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Abstract. In this paper we consider a predator-prey models with discrete
time lag. The prey, is assumed to regenerate in the absence of predators
by logistic growth with carring capacity K. Two competing predators feed
over the prey without interference between them. We assume the functional
response of the predator population in the Michaelis-Menten forms. We
show that the system is pointwise dissipative and the existence of a global
attractor for the solutions of the model.
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1 Statement of the model

In 1978, Hsu, Hubbel and Waltman in the papers [4,5], have introduced the model

S′(t) = γS(t)(1− S(t)
K

)− m1X1(t)S(t)
a1 + S(t)

− m2X2(t)S(t)
a2 + S(t)

X ′
1(t) =

m1X1(t)S(t)
a1 + S(t)

−D1X1(t),

X ′
2(t) =

m2X2(t)S(t)
a2 + S(t)

−D2X2(t).

(1)

where S(t) is the number of the prey at time t, Xi(t) is the number of the ith
predator at time t, It is assumed that in the absence of predation, the prey growth
logistically with carring capacity K. The predators are assumed to feed on the
prey with saturing functional response to prey density. Specifically, we assume
that the Michaelis-Menten Kinetics describes how the predators feed on the prey.
The parameter mi is the maximun birth rate of the ith predator, Di is the death
rate for the ith predator, ai is the half-saturation constant for the ith predator i.e.,
the prey density at with the functional respose of the predator is half maximal,
the parameter γ is the intrisic rate of increase, while K is the carrying capacity
for the prey population.

In this model it is assumed that there are no significant time lags in the system.

A more realist situation occur if considered the past history of species are
considered. This is , consider that prey population growth instantaneously but the
dynamic of the predators depend on the prey density in the past by mean of a
discrete delay. We get the following system

S′(t) = γS(t)(1− S(t)
K

)− m1X1(t)S(t)
a1 + S(t)

− m2X2(t)S(t)
a2 + S(t)

X ′
1(t) =

m1X1(t)S(t− τ1)
a1 + S(t− τ1)

−D1X1(t),

X ′
2(t) =

m2X2(t)S(t− τ2)
a2 + S(t− τ2)

−D2X2(t).

(2)

with initial condition S0(θ) = φ(θ), θ ∈ [−τ, 0], φ ∈ C([−τ, 0], R+) and τ =
max{τ1, τ2}, τ1 > 0, τ2 > 0, S(0) = φ(0) ≥ 0,X10(θ) = X10 ≥ 0,X20(θ) = X20 ≥ 0.
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2 Main Results

We define the parameters µ1 y µ2 as follow

µi =
aiDi

mi −Di
, i = 1, 2

and we suppose that µ1 �= µ2.
In the following result we show that the solutions of system (2) is one positive

and the pointwise dissipativity is established.

Theorem 1. Let

E = {φ = (ψ1, ψ2, ψ3) ∈ C([−τ, 0], R3
+) : ψi(θ) ≥ 0, θ ∈ [−τ, 0], i = 1, 2, 3}

then, E is positively invariant under the flow induced by the system (2). Futher-
more, the system (2) is point dissipative and the absorbent set; that is, the set where
all the solutions eventualy enters and remains is B = [0,K] × [0,M1] × [0,M2],

where M1 = γ
a1 +K + 1

m1
and M2 = γ

a2 +K + 1
m2

.

Corollary 2. The systems (2) have a global attractor in C([−τ, 0], R3
+).

If µ1 �= µ2 the point of equilibrium of the system (2) are

E0 = (0, 0, 0), EK = (K, 0, 0),

E∗ = (s∗,
γ

m1K
(K − s∗)(a1 + s∗), 0), s∗ =

a1D1

m1 −D1
,

E∗ = (s∗, 0,
γ

m2K
(K − s∗)(a2 + s∗)), s∗ =

a2D2

m2 −D2

where mi > Di, 0 < s∗ < K y 0 < s∗ < K.

Lemma 3. If Xi(t) survives then 0 < µi < K.

Theorem 4. – E0 = (0, 0, 0) is unstable.
– If

a) m1 −D1 ≤ 0 or
a1D1

m1 −D1
> K, and

b) m2 −D2 ≤ 0 or
a2D2

m2 −D2
> K, then

lim
t−→∞

S(t) = K y lim
t−→∞

Xi(t) = 0, i = 1, 2.

The following lemma gives us a necessary condition for the extintion of X1 and
X2.

Lemma 5. If lim
t−→∞

Xi(t) = 0, i = 1, 2, then

mi −Di

aiDi
≤ 1
ai +K

, i = 1, 2.
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Lemma 6. mi −Di ≤ 0 or 0 < K <
aiDi

mi −Di
if and only if

mi −Di

aiDi
<

1
ai +K

.

Lemma 7. 0 <
aiDi

mi −Di
< K if and only if

mi −Di

aiDi
>

1
ai +K

.

Lemma 8. Let 0 <
a1D1

m1 −D1
< K < a1 +

2a1D1

m1 −D1
. If m2 − D2 ≤ 0 or if

a1D1

m1 −D1
<

a2D2

m2 −D2
. Then critical point (s∗, x∗1, 0) is local asymptotically stable,

where s∗ =
a1D1

m1 −D1
, x∗1 =

γ

mK
(K − s∗)(a1 + s∗).

Theorem 9. Let

a) 0 <
a1D1

m1 −D1
< K, and

b) m2 −D2 ≤ 0 or
a2D2

m2 −D2
> K. If K < a1 +

2a1D1

m1 −D1
, Then

lim
t−→∞

S(t) = S∗ =
a1D1

m1 −D1
,

lim
t−→∞

X1(t) =
γ

Km1
(K − s∗)(a1 + s∗),

lim
t−→∞

X2(t) = 0.
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