau}{8e(t \ln t \ln_2 t \cdots \ln_k t)^2}\]
for \(t \to \infty\), an integer \(k \geq 1\) and a constant \(\theta > 1\). Then all solutions of Eq. (1) oscillate.

Theorem 2. [1] Assume that the inequality (2) holds for \(t \to \infty\), an integer \(k \geq 1\) and a constant \(\theta > 1\). Then each solution of Eq. (1) has at least one zero on each interval \((p - \tau, q)\) for \(q = \exp_k(\ln_k p)\exp(\pi/\zeta), \zeta^2 < (\theta - 1)/4\), (\(\zeta\) is a positive constant) and \(p\) sufficiently large.

Theorem 3. [2] Let there exists a positive solution \(\tilde{x}\) of (1) on \(I\). Then there are positive solutions \(x_1\) and \(x_2\) of (1) on \(I\) satisfying the relation
\[\lim_{t \to \infty} \frac{x_2(t)}{x_1(t)} = 0.\]
Moreover, every solution \(x\) of (1) on \(I\) is represented by the formula
\[x(t) = Kx_1(t) + O(x_2(t))\]
where \(K \in \mathbb{R}\) depends on \(x\).

Definition 4. [3] Let \(x_1\) and \(x_2\) be fixed positive solutions of the delayed equation (1) on \(I\), with the property (3). Then \((x_1, x_2)\) is called a pair of dominant and subdominant solutions on \(I\).

Let us consider the equation (1) in the case when the coefficient \(c\) is equal to a critical function, i.e., in the case of equation
\[\dot{x}(t) = -c_k(t)x(t - \tau), \quad k \geq 0; \quad t \geq t_0 > \exp_{p-1}.\]

Theorem 5. [3] Let \(k \geq 0\) be fixed. Then for any fixed constants \(\delta_1 > 2\) and \(\delta_2 < 0\) there are a \(t_0\), and a pair \((x_1, x_2)\) of dominant and subdominant solutions of (4) on \(I\) satisfying the two-sided estimates
\[e^{-t/\tau} \sqrt{t \ln t \ln_2 t \cdots \ln_p t \ln_{p+1}^2 t} < x_1(t) < e^{-t/\tau} \sqrt{t \ln t \ln_2 t \cdots \ln_p t \ln_{p+1}^5 t}\]
and
\[e^{-t/\tau} \sqrt{t \ln t \ln_2 t \cdots \ln_p t \ln_{p+1}^{\delta_2} t} < x_2(t) < e^{-t/\tau} \sqrt{t \ln t \ln_2 t \cdots \ln_p t}\]
on \(I\).
References
